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LIPSCHITZ MODULUS IN CONVEX SEMI-INFINITE OPTIMIZATION
VIA D.C. FUNCTIONS ∗

Maŕıa J. Cánovas1, Abderrahim Hantoute2, Marco A. López3 and Juan Parra1

Abstract. We are concerned with the Lipschitz modulus of the optimal set mapping associated with
canonically perturbed convex semi-infinite optimization problems. Specifically, the paper provides a
lower and an upper bound for this modulus, both of them given exclusively in terms of the problem’s
data. Moreover, the upper bound is shown to be the exact modulus when the number of constraints is
finite. In the particular case of linear problems the upper bound (or exact modulus) adopts a notably
simplified expression. Our approach is based on variational techniques applied to certain difference of
convex functions related to the model. Some results of [M.J. Cánovas et al., J. Optim. Theory Appl.
(2008) Online First] (which go back to [M.J. Cánovas, J. Global Optim. 41 (2008) 1–13] and [Ioffe,
Math. Surveys 55 (2000) 501–558; Control Cybern. 32 (2003) 543–554]) constitute the starting point
of the present work.
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1. Introduction

This paper aims to quantify the Lipschitzian behavior of the optimal set mapping for a parametric family
of convex semi-infinite optimization problems. Our focus is on the sharp Lipschitz constant, according to the
terminology used for ordinary linear programming problems by Li [19] (see also Klatte and Thiere [17] and
Robinson [22]). Specifically, the paper provides a lower and an upper bound on this constant, called Lipschitz
modulus in our context. The upper bound turns out to be the exact modulus in the case of problems with
finitely many constraints. The starting point is the expression for this constant established in [5] in terms of
the regular subdifferential of certain distance functions (see Thm. 2.2), where some results of Ioffe [13,14] are
applied (see [4], Thm. 3). The main original contribution of the present paper consists of deriving formulae
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(for the referred bounds) which are given exclusively in terms of the problem’s data. To do that, we shall make
use of some tools related to subdifferential calculus of difference of convex functions (d.c. functions, for short).

Now we introduce the parametrized model we are dealing with. This is the canonically perturbed convex
programming problem, in R

n,
P (c, b) : Inf f(x) + 〈c, x〉

s.t. gt (x) ≤ bt, t ∈ T,
(1.1)

where x ∈ R
n is the vector of decision variables, c ∈ R

n, 〈., .〉 represents the usual inner product in R
n, the

index set, T , is a compact metric space, f : R
n → R and gt : R

n → R, t ∈ T , are given convex functions,
(t, x) �→ gt (x) is assumed to be continuous on T × R

n, and b ∈ C(T, R) (i.e., t �→ bt is also continuous). Note
that ordinary convex programming problems are included in our model just by considering T finite. The pair
(c, b) ∈ R

n × C(T, R) is regarded as the parameter to be perturbed. The topology in the parameter space,
R

n × C(T, R), is derived from the norm

‖(c, b)‖ := max {‖c‖ , ‖b‖∞}, (1.2)

where R
n is equipped with any given norm ‖·‖ and ‖b‖∞ := maxt∈T |bt| . The corresponding dual norm in R

n

is given by ‖u‖∗ := max {〈u, x〉 | ‖x‖ ≤ 1}, and d∗ denotes the related distance.
Associated with the parametrized problem P (c, b), we consider the optimal set mapping, F∗ : R

n×C(T, R) ⇒
R

n, which assigns to each parameter (c, b) ∈ R
n × C(T, R) the optimal set – set of (global) optimal solutions –

of P (c, b); i.e.,
F∗ (c, b) := arg min {f(x) + 〈c, x〉 | gt (x) ≤ bt, t ∈ T }.

Now we recall the well-known Karush-Kuhn-Tucker (KKT) optimality conditions in our framework and, to
this aim, we introduce the necessary notation. Associated with each b ∈ C(T, R), we denote by σ (b) the
corresponding constraint system; i.e., σ (b) := {gt (x) ≤ bt, t ∈ T }, and F (b) represents the feasible set of σ (b) .
We say that σ (b) satisfies the Slater constraint qualification (SCQ, for short) if there exists x0 ∈ R

n such that
gt

(
x0
)

< bt, for all t ∈ T. When σ (b) satisfies SCQ, the condition ‘x ∈ F∗ (c, b)’ is equivalent to the KKT
conditions (see [11], Chap. 7):

x ∈ F (b) and (∂f(x) + c) ∩ cone
(⋃

t∈Tb(x)
(−∂gt (x))

)

= ∅, (1.3)

where
Tb (x) := {t ∈ T | gt (x) = bt} ;

i.e., Tb (x) is the set of active indices at x for σ (b) , whereas ∂ represents the ordinary subdifferential in convex
analysis, and cone(X) is the convex cone generated by the set X . It is assumed that cone (X) always contains the
zero-vector, 0n, and so cone(∅) = {0n}. Actually, SCQ is only needed in the implication ‘x ∈ F∗ (c, b) ⇒ (1.3)’.

Appealing to Carathéodory’s theorem one can replace Tb (x) in (1.3) by some subset D ⊂ Tb (x) with |D| ≤ n.
When the only possibility is |D| = n, we say that the extended Nürnberger condition (ENC, for short) holds.
Formally, ENC is satisfied at a given

((
c, b

)
, x
)
∈ gph (F∗) , the graph of F∗, if

σ
(
b
)

satisfies SCQ and there is no D ⊂ Tb (x)
with |D| < n such that (∂f(x) + c) ∩ cone

(⋃
t∈D (−∂gt (x))

)

= ∅.

See [3,5] for motivation, details, and consequences of this condition (some of them are gathered in Sect. 5).
When confined to the linear case (f and gt, t ∈ T , being linear functions), ENC turns out to be equivalent
to the one introduced by Nürnberger in [21] for characterizing the strong uniqueness of optimal solutions in a
neighborhood of the nominal parameter.

ENC constitutes a specification of KKT conditions with strong consequences in relation to stability. Along
the paper, it is a crucial assumption under which F∗ exhibits a nice Lipschitzian behavior. In particular, ENC
at

((
c, b

)
, x
)
∈ gph (F∗) implies strong Lipschitz stability of F∗ at this point (see Lem. 5 and Thm. 10 in [3]),
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which can be read as single-valuedness and Lipschitz continuity of F∗ near
(
c, b

)
(the convex-valuedness of F∗

allows us to say ‘single-valuedness’ instead of ‘local single-valuedness’). In our context of problems (1.1) (even
in more general contexts, see for instance [15]), strong Lipschitz stability of F∗ at

((
c, b

)
, x
)

is equivalent to
pseudo-Lipschitz property of F∗ at this point, also equivalent to the metric regularity of its inverse (F∗)−1

at
(
x,
(
c, b

))
. The last property can be stated as follows: there exist a constant κ ≥ 0 and some associated

neighborhoods U of x and V of
(
c, b

)
such that

d (x,F∗ (c, b)) ≤ κd
(
(c, b) , (F∗)−1 (x)

)
, (1.4)

for all x ∈ U and all (c, b) ∈ V. Here, as usual, we adopt the convention d(x, ∅) = +∞. The infimum of the
(Lipschitz) constants κ ≥ 0 verifying (1.4) (for some associated neighborhoods) is called modulus of metric
regularity which, due to single-valuedness of F∗ near

(
c, b

)
, coincides with the Lipschitz modulus of F∗ at

(
c, b

)
and can be written as follows:

lipF∗(c, b) = lim sup
(c,b),(c̃,̃b)→(c,b)

(c,b)�=(c̃,̃b)

∥∥∥F∗ (c, b) −F∗
(
c̃, b̃

)∥∥∥∥∥∥(c, b) −
(
c̃, b̃

)∥∥∥ · (1.5)

In (1.5) we are using, for the sake of simplicity, the same notation for the set F∗ (c, b) and for its unique element,
provided that (c, b) is close enough to

(
c, b

)
.

