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CONTROL LYAPUNOV FUNCTIONS AND STABILIZATION BY MEANS
OF CONTINUOUS TIME-VARYING FEEDBACK

Iasson Karafyllis1 and John Tsinias2

Abstract. For a general time-varying system, we prove that existence of an “Output Robust Con-
trol Lyapunov Function” implies existence of continuous time-varying feedback stabilizer, which guar-
antees output asymptotic stability with respect to the resulting closed-loop system. The main re-
sults of the present work constitute generalizations of a well known result due to Coron and Rosier
[J. Math. Syst. Estim. Control 4 (1994) 67–84] concerning stabilization of autonomous systems by
means of time-varying periodic feedback.

Mathematics Subject Classification. 93C10, 93B52, 93D09.

Received October 22, 2007. Revised March 10, 2008.
Published online July 19, 2008.

1. Introduction

Control Lyapunov functions play a central role to the solvability of the feedback stabilization problem and
several important works are found in the literature, where sufficient conditions are provided in terms of Lyapunov
functions for characterizations of various types of stability, as well for existence of feedback stabilizers (see for
instance [1,2,4–7,9,12–16,19–22,26]). In the present work we consider time-varying uncertain systems of the
general form:

ẋ = f(t, d, x, u)
Y = H(t, x)
x ∈ �n , d ∈ D , t � 0 , Y ∈ �k , u ∈ U ⊆ �m

(1.1)

where d( · ) is a time-varying disturbance which takes values in the set D ⊂ �l and u, Y play the role of input
and output, respectively, of (1.1). We assume that 0 ∈ �n is an equilibrium point for (1.1), i.e. it holds
f(t, d, 0, 0) = 0 and H(t, 0) = 0 for all (t, d) ∈ �+ × D and that U ⊆ �m is a closed positive cone. We prove
that existence of an “Output Robust Control Lyapunov Function” (ORCLF) implies existence of continuous
time-varying feedback stabilizer

u = K(t, x) (1.2)
that guarantees global output asymptotic stability of the output Y = H(t, x) with respect to the resulting closed-
loop system (1.1) with (1.2), being uniform with respect to disturbances d( · ). Our main results constitute
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generalizations of an important result towards feedback stabilization obtained in [7] by Coron and Rosier
concerning autonomous systems:

ẋ = f(x, u), (x, u) ∈ �n ×�m with f(0, 0) = 0 ∈ �n. (1.3)

Particularly, among other things in [7], it is established that existence of a time-independent control Lyapunov
function, which satisfies the “small-control property” guarantees existence of a continuous time-varying periodic
feedback (1.2) in such a way that 0 ∈ �n is globally asymptotically stable for the resulting time-varying closed-
loop system (1.1) with (1.2). In the present work we present generalizations of the result above for general
time-varying systems (1.1). Particularly, in Theorem 2.8 of present paper we establish that existence of an
ORCLF, which satisfies a time-varying version of the small control property, implies existence of a continuous
feedback stabilizer K : �+ × �n → U , which is continuously differentiable with respect to x ∈ �n on the set
�+ × (�n\{0}) exhibiting Robust Global Asymptotic Output Stability (RGAOS) of the resulting closed-loop
system, being uniform with respect to initial values of time. In Theorem 2.9 of present work it is shown that,
under lack of the small control property, existence of an ORCLF, implies existence of a continuous feedback
stabilizer K : �+ × �n → U , being continuously differentiable with respect to x ∈ �n on the set �+ × �n

exhibiting RGAOS of the resulting closed-loop system, being in general non-uniform with respect to initial
values of time. We note here, that various concepts of asymptotic stability being in general non-uniform with
respect to initial values of time, their Lyapunov characterizations, as well applications to feedback stabilization
and related problems are found in several recent works (see for instance [11–14] and references therein). As a
consequence of Theorem 2.9 and the main result in [12], it is shown in Corollary 2.10 of the present work that
that the converse claim of Theorem 2.9 is true; to be more precise, the following three statements are equivalent:

• existence of an ORCLF (under lack of the small control property);
• existence of a continuous mapping K : �+ × �n → U , being continuously differentiable with respect

to x ∈ �n on �+ × �n, such that the closed-loop system (1.1) with (1.2) is (non-uniformly in time)
RGAOS ;

• existence of an ORCLF satisfying the small control property.

It should be emphasized here that, when the result of Theorem 2.9 is restricted to autonomous systems
(1.3), we get the following result which generalizes both Artstein’s theorem on stabilization in [2,21] and Coron-
Rosier’s main result in [7]: assume that (1.3) possesses a (time-independent) Control Lyapunov Function,
namely, suppose that there exists a map V ∈ C1(�n;�+), functions a1, a2 ∈ K∞, and ρ ∈ C0(�+;�+), being
positive definite, in such a way that

a1(|x|) � V (x) � a2(|x|), min
u∈U

∂ V

∂ x
(x)f(x, u) � −ρ (V (x)) , x ∈ �n.

Then there exists a time-varying continuous mapping K : �+ ×�n → U , being continuously differentiable with
respect to x ∈ �n on �+ × �n, such that the closed-loop time-varying system (1.3) with (1.2) is RGAOS in
general non-uniformly with respect to initial values of time.

Comparing with the main result obtained in [7], the result above presents the important advantage that
feedback stabilization is exhibited under lack of the small control property and the corresponding feedback is
an ordinary map, being in general time-varying and non-periodic. On the other hand, our approach leads in
general to non-uniform in time asymptotic stability for the resulting closed-loop system. Finally, it should be
pointed out that the main results in the present work (Thms. 2.8 and 2.9) generalize the main result in [7] in
the following additional directions:

• the dynamics of systems we consider are in general time-varying, including disturbances, and the control
set U is in general a positive cone of �m;

• the general problem of robust output stabilization is considered and feedback stabilization is exhibited
under the presence of time-varying Control Lyapunov Functions.
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The proofs of the main results in the present work are inspired by the proof of the main result in [7], but are
essentially different in many points.

The paper is organized as follows. In Section 2, several stability notions and the concept of the Output
Robust Control Lyapunov Function are presented, as well precise statements of our main results are given.
Section 3 contains the proofs of the main results.

Notations. Throughout this paper we adopt the following notations:
∗ Let A be a nonempty subset of �n. By C0(A ; Ω) we denote the class of all continuous functions on A,

which take values in Ω. Likewise, C1(A ; Ω) denotes the class of all functions on A with continuous
derivatives, which take values in Ω.

∗ For a vector x ∈ �n we denote by |x| its usual Euclidean norm and by x′ its transpose.
∗ Z denotes the set of all integers, Z+ denotes the set of all non-negative integers and �+ denotes the set

of all non-negative real numbers.
∗ We denote by [r] the integer part of the real number r, i.e., the greatest integer, which is less than or

equal to r.
∗ Let A,U be a pair nonempty subsets of �+×�n and �k, respectively. A continuous mapping A � (t, x) →

k(t, x) ∈ U , is said continuously differentiable with respect to x on A, if A � (t, x) → ∂ k
∂ x (t, x) ∈ �n

exists and is continuous and is called locally Lipschitz with respect to x on A, if for every compact set
S ⊆ A it holds that

sup
{ |k(t, x) − k(t, y)|

|x − y| : (t, x) ∈ S , (t, y) ∈ S , x �= y

}
< +∞.

∗ We denote by K+ the class of all (strictly) positive C0 functions defined on �+. We say that a function
ρ : �+ → �+ is positive definite if ρ(0) = 0 and ρ(s) > 0 for all s > 0. By K we denote the set of all
positive definite, increasing and continuous functions. We say that a function ρ ∈ K is of class K∞, if
lim

s→+∞ ρ(s) = +∞.

∗ Let D ⊆ �l be a non-empty set. By MD we denote the class of all Lebesgue measurable and locally
essentially bounded mappings d : �+ → D.

2. Basic notions and main results

In this work, we consider systems of the form (1.1) under the following hypotheses:
(H1) The mappings f : �+ × D × �n × U → �n, H : �+ × �n → �k are continuous and for every bounded
interval I ⊂ �+ and every compact set S ⊂ �n × U there exists a constant L � 0 such that

|f(t, d, x, u) − f(t, d, y, v)| � L |x − y| + L |u − v| for all (t, d) ∈ I × D, (x, u) ∈ S, (y, v) ∈ S.

(H2) The set D ⊂ �l is compact and U is a closed positive cone, i.e., U ⊆ �m is a closed set and, if u ∈ U ,
then (λu) ∈ U for all λ ∈ [0, 1].
(H3) Zero 0 ∈ �n is an equilibrium; particularly, assume that f(t, d, 0, 0) = 0, H(t, 0) = 0 for all (t, d) ∈ �+×D.

Definition 2.1. We say that a function V ∈ C1(�+ × �n;�+) is an Output Robust Control Lyapunov
Function (ORCLF) for (1.1), if there exist functions a1, a2 ∈ K∞, μ, β ∈ K+, ρ ∈ C0(�+;�+), being locally
Lipschitz and positive definite and b ∈ C0(�+ × (�n\{0}) ;�+), such that

(i) for every (t, x) ∈ �+ ×�n it holds:

a1 (|H(t, x)| + μ(t) |x|) � V (t, x) � a2 (β(t) |x|) ; (2.1)
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(ii) for every (t, x) ∈ �+ × (�n\{0}) it holds:

min
|u| � b(t, x)
u ∈ U

max
d∈D

(
∂ V

∂ t
(t, x) +

∂ V

∂ x
(t, x)f(t, d, x, u)

)
� −ρ (V (t, x)). (2.2)

For the case, where (2.2) holds and, instead of (2.1), it holds:

a1 (|x|) � V (t, x) � a2 (β(t) |x|) , ∀(t, x) ∈ �+ ×�n (2.1’)

the corresponding V ∈ C1(�+ ×�n;�+) is called State Robust Control Lyapunov Function (SRCLF).
We say that the ORCLF (SRCLF) satisfies the small-control property with respect to (1.1), if in addition

to (2.1), (2.2), ((2.1’), (2.2)), there exist functions a3 ∈ K∞, γ ∈ K+ such that the following inequality holds
for all (t, x) ∈ �+ × (�n\{0}):

b(t, x) � a3 (γ(t) |x|) (2.3)
where b ∈ C0(�+ × (�n\{0}) ;�+) is the function involved in (2.2).

Remark 2.2. If the ORCLF V ∈ C1(�+ × �n;�+) is T -periodic (namely, V (t + T, x) = V (t, x) for certain
T > 0 and for all (t, x) ∈ �+ × �n), then (2.1) implies a1 (M |x|) � V (t, x) for all (t, x) ∈ �+ × �n, where
M := min

t∈[0,T ]
μ(t) > 0. Consequently, existence of a T -periodic ORCLF implies existence of a T -periodic SRCLF.

Moreover, existence of a time-invariant ORCLF implies existence of a time-invariant SRCLF.

Remark 2.3. The small-control property in Definition 2.1 constitutes a time-varying version of the small-
control property for the autonomous case [2,9,21].

Remark 2.4. Time-Varying ORCLFs are also involved for the case of stabilization of autonomous systems; to
be precise, it is possible an autonomous system to possess a time-varying ORCLF satisfying the small-control
property, although a time-independent ORCLF does not exist. Indeed, consider the elementary linear system
ẋ1 = x1, ẋ2 = u, with u ∈ U = � and output Y = x2. Obviously, this system is not feedback stabilizable to
zero 0 ∈ �2 and therefore, according to [7], a time-invariant SRCLF does not exist. Neither a time-independent
ORCLF exists, according to Remark 2.2 above. On the other hand, it can be easily verified that the function
V (t, x) := 1

2 exp(−4t)x2
1 + 1

2x2
2 is an ORCLF, which in addition satisfies the small-control property.