Under ENC, [5], Theorem 5.1 (recalled in Thm. 2.2) provides an expression for lipF∗(c, b) in terms of the
regular subdifferential (see Sect. 2) of the functions fb, b ∈ C (T, R), given by

fb (x) := d
(
b, G̃ (x)

)
, (1.6)

where G̃ : R
n ⇒ C (T, R) is defined as follows:

G̃ (x) := {b′ ∈ C (T, R) : x ∈ F∗ (c, b′)} ;

i.e., fb assigns to each x ∈ R
n the distance from b to the set of parameters b′ such that x is optimal for

P (c, b′) . Among other consequences of ENC, a remarkable fact is that perturbations on c are negligible (note
that c remains fixed at c in the definitions of fb and G̃). Moreover, under ENC, fb (x) is finite for (x, b) close
enough to

(
x, b

)
(see Thm. 2.1(iv)).

As commented above, our goal in this paper is to approach lipF∗(c, b) via a procedure that only involves the
problem’s data (i.e., functions f and gt’s). The main intermediate step consists of obtaining a representation
of fb in terms of these data (see Thm. 3.1). As a consequence of this representation, we provide a lower bound
of the Lipschitz modulus (Prop. 4.1). After that, appealing additionally to Theorem 4.1, we deduce the upper
bound, and show that it equals lipF∗(c, b) when T is finite.

In summary, the structure of the paper is as follows: Section 2 collects the preliminary concepts and results
needed later. In Section 3, under ENC, we provide a representation of fb in terms of certain d.c. functions,
which rely directly on the data of P (c, b) (see Thm. 3.1). Section 4 is divided into two subsections, Sections 4.1
and 4.2, which are respectively concerned with the lower and the upper bound (or exact value) on the Lipschitz
modulus. The latter appeals to some subdifferential calculus for the referred d.c. functions. This bound admits
a notable simplification when confined to the particular case of linear problems. Finally, Section 5 is intended
to emphasize the scope of the results of the present paper, as well as, to provide extra motivation about the
crucial assumption of ENC, examples and an application to functional approximation.
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2. Notation and basic concepts

In this section we provide further notation and some preliminary results. Given ∅ 
= X ⊂ R
k, we denote by

co (X) the convex hull of X . If y is a point in any metric space, we denote by Bδ(y) the open ball centered
at y with radius δ, whereas the corresponding closed ball is represented by Bδ(y). As usual, |X | denotes the
cardinality of a set X , and X\Y := {x ∈ X : x /∈ Y }.

As commented above, ENC plays a decisive role in our analysis of the Lipschitzian behavior of F∗, and
provides nice stability results for both F∗ and G̃, the latter by means of a certain stability of the indices involved
in KKT conditions (see [5]). Theorem 2.1 below gathers some of the main consequences of this property, which
are used in the present paper. It appeals to the following notation: associated with a point x ∈ R

n we consider
the set

D (x) := {D ⊂ T : |D| = n and (∂f(x) + c) ∩ cone (∪t∈D (−∂gt (x))) 
= ∅} ,

and, given x ∈ F(b) and δ ≥ 0, we consider

T δ
b (x) := {t ∈ T | gt (x) ≥ bt − δ} and T δ

b (x) := {D ∈ D (x) : D ⊂ T δ
b (x)}.

For simplicity we write T 0
b (x) = Tb (x) if δ = 0.

Observe that the sets D (x) and T δ
b (x) involve c. Nevertheless, for the sake of simplicity, since c remains

fixed throughout the paper, it has been omitted in the notations.

Theorem 2.1. For the convex program (1.1), let
((

c, b
)
, x
)
∈ gph (F∗). If ENC is satisfied at

((
c, b

)
, x
)
, then

the following conditions hold:
(i) [3], Proposition 9(i). There exists a neighborhood W of

((
c, b

)
, x
)

such that ENC is satisfied at any
((c, b) , x) ∈ W ∩ gph (F∗) .

(ii) [3], Proposition 9(ii). There exist u ∈ ∂f(x) as well as some ui ∈ −∂gti (x), ti ∈ Tb (x) , and some λi > 0
for i ∈ {1, . . . , n} , such that {u1, . . . , un} is a basis of R

n and

u + c = Σn
i=1λiui.

(iii) [3], Theorem 10. F∗ is strongly Lipschitz stable at
((

c, b
)
, x
)
.

(iv) [5], Theorem 4.3. G̃ is lower semicontinuous at
(
x, b

)
(in the sense of [20], Def. 1.63(i)); i.e., for all

neighborhood V of b there exists a neighborhood U of x such that

G̃ (x) ∩ V 
= ∅ for all x ∈ U.

(v) [5], Theorem 4.2. There exists δ0 > 0 such that, for every δ ∈ ]0, δ0], there are neighborhoods U and V
of x and b, respectively, verifying

∅ 
= Tb (x) ⊂ T δ
b

(x) ⊂ D (x) for all x ∈ U and all b ∈ V.

Theorem 2.2 provides the expression for lipF∗(c, b) which constitutes, as we announced above, the immediate
antecedent of the present work. It refers to some variational notions.

Consider a function ϕ : R
n → R ∪ {+∞} and a point z ∈ R

n where ϕ(z) is finite. A vector v ∈ R
n is called

a regular subgradient of ϕ at z, written v ∈ ∂̂ϕ(z), if

dϕ(z)(w) := lim inf
τ↘0, w′→w

ϕ (z + τw′) − ϕ (z)
τ

≥ 〈v, w〉, for all w ∈ R
n. (2.1)

Here dϕ(z)(w) is called (lower) subderivative of ϕ at z for w (see [24], Defs. 8.1 and 8.3, Exe. 8.4).
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We denote by |∇ϕ| (z) the strong slope (see [7]) of ϕ at z which is given by

|∇ϕ| (z) := lim sup
y→z, y �=z

(ϕ (z) − ϕ (y))+

‖z − y‖ ,

where α+ := max {α, 0} is the positive part of α.

The regular subdifferential of ϕ at z, ∂̂ϕ(z), is a closed convex subset of R
n, which satisfies

d∗(0n, ∂̂ϕ(z)) ≥ |∇ϕ| (z). (2.2)

Moreover, if ϕ is a proper convex function, then, according to [24], Proposition 8.12, ∂̂ϕ(z) coincides with the
ordinary subdifferential set in convex analysis, ∂f(z).

Theorem 2.2 ([5], Thm. 5.1). Assume that ENC is satisfied at
((

c, b
)
, x
)
∈ gph (F∗) , and let fb, b ∈ C(T, R),

be defined as in (1.6). Then we have

lipF∗(c, b) = lim sup
(z,b)→(x,b)

fb(z)>0

(
d∗(0n, ∂̂fb(z))

)−1

= lim sup
(z,b)→(x,b)

fb(z)>0

(|∇fb| (z))−1
.