We next present certain stability concepts used in the present work. Consider the system

ẋ = f(t, d, x) (2.4)

Y = H(t, x) (2.5)

x ∈ �n, d ∈ D, Y ∈ �k

where the mappings f : �+×D×�n → �n, H : �+×�n → �k are continuous with f(t, d, 0, 0) = 0, H(t, 0) = 0
for all (t, d) ∈ �+ × D and D ⊂ �l is compact. We assume that for every (t0, x0, d) ∈ �+ × �n × MD there
exists h ∈ (0, +∞] and a unique solution x( · ) = x( · , t0, x0; d) : [t0, t0 + h) → �n of (2.4) with x(t0) = x0.

Definition 2.5. We say that (2.4) is Robustly Forward Complete (RFC), if for every T � 0, r � 0 it holds
that:

sup { |x(t0 + h, t0, x0; d)| ; |x0| � r, t0 ∈ [0, T ], h ∈ [0, T ], d( · ) ∈ MD} < +∞. (2.6)

Clearly, the notion of robust forward completeness implies the standard property of forward completeness,
which requires that for every initial condition the solution of the system exists for all times greater than the
initial time, or equivalently, the solutions of the system do not present finite escape time. Conversely, an
extension of Proposition 5.1 in [17] to the time-varying case shows that every forward complete system (2.4),
whose dynamics are locally Lipschitz with respect to (t, x), uniformly in d ∈ D, is RFC. RFC will be assumed
by all output stability notions used in the present work.
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We next provide the notion of (non-uniform in time) Robust Global Asymptotic Output Stability (RGAOS)
(see [12,13]), which is a generalization of the notion of Robust Output Stability (see [23,24,27]). Let us denote
by Y ( · ) = H( · , x( · , t0, x0; d)) the output of (2.4) corresponding to d ∈ MD and initial condition x(t0) = x0.

Definition 2.6. Consider system (2.4) and suppose that is RFC. We say that (2.4) is (non-uniformly in time)
Robustly Globally Asymptotically Output Stable (RGAOS) if it satisfies the following properties:

P1 (Output Stability). For every ε > 0, T � 0, it holds:

sup { |Y (t)| ; t � t0, |x0| � ε, t0 ∈ [0, T ], d( · ) ∈ MD} < +∞

(Robust Lagrange Output Stability)
and there exists a δ := δ (ε, T ) > 0 such that

|x0| � δ, t0 ∈ [0, T ] ⇒ |Y (t)| � ε, ∀t � t0, ∀d( · ) ∈ MD.

(Robust Lyapunov Output Stability)

P2 (Uniform Output Attractivity on compact sets of initial data). For every ε > 0, T � 0 and
R � 0, there exists a τ := τ (ε, T, R) � 0 such that

|x0| � R, t0 ∈ [0, T ] ⇒ |Y (t)| � ε, ∀t � t0 + τ, ∀d( · ) ∈ MD.

The notion of Uniform Robust Global Asymptotic Output Stability was originally given in [23,24] and is a
special case of non-uniform in time RGAOS.

Definition 2.7. Consider system (2.4) and suppose that is RFC. We say that (2.4) is Uniformly Robustly
Globally Asymptotically Output Stable (URGAOS), if it satisfies the following properties:

P1 (Uniform Output Stability). For every ε > 0, it holds that

sup { |Y (t)| ; t � t0, |x0| � ε, t0 � 0, d( · ) ∈ MD} < +∞

(Uniform Robust Lagrange Output Stability).
and there exists a δ := δ (ε) > 0 such that

|x0| � δ, t0 � 0 ⇒ |Y (t)| � ε, ∀t � t0, ∀d( · ) ∈ MD.

(Uniform Robust Lyapunov Output Stability)

P2 (Uniform Output Attractivity on compact sets of initial states). For every ε > 0 and R � 0,
there exists a τ := τ (ε, R) � 0 such that

|x0| � R, t0 � 0 ⇒ |Y (t)| � ε, ∀t � t0 + τ, ∀d( · ) ∈ MD.

Obviously, for the case H(t, x) = x the notions of RGAOS, URGAOS coincide with the notions of non-
uniform in time Robust Global Asymptotic Stability (RGAS) as given in [14] and Uniform Robust
Global Asymptotic Stability (URGAS) as given in [17], respectively. Also note that, if there exists a ∈ K∞
with |x| � a(|H(t, x)|) for all (t, x) ∈ �+ × �n, then (U)RGAOS implies (U)RGAS.

We are now in a position to state our main results.

Theorem 2.8. Consider system (1.1) under hypotheses (H1–H3) and assume that (1.1) admits an ORCLF
which satisfies (2.1), (2.2) and the small-control property (2.3). Moreover, suppose that β(t) ≡ 1, where β ∈ K+

is the function involved in (2.1). Then there exists a continuous mapping K : �+ ×�n → U with K(t, 0) = 0
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for all t � 0, being continuously differentiable with respect to x ∈ �non the set �+ × (�n\{0}), such that for all
(t0, x0, d) ∈ �+ ×�n × MD the solution x( · ) of the closed-loop system (1.1) with u = K(t, x):

ẋ = f(t, d, x, K(t, x)) (2.7)

with initial condition x(t0) = x0 ∈ �n corresponding to d ∈ MD, is unique and system (2.7) is URGAOS.

Theorem 2.9. Consider system (1.1) under hypotheses (H1–H3) and assume that (1.1) admits an ORCLF
which satisfies (2.1), (2.2). Then there exists a continuous mapping K : �+ ×�n → U , with K(t, 0) = 0 for all
t � 0, which is continuously differentiable with respect to x ∈ �n on �+ ×�n, such that the closed-loop system
(2.7) is RGAOS.

It should be emphasized that the small-control property is not required for the validity of the result of
Theorem 2.9. On the other hand, Theorem 2.9 cannot in general guarantee uniformity of solutions of the
resulting closed-loop system (2.7) with respect to the initial time. Another advantage of Theorem 2.9 above is
that the proposed feedback K(t, x) is locally Lipschitz with respect to x ∈ �n. The latter in conjunction with
the converse Lyapunov theorem in [12] leads to the following result:

Corollary 2.10. Consider system (1.1) under hypotheses (H1–H3). The following statements are equivalent:
(i) System (1.1) admits an ORCLF which satisfies (2.1) and (2.2).
(ii) There exists a continuous mapping K : �+ × �n → U , with K(t, 0) = 0 for all t � 0, which is

continuously differentiable with respect to x ∈ �n on �+ × �n, such that the closed-loop system (1.1)
with u = K(t, x) is RGAOS.

(iii) System (1.1) admits an ORCLF which satisfies (2.1), (2.2) and the small-control property (2.3).

Remark 2.11.
(i) According to Corollary 2.10, existence of an ORCLF implies existence of another ORCLF satisfying the

small control property (2.3). It should be emphasized however that existence of an ORCLF does not
in general imply existence of another ORCLF satisfying the small-control property (2.3) and inequal-
ity (2.1) for certain bounded β ∈ K+. Indeed, otherwise, by virtue of Theorem 2.8 and Corollary 2.10,
non-uniform in time stabilizability of system (1.1) would imply uniform in time stabilizability, but as is
known this not in general true (see for instance, Ex. 5.2 in [11]).

(ii) In the case where the control set U ⊆ �m is compact, then according to statement of Theorem 2.9,
the stabilizing feedback law K : �+ × �n → U , takes values in the compact set U ⊆ �m. This
particularly means that for any solution x( · ) of the resulting closed-loop (2.7) the “control action”
[t0, +∞) � t → u(t) = K(t, x(t)) ∈ U is bounded.

(iii) Finally, we remark that, under the hypotheses imposed in Theorem 2.8 and if in addition we assume that
the small-control property (2.3) is fulfilled with γ(t) ≡ 1, then the corresponding stabilizing feedback
K(·, ·) satisfies |K(t, x)| � a3 (2 |x|) for all (t, x) ∈ �+ × �n, where a3 ∈ K∞ is involved in (2.3).
Consequently, if the output of system (1.1) coincides with the state of the system (i.e., H(t, x) ≡ x),
then the map [t0, +∞) � t → u(t) = K(t, x(t)) ∈ U is bounded and converges to zero as t → +∞.
The latter is a consequence of the following proposition, which provides a weaker general hypothesis
guaranteeing boundedness plus convergence to zero of the control action.

Proposition 2.12. In addition to hypotheses of Theorems 2.9 and 2.8, respectively, assume that there exist a
function a ∈ K∞ and a function q ∈ C0(�+ ×�n;�+) satisfying

0 < q(t, x) � min
{

1,
|x|
2

}
, ∀(t, x) ∈ �+ × (�n\{0}) (2.8)

such that

max
{

b(τ, y) : (τ, y) ∈ �+ ×�n , |τ − t| + |y − x| � q(τ, y)
}

� a (V (t, x)) , ∀(t, x) ∈ �+ × (�n\{0}) (2.9)
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where V ∈ C1(�+ × �n;�+) is the ORCLF for (1.1) and b ∈ C0(�+ × (�n\{0}) ;�+) is the function involved
in (2.2). Consider system (2.7) with new output Ỹ = K(t, x), where K : �+ × �n → U is the continuous
feedback law whose existence is guaranteed by Theorems 2.9 and 2.8, respectively. Then system (2.7) with output
Ỹ = K(t, x) is RGAOS, URGAOS, respectively. Particularly, this implies that for all (t0, x0, d) ∈ �+×�n×MD

the control action [t0, +∞) � t → u(t) = K(t, x(t)) ∈ U is bounded and converges to zero as t → +∞, where
x( · ) denotes the solution of (2.7) with initial condition x(t0) = x0 ∈ �n, corresponding to d ∈ MD.

The following example illustrates the nature of Theorem 2.9.

Example 2.13. Consider the following system

ẋ = f(t, d, x) +
N∑

j=1

gj(t, x)ukj

Y = H(t, x)
x ∈ �n, d ∈ D, u ∈ �, Y ∈ �k

(2.10)

where D ⊂ �l is a compact set, f : �+ × D ×�n → �n, gj : �+ × �n → �n(j = 0, ..., N) are locally Lipschitz
mappings with f(t, d, 0) = 0 for all (t, d) ∈ �+ × D and H : �+ × �n → �k is a continuous mapping with
H(t, 0) = 0 for all t � 0. Assume that

kj , j = 1, ..., N are odd positive integers (2.11)

and there exist functions V ∈ C1(�+ × �n;�+), a1, a2 ∈ K∞, μ, β ∈ K+, ρ ∈ C0(�+;�+), being locally
Lipschitz and positive definite, such that

a1 (|H(t, x)| + μ(t) |x|) � V (t, x) � a2 (β(t) |x|) , ∀(t, x) ∈ �+ ×�n (2.12)

and in such a way that the following implication holds:

N∑
j=1

(
∂ V

∂ x
(t, x)gj(t, x)

)2

= 0 ⇒ max
d∈D

(
∂ V

∂ t
(t, x) +

∂ V

∂ x
(t, x)f(t, d, x)

)
� −2ρ (V (t, x)). (2.13)

We claim that V ∈ C1(�+ × �n;�+) is an ORCLF for system (2.10). Indeed, by exploiting (2.10) and
implication (2.13) it follows that for every (t, x) ∈ �+ ×�n there exists u ∈ � such that

max
d∈D

⎛
⎝∂ V

∂ t
(t, x) +

∂ V

∂ x
(t, x)f(t, d, x) +

N∑
j=1

∂ V

∂ x
(t, x)gj(t, x)ukj

⎞
⎠ � −2ρ (V (t, x)). (2.14)

From (2.14), compactness of D ⊂ �l and continuity of f , gj(j = 0, ..., N), it follows by applying standard
partition of unity arguments, that there exists a function b ∈ C0(�+ × (�n\{0}) ;�+) such that

min
|u| � b(t, x)
u ∈ �

max
d∈D

⎛
⎝∂ V

∂ t
(t, x) +

∂ V

∂ x
(t, x)f(t, d, x) +

N∑
j=1

∂ V

∂ x
(t, x)gj(t, x)ukj

⎞
⎠ � −ρ (V (t, x)). (2.15)

Hence, by (2.12) and (2.15) we may conclude that V is an ORCLF for system (2.10). Consequently, according
to statement of Theorem 2.9, there exists a continuous mapping K : �+ × �n → U with K(t, 0) = 0 for all
t � 0, which is continuously differentiable with respect to x ∈ �n on �+ ×�n, such that the closed-loop system
(2.10) with u = K(t, x) is RGAOS.
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3. Proofs of the main results

The proof of the main results of the present work is based on three lemmas below. Particularly, Lemma 3.1
is a preparatory result for the construction of the desired feedback stabilizer. It constitutes a time-varying
extension of Lemma 2.7 in [7], but its constructive proof differs from the corresponding proof of the previously
mentioned result.