At this point we recall some tools used in Section 4, when approaching ∂̂fb(z) by sets having a more operative
representation.

Definition 2.1. If the function ϕ : R
n → R can be decomposed as the difference of two convex functions

ϕ1, ϕ2 : R
n → R, i.e.,

ϕ(x) = ϕ1(x) − ϕ2(x), for all x ∈ R
n, (2.3)

then it is called a d.c. function (difference of convex functions), and (2.3) is one of its possible d.c. decomposi-
tions.

We shall prove that each function fb, with b near b, can be represented as the infimum of certain d.c. functions
in a certain neighborhood of x (see Sect. 3), which motivates the following comments. First, given a non-empty
set S and a family of functions fs : R

n → R, s ∈ S, we consider the infimum function in a certain open
set U ⊂ R

n

f(z) := inf{fs(z), s ∈ S}, for all z ∈ U.

Then, as an immediate consequence of the definitions, one has

∂̂f(z) ⊂
⋂

s∈I(z)

∂̂fs(z), (2.4)

provided that the set I(z) := {s ∈ S | fs(z) = f(z)} is non-empty. In our case, ∂̂fb(z) will be contained in an
intersection of sets as in (2.4) where, additionally, the functions playing the role of fs are d.c. functions. So,
the next paragraphs are devoted to gather some statements about the regular subdifferential of d.c. functions
that are used in the paper.

If ϕ : R
n → R is a d.c. function, with d.c. decomposition ϕ = ϕ1 − ϕ2, it is obvious that the one-sided

directional derivative

ϕ′(x; w) := lim
τ↘0

ϕ(x + τw) − ϕ(x)
τ
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exists and is finite everywhere, due to the fact that

ϕ′(x; w) = ϕ′
1(x; w) − ϕ′

2(x; w).

Moreover, since ϕ1 and ϕ2 are finite-everywhere convex functions, thus locally Lipschitz continuous ([23],
Thm. 10.4), it follows that ϕ is also locally Lipschitz continuous. Then, one can easily check that ‘liminf’
in (2.1) can be replaced by ‘lim’ (i.e., the ordinary limit exists) and, in addition,

dϕ(x)(w) = ϕ′(x; w).

In particular, ϕ is semidifferentiable, following the terminology of [24], Definition 7.20. Moreover, the equality

ϕ′(x; w) = max
u∈∂ϕ1(x)

〈u, w〉 − max
v∈∂ϕ2(x)

〈v, w〉,

saying that ϕ′(x; ·) is the difference of two (finite) sublinear functions, implies that ϕ is quasidifferentiable in the
sense of Demyanov and Rubinov [8]. Now, applying Proposition 4.1 in [9] and Exercise 8.4 in [24], we obtain,
for every x ∈ R

n,

∂̂ϕ(x) = ∂ϕ1(x) ÷ ∂ϕ2(x) := {z ∈ R
n | z + ∂ϕ2(x) ⊂ ∂ϕ1(x)} (2.5)

=
⋂

v∈∂ϕ2(x)

{∂ϕ1(x) − v},

the sets ∂ϕ1(x) and ∂ϕ2(x) being the ordinary subdifferential sets in convex analysis.

3. Representation of fb VIA d.c. functions

The main goal of this section consists of describing fb in terms of the problem’s data (objective function and
constraint system of (1.1)). Specifically, we show that fb can be expressed in terms of the functions

fD
b (x) := max{|gt (x) − bt| , t ∈ D; gt (x) − bt, t ∈ T \ D} (3.1)

= max
{

max
t∈T

(gt (x) − bt) ; bs − gs (x) , s ∈ D

}
,

for certain finite subsets of indices D ⊂ T with |D| = n. At this moment we announce that each fD
b is a d.c.

function (see Sect. 4.2), which entails a notable advantage when we are looking for an operative expression of
the Lipschitz modulus (see again Sect. 4.2).

Theorem 3.1. Assume that ENC is satisfied at
((

c, b
)
, x
)
∈ gph (F∗). Then, a certain δ0 > 0 exists such that

for all δ ∈ ]0, δ0] there exist some neighborhoods U and V of x and b, respectively, verifying

fb (x) = min
D∈T δ

b
(x)

fD
b (x), for all x ∈ U and all b ∈ V. (3.2)

(The minimum above is attained.)

Proof. Take δ0 > 0, the scalar provided by Theorem 2.1(v); i.e., such that if δ ∈ ]0, δ0] , there exist neighborhoods
Uδ and Vδ of x and b, respectively, satisfying

∅ 
= Tb (x) ⊂ T δ
b

(x) ⊂ D (x) , for all x ∈ Uδ and all b ∈ Vδ. (3.3)
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Fix any δ ∈ ]0, δ0] and associated neighborhoods Ũ (=Uδ) and Ṽ (=Vδ) verifying (3.3). As a consequence
of Theorem 2.1(i), we may assume without loss of generality that ENC is satisfied at any ((c, b) , x) ∈ gph (F∗)
such that x ∈ Ũ and b ∈ Ṽ . Now the proof is organized in four steps.

Step 1. First we prove that

fb (x) ≤ inf
D∈T δ

b
(x)

fD
b (x), for all x ∈ Ũ and all b ∈ Ṽ . (3.4)

Consider arbitrarily fixed elements D ∈ T δ
b

(x), x ∈ Ũ and b ∈ Ṽ , and let us see that fb (x) ≤ fD
b (x). Reasoning

by contradiction, assume
fb (x) > γ > fD

b (x),

for a certain γ (> 0). Now we construct b̃ ∈ C (T, R) such that b̃ ∈ G̃ (x) and
∥∥∥b − b̃

∥∥∥
∞

< γ. In this way we

would attain the contradiction fb (x) ≤
∥∥∥b − b̃

∥∥∥
∞

< γ.

Define
b̃t := ϕ(t)gt(x) + (1 − ϕ(t))bt, for t ∈ T,

where ϕ : T → [0, 1] is a continuous function, whose existence follows from Urysohn’s lemma, satisfying

ϕ(t) :=
{

1, if t ∈ D or gt (x) ≥ bt,
0, if gt (x) ≤ bt − γ.

(If {t ∈ T : gt (x) ≤ bt − γ} = ∅, then we take ϕ ≡ 1.) This implies, for every t ∈ T,

gt(x) − b̃t = (1 − ϕ(t))(gt(x) − bt) ≤ 0,

which states the feasibility of x with respect to b̃; i.e., x ∈ F
(
b̃
)

. Moreover, since b̃t = gt(x), for t ∈ D, and

D ∈ T δ
b

(x) ⊂ D (x) (by (3.3)), KKT optimality conditions yield b̃ ∈ G̃(x). Now in order to prove
∥∥∥b − b̃

∥∥∥
∞

< γ,

we write ∥∥∥b − b̃
∥∥∥
∞

= max
t∈T

ϕ(t) |gt(x) − bt| ,

and observe that, in the non-trivial case ϕ(t) > 0 we have

−γ < gt(x) − bt ≤ fD
b (x) < γ.

So, ∥∥∥b − b̃
∥∥∥
∞

= max
ϕ(t)>0

ϕ(t) |gt(x) − bt| < γ

(observe that the maximum is attained). This finishes the proof of Step 1.

Step 2. Now we establish the existence of neighborhoods U ⊂ Ũ and V ⊂ Ṽ of x and b, respectively, such
that

d
(
b, G̃ (x) ∩ Ṽ

)
= d

(
b, G̃ (x)

)
for all x ∈ U and b ∈ V. (3.5)

Let ε > 0 be such that Ṽ ⊃ B3ε

(
b
)
, and take

V := Bε

(
b
)
.

Now, according to Theorem 2.1(iv), we consider a neighborhood of x, U ⊂ Ũ such that

G̃(x) ∩ V 
= ∅, for all x ∈ U.
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In this way, if x ∈ U, b ∈ V, and b1 ∈ G̃ (x) ∩ V, we have,

d
(
b, G̃ (x) ∩ Ṽ

)
≤ d

(
b, G̃ (x) ∩ V

)
≤ d

(
b, b1

)
< 2ε

and, if b2 ∈ G̃ (x) \Ṽ , then,

d
(
b, b2

)
≥ d

(
b2, b

)
− d

(
b, b

)
> 3ε − ε > d

(
b, G̃ (x) ∩ Ṽ

)
,

leading us to
d
(
b, G̃ (x) ∩ Ṽ

)
= d

(
b, G̃ (x)

)
,

as we wanted to prove.
Step 3. The following equality holds

fb (x) = inf
D∈T δ

b
(x)

fD
b (x), for all x ∈ U and b ∈ V, (3.6)

where U and V are as in Step 2.
We only need to prove the inequality ‘≥’ (see (3.4)). Reasoning by contradiction, assume that there exist

x0 ∈ U and b0 ∈ V such that fb0(x0) < infD∈T δ
b

(x) fD
b0 (x0). From (3.5) we have

fb0(x0) = d
(
b0, G̃(x0)

)
= d

(
b0, G̃(x0) ∩ Ṽ

)
,

entailing the existence of b̃0 ∈ G̃(x0) ∩ Ṽ such that∥∥∥b0 − b̃0
∥∥∥
∞

< inf
D∈T δ

b
(x)

fD
b0 (x0). (3.7)

Our choice of Ṽ entails that σ
(
b̃0
)

satisfies SCQ. Hence, there must exist D0 ∈ Tb̃0

(
x0
)

providing KKT

optimality conditions. But then, (3.3) entails D0 ∈ T δ
b

(x) . From the facts that x0 ∈ F
(
b̃0
)
, gt

(
x0
)

= b̃0
t for

t ∈ D0, and taking the definition of fD0
b0 (x0) into account, we obtain

fD0
b0 (x0) ≤

∥∥∥b0 − b̃0
∥∥∥
∞

,

and so, (3.7) yields a contradiction.
Step 4. Finally we show that the infimum in (3.6) is attained.
For fixed b ∈ V and x ∈ U, let Dr := {tr1, ..., trn} ∈ T δ

b
(x), r = 1, 2, ..., be such that

inf
D∈T δ

b
(x)

fD
b (x) = lim

r→∞
fDr

b (x), (3.8)

and write, for each r ∈ N,

ur + c̄ =
n∑

i=1

λr
i u

r
i ,

where, for all r ∈ N and all i ∈ {1, ..., n} ,

ur ∈ ∂f (x̄) , ur
i ∈ −∂gtr

i
(x̄) for some tri ∈ T δ

b̄ (x̄) , and λr
i ≥ 0.
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Then, standard arguments yield the existence of some subsequence of r’s, denoted as the original sequence for
the sake of simplicity, such that

ur → u, ur
i → ui, tri → ti, and λr

i → λi, i = 1, ..., n,

for certain

u ∈ ∂f (x) , ui ∈ −∂gti (x) , ti ∈ T δ
b̄ (x̄) , and λi ≥ 0,

verifying

u + c =
n∑

i=1

λiui.

(Specifically, [23], Thm. 24.5, ensures the convergence of subgradients, and SCQ entails the boundedness of the
sequence {

∑n
i=1 λr

i } which yields the existence of convergent subsequences of {λr
i }r∈N

, for i = 1, ..., n.)
Now, ENC at

((
c, b

)
, x
)

entails that {u1, ..., un} is a basis of R
n (otherwise, Carathéodory’s theorem would

allow us to remove some term in
∑n

i=1 λiui, which contradicts ENC), and λi > 0 for all i = 1, ..., n. Therefore,

the index set D̃ := {t1, ..., tn} satisfies D̃ ⊂ T δ
b̄

(x̄),
∣∣∣D̃∣∣∣ = n, and

(∂f (x) + c̄) ∩ cone

⎛⎝⋃
t∈D̃

(−∂gt(x̄))

⎞⎠ 
= ∅;

in other words D̃ ∈ T δ
b̄

(x̄) . Consequently, from (3.1) we easily conclude that fDr

b (x) → f D̃
b (x) as r → ∞; i.e.,

(3.8) reads

inf
D∈T δ

b
(x)

fD
b (x) = f D̃

b (x). �

As a consequence of Theorem 3.1 we will establish the Lipschitz continuity around x of functions fb for b
close enough to b. We need the following lemma.

Lemma 3.1 ([23], Thm. 10.6). For every compact neighborhood of x, U, the functions gt, t ∈ T, are equi-
Lipschitzian on U ; i.e. there exists L > 0 such that

sup
t∈T

|gt(z) − gt(z′)| ≤ L ‖z − z′‖ , for all z, z′ ∈ U. (3.9)

Proposition 3.1. Let L > 0 be such that (3.9) holds for a certain neighborhood of x, U. If ENC is satisfied at((
c, b

)
, x
)
∈ gph (F∗) , then there exist neighborhoods U0 and V0 of x and b, respectively, such that

|fb(z) − fb(z′)| ≤ L ‖z − z′‖ , for all z, z′ ∈ U0, and b ∈ V0.

Proof. According to Theorem 3.1, take δ > 0 and neighborhoods of x and b, U0 and V0, respectively, such that

fb(x) = min
D∈T δ

b
(x)

fD
b (x), for all x ∈ U0 and b ∈ V0. (3.10)

We may assume, without loss of generality, that U0 ⊂ U. So, in addition we have

sup
t∈T

|gt(z) − gt(z′)| ≤ L ‖z − z′‖ , for all z, z′ ∈ U0.
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Thus, for each b ∈ V0, D ∈ T δ
b

(x) , and z, z′ ∈ U0, we have:

fD
b (z) = max{bt − gt(z), t ∈ D; gt(z) − bt, t ∈ T }

≤ max{bt − gt(z′), t ∈ D; gt(z′) − bt, t ∈ T } + sup
t∈T

|gt(z) − gt(z′)|

≤ fD
b (z′) + L ‖z − z′‖ ,

which leads us, by (3.10), to fb(z) ≤ fb(z′)+L ‖z − z′‖ . (Note that, for all z, z′ ∈ U0, fb(z)−L ‖z − z′‖ ≤ fb(z′).)
By symmetry, we finally obtain

|fb(z) − fb(z′)| ≤ L ‖z − z′‖ . �

4. Lipschitz modulus of F∗ in terms of the problem’s data

This section makes use of the representation of fb given in Theorem 3.1 for providing lower and upper bounds,
as well as the exact value when T is finite, for lipF∗(c, b). These lower and upper bounds have the virtue of
relying on the problem’s data. Specifically, the lower bound comes from the Lipschitz constant appearing in
Proposition 3.1, while the upper bound comes from applying Theorem 2.2.