Lemma 3.1. Consider system (1.1) under hypotheses (H1–H3) and assume that (1.1) admits an ORCLF which
satisfies (2.1) and (2.2). Then, for every function q ∈ C0(�+ × �n;�+) satisfying (2.8), there exists a C1

function k : [0, 1]×�+ × (�n\{0}) → U with

k(0, t, x) = k(1, t, x) = 0 (3.1a)

∂ k

∂ s
(0, t, x) =

∂ k

∂ t
(0, t, x) = 0;

∂ k

∂ x
(0, t, x) = 0 (3.1b)

∂ k

∂ s
(1, t, x) =

∂ k

∂ t
(1, t, x) = 0;

∂ k

∂ x
(1, t, x) = 0 (3.1c)

for all t � 0, x ∈ �n\{0}, and in such a way that:

∂ V

∂ t
(t, x) +

∂ V

∂ x
(t, x)

1∫
0

f(t, d(s), x, k(s, t, x))ds � −1
2
ρ (V (t, x)) (3.2)

for all (t, x) ∈ �+× (�n\{0}), d ∈ MD. Moreover, the following inequality holds for all (t, x) ∈ �+ × (�n\{0}):

max
s∈[0,1]

|k(s, t, x)| � b̃(t, x) (3.3)

where

b̃(t, x) := max
{

b(τ, y) : (τ, y) ∈ �+ ×�n, |τ − t| + |y − x| � q(τ, y)
}

, (t, x) ∈ �+ × (�n\{0}) (3.4)

and b( · , · ) is the function involved in (2.2).

Proof of Lemma 3.1. Let q ∈ C0(�+ ×�n;�+) satisfying (2.8), let b̃ : �+ × (�n\{0}) → �+ as defined by (3.4),
which is locally bounded on �+×(�n\{0}) , and let ϕ : �+×(�n\{0}) → [1, +∞) be any smooth (C∞) function
satisfying

max
|u| � b̃(t, x)
u ∈ U

max
d∈D

(
∂ V

∂ t
(t, x) +

∂ V

∂ x
(t, x)f(t, d, x, u)

)
� ϕ(t, x), ∀(t, x) ∈ �+ × (�n\{0}). (3.5)

Moreover, let ε : �+ × (�n\{0}) → (0, 1) be a smooth function such that

0 < ε(t, x) � ρ(V (t, x))
4 (ρ(V (t, x)) + ϕ(t, x))

, ∀(t, x) ∈ �+ × (�n\{0}) (3.6)

and define

Ψ(t, x, u) := max
d∈D

(
∂ V

∂ t
(t, x) +

∂ V

∂ x
(t, x)f(t, d, x, u) +

3
4
ρ (V (t, x))

)
, (t, x, u) ∈ �+ ×�n × U (3.7a)

Ψ(t, x, u) := Ψ(0, x, u), (t, x, u) ∈ (−1, 0) ×�n × U. (3.7b)
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By virtue of (2.2), continuity of Ψ and compactness of D ⊂ �l, it follows that for each (t, x) ∈ (−1, +∞) ×
(�n\{0}) there exist u = u(t, x) ∈ U with |u| � b(t, x) and δ = δ(t, x) ∈ (0, 1] with δ(t, x) � q(t, x) such that

Ψ(τ, y, u(t, x)) � 0, ∀(τ, y) ∈ { (τ, y) ∈ (−1, +∞)×�n : |τ − t| + |y − x| < δ}. (3.8)

Using (3.8) and standard partition of unity arguments, we can determine sequences {(ti, xi) ∈ (−1, +∞) ×
(�n\{0})}∞i=1, {ui ∈ U}∞i=1, {δi ∈ (0, 1]}∞i=1 with |ui| � b(max(0, ti), xi) and δi = δ(ti, xi) � q(ti, xi) associated
with a sequence of open sets {Ωi}∞i=1 with

Ωi ⊆ { (τ, y) ∈ (−1, +∞) ×�n : |τ − ti| + |y − xi| < δi} (3.9a)

forming a locally finite open covering of (−1, +∞)× (�n\{0}) and in such a way that:

Ψ(τ, y, ui) � 0, ∀(τ, y) ∈ Ωi. (3.9b)

Also, a family of smooth functions {θi}∞i=1 with θi(t, x) � 0 for all (t, x) ∈ (−1, +∞) × (�n\{0}) can be
determined with

supp θi ⊆ Ωi (3.9c)∞∑
i=1

θi(t, x) = 1, ∀(t, x) ∈ (−1, +∞) × (�n\{0}). (3.9d)

Next define recursively the following mappings for each (t, x) ∈ �+ × (�n\{0}):
Ti(t, x) = Ti−1(t, x) + θi(t, x), i � 1; T0(t, x) = 0; (t, x) ∈ �+ × (�n\{0}). (3.10)

Notice that definition (3.10) implies Tn(x) =
n∑

i=1

θi(t, x) for all n � 1. Since the open sets {Ωi}∞i=1 form a locally

finite open covering of �+ × (�n\{0}), it follows from (3.9c) and (3.10) that for every (t, x) ∈ �+ × (�n\{0})
there exists m = m(t, x) ∈ {1, 2, 3, ...} such that

Ti(t, x) = 1 for i � m. (3.11)

We define the index set
J(t, x) := { j ∈ {1, 2, 3, ...} : θj(t, x) > 0 } (3.12)

which by virtue of (3.11) is a non-empty finite set. It follows from definitions (3.10) and (3.12) that

∪
j∈J(t,x)

[Tj−1(t, x), Tj(t, x)) = [0, 1), ∀(t, x) ∈ [0, 1] ×�+ × (�n\{0}). (3.13)

Let h : � → [0, 1] be any smooth non-decreasing function with

h(s) = 0 for s � 0 and h(s) = 1 for s � 1 (3.14a)

and let

gj(t, x) :=
1
2
θj(t, x) +

1
2
(
ε(t, x)2−j−1 − θj(t, x)

)
h

(
θj(t, x) − ε(t, x)2−j−2

ε(t, x)2−j−2

)
, j ∈ {1, 2, 3, ...} (3.14b)

where ε( · , · ) is the function defined by (3.6). Notice that according to (3.14a,b) it holds:

min
{

ε(t, x)2−j−2,
1
2
θj(t, x)

}
� gj(t, x) � min

{
ε(t, x)2−j−2, θj(t, x)

}
(3.15a)

gj(t, x) = ε(t, x)2−j−2 for θj(t, x) � ε(t, x)2−j−1. (3.15b)
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We define the following map [0, 1]×�+ × (�n\{0}) � (s, t, x) → k(s, t, x) ∈ �m:

k(s, t, x) = uj

(
gj(t, x)

ε(t, x)2−j−2

)2

h

(
s − Tj−1(t, x) − 1

5gj(t, x)
1
5gj(t, x)

)
,

for s ∈
[
Tj−1(t, x), Tj−1(t, x) +

1
2
θj(t, x)

)
, j ∈ J(t, x) (3.16a)

k(s, t, x) = uj

(
gj(t, x)

ε(t, x)2−j−2

)2

h

(
Tj(t, x) − 1

5gj(t, x) − s
1
5gj(t, x)

)
, for s ∈

[
Tj(t, x) − 1

2
θj(t, x), Tj(t, x)

)
, j ∈ J(t, x)

(3.16b)
k(1, t, x) = 0. (3.16c)

Notice that, because of (3.13), k( · , · , · ) is well defined for all (s, t, x) ∈ [0, 1] × �+ × (�n\{0}). Furthermore,
according to definition (3.16), hypothesis (H2) guarantees that k( · , · , · ) takes values in U ⊆ �m and is con-

tinuously differentiable on the region
(

∪
j∈J(t,x)

(Tj−1(t, x), Tj(t, x))
)
× �+ × (�n\{0}). Furthermore, it holds

that

∂ k

∂ s
(s, t, x) → 0,

∂ k

∂ t
(s, t, x) → 0,

∂ k

∂ x
(s, t, x) → 0 as s → Tj(t, x) for all j ∈ {0, 1, 2, 3, ...}. (3.17)

Next, we show that k( · , · , · ) is continuously differentiable on the whole region [0, 1] × �+ × (�n\{0}) and
simultaneously that (3.1b,c,d) are fulfilled. We distinguish the following cases:

Case 1. Let s ∈ (0, 1), (t, x) ∈ �+×(�n\{0}) and suppose that there exists a positive integer p with s = Tp(t, x).
Then, there exist positive integers m, l with l � p � m in such a way that

θm+1(t, x) > 0, θl(t, x) > 0 (3.18a)

s = Tm(t, x) = ... = Tl(t, x) > 0. (3.18b)
Equality (3.18b) in conjunction with definition (3.10) means

θm(t, x) = ... = θl+1(t, x) = 0, if m � l + 1. (3.19)

Notice that definition (3.16a) and (3.18a) imply that in our case it holds

k(s, t, x) = 0. (3.20)

By taking into account continuity of the mappings gl, gm+1, Tl, Tm and (3.15a), it follows that there exists δ > 0
such that

s′ ∈
(

Tl(τ, y) − 1
5
gl(τ, y), Tm(τ, y) +

1
5
gm+1(τ, y)

)

∀(s′, τ, y) ∈ [0, 1] ×�+ × (�n\{0}) with |s′ − s| + |τ − t| + |y − x| < δ. (3.21)
By virtue of definition (3.16a,b), (3.20) and (3.21), it follows that for every (s′, τ, y) ∈ [0, 1] × �+ × (�n\{0})
with |s′ − s| + |τ − t| + |y − x| < δ it holds:

|k(s′, τ, y) − k(s, t, x)| � max
v=l+1,...,m

|uv|
(

gv(τ, y)
ε(τ, y)2−v−2

)2

, if m � l + 1 (3.22a)

k(s′, τ, y) = k(s, t, x), if m = l. (3.22b)
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If m � l+1, then by (3.15a) and (3.19) we also get gv(t, x) = 0 for v = l+1, ..., m, hence, since the mappings gv

are continuously differentiable, there exists a constant L > 0 such that

max
v=l+1,...,m

gv(τ, y)

ε(τ, y)
� L |τ − t| + L |y − x| , ∀(τ, y) ∈ �+ ×�n\{0} with |τ − t| + |y − x| < δ. (3.23)

It turns out from (3.22a,b) and (3.23) that

|k(s′, τ, y) − k(s, t, x)| � L′
(
|τ − t|2 + |y − x|2

)
(3.24)

for certain constant L′ > 0 and for |s′ − s|+ |τ − t|+ |y − x| < δ. We conclude from (3.24) that the derivatives of
k( · , · , · ) exist for s = Tp(t, x) and it holds that ∂ k

∂ s (s, t, x) = ∂ k
∂ t (s, t, x) = 0 and ∂ k

∂ x(s, t, x) = 0 for s = Tp(t, x).
The latter in conjunction with (3.17) implies that k( · , · , · ) is continuously differentiable in a neighborhood of
(s, t, x) with s = Tp(t, x) ∈ (0, 1).