4.1. Lower bound on the Lipschitz modulus

Proposition 4.1. Let L > 0 be such that (3.9) holds for some neighborhood of x, U. If ENC is satisfied at((
c, b

)
, x
)
∈ gph (F∗) , then

lipF∗(c, b) ≥ L−1.

Proof. Recall that lipF∗(c, b) is the infimum of all (Lipschitz) constants κ ≥ 0 verifying (1.4) for some associated
neighborhoods. Take any of these constants, say κ ≥ 0, and consider associated neighborhoods U of x and W
of
(
c, b

)
, such that

d (x,F∗ (c, b)) ≤ κd
(
(c, b) , (F∗)−1 (x)

)
, (4.1)

for all x ∈ U and all (c, b) ∈ W. We have to prove that κ ≥ L−1.
According to Proposition 3.1 let U0 and V0 neighborhoods of x and b, respectively, such that

|fb(z) − fb(z′)| ≤ L ‖z − z′‖ , for all z, z′ ∈ U0, and b ∈ V0.

Assume, without loss of generality, that U0 ⊂ U and {c} × V0 ⊂ W. Then, applying (4.1) in the particular case
(c, b) =

(
c, b

)
, we obtain, for each z ∈ U0,

d(z, x) = d(z,F∗(c, b)) ≤ κd((c, b), (F∗)−1 (z)) ≤ κd((c, b), {c} × G̃(z))

= κd(b, G̃(z)) = κfb̄(z) = κ(fb̄(z) − fb̄(x)) ≤ κLd(z, x̄).

We have taken into account that F∗(c, b) = {x} and fb̄(x) = 0. Hence, obviously κL ≥ 1, which finishes the
proof. �
Corollary 4.1. When confined to the linear case, say gt(x) := 〈at, x〉 with at ∈ R

n, for all t ∈ T, then

lipF∗ (x | (c, b)
)
≥
(

sup
t∈T

‖at‖∗
)−1

.

This inequality may be strict, in general. See Example 4.1 (at the end of this section), where

lipF∗ (x | (c, b)
)

=
√

5 >
1√
2

=
(

sup
t∈T

‖at‖∗
)−1

.
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4.2. Upper bound on the Lipschitz modulus

The aimed upper bound on lipF∗(c, b) follows from the relationship between the regular subdifferentials of
the functions fb and fD

b , with D ∈ T δ
b

(x) (recall Thm. 3.1). First, we provide an operative expression for

∂̂fD
b (z) , with z and b near x and b, respectively, and D ∈ T δ

b
(x). To do this, let us observe that each fD

b is a
d.c. function since

fD
b = fD

1,b − fD
2,b,

where

fD
1,b (z) := max

{
(maxt∈T (gt (z) − bt)) +

∑
s∈D(gs (z) − bs);∑

s∈D\{t}(gs (z) − bs), t ∈ D

}
and

fD
2,b (z) :=

∑
t∈D

(gt (z) − bt) .

Now, appealing to (2.5) and applying Valadier’s formula (see [26] or, for instance, [12], Thm. VI.4.4.2) for
calculating ∂fD

1,b(z) and ∂fD
2,b(z), with z ∈ R

n, the following lemma is easily derived.

Lemma 4.1. For any b ∈ C (T, R) , D ⊂ T with |D| = n, and z ∈ R
n, we have

∂̂fD
b (z) = ∂fD

1,b(z) ÷ ∂fD
2,b(z),

with

∂fD
1,b(z) = co

⎧⎨⎩∂gt (z) +
∑
s∈D

∂gs (z) , t ∈ ID
b (z);

∑
s∈D\{t}

∂gs (z) , t ∈ JD
b (z)

⎫⎬⎭,

and
∂fD

2,b(z) =
∑
t∈D

∂gt (z) ,

where

ID
b (z) :=

{
t ∈ T

∣∣∣∣∣fD
1,b(z) = gt (z)− bt +

∑
s∈D

(gs (z) − bs)

}
,

and

JD
b (z) :=

⎧⎨⎩t ∈ D

∣∣∣∣∣∣fD
1,b(z) =

∑
s∈D\{t}

(gs (z) − bs)

⎫⎬⎭.

Lemma 4.2. Assume that ENC is satisfied at
(
(c, b), x

)
∈ gph (F∗). Then, a certain δ0 > 0 exists such that

for all δ ∈ ]0, δ0] there exist some neighborhoods U and V of x and b, respectively, satisfying

∂̂fb(z) ⊂
⋂

D∈S(z,b,δ)

∂̂fD
b (z), for all z ∈ U and b ∈ V,

where
S (z, b, δ) :=

{
D ∈ T δ

b
(x) | fb(z) = fD

b (z)
}
.

Proof. The proof is a straightforward consequence of (2.4) and Theorem 3.1. �

The following theorem provides the aimed upper bound for the Lipschitz modulus of F∗, whose main feature
is that it only relies on the problem’s data. Further, this upper bound equals the exact modulus when T is
finite.
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Theorem 4.1. Assuming that ENC is satisfied at
(
(c, b), x

)
∈ gph (F∗) , one has

lipF∗(c, b) ≤ lim sup(z,b,δ)→(x,b,0)
fb(z)>0

inf
D∈S(z,b,δ)

(
d∗
(
0n, ∂fD

1,b(z) ÷ ∂fD
2,b(z)

))−1
. (4.2)

(Formulae for ∂fD
1,b(z) and ∂fD

2,b(z) in (4.2) are given in Lem. 4.1.)
In the particular case when T is finite we get

lipF∗(c, b) = lim sup(z,b)→(x,b)
fb(z)>0

min
D∈Tb(x)

fb(z)=fD
b (z)

(
d∗
(
0n, ∂fD

1,b(z) ÷ ∂fD
2,b(z)

))−1
. (4.3)

Proof. Write, according to Theorem 2.2,

lipF∗(c, b) = lim
r→∞

(
d∗
(
0n, ∂̂fbr (zr)

))−1

, (4.4)

where br → b, zr → x and fbr (zr) > 0 for all r. If we take any sequence δk ↘ 0, according to Lemma 4.2
(and keeping the notation introduced there), for k large enough there must exist neighborhoods Uk and Vk of x
and b, respectively, such that

∂̂fb (z) ⊂
⋂

D∈S(z,b,δk)

∂̂fD
b (z), for all z ∈ Uk and all b ∈ Vk. (4.5)

Now, take subsequences {zrk} and {brk} of {zr} and {br} , respectively, such that zrk ∈ Uk and brk ∈ Vk for
all k. Then, as a consequence of (4.5) particularized at b = brk and z = zrk , we conclude, for each k,

d∗
(
0n, ∂̂fbrk (zrk)

)
≥ sup

D∈S(zrk ,brk ,δk)

d∗
(
0n, ∂̂fD

brk (zrk)
)

.

Thus (4.4) yields

lipF∗(c, b) ≤ lim sup
k→∞

inf
D∈S(zrk ,brk ,δk)

(
d∗
(
0n, ∂̂fD

brk (zrk)
))−1

≤ lim sup(z,b,δ)→(x,b,0)
fb(z)>0

inf
D∈S(z,b,δ)

(
d∗
(
0n, ∂̂fD

b (z)
))−1

.