Case 2. Let s = 0, (t, x) ∈ �+× (�n\{0}) and suppose that there exists an integer p � 0 with s = Tp(t, x) = 0.
Clearly, there exists an integer m � p such that

θm+1(t, x) > 0 (3.25a)

s = Tm(t, x) = ... = T0(t, x) = 0 (3.25b)

(note again that equality (3.25b) means that θm(t, x) = ... = θ1(t, x) = 0 for the case m > 0). By virtue of
definition (3.16a) it holds that k(s, t, x) = 0. Continuity of the mappings Tm and gm+1 implies that there exists
δ > 0 such that s′ ∈ [

0, Tm(τ, y) + 1
5gm+1(τ, y)

)
for all (s′, τ, y) ∈ [0, 1]×�+× (�n\{0}) with |s′ − s|+ |τ − t|+

|y − x| < δ. Then, as in Case 1, it follows by (3.16) that

|k(s′, τ, y) − k(s, t, x)| � max
v=1,...,m

|uv|
(

gv(τ, y)
ε(τ, y)2−v−2

)2

, if m > 0 (3.26a)

k(s′, τ, y) = k(s, t, x), if m = 0 (3.26b)

for every |s′ − s| + |τ − t| + |y − x| < δ, from which we get the desired conclusion, namely, that k( · , · , · ) is
continuously differentiable in a neighborhood of (0, t, x) and further (3.1b) holds.

Case 3. Let s = 1, (t, x) ∈ �+ × (�n\{0}) and let p a positive integer with s = Tp(t, x). Let {Ωi}∞i=1 be the
locally finite open covering of (−1, +∞)× (�n\{0}) and the associated sequence of functions {θi}∞i=1 in such a
way that (3.9a,b,c,d) hold. Let N ⊂ (−1, +∞)× (�n\{0}) be a neighborhood containing (t, x) which intersects
only a finite number of the open sets {Ωi}∞i=1 (see [10]). Consequently, by (3.9d) there exists an integer m > 1
such that N ∩ Ωi = ∅ for all i > m and θi(τ, y) = 0 for all i > m, (τ, y) ∈ N . Clearly, there exists l ∈ {1, ..., m}
with

θl(t, x) > 0 (3.27a)

s = Tl(t, x) = ... = Tm(t, x) = 1. (3.27b)

Without loss of generality we may assume that m > l. By virtue of definition (3.16c) we have k(1, t, x) = 0 and
continuity of the mappings Tl, gl, asserts existence of a constant δ > 0 such that

s′ ∈
(

Tl(τ, y) − 1
5
gl(τ, y), 1

]
and (τ, y) ∈ N ;

∀(s′, τ, y) ∈ [0, 1] ×�+ × (�n\{0}) with |s′ − 1| + |τ − t| + |y − x| < δ. (3.28)
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Using (3.16) and (3.28) we get

|k(s′, τ, y) − k(1, t, x)| � max
v=l+1,...,m

|uv|
(

gv(τ, y)
ε(τ, y)2−v−2

)2

from which it follows that (3.24) holds for all |s′ − 1|+ |τ − t|+ |y − x| < δ and for certain constant L′ > 0. This
implies that the derivatives of k( · , · , · ) exist for s = 1 and particularly, (3.1c) holds. The latter in conjunction
with (3.17) implies that k( · , · , · ) is continuously differentiable in a neighborhood of (1, t, x).

We next establish (3.3). By virtue of (3.14a), (3.15a) and definition (3.16) we have max
s∈[0,1]

|k(s, t, x)| �
max

j∈J(t,x)
|uj|, J(t, x) being the index set defined by (3.12). For every j ∈ J(t, x) for which (t, x) ∈ Ωj there exist

(tj , xj) ∈ (−1, +∞) × (�n\{0}) with
|uj | � b(max(0, tj), xj) (3.29)

and in such a way that (3.9a) holds with i = j. The choice δj = δ(tj , xj) � q(tj , xj) in conjunction with (3.29)
and definition (3.4) of b̃( · , · ) implies (3.3). Finally, we establish (3.2). Notice that, by virtue of (3.12), (3.14a),
(3.15b), (3.16a,b), for any (t, x) ∈ �+ ×�n\{0} and integer j ∈ J(t, x) it holds:

k(s, t, x) = uj, ∀s ∈
[
Tj−1(t, x) +

2
5
gj(t, x), Tj(t, x) − 2

5
gj(t, x)

]
when θj(t, x) � ε(t, x)2−j−1 (3.30)

hence, the set I(t,x) := {s ∈ [0, 1] : k(s, t, x) �= uj , j ∈ J(t, x) } has Lebesgue measure, say
∣∣I(t,x)

∣∣, satisfying:

∣∣I(t,x)

∣∣ �
∑

j∈J(t,x)

ε(t, x)2−j−1 � ε(t, x). (3.31)

Then for any d ∈ MD it follows by virtue of (3.7a), (3.9b) and (3.31) that

∂ V

∂ t
(t, x) +

∂ V

∂ x
(t, x)

1∫
0

f(t, d(s), x, k(s, t, x))ds �

− 3
4

(1 − ε(t, x)) ρ (V (t, x)) + ε(t, x) max
|u| � b̃(t, x)
u ∈ U

max
d∈D

∂ V

∂ t
(t, x) +

∂ V

∂ x
(t, x)f(t, d, x, u).

Inequalities (3.5), (3.6) in conjunction with the above inequality imply (3.2) and the proof is complete. �
The next lemmas (Lems. 3.2 and 3.3) constitute key results of the rest analysis and generalize Lemmas 2.8

and 2.9 in [7]. Their proofs are based on certain appropriate generalizations of the technique employed in [7].

Lemma 3.2. Consider system (1.1) under the same hypotheses as those imposed in Lemma 3.1. For every
function q ∈ C0(�+ × �n;�+) satisfying (2.8) and for every pair of sets r = { ri : i ∈ Z } , a = { ai : i ∈ Z }
with ri > 0, ai > 0,

ri + 2ai < ri+1 − 2ai+1 for all i ∈ Z (3.32)
lim

i→+∞
ri = +∞, lim

i→−∞
ri = 0 (3.33)

there exists a continuous mapping kr,a : �+ × (�n\{0}) → U , being continuously differentiable with respect to
x ∈ �n\{0} with

kr,a(j, x) = 0 and
∂ kr,a

∂ x
(j, x) = 0 for all (x, j) ∈ (�n\{0}) × Z+ (3.34)

|kr,a(t, x)| � b̃(t, x), ∀(t, x) ∈ �+ × (�n\{0}) (3.35)
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where b̃( · , · ) is defined by (3.4), and in such a way that the following property holds for all (t0, x0, d, i) ∈
�+ × (�n\{0}) × MD × Z:

V (t0, x0) ∈ [ri−1, ri] ⇒ V (t, x(t, t0, x0; d)) � ri +
5
2
ai, for all t ∈ [t0, min ([t0] + 1, tmax)) (3.36)

where x( · , t0, x0; d) denotes the unique solution of

ẋ = f(t, d, x, kr,a(t, x)), (t, x) ∈ �+ × (�n\{0}) (3.37)

with initial condition x(t0) = x0 ∈ �n\{0}, corresponding to d ∈ MD, tmax := tmax(t0, x0, d) > t0 denotes its
maximal existence time. Moreover, for each (x0, j, i) ∈ (�n\{0})×Z+×Z, there exists a positive integer N � 2
such that

V (j, x0) � ri − 2ai ⇒ V
(
j +

s

N
, x

(
j +

s

N
, j, x0; d

))
� max

(
ri−1 + 2ai−1 , V (j, x0) − s

N
μi

)
,

for all d ∈ MD, s ∈ { 0, 1, ..., N } with j +
s

N
< tmax (3.38)

where
μi :=

1
4

min { ρ(s) : s ∈ [ri−1, ri]} . (3.39)

Proof of Lemma 3.2. Let q ∈ C0(�+×�n;�+) be a function satisfying (2.8) and let k : [0, 1]×�+×(�n\{0}) → U
be a C1 function, which satisfies (3.1), (3.2), (3.3) and whose existence is guaranteed by Lemma 3.1. Let i ∈ Z,
j ∈ Z+, define

Ωi,j = {(t, x) ∈ [j, j + 1] ×�n : V (t, x) ∈ [ri−1, ri]} (3.40)
ρi := min(ai−2, ai−1, ai, ai+1) (3.41)

and let δi,j > 0 satisfying:

∣∣∂ V
∂ t (t, x) − ∂ V

∂ t (t0, x0)
∣∣ +

∣∣∂ V
∂ x (t, x) − ∂ V

∂ x (t0, x0)
∣∣ max

{
|f (t, x, d, u)| : d ∈ D , u ∈ U , |u| � b̃(t, x)

}
+

∣∣∂ V
∂ x (t0, x0)

∣∣ max { |f (t, d, x, k(s, t0, x)) − f (t0, d, x0, k (s, t0, x0))| : s ∈ [0, 1] , d ∈ D } � 1
4ρ(V (t0, x0))

∀(t0, x0) ∈ Ωi,j , ∀(t, x) ∈ �+ × (�n\{0}) with t ∈ [t0, t0 + δi,j ], |x − x0| � δi,j . (3.42)
Also, let Ni,j ∈ Z+ with Ni,j � 2 be a family of integers which satisfies the following inequalities:

4 max
{ ∣∣∣∣∂ V

∂ t
(t, x) +

∂ V

∂ x
(t, x)f (t, d, x, u)

∣∣∣∣ : t ∈ [j, j + 2],

V (t, x) ∈ [ri−3, ri+2] , d ∈ D , u ∈ U , |u| � b̃(t, x)
}

� ρiNi,j (3.43)

2 + 2 max
{
|f (t, d, x, u)| : t ∈ [j, j + 2] , V (t, x) ∈ [ri−3, ri+2] , d ∈ D , u ∈ U , |u| � b̃(t, x)

}
� δi,jNi,j . (3.44)

Consider next a smooth non-decreasing function h : � → [0, 1] with h(s) = 0 for s � 0 and h(s) = 1 for s � 1
and define the desired kr,a : �+ × (�n\{0}) → U as follows:

kr,a(t, x) :=

⎧⎪⎨
⎪⎩

h
(
2 V (t,x)−ri−1

min(ai−1,ai)

)
k
(
Ni,j(t − j) − l, j + l

Ni,j
, x

)
, V (t, x) ∈

[
ri−1,

ri+ri−1
2

)

h
(
2 ri−V (t,x)

min(ai−1,ai)

)
k
(
Ni,j(t − j) − l, j + l

Ni,j
, x

)
, V (t, x) ∈

[
ri+ri−1

2 , ri

)

(t, x) ∈ Ωi,j , t ∈
[
j +

l

Ni,j
, j +

l + 1
Ni,j

)
for some l ∈ {0, 1, ..., Ni,j − 1}. (3.45)
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Obviously, (3.35) is a consequence of (3.3), (3.4) and (3.45). Moreover, by taking into account (3.1), (3.32), it
follows that kr,a( · , · ) above is continuous, continuously differentiable with respect to x ∈ �n\{0} and satisfies

kr,a(j, x) = 0,
∂ kr,a

∂ x
(j, x) = 0, ∀(x, j) ∈ (�n\{0}) × Z+. (3.46)

Let (x0, d) ∈ (�n\{0})× MD and t0 ∈
[
j + l

Ni,j
, j + l+1

Ni,j

)
for some l ∈ {0, 1, ..., Ni,j − 1} with

V (t0, x0) ∈ [ri−2, ri+1]. (3.47)

Then by (3.43), (3.44) and (3.47) it can be easily established that for all t ∈
[
t0, j + l+1

Ni,j

]
it holds:

t − t0 + |x(t, t0, x0; d) − x0| � δi,j (3.48a)

V (t0, x0) − 1
2

min(ai−1, ai) � V (t, x(t, t0, x0; d)) � V (t0, x0) +
1
2

min(ai−1, ai). (3.48b)

Indeed, suppose on the contrary that there exist (x0, d) ∈ (�n\{0}) × MD, t0 ∈
[
j + l

Ni,j
, j + l+1

Ni,j

)
for some

l ∈ {0, 1, ..., Ni,j − 1} satisfying (3.47) and t̄ ∈
[
t0, j + l+1

Ni,j

]
such that either (3.48a) or (3.48b) does not hold

and consider the closed set

A :=
{

τ ∈
[
t0, j +

l + 1
Ni,j

]
: max

{
2 |V (τ, x(τ, t0, x0; d)) − V (t0, x0)|

min(ai−2, ai−1, ai, ai+1)
,

τ − t0 + |x(τ, t0, x0; d) − x0|
δi,j

}
� 1

}
.