Hence, (4.2) comes from Lemma 4.1.
From now on we suppose that T is finite, which entails T δ

b
(x) = Tb(x) for δ > 0 small enough. Then inequality

‘≤’ of (4.3) comes straightforwardly from (4.2). So, let us see that

lipF∗(c, b) ≥ lim sup(z,b)→(x,b)
fb(z)>0

min
D∈Tb(x)

fb(z)=fD
b (z)

(
d∗
(
0n, ∂̂fD

b (z)
))−1

,

which yields (4.3), by taking again Lemma 4.1 into account.
From Theorem 2.2 we have

lipF∗(c, b) = lim sup(z,b)→(x,b)
fb(z)>0

(|∇fb| (z))−1 < +∞, (4.6)
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where the finiteness comes from the fact that ENC implies strong Lipschitz stability of F∗ (and then lipF∗(c, b) <
+∞). Next, take any sequence {(zr, br)} converging to

(
x, b

)
such that fbr(zr) > 0 for all r, and let us prove

that

lipF∗(c, b) ≥ lim sup
r→∞

min
D∈Tb(x)

fbr (zr)=fD
br (zr)

(
d∗
(
0n, ∂̂fD

br (zr)
))−1

.

Expression (4.6) ensures |∇fbr | (zr) > 0 for r large enough (w.l.o.g. for all r), and so we can write

|∇fbr | (zr) = lim
k

fbr (zr) − fbr(zr,k)
‖zr − zr,k‖ ,

for a certain
{
zr,k

}
k∈N

converging to zr. Take δ0 > 0 according to Theorem 3.1 and such that T δ
b

(x) = Tb(x)
for all δ ≤ δ0. Now fix any δ ≤ δ0 and consider associated open neighborhoods U and V of x and b, respectively,
verifying

fb (x) = min
D∈Tb(x)

fD
b (x), for x ∈ U and b ∈ V. (4.7)

For r large enough, w.l.o.g. for all r, xr ∈ U and br ∈ V .
Consider an arbitrarily fixed r ∈ N. Let k(r) ∈ N be such that zr,k ∈ U for all k ≥ k (r) , which entails,

taking (4.7) into account,
fbr(zr,k) = fDr,k

br (zr,k)
for a certain Dr,k ∈ Tb (x) . The finiteness of T allows us to assume (by considering a suitable subsequence if
necessary) Dr,k = Dr for all k ≥ k(r). Then, because of the continuity of each fbr and fDr

br , we have

fbr(zr) = lim
k≥k(r)

fbr (zr,k) = lim
k≥k(r)

fDr

br (zr,k) = fDr

br (zr) .

So,

|∇fbr | (zr) = lim
k≥k(r)

fDr

br (zr) − fDr

br (zr,k)
‖zr − zr,k‖ ≤

∣∣∣∇fDr

br

∣∣∣ (zr) ≤ d∗
(
0n, ∂̂fDr

br (zr)
)

,

where the last inequality comes from (2.2). Therefore, ( 4.6) entails

lipF∗(c, b) ≥ lim sup
r→∞

(|∇fbr | (zr))−1 ≥ lim sup
r→∞

(
d∗
(
0n, ∂̂fDr

br (zr)
))−1

≥ lim sup
r→∞

min
D∈Tb(x)

fbr (zr)=fD
br (zr)

(
d∗

(
0n, ∂̂fD

br (zr)
))−1

,

as we aimed to prove. �

When confined to the case of linear semi-infinite problems in the form

P (c, b) : Inf 〈c, x〉
s. t. 〈at, x〉 ≤ bt, t ∈ T,

(4.8)

Theorem 4.1 adopts the following simplified form:

Corollary 4.2. Assuming that F∗, associated with problem (4.8), is strongly Lipschitz stable at
(
x,
(
c̄, b

))
∈

gph (F∗), one has

lipF∗(c, b) ≤ lim sup(z,b,δ)→(x,b,0)
fb(z)>0

inf
D∈T δ

b
(x)

fb(z)=fD
b (z)

(
d∗
(
0n, CD

b (z)
))−1

, (4.9)
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where

CD
b (z) := co{at, t ∈ ID

b (z); − at, t ∈ JD
b (z)},

ID
b (z) := {t ∈ T | 〈at, z〉 − bt = fD

b (z)},
JD

b (z) := {t ∈ D | bt − 〈at, z〉 = fD
b (z)},

fD
b (z) := max{|〈at, z〉 − bt| , t ∈ D; 〈at, z〉 − bt, t ∈ T \ D}.

In the particular case when T is finite, one gets

lipF∗ (x | (c, b)
)

= lim sup(z,b)→(x,b)
fb(z)>0

min
D∈Tb(x)

fb(z)=fD
b (z)

(
d∗
(
0n, CD

b (z)
))−1

. (4.10)

Proof. First, the strong Lipschitz stability assumption in this linear context is equivalent to ENC (see [3],
Thm. 16). So, Theorem 4.1 applies and the reader can easily check that ∂fD

1,b(z) ÷ ∂fD
2,b(z) = CD

b (z) for all
z ∈ R

n and b ∈ C (T, R) (recall Lem. 4.1 and (2.5)). �

We finish this section with an example devoted to illustrate the ingredients of Corollary 4.2 and, in general,
the main ingredients of this subsection.

Example 4.1. Consider the linear problem, in R
2 endowed with the Euclidean norm,

P (c, b) : Inf 2x1 + x2

s. t. −x1 − x2 ≤ b1,
−x1 + x2 ≤ b2,

−x1 ≤ b3,

with b = 03 and x = 02.

In this case Tb(x) = {{1, 2}, {1, 3}}. For (z, b) close enough to
(
x, b

)
we have

fb (z) = min
{
f
{1,2}
b (z) , f

{1,3}
b (z)

}
,

where

f
{1,2}
b (z) = max {|−z1 − z2 − b1| , |−z1 + z2 − b2| ,−z1 − b3},

f
{1,3}
b (z) = max {|−z1 − z2 − b1| ,−z1 + z2 − b2, |−z1 − b3|}.

Next we apply the previous corollary to obtain the regularity modulus. Observe that, for z and b close enough
to

(
x, b

)
, the expression

ρ (z, b) := min
D∈Tb(x)

fb(z)=fD
b (z)

(
d∗
(
0n, CD

b (z)
))−1

,

only takes finitely many different values, specifically,

ρ (z, b) ∈
{

1√
2
, 1,

√
5
}
.
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For the sake of simplicity we do not enumerate all possible combinations of {ID
br (zr) , JD

br (zr)} with (zr, br) →(
x, b

)
, D ∈ Tb (x), fD

br (zr) = fbr (zr), but only the three cases of the following table, which lead to the three
only possible values of ρ (z, b):

zr, br f
{1,2}
br (zr),

f
{1,3}
br (zr)

D∈Tb(x):

fD
br (zr)=fbr (zr)

ID
br (zr),JD

br (zr)

(D∈Tb(x), with

fD
br (zr)=fbr (zr))

ρ(zr ,br)

(
−1
r

,
−1
r

)
, 03

2
r
,
2
r

{1, 2}, {1, 3} {1}, ∅ 1√
2(

1
r
, 0
)

,

(
0, 0,

1
r

)
1
r
,
2
r

{1, 3} ∅, {3} 1(
0,

1
r

)
,

(
0, 0,

−1
r

)
1
r
,
1
r

{1, 2}, {1, 3} {2, 3}, {1}
√

5

In particular, it is clear that
lipF∗ (x | (c, b)

)
=

√
5.