Notice that, since t̄ ∈ A, the set A is non-empty. Let t1 := min A. Clearly, since t0 /∈ A, it holds that t1 > t0.
Definition of the set A above, (3.32) and (3.47) imply that V (τ, x(τ, t0, x0; d)) ∈ [ri−3, ri+2] for every τ ∈ [t0, t1).
It follows from (3.35), (3.43) and (3.44) that

∣∣∣∣ d
dτ

V (τ, x(τ, t0, x0; d))
∣∣∣∣ � 1

4
ρiNi,j and 2 + 2 |ẋ(τ)| � δi,jNi,j, a.e. for τ ∈ [t0, t1)

which in conjunction with definition (3.41) and the fact that τ − t0 � 1
Ni,j

imply that for all τ ∈ [t0, t1] we
would have:

|V (τ, x(τ, t0, x0; d)) − V (t0, x0)| �
τ∫

t0

∣∣∣∣ d
ds

V (s, x(s, t0, x0; d))
∣∣∣∣ds � 1

4
min(ai−2, ai−1, ai, ai+1);

τ − t0 + |x(τ, t0, x0; d) − x0| � τ − t0 +

τ∫
t0

|ẋ(s)|ds � 1
2
δi,j .

The previous inequalities for τ = t1 are in contradiction with the fact that t1 ∈ A.
In order to establish properties (3.36) and (3.38), we first need the following properties:

Property P1. Let d ∈ MD and let

t0 = j +
l

Ni,j
, l ∈ {0, 1, ..., Ni,j − 1} (3.49a)

V (t0, x0) ∈ [ri−1 + ai−1, ri − 2ai]. (3.49b)
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Then the following inequality is fulfilled:

0 < V

(
j +

l + 1
Ni,j

, x

(
j +

l + 1
Ni,j

, j +
l

Ni,j
, x0; d

))
� V

(
j +

l

Ni,j
, x0

)
− 1

4Ni,j
ρ

(
V

(
j +

l

Ni,j
, x0

))
. (3.50)

Proof of P1. Using (3.48b) and definition (3.45) it follows:

kr,a(t, x(t, t0, x0; d)) = k

(
Ni,j(t − j) − l, j +

l

Ni,j
, x(t, t0, x0; d)

)
, ∀t ∈

[
j +

l

Ni,j
, j +

l + 1
Ni,j

]
. (3.51)

For convenience let us denote here h := 1
Ni,j

, x( · ) = x( · , t0, x0; d) and d̃(t) := d(t0 + ht). Notice that d̃ ∈ MD

and, due to (3.44), h < δi,j . From (3.51) we have:

V (t0 + h, x(t0 + h)) − V (t0, x0) =
t0+h∫
t0

[
∂ V
∂ t (τ, x(τ)) + ∂ V

∂ x (τ, x(τ))f
(
τ, d(τ), x(τ), k

(
τ−t0

h , t0, x(τ)
))]

dτ

= h
1∫
0

[
∂ V
∂ t (t0 + hs, x(t0 + hs)) + ∂ V

∂ x (t0 + hs, x(t0 + hs))f (t0 + hs, d(t0 + hs), x(t0 + hs), k (s, t0, x(t0 + hs)))
]
ds

= h
1∫
0

[
∂ V
∂ t (t0, x0)d + ∂ V

∂ x (t0, x0)f
(
t0, d̃(s), x0, k (s, t0, x0)

)]
ds

+ h
1∫
0

[
∂ V
∂ t (t0 + hs, x(t0 + hs)) − ∂ V

∂ t (t0, x0)
]
ds

+h
1∫
0

[
∂ V
∂ x (t0 + hs, x(t0 + hs)) − ∂ V

∂ x (t0, x0)
]
f
(
t0 + hs, d̃(s), x(t0 + hs), k (s, t0, x(t0 + hs))

)
ds

+ h
1∫
0

∂ V
∂ x (t0, x0)

[
f
(
t0 + hs, d̃(s), x(t0 + hs), k (s, t0, x(t0 + hs))

)
− f

(
t0, d̃(s), x0, k (s, t0, x0)

)]
ds.

(3.52)
Using (3.2), (3.3), (3.42), (3.48), (3.49) and (3.52) we get the desired (3.50) and the proof of P1 is complete.

The next property is a consequence of P1:

Property P2. Suppose that

0 < V

(
j +

l

Ni,j
, x0

)
� ri − 2ai for some l ∈ {0, 1, ..., Ni,j − 1} (3.53)

and assume that the solution of (3.37) with initial condition x
(
j + l

Ni,j

)
= x0 ∈ �n\{0}, corresponding to

some d ∈ MD exists for t ∈
[
j + l

Ni,j
, j + l+1

Ni,j

]
. Then

0 < V

(
j +

l + 1
Ni,j

, x

(
j +

l + 1
Ni,j

, j +
l

Ni,j
, x0; d

))
� max

{
ri−1 + 2ai−1, V

(
j +

l

Ni,j
, x0

)
− 1

Ni,j
μi

}
(3.54)

where μi > 0 is defined by (3.39).

Proof of P2. Obviously, the desired (3.54) is a consequence of (3.50), provided that (3.49b) is fulfilled. Consider
the remaining case

0 < V

(
j +

l

Ni,j
, x0

)
� ri−1 + ai−1. (3.55)

We show by contradiction that, when (3.55) holds, then 0 < V
(
j + l+1

Ni,j
, x

(
j + l+1

Ni,j
, j + l

Ni,j
, x0; d

))
� ri−1 +

2ai−1.
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Indeed, suppose on the contrary that

V

(
j +

l + 1
Ni,j

, x

(
j +

l + 1
Ni,j

, j +
l

Ni,j
, x0; d

))
> ri−1 + 2ai−1. (3.56)

Then, there would exist t1 ∈
(
j + l

Ni,j
, j + l+1

Ni,j

)
in such a way that V

(
t1, x

(
t1, j + l

Ni,j
, x0; d

))
= ri−1+ 3ai−1

2 .

Using (3.48b) the latter implies 0 < V
(
j + l+1

Ni,j
, φ

(
j + l+1

Ni,j
, j + l

Ni,j
, x0; d

))
� ri−1 + 2ai−1 which contradicts

(3.56), and the proof of the P2 is complete.
The following property is a direct consequence of Property P2 and (3.32):

Property P3. Suppose that (3.53) holds and assume again that the solution of (3.37) with initial condition
x
(
j + l

Ni,j

)
= x0 ∈ �n\{0} corresponding to some d ∈ MD exists for t ∈

[
j + l

Ni,j
, j + l+s

Ni,j

]
, for certain

s ∈ {0, 1, 2, ..., Ni,j − l}. Then

0 < V

(
j +

l + s

Ni,j
, x

(
j +

l + s

Ni,j
, j +

l

Ni,j
, x0; d

))
� max

{
ri−1 + 2ai−1, V

(
j +

l

Ni,j
, x0

)
− s

Ni,j
μi

}
. (3.57)

The desired (3.38) follows from Property P3 with l = 0, N = Ni,j . We next proceed with the proof of (3.36).
Combining Property P3 with (3.48b) we obtain:

Property P4. If (3.53) is fulfilled, then

0 < V

(
t, x

(
t, j +

l

Ni,j
, x0; d

))
� max

{
ri−1 + 2ai−1, V

(
j +

l

Ni,j
, x0

)}
+

1
2

min (ai−1, ai) ,

∀t ∈
[
j +

l

Ni,j
, min (tmax, j + 1)

)
. (3.58)

Proof of P4. Let s ∈ {0, 1, 2, ..., Ni,j − l − 1} with j + l+s
Ni,j

< tmax. By virtue of (3.57), we distinguish the
following two cases:

Case1. Suppose that

V

(
j +

l + s

Ni,j
, x

(
j +

l + s

Ni,j
, j +

l

Ni,j
, x0; d

))
� ri−1. (3.59)

Then by invoking (3.48b) we get from (3.57), (3.59):

0 < V

(
t, x

(
t, j +

l

Ni,j
, x0; d

))
� max

{
ri−1 + 2ai−1, V

(
j +

l

Ni,j
, x0

)}
+

1
2

min (ai−1, ai) ,

∀t ∈
[
j +

l + s

Ni,j
, j +

l + s + 1
Ni,j

]
. (3.60)

The desired (3.58) is a consequence of (3.60).

Case 2. Suppose that

0 < V

(
j +

l + s

Ni,j
, x

(
j +

l + s

Ni,j
, j +

l

Ni,j
, x0; d

))
< ri−1. (3.61)

We show that, when (3.61) holds, then

V

(
t, x

(
t, j +

l

Ni,j
, x0; d

))
� ri−1 + 2ai−1 +

1
2

min (ai−1, ai) , ∀t ∈
[
j +

l + s

Ni,j
, min

(
tmax, j +

l + s + 1
Ni,j

))
.

(3.62)
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Indeed, assume on the contrary that there would exist t ∈
[
j + l+s

Ni,j
, min

(
tmax, j + l+s+1

Ni,j

))
such that

V

(
t, x

(
t, j +

l

Ni,j
, x0; d

))
> ri−1 + 2ai−1 +

1
2

min (ai−1, ai). (3.63)

Then by (3.61), (3.63), there would exist t1 ∈
[
j + l+s

Ni,j
, min

(
tmax, j + l+s+1

Ni,j

))
such that

V

(
t1, x

(
t1, j +

l

Ni,j
, x0; d

))
= ri−1 + 2ai−1; V

(
ξ, x

(
ξ, j +

l

Ni,j
, x0; d

))

� ri−1 + 2ai−1, ∀ξ ∈
[
j +

l + s

Ni,j
, t1

]
. (3.64)

By (3.64) and (3.48b) we get

0 < V

(
ξ, x

(
ξ, j +

l

Ni,j
, x0; d

))
� ri−1 + 2ai−1 +

1
2

min (ai−1, ai) , ∀ξ ∈
[
t1, min

(
tmax, j +

l + s + 1
Ni,j

))
.

(3.65)
Combining (3.64), (3.65) we obtain 0 < V

(
ξ, x

(
ξ, j + l

Ni,j
, x0; d

))
� ri−1 + 2ai−1 + 1

2 min (ai−1, ai) for all

ξ ∈
[
j + l+s

Ni,j
, min

(
tmax, j + l+s+1

Ni,j

))
, which contradicts hypothesis (3.63).

We conclude from (3.60) and (3.62) that in both cases above we have

0 < V

(
t, x

(
t, j +

l

Ni,j
, x0; d

))
� max

{
ri−1 + 2ai−1, V

(
j +

l

Ni,j
, x0

)}
+

1
2

min (ai−1, ai) ,

for every t ∈
[
j + l+s

Ni,j
, min

(
tmax, j + l+s+1

Ni,j

))
and for all s ∈ {0, 1, 2, ..., Ni,j − l − 1} with j + l+s

Ni,j
< tmax and

the latter implies the desired (3.58). This completes the proof of Property P4.
We are now in a position to establish (3.36). Let (x0, d) ∈ (�n\{0}) × MD and t0 ∈

[
j + l

Ni+1,j
, j + l+1

Ni+1,j

)
for some l ∈ {0, 1, ..., Ni,j − 1} with V (t0, x0) ∈ [ri−1, ri]. Then, exploiting inequality (3.48b) we obtain:

V (t0, x0) − 1
2
ai � V (t, x(t, t0, x0; d)) � V (t0, x0) +

1
2
ai, ∀t ∈

[
t0, j +

l + 1
Ni+1,j

]
. (3.66)

Since ri + 1
2ai < ri+1 − 2ai+1, by virtue of (3.66) and (3.59) of P4 we get 0 < V (t, x (t, t0, x0; d)) � ri + 5

2ai, for
all t ∈ [t0, min (tmax, j + 1)) and this establishes (3.36). The proof of Lemma 3.2 is complete. �
Lemma 3.3. Under the same hypotheses imposed in Lemma 3.1 for system (1.1), for every function q ∈
C0(�+×�n;�+) satisfying (2.8), there exists a continuous mapping k̃ : �+×(�n\{0}) → U , being continuously
differentiable with respect to x ∈ �n\{0}, which satisfies

∣∣∣k̃(t, x)
∣∣∣ � b̃(t, x), ∀(t, x) ∈ �+ × (�n\{0}) (3.67)

where b̃( · , · ) is defined by (3.4) and in such a way that the following property holds for all (t0, x0, d) ∈ �+ ×
(�n\{0}) × MD:

V (t, x(t, t0, x0; d)) � 9V (t0, x0), ∀t ∈ [t0, min ([t0] + 2, tmax)) (3.68)
where x( · , t0, x0; d) denotes the unique solution of

ẋ = f(t, d, x, k̃(t, x)), (t, x) ∈ �+ × (�n\{0}) (3.69)
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with initial condition x(t0) = x0 ∈ �n\{0} corresponding to d ∈ MD and tmax := tmax(t0, x0, d) > t0 denotes
its maximal existence time. Moreover, there exists ρ̃ ∈ C0(�+;�+), being positive definite with ρ̃(s) � s for
all s � 0, such that

V (2j + 2, x (2j + 2, 2j, x0; d)) � V (2j, x0) − ρ̃ (V (2j, x0)) ,

for all (x0, d, j) ∈ (�n\{0}) × MD × Z+ with 2j + 2 < tmax (3.70)

where tmax > 2j in (3.70) is the maximal existence time of the solution x( · , 2j, x0; d) of (3.69).

Proof of Lemma 3.3. Let q ∈ C0(�+ ×�n;�+) be a function satisfying (2.8) and let r = { ri : i ∈ Z } be a set
with ri > 0 and such that

ri+1 � 2ri and lim
i→+∞

ri = +∞, lim
i→−∞

ri = 0. (3.71)

Consider the set

r′ =
{

r′i =
ri + ri+1

2
: i ∈ Z

}
(3.72)

whose elements, by virtue of (3.71), satisfy r′i > 0 and

r′i+1 � 2r′i and lim
i→+∞

r′i = +∞, lim
i→−∞

r′i = 0. (3.73)

Define

μi :=
1
4

min { ρ(s) : s ∈ [ri−1, ri]} , μ′
i :=

1
4

min
{

ρ(s) : s ∈ [r′i−1, r
′
i]
}

(3.74)

and let a = { ai : i ∈ Z }, a′ = { a′
i : i ∈ Z } be a pair of sets satisfying:

ai > 0; a′
i > 0 (3.75a)

5
2
ai � ri−1;

5
2
a′

i � r′i−1 (3.75b)

ri + 2ai < ri+1 − 2ai+1; r′i + 2a′
i < r′i+1 − 2a′

i+1 (3.75c)

ai + a′
i � ri+1 − ri

8
; ai + a′

i−1 � ri − ri−1

8
(3.75d)

ai � μ′
i

8
; a′

i � μi+1

8
· (3.75e)

By Lemma 3.2, there exist continuous mappings kr,a : �+ × (�n\{0}) → U , kr′,a′ : �+ × (�n\{0}) → U , being
continuously differentiable with respect to x ∈ �n\{0}, with

kr,a(j, x) = kr′,a′(j, x) = 0, ∀(x, j) ∈ (�n\{0}) × Z+ (3.76a)

∂ kr,a

∂ x
(j, x) =

∂ kr′,a′

∂ x
(j, x) = 0, ∀(x, j) ∈ (�n\{0}) × Z+ (3.76b)

and in such a way that properties (3.35), (3.36) and (3.38) hold. Finally, consider the map k̃ : �+×(�n\{0}) → U
defined as:

k̃(t, x) =
{

kr,a(t, x), for t ∈ [2j, 2j + 1), (j, x) ∈ Z+ × (�n\{0})
kr′,a′(t, x), for t ∈ [2j + 1, 2j + 2), (j, x) ∈ Z+ × (�n\{0}). (3.77)

By taking into account (3.76a,b), (3.77) and regularity properties of kr,a( · , · ) and kr′,a′( · , · ), it follows that
k̃( · , · ) is continuous, continuously differentiable with respect to x ∈ �n\{0}and satisfies

k̃(j, x) = 0, ∀(j, x) ∈ Z+ × (�n\{0}). (3.78)
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Moreover, (3.67) is an immediate consequence of definition (3.77) and inequality (3.35). Also, by (3.36), (3.71)
and (3.75b), it follows that for every (t0, x0, d, i) ∈ �+ × (�n\{0}) × MD × Z it holds:

V (t0, x0) ∈ [ri−1, ri] ⇒ V (t, xr,a(t, t0, x0; d)) � 3V (t0, x0), for all t ∈ [t0, min ([t0] + 1, tr,amax)) (3.79a)

V (t0, x0) ∈ [ri−1, ri] ⇒ V (t, xr′,a′(t, t0, x0; d)) � 3V (t0, x0), for all t ∈
[
t0, min

(
[t0] + 1, tr

′,a′
max

))
(3.79b)

where xr,a( · , t0, x0; d) denotes the (unique) solution of

ẋ = f(t, d, x, kr,a(t, x)), (t, x) ∈ �+ × (�n\{0}) (3.80a)

and xr′,a′( · , t0, x0; d) is the (unique) solution of

ẋ = f(t, d, x, kr′,a′(t, x)), (t, x) ∈ �+ × (�n\{0}) (3.80b)

with same initial condition x(t0) = x0 ∈ �n\{0}, same d ∈ MD and tr,amax > t0, tr
′,a′

max > t0, respectively, denote
their maximal existence times. The desired inequality (3.68) is a direct consequence of (3.79a,b), definition (3.77)
and the following obvious fact:
Fact. The solution of (3.69) with initial condition x(t0) = x0 ∈ �n\{0} corresponding to some d ∈ MD, is
identical for t ∈ [t0, min ([t0] + 1, tr,amax)) to the solution xr,a(t, t0, x0; d) of (3.80a) if [t0] is even, and is identical

for t ∈
[
t0, min

(
[t0] + 1, tr

′,a′
max

))
to the solution xr′,a′(t, t0, x0; d) of (3.80b), if [t0] is odd.

In order to show (3.70), let (x0, d, j) ∈ (�n\{0}) × MD × Z+ such that the unique solution x( · , 2j, x0; d)
of (3.69), with initial condition x(2j) = x0 ∈ �n\{0} corresponding to d ∈ MD, is well-defined on [2j, 2j + 2]
(notice that if there is no such (x0, d, j) ∈ (�n\{0}) × MD × Z+, then property (3.70) trivially holds for every
positive definite function ρ̃ ∈ C0(�+;�+)). Let i ∈ Z be the smallest integer with

ri−1 − 2ai−1 < V (2j, x0) � ri − 2ai (3.81)

whose existence is guaranteed from (3.71) and (3.75c). By virtue of (3.38), (3.81) and previous fact, it follows
that

V (2j + 1, x (2j + 1, 2j, x0; d)) � max ( ri−1 + 2ai−1 , V (2j, x0) − μi). (3.82)
Notice that, by virtue of (3.75d), we have V (2j + 1, x (2j + 1, 2j, x0; d)) � r′i − 2a′

i. Consequently, there exists
an integer k � i with

r′k−1 − 2a′
k−1 < V (2j + 1, x (2j + 1, 2j, x0; d)) � r′k − 2a′

k. (3.83)
We distinguish the following cases:

Case 1: k < i.
In this case, it follows from (3.83) that V (2j + 1, x (2j + 1, 2j, x0; d)) � r′i−1 −2a′

i−1. By virtue of (3.38) and
the fact above we then obtain

V (2j + 2, x (2j + 2, 2j, x0; d)) � max
(
r′i−2 + 2a′

i−2 , V (2j, x0) − μ′
i−1 − μi, ri−1 + 2ai−1 − μ′

i−1

)
. (3.84)

We now take into account (3.75d), which implies

r′i−2 + 2a′
i−2 � ri−1 − 2ai−1 − ri−1 − ri−2

4
· (3.85)

From (3.84), (3.85) and the left hand side inequality in (3.81) we get

V (2j + 2, x (2j + 2, 2j, x0; d)) � V (2j, x0) + max
(
− ri−1 − ri−2

4
, 4ai−1 − μ′

i−1

)
(3.86)
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which by virtue of (3.75e) implies:

V (2j + 2, x (2j + 2, 2j, x0; d)) � V (2j, x0) − 1
4

min
(
ri−1 − ri−2 , 2μ′

i−1

)
. (3.87)

Case 2: k = i.
Notice that, since r′i−1 − 2a′

i−1 > ri−1 + 2ai−1 (which is a consequence of (3.75d)), we conclude from (3.82)
and using the left hand side inequality (3.83) with k = i:

r′i−1 − 2a′
i−1 + μi < V (2j, x0). (3.88)

Also, by (3.38) and the fact above we get V (2j + 2, x (2j + 2, 2j, x0; d)) � max
(
r′i−1 + 2a′

i−1, V (2j, x0) − μ′
i − μi

)
,

which in conjunction with (3.88) gives V (2j + 2, x (2j + 2, 2j, x0; d)) � V (2j, x0) + 4a′
i−1 − μi and the latter by

virtue of (3.75e) implies:

V (2j + 2, x (2j + 2, 2j, x0; d)) � V (2j, x0) − 1
2
μi. (3.89)

We conclude from (3.87) and (3.89) that in both cases we have:

ri−1 − 2ai−1 < V (2j, x0) � ri − 2ai ⇒ V (2j + 2, x (2j + 2, 2j, x0; d)) � V (2j, x0) − γi (3.90a)

γi :=
1
4

min
(
ri−1 − ri−2 , 2μ′

i−1, 2μi

)
. (3.90b)

Now let

ρ̄(s) :=

⎧⎨
⎩

(min( γi,γi+1 )−min( γi−1,γi ))(s−ri−1+2ai−1)
ri−2ai−ri−1+2ai−1

+ min ( γi−1, γi ) , for s ∈ (ri−1 − 2ai−1, ri − 2ai]

0, for s = 0.
(3.91)

Notice that (3.74), (3.90b) and (3.91) imply that 0 < min (γi−1, γi, γi+1) � ρ̄(s) � γi for s ∈ (ri−1 − 2ai−1,
ri − 2ai] and further lim

i→−∞
μi = lim

i→−∞
μ′

i = lim
i→−∞

γi = 0. Thus, we may easily verify that ρ̄ : �+ → �+ is

positive definite and continuous. Finally, define

ρ̃(s) := min {ρ̄(s), s}. (3.92)

Property (3.90a,b) in conjunction with (3.91) imply the desired (3.70) is satisfied and the proof is complete. �
We are now in a position to prove Theorem 2.8.