5. Final comments and further research

5.1. Tchebycheff approximation

A typical application of semi-infinite optimization can be found in functional approximation (see, for instance,
[11], Sect. 1.2). Specifically, the uniform approximation of a given continuous function h : [a, b] → R by a
function of the n-dimensional subspace V ⊂ C ([a, b] , R) spanned by linearly independent functions f1, ..., fn ∈
C ([a, b] , R) , gives rise to the linear semi-infinite programming problem with variables x = (x1, ..., xn+1) ∈ R

n+1,

P (h) : Inf xn+1

s.t. ± (f1 (t)x1 + ... + fn (t)xn − h (t)) ≤ xn+1, ∀ t ∈ [a, b] . (5.1)

P (h) can be rewritten into our standard format with T := [a, b] × {1, 2} , g(t,i) (x) = (−1)i (f1 (t)x1 + ...+
fn (t)xn)−xn+1, c = (0n, 1) , and b(t,i) = (−1)i

h (t) for (t, i) ∈ T. We shall confine ourselves to those parameters
b ∈ C (T, R) which preserve the structure of (5.1), i.e., b(t,1) = −b(t,2) for all t ∈ [a, b] . In such a way, we regard
h ∈ C ([a, b], R) as the parameter, and write everywhere h instead of b in the notation followed in this paper.
It is easy to see that F∗ (c, h) 
= ∅ for any h ∈ C ([a, b], R) ([11], Sect. 1.2.2). Moreover, SCQ holds for all
h ∈ C ([a, b], R) ; in fact (0n, ρ + 1) , with ρ := maxt∈[a,b] |h (t)| , is a Slater point for P (h) .

In uniform functional approximation, the following well-known condition characterizes the unicity of the
optimal solution of P (h) , whichever h ∈ C([a, b], R) we take (see, for instance, [18], Thm. 3.4.6):

Definition 5.1. The subspace V verifies the Haar condition if every function g ∈ V has no more than n − 1
zeros in [a, b]. Equivalently, it is said that the functions generating V , i.e., f1, ..., fn, form a Tchebycheff system.

It is obvious that fi (t) := ti−1, i = 1, ..., n, form a Tchebycheff system whichever interval [a, b] we consider. It
is well-known (see, for instance, the proof of Prop. 3.4.2 in [18]) that f1, ..., fn form a Tchebycheff system if and
only if, for every set of distinct points t1, ..., tn ∈ [a, b], the determinant of the matrix whose (i, j)-entry is fi (tj)
is different from zero (this condition is trivially satisfied in the case of polynomial approximation, since we get
there a Van der Monde matrix). Provided that f1, ..., fn form a Tchebycheff system, the Tchebycheff alternancy
theorem (see, for instance, [18], Thm. 3.5.2) characterizes the best approximation of h ∈ C ([a, b], R) \V in V ,
say v = x1f1 + ... + xnfn (i.e., F∗ (c, h) = {(x1, ..., xn, xn+1)} , with xn+1 = ‖v − h‖∞) in the following
terms: there exist t1 < t2 < ... < tn+1 in [a, b] such that |v (ti) − h (ti)| = ‖v − h‖∞ for i = 1, ..., n + 1, and
v (ti) − h (ti) = − (v (ti+1) − h (ti+1)) for i = 1, ..., n.
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Proposition 5.1. Given the parametrized problem (5.1), if f1, ..., fn form a Tchebycheff system, then ENC
holds at

((
c, h

)
, x
)

for every h ∈ C ([a, b], R) \V , x being the only point of F∗ (c, h) .

Proof. First, note that h ∈ V if and only if P (h) has a feasible solution such that xn+1 = 0 (such a solution is
obviously optimal). So, if h ∈ C ([a, b], R) \V and x ∈ F∗ (c, h) , we have xn+1 > 0. Reasoning by contradiction,
assume that we may write, for some D = (S1 × {1}) ∪ (S2 × {2}) ⊂ Th (x) , S1, S2 ⊂ [a, b] , |S1|+ |S2| < n + 1,

(0n, 1) =
∑
t∈S1

λ(t,1) (f1 (t) , ..., fn (t) , 1) +
∑
t∈S2

λ(t,2) (−f1 (t) , ...,−fn (t) , 1) . (5.2)

In particular, 0n =
∑

(t,i)∈D (−1)i+1
λ(t,i) (f1 (t) , ..., fn (t)) . Moreover, the fact that D ⊂ Th (x) , together with

xn+1 > 0, entails S1 ∩ S2 = ∅. Completing with zeros, if needed, the (−1)i+1
λ(t,i)’s are solutions of an

homogeneous system of n (≥ |S1| + |S2|) linear equations and n variables associated with n different points
t1, ..., tn ∈ [a, b] such that S1 ∪ S2 ⊂ {t1, ..., tn}. Since we have assumed the Haar condition, the coefficient
matrix of this homogeneous system is non-singular and, so, the unique possible solution is the identically zero
vector. The last statement contradicts

∑
t∈S1

λ(t,1) +
∑

t∈S2
λ(t,2) = 1, which comes from the last coordinate

in (5.2). �

Remark 5.1. For the parametrized problem (5.1), the previous proposition points out that ENC at
((

c, h
)
, x
)

is weaker than the Haar condition (for V) and entails, not only the unicity of the uniform best approximation
of h (/∈ V) in V , but also the Lipschitzian dependence of this best approximation on h.

5.2. More about ENC

As pointed out in [3], Remark 12, ENC is in general rather strong in relation to the strong Lipschitz stability
of minimizers, although it has some remarkable virtues. One of them is that ENC is formulated in terms of the
nominal data

((
c, b

)
, x
)
, not involving parameters and points in a neighborhood. Moreover, it entails a nice

behavior not only for F∗, but also for its inverse, which turns out to be lower semicontinuous (see [5], Thm. 4.3).
Roughly speaking, points near x are optimal for parameters near

(
c, b

)
. In the following example F∗ is strongly

Lipschitz stable at
((

c, b
)
, x
)
, ENC fails at this point, and (F∗)−1 is not lower semicontinuous at

(
x,
(
c, b

))
.

In particular, G̃ is not lower semicontinuous at
(
x, b

)
(see Thm. 2.1(iv)). (Recall that Thm. 2.1(iv) is one of the

consequences of ENC used in the proof of Thm. 3.1, and the latter is a key result in the present paper.)

Example 5.1 ([5], Ex. 4.1). Consider the problem in R
2,

P (c, b) : Inf {c1x1 + c2x2 | |x1| − x2 ≤ b1, − x1 ≤ b2}.

Take c =
(

1
2 , 1

)
, b = 02, x = 02. One can easily check that F∗ (c, b) = {((−b2)+, −b1 + (−b2)+)}, for all c

such that |c1| − c2 < 0 and all b ∈ R
2, where (−b2)+ := max{−b2, 0}. Thus, F∗ is strongly Lipschitz stable at((

c, b
)
, x
)
, although ENC is not satisfied at this point since c ∈ cone (−∂g1 (x)) (here f ≡ 0). Nevertheless, the

point
(−1

r , 1
r

)
, r ∈ N, is not optimal for any b such that

(−1
r , 1

r

)
∈ F(b) and any c such that |c1| − c2 < 0.

Due to the crucial role of ENC along the paper, a natural question is how typical this property is. In relation
to this, Theorem 2.1(i) guarantees that the set of ((c, b) , x) for which ENC holds is open in the topology relative
to gph(F∗), but this open set may be quite small as the following example shows.