Proof of Theorem 2.8. By virtue of Lemma 3.3, for every function q ∈ C0(�+ × �n;�+) satisfying (2.8),
there exists a continuous mapping k̃ : �+ × (�n\{0}) → U , being continuously differentiable with respect to
x ∈ �n\{0}, in such a way that (3.67), (3.68) and (3.70) hold. We define:

K(t, x) = k̃(t, x) for t � 0, x �= 0 (3.93a)

K(t, 0) = 0 for t � 0. (3.93b)
It follows from (2.3), (3.4), (3.67) and definition (3.93) that K : �+ ×�n → U is a continuous and continuously
differentiable mapping with respect to x ∈ �non the set �+ × (�n\{0}).
Fact 1. For every (t0, x0, d) ∈ �+ × �n × MD, the solution x( · , t0, x0; d) of (2.7) with initial condition
x(t0) = x0, corresponding to d ∈ MD is unique and is defined for all t � t0.

Proof of Fact 1. Consider the resulting system (2.7) with K( · , · ) as above and notice that its solution with
initial condition x(t0) = x0 ∈ �n\{0} corresponding to some d ∈ MD, coincides with the unique solution
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of (3.69) evolving on �+ × (�n\{0}) with same initial condition x(t0) = x0 ∈ �n\{0} and same d ∈ MD

on the interval [t0, tmax), where tmax > t0 is the maximal existence time of the solution of (3.69). For the
case tmax = +∞, the statement of Fact 1 is a direct consequence of previous argument. Suppose next that
tmax < +∞. To establish the desired claim, we need the following implication, which is a consequence of (2.1)
and (3.68):

tmax < +∞ ⇒ lim
t→t−max

x(t) = 0. (3.94)

In order to show (3.94), let (t0, x0, d) ∈ �+ × (�n\{0}) × MD and suppose that the maximal existence time
tmax > t0 of the (unique) solution of (3.69) with initial condition x(t0) = x0 ∈ �n\{0} corresponding to d ∈ MD

is finite, i.e., tmax < +∞. Repeated use of (3.68) implies that

V (t, x(t)) � 9iV (t0, x0), ∀t ∈ [t0, tmax)

where i ∈ Z+ is the smallest integer with the property 2i � tmax. The above inequality in conjunction with
(2.1) with β(t) ≡ 1 gives

|x(t)| � M :=
1

min
τ∈[0,tmax]

μ(τ)
a−1
1

(
9ia2(|x0|)

)
< +∞, ∀t ∈ [t0, tmax). (3.95)

Definition of tmax and (3.95) implies (3.94). By applying standard arguments we may also establish show that for
every (t0, d) ∈ �+×MD, the solution of (2.7) with initial condition x(t0) = 0, corresponding to input d ∈ MD is
unique and satisfies x(t) = 0 for all t � t0. Indeed, suppose on the contrary that there exists a nonzero solution
of (2.7) with initial condition x(t0) = 0, defined on [t0, t0 + h) for some h > 0 and let t1 ∈ [t0, t0 + h) with
x(t1) �= 0 and a := max {t ∈ [t0, t1] : x(t) = 0 }. Then x(a) = 0 and x(t) �= 0 for all t ∈ (a, t1). Without loss of
generality we may assume that t1 � [a] + 2 (if t1 > [a] + 2 then we may use [a] + 2 instead of t1, which in this
case satisfies x([a] + 2) �= 0). Define ε := 1

2a1 (μ(t1) |x(t1)|) > 0 and let t2 ∈ (a, t1) such that V (t, x(t)) � ε
9 for

all t ∈ [a, t2]. By taking into account (3.68) and the fact t1 � [t2] + 2 it then follows that V (t, x(t)) � ε for all
t ∈ [t2, t1] and the latter in conjunction with (2.1) yields a1 (μ(t1) |x(t1)|) � ε. But this contradicts the definition
of ε, hence, we conclude that x(t) = 0 for all t � t0. The previous discussion in conjunction with (3.94) asserts
that the solution x( · ) of (2.7) with initial condition x(t0) = x0 ∈ �n\{0}, corresponding to d ∈ MD coincides
with the solution of (3.69) with same initial condition, and same d ∈ MD on the interval [t0, tmax), tmax > t0
being the maximal existence time of the solution (3.69); moreover, if tmax < +∞, the corresponding solution
of (2.7) satisfies x(t) = 0 for all t � tmax and the proof of Fact 1 is complete.

Fact 1 asserts that, if for some (t0, x0, d) ∈ �+ × �n × MD we consider the maximum existence time
tmax := tmax(t0, x0, d) of the corresponding solution of (2.7), then tmax = +∞ and the latter in conjunction
with (3.68) and (3.70) assert that the following properties are fulfilled for every (t0, x0, d, j) ∈ �+×�n×MD×Z+:

V (t, x(t, t0, x0; d)) � 9V (t0, x0), for all t ∈ [t0, [t0] + 2] (3.96)

V (2j + 2, x (2j + 2, 2j, x0; d)) � V (2j, x0) − ρ̃ (V (2j, x0)) (3.97)
where ρ̃ ∈ C0(�+;�+) is the positive definite function involved in (3.70), x(t, t0, x0; d) denotes the solution
of (2.7) with initial condition x(t0) = x0 ∈ �n corresponding to d ∈ MD and [t0] is the integer part of t0. The
following inequality is a straightforward consequence of inequalities (3.96) and (3.97):

V (t, x(t, t0, x0; d)) � 81 V (t0, x0), for all t � t0 and (t0, x0, d) ∈ �+ ×�n × MD. (3.98)

Inequality (3.98) in conjunction with inequality (2.1) with β(t) ≡ 1, implies Robust Forward Completeness,
Uniform Robust Lagrange Output Stability and Uniform Robust Lyapunov Output Stability. Therefore, in
order to establish URGAOS for (2.7), it remains to show Uniform Output Attractivity on compact sets of initial
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states. Let R � 0, ε > 0 and (t0, x0, d) ∈ �+ ×�n × MD with |x0| � R and consider the smallest non-negative
integerj, which satisfies t0 � 2j. Then we have:

Fact 2. For every ε > 0, it holds:

V (2i, x(2i, t0, x0; d)) � 1
9
a1(ε) (3.99)

for every i ∈ Z+ with

i � j +
9 a2(R)

r
; r := min

{
ρ̃(s) : s ∈

[
1
9
a1(ε),

1
9
a1(ε) + 9a2(R)

]}
. (3.100)

Proof of Fact 2. Suppose on the contrary that there exists ε > 0, i � j + 9a2(R)
r with V (2i, x(2i, t0, x0; d)) >

1
9a1(ε). Using (3.97), it follows that V (2k, x(2k, t0, x0; d)) > 1

9a1(ε) for k = j, ..., i. Also (3.97) implies that
V (2k, x(2k, t0, x0; d)) � V (2j, x(2j, t0, x0; d)), for k = j, ..., i. Consequently, from (2.1) (with β(t) ≡ 1), (3.96)
we get

V (2k, x(2k, t0, x0; d)) ∈
[
1
9
a1(ε),

1
9
a1(ε) + 9a2(R)

]
, for k = j, ..., i. (3.101)

On the other hand, by recalling (3.97) and using (3.100), (3.101) it follows:

V (2(k + 1), x(2(k + 1), t0, x0; d)) � V (2k, x(2k, t0, x0; d)) − r, for k = j, ..., i

which in turns gives:

V (2k, x(2k, t0, x0; d)) � V (2j, x(2j, t0, x0; d)) − r(k − j), for k = j, ..., i. (3.102)

Using (3.96) and (2.1) with β(t) ≡ 1 we get:

V (2j, x(2j, t0, x0; d)) � 9a2(R). (3.103)

Inequalities (3.102), (3.103) in conjunction with the fact that i � j + 9a2(R)
r , give V (2i, x(2i, t0, x0; d)) � 0,

which contradicts the hypothesis V (2i, x(2i, t0, x0; d)) > 1
9a1(ε) and the proof of Fact 2 is complete.

Applying again (2.1) with β(t) ≡ 1 and (3.96), (3.99) of Fact 2, it follows that for every R � 0, ε > 0,
(t0, x0, d) ∈ �+ ×�n × MD with |x0| � R, it holds that:

|H(t, x(t, t0, x0; d))| � ε for all t � t0 + 2 +
18 a2(R)

r

where r := min
{
ρ̃(s) : s ∈ [

1
9a1(ε), 1

9a1(ε) + 9a2(R)
]}

and this establishes Uniform Output Attractivity on
compact sets of initial states. The proof is complete. �

For the proof of Theorem 2.9 we need an additional lemma, which provides sufficient conditions for (non-
uniform in time) RGAOS. It is important to mention here the paper [18], where, under different hypotheses
than those imposed below, asymptotic stability for time-varying system is explored by estimating the difference
between values of an appropriate Lyapunov function along the trajectories of system at a given sequence of
times.

Lemma 3.4. Consider system (2.4), where f : �+ × D × �n → �n, H : �+ × �n → �k are continu-
ous and for every bounded interval I ⊂ �+ and every compact set S ⊂ �n there exists L � 0 such that
|f(t, d, x) − f(t, d, y)| � L |x − y| for all (t, d) ∈ I × D, x, y ∈ S. Moreover, assume that the set D ⊂ �l is
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compact and f(t, d, 0, 0) = 0, H(t, 0) = 0 for all (t, d) ∈ �+ × D. Suppose that there exists a function γ ∈ K+

satisfying
+∞∑
j=0

γ(2j) < +∞ (3.104a)

lim
t→+∞ γ(t) = 0 (3.104b)

and further there exist functions V ∈ C1(�+ × �n;�+), a1, a2, a ∈ K∞, μ, β, γ ∈ K+, ρ ∈ C0(�+;�+) being
positive definite such that (2.1) holds and the following properties are fulfilled for all (t0, x0, d, j) ∈ �+ × �n ×
MD × Z+:

sup
t∈[t0,[t0]+2]

V (t, x(t, t0, x0; d)) � a (V (t0, x0)) + γ(t0) (3.105a)

V (2j + 2, x(2j + 2, 2j, x0; d)) � V (2j, x0) − ρ (V (2j, x0)) + γ(2j) (3.105b)

where x( · , t0, x0; d) denotes the unique solution of (2.4) with initial condition x(t0) = x0 ∈ �ncorresponding to
d ∈ MD. Then system (2.4) is RGAOS.

Proof of Lemma 3.4. Let (t0, x0, d) ∈ �+ × �n × MD and let be the smallest integer, which satisfies t0 � 2j.
Inequality (3.105b) implies that

V (2i, x(2i, t0, x0, d)) � V (2j, x(2j, t0, x0, d)) +
i∑

k=0

γ(2k), for all integers i � j. (3.106)

Let M :=
+∞∑
k=0

γ(2k) and B := sup
t�0

γ(t). Then by (2.1), (3.105a) and (3.106) we get:

V (t, x(t, t0, x0, d)) � a (a (a2(β(t0) |x0|)) + B + M) + B, for all t � t0. (3.107)

Inequality (3.107) in conjunction with (2.1) implies RFC and Robust Lagrange Output Stability. Therefore,
according to Lemma 3.5 in [12], in order to establish RGAOS, it suffices to show that system (2.4) satisfies the
property of Uniform Output Attractivity on compact sets of initial data. To establish this property, consider
arbitrary constants ε > 0, R � 0, T � 0 and let (t0, x0, d) ∈ �+ × �n × MD with t0 ∈ [0, T ] and |x0| � R.