Example 5.2. Consider the problem in R
2,

P (c, b) : Inf
{
c1x1 + c2x2 | x1 + x2

2 ≤ b1, − x1 + x2
2 ≤ b2

}
.
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One can easily check that for any pair of positive numbers b = (b1, b2) the set of (c, x) such that ENC holds at
((c, b) , x) ∈ gph (F∗) is exactly

(
U1 × {z1}

)
∪
(
U2 × {z2}

)
, where, for i = 1, 2,

zi =

(
b1 − b2

2
, (−1)i−1

√
b1 + b2

2

)
, and

Ui =
{
c ∈ R

2 | (−1)i−1 c2 < −
√

2 (b1 + b2) |c1|
}
.

Observe that sets U1 and U2 shrink as far as b1 + b2 increase.

The reader is addressed to [3,5] for additional details about ENC at
((

c, b
)
, x
)

and its implications. Never-
theless, for completeness purposes, here we gather some of these implications:

• [3], Proposition 14 and Remark 15. Strong uniqueness of x as a minimizer of P
(
c, b

)
, which constitutes

a first order growth condition on f at x with respect to σ(b), and it can be formalized in terms of the
existence of a positive scalar α such that

f(y) + c′y ≥ f(x) + c′x + α ‖y − x‖ , for all y ∈ F
(
b
)
. (5.3)

Indeed, ENC at
((

c, b
)
, x
)

implies that P (c, b) has a strongly unique minimizer (also called sharp
minima) for (c, b) close to

(
c, b

)
. The reader is addressed, for instance, to [1,25] for further information,

in particular, for the analysis of the so called weak sharp minima (coming from removing the uniqueness).
• Observe that at least n constraints have to be active at x. In the case of finite optimization problems

with twice differentiable data, certain second-order growth conditions (typically held with less than n
active constraints) are sufficient and necessary for the strong Lipschitz stability of F∗ (see, e.g., [15],
Chap. 8, and [16]). The generalization of such results to our current framework remains as an open
problem. Note that the requirement of having at least n active constraints yields a notable difference
with respect to the classical optimization theory with twice differentiable data (see, for instance, [10]).

• [5], Theorem 4.1. From a geometric point of view, the following implication goes beyond the condition
of Theorem 2.1(ii): For all D := {t1, ..., tn} ∈ Tb (x) and every ui ∈ −∂gti (x), i = 1, ..., n, one has

∂f(x) + c ⊂ int(cone({u1, ..., un})). (5.4)

In fact, one can easily find examples verifying the condition of Theorem 2.1(ii), but not this stronger
one.

Example 5.3 (Ex. 5.1 revisited. [3], Ex. 6). Consider the problem:

P (c, b) : Inf {c1x1 + c2x2 | −x1 − x2 ≤ b1, −x1 + x2 ≤ b2, −x1 ≤ b3}.

Let c := (1, 0), b = 03, and x = 02. Obviously, c ∈ int(cone({(1, 1) , (1,−1) , (1, 0)})), but it is not in
the interior of the cone associated with every possible choice of indices {t1, t2} ∈ Tb (x) . For instance, c /∈
int(cone({(1, 1) , (1, 0)})).

• Since ENC is preserved in a neighborhood of
((

c, b
)
, x
)
, under ENC, the previous condition (5.4) (and

then Thm. 2.1(ii)) also holds in this neighborhood. However, the condition of Theorem 2.1(ii) itself does
not guarantee its fulfillment around

((
c, b

)
, x
)
. Just take {((c, br) , xr)} converging to

{((
c, b

)
, x
)}

in
Example 5.3, with xr = (1/r, 0) and

P (c, br) : Inf {x1 | −x1 − x2 ≤ 0,−x1 + x2 ≤ 0,−x1 ≤ 1/r}.

Observe that the condition of Theorem 2.1(ii) is not satisfied at {((c, br) , xr)}, while it is at
((

c, b
)
, x
)
.
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Moreover, as commented in Section 4, when confined to the case of linear semi-infinite optimization problems,
ENC at

((
c, b

)
, x
)

turns out to be an equivalent condition to the strong Lipschitz stability of F∗ at
((

c, b
)
, x
)
.

In the convex case, ENC is still a sufficient condition for the latter but no longer necessary ([3], Rem. 11), and
the problem of finding intermediate conditions remains open. More specifically, the question of whether or not
the strong uniqueness of minimizers for (c, b) near

(
c, b

)
is such an intermediate condition remains as an open

problem (see [3], Sect. 5).

5.3. Simplified expressions for the Lipschitz modulus in particular cases

A serious difficulty in order to apply (4.3) in practice is given by the problem of finding those D ∈ Tb(x) such
that fb(z) = fD

b (z) for (z, b) close to
(
x, b

)
. In the finite case (T finite), [6] provides a strategy for avoiding such

a problem. Specifically, Theorem 2 in [6] establishes, under ENC at
((

c, b
)
, x
)

and T being finite, that

lipF∗(c, b) = max
D∈Tb(x)

lipF∗
D(c, bD), (5.5)

where the subscript D in F∗
D and bD means that only those constraints with indices in D are considered in the

model. In this case, our fD
b is reduced to hD

β (z) := max {|〈ai, z〉 − βi| : i ∈ D} , for z ∈ R
n, where β ∈ R

D

denotes the new parameter. Combining this result with (4.3), we obtain

lipF∗(c, b) = max
D∈Tb(x)

lim sup(z,β)→(x,bD)
hD

β (z)>0

(
d∗
(
0n, ∂̂hD

β (z)
))−1

. (5.6)

A remaining difficulty in the previous expression is the fact that it appeals to parameters and points near
the nominal b and x, respectively. This difficulty can be overcome in the finite linear case, i.e., (4.8) with
T finite. In this case, it is well-known in the literature (see e.g. Cor. 1 in [6] and references therein) that
lipF∗

D(c, bD) =
∥∥A−1

D

∥∥, where AD is the matrix whose rows are at, t ∈ D. In this way, (5.5) reads as

lipF∗(c, b) = max
D∈Tb(x)

∥∥A−1
D

∥∥ .

The last expression was already obtained in [2]. In fact, that paper shows that supD∈Tb(x)

∥∥A−1
D

∥∥ is always
a lower bound on the modulus in the semi-infinite linear case, and we have the equality under a certain
additional hypothesis which is always satisfied for dimensions n ≤ 3. The question or whether or not lipF∗(c, b) =
supD∈Tb(x)

∥∥A−1
D

∥∥ fulfils under weaker (or none) additional assumptions remains as an open problem.
In summary, the state of the art concerning the Lipschitz modulus of the argmin mapping is as follows:

• A desirable goal would be to obtain an exact expression for the Lipschitz modulus in the convex semi-
infinite case in terms of the nominal data, not involving parameter and points in a neighborhood. At
the moment, this goal has been completely attained in the finite linear case, and partially attained in
the linear semi-infinite case.

• In the finite convex case (4.3) and (5.6) provide exact formulae for the modulus still involving elements
in a neighborhood. In relation to this points, the main contribution of the present paper is the fact of
providing an expression, (4.3), in terms of the functions describing the model, namely, f and gt, t ∈ T.

• In the convex semi-infinite case, we have an upper estimation, (4.2), in the same circumstances as in
the previous paragraph.
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