Define K := a

(
a

(
a2(R max

t∈[0,T ]
β(t))

)
+ B + M

)
+ B. Then by (3.107) it holds that

V (t, x(t, t0, x0, d)) � K, ∀t � t0. (3.108)

Also, define
ρ̃(s) := min

s�y�K
ρ(y) (3.109)

which obviously is a non-decreasing and continuous function and let J � 0 be an integer with 1
2 ρ̃(K) � γ(2i)

for all integers i � J , whose existence is guaranteed from (3.104b). Next, consider the sequence

qi := inf
{

s ∈ [0, K] :
1
2
ρ̃(s) � γ(2i)

}
for i � J. (3.110)

Notice, by virtue of (3.104b) and (3.110) that qi → 0 and consequently, there exists an integer N := N(ε, K) � J
such that

qi + γ(2i) � S(ε) and γ(2i) � 1
2
a1(ε), for all i � N (3.111)
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where a1 ∈ K∞ is the function involved in (2.1) and let

S(ε) := a−1

(
1
2
a1(ε)

)
. (3.112)

Notice next that (3.105b) asserts that for all integers i � max (N, j) the following holds:

V (2(i + 1), x(2(i + 1), t0, x0; d)) � max
(

S(ε) , V (2i, x(2i, t0, x0; d)) − 1
2
ρ (V (2i, x(2i, t0, x0; d)))

)
. (3.113)

To establish (3.113) we may distinguish two cases. First assume that V (2i, x(2i, t0, x0, d)) � qi. Then it follows
from (3.108), (3.109) and (3.110) that 1

2ρ (V (2i, x(2i, t0, x0, d))) � γ(2i) and this in conjunction with (3.105b)
implies (3.113). The other case is V (2i, x(2i, t0, x0, d)) � qi. Then the latter in conjunction with (3.105b) and
(3.111) implies again (3.113).

The following property is a consequence of (3.113):

V (2i, x(2i, t0, x0, d)) � S(ε) for all integers i � max (N, j) +
2K

ρ̃ (S (ε))
+ 1. (3.114)

To show (3.114), suppose on the contrary that there exists integer i � max (N, j) + 2K
ρ̃(S(ε)) + 1 with

V (2i, x(2i, t0, x0, d)) > S(ε). Then (3.113) would imply

V (2k, x(2k, t0, x0, d)) > S(ε) for all k = max (N, j) , max (N, j) + 1, ..., i. (3.115)

Then by (3.108), (3.109), (3.113), (3.115) we would have:

V (2(k + 1), x(2(k + 1), t0, x0, d)) � V (2k, x(2k, t0, x0, d)) − 1
2
ρ̃ (S(ε)) ,

for all k = max (N, j) , max (N, j) + 1, ..., i− 1

and therefore

V (2k, x(2k, t0, x0, d)) � K − (k − max (N(ε, K), j))
1
2
ρ̃ (S(ε)) , for all k = max (N, j) , max (N, j) + 1, ..., i.

The previous inequality for k = i gives V (2i, x(2i, t0, x0, d)) < 0, which is a contradiction, and this establishes
(3.114).

Finally, by (3.105a) and (3.114) we obtain sup
t∈[2i,2i+2]

V (t, φ(t, t0, x0; d)) � a (S(ε)) + γ(2i), for all integers

i � max (N, j) + 2K
ρ̃(S(ε)) + 1. This in conjunction with (3.111) and (3.112) gives:

sup
t�2i

V (t, φ(t, t0, x0; d)) � a1(ε), for all integers i � max (N, j) +
2K

ρ̃ (S (ε))
+ 1.

Using the inequality above and (2.1), we may conclude that the property of Uniform Output Attractivity on
compact sets of initial data holds for system (2.4). This completes the proof of Lemma 3.4. �

We are now in a position to prove Theorem 2.9.

Proof of Theorem 2.9. According to the statement of Lemma 3.3 for every function q ∈ C0(�+ × �n;�+)
satisfying (2.8), there exists a continuous mapping k̃ : �+ × (�n\{0}) → U , being continuously differentiable
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with respect to x ∈ �n\{0}, which satisfies (3.67), (3.68) and (3.70). We define:

K(t, x) := h

(
V (t, x) − exp(−t)

exp(−t)

)
k̃(t, x), for V (t, x) > exp(−t) (3.116a)

K(t, x) := 0, for V (t, x) � exp(−t) (3.116b)
where h : � → [0, 1] is a smooth non-decreasing function with h(s) = 0 for s � 0 and h(s) = 1 for s � 1. It
can be easily verified that, according to definition (3.116) and the properties of k̃ : �+ × (�n\{0}) → U , the
map K takes values in U and satisfies K(t, 0) = 0 for all t � 0. Moreover, K : �+ ×�n → U is continuous and
continuously differentiable with respect to x ∈ �n on �+ ×�n.

In order to prove Theorem 2.9 we will make use of Lemma 3.4 and three facts below concerning certain
properties of the solution of (2.7). Let

T = T (t0, x0, d) :=

⎧⎨
⎩

inf { t � t0 : exp(t)V (t, x(t)) < 2 } if { t � t0 : exp(t)V (t, x(t)) < 2 } �= ∅

+∞ if { t � t0 : exp(t)V (t, x(t)) < 2 } = ∅
(3.117)

where x( · ) = x( · , t0, x0; d) denotes the unique solution of (2.7) with initial condition x(t0) = x0 ∈ �n corre-
sponding to some d ∈ MD. The following fact is an immediate consequence of (3.116), (3.117) and continuity
of the mapping t → V (t, x(t)).

Fact 1. The unique solution x( · ) = x( · , t0, x0; d) of (2.7) with initial condition x(t0) = x0 ∈ �n\{0}, satisfying
V (t0, x0) � 2 exp(−t0), corresponding to some d ∈ MD coincides with the unique solution of (3.69) with same
initial condition and same d ∈ MD on the interval [t0, T ], where T = T (t0, x0, d) is defined by (3.117) and

V (T, x(T )) = 2 exp(−T ) if { t � t0 : exp(t)V (t, x(t)) < 2 } �= ∅. (3.118)

Next, we prove the following:

Fact 2. For the system (2.7), the following property holds for all (j, x0, d) ∈ Z+ ×�n × MD:

V (2j + 2, x (2j + 2, 2j, x0; d)) � V (2j, x0) − ρ̃ (V (2j, x0)) + 18 exp(−2j). (3.119)

Proof of Fact 2. Obviously, the desired (3.119) holds for x0 = 0. Next, assume that x0 �= 0. Let tmax > 2j the
maximal existence time of x( · , 2j, x0; d). We distinguish two cases. The first case is

{ t ∈ [2j, min(tmax, 2j + 2)) : exp(t)V (t, x(t, 2j, x0; d)) < 2 } = ∅. (3.120)

In this case, Fact 1 in conjunction with inequalities (2.1), (3.68) and (3.70) guarantee that tmax > 2j + 2 and
that (3.119) holds. The second case is

{ t ∈ [2j, min(tmax, 2j + 2)) : exp(t)V (t, x(t, 2j, x0; d)) < 2 } �= ∅. (3.121)

Let
t1 := sup { t ∈ [2j, min(tmax, 2j + 2)) : exp(t)V (t, x(t, 2j, x0; d)) < 2 }. (3.122)

Clearly, we have from (3.122):
lim sup

t→t−1

exp(t)V (t, x(t, 2j, x0; d)) � 2 (3.123)

and this by virtue of (2.1) implies tmax > t1. If t1 = 2j+2 the desired (3.119) follows from (3.123). If t1 < 2j+2,
definition (3.122) guarantees that exp(t)V (t, x(t, 2j, x0; d)) � 2 for all t ∈ [t1, min(tmax, 2j + 2)) and the latter
in conjunction with (3.123) gives

exp(t1)V (t1, x(t1, 2j, x0; d)) = 2. (3.124)
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Using Fact 1 together with (3.68) and (3.124) we get V (t, x(t, 2j, x0; d)) � 18 exp(−t1) for all t ∈ [t1, min(tmax,
2j + 2)). By exploiting (2.1) we conclude that tmax > 2j + 2 and therefore the estimate V (t, x(t, 2j, x0; d)) �
18 exp(−t1) is fulfilled for every t ∈ [t1, 2j + 2]. The latter implies (3.119) and this completes proof of Fact 2.

Finally we show the following fact.

Fact 3. The following property holds for system (2.7):

V (t, x (t, t0, x0; d)) � 9V (t0, x0) + 18 exp(−t0), for all t ∈ [t0, [t0] + 2] , (t0, x0, d) ∈ �+ ×�n × MD. (3.125)

Proof of Fact 3. Obviously, (3.125) holds for x0 = 0. Suppose next that x0 �= 0 and let us on the contrary
assume that there exists t̂ ∈ [t0, [t0] + 2] with

V
(
t̂, x

(
t̂, t0, x0; d

))
> 9V (t0, x0) + 18 exp(−t0). (3.126)

We distinguish two cases. First assume that

{
s ∈ [t0, t̂] : exp(s)V (s, x(s, t0, x0; d)) < 2

}
= ∅.

In this case, (3.68) guarantees that V
(
t̂, x

(
t̂, t0, x0; d

))
� 9V (t0, x0), which contradicts (3.126). Consider the

remaining case {
s ∈ [t0, t̂] : exp(s)V (s, x(s, t0, x0; d)) < 2

} �= ∅
and let t1 := sup

{
s ∈ [t0, t̂] : exp(s)V (s, x(s, t0, x0; d)) < 2

}
. If t1 = t̂, we would have V

(
t̂, x

(
t̂, t0, x0; d

))
�

2 exp(−t0), which contradicts (3.126). If t1 < t̂, then we would have exp(s)V (s, x(s, t0, x0; d)) � 2 for all
s ∈ [t1, t̂] and exp(t1)V (t1, x(t1, 2j, x0; d)) = 2. Therefore (3.68) gives V (s, φ(s, t0, x0; d)) � 18 exp(−t1) for all
s ∈ [t1, t̂], which again contradicts (3.126) and we conclude that (3.125) holds. This completes proof of Fact 3.

Inequalities (3.119), (3.125) in conjunction with Lemma 3.4 show that (2.7) is RGAOS and the proof of
Theorem 2.9 is complete. �

We end this section with the proof of Proposition 2.12.

Proof of Proposition 2.12. By invoking definition (3.93) (in case of Thm. 2.8), or definition (3.116) (in case of
Thm. 2.9) we obtain:

|K(t, x)| �
∣∣∣k̃(t, x)

∣∣∣ , ∀(t, x) ∈ �+ × (�n\0) (3.127)

where k̃ : �+ × (�n\{0}) → U is the continuous mapping whose existence is guaranteed by Lemma 3.3.
Combining definition (3.4) of b̃( · , · ), (3.67) and (3.127), we get:

|K(t, x)| � max
{

b(τ, y) : (τ, y) ∈ �+ ×�n , |τ − t| + |y − x| � q(τ, y)
}

, ∀(t, x) ∈ �+ × (�n\0). (3.128)

It follows from (2.9) and (3.128) that the following inequality holds for all (t, x) ∈ �+ ×�n:

|K(t, x)| � a (V (t, x)). (3.129)

Define ã(s) := a(s) + a−1
1 (s), where a1 ∈ K∞ is defined in (2.1). Taking into account inequalities (2.1) and

(3.129) it follows that the following inequality holds:

ã−1 (|K(t, x)| + μ(t) |x|) � V (t, x) � a2 (β(t) |x|) , ∀(t, x) ∈ �+ ×�n (3.130)

where a2 ∈ K∞ and μ, β ∈ K+are the functions involved in (2.1). In case of Theorem 2.8, (3.130) holds with
β(t) ≡ 1. Statement of Theorem 2.9 (Thm. 2.8) with K(t, x) in place of H(t, x) guarantees that system (2.7)
with output Ỹ = K(t, x) is RGAOS (URGAOS), respectively. The proof is complete. �
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4. Conclusions

For general time-varying systems, it is established that existence of an “Output Robust Control Lyapunov
Function” implies existence of continuous time-varying feedback stabilizer, which guarantees output asymptotic
stability with respect to the resulting closed-loop system. The main results of the present work constitute
generalizations of a well known result towards feedback stabilization due to Coron and Rosier in [7] concerning
stabilization of autonomous systems by means of time-varying periodic feedback. Further extensions towards
same subject, including stabilization of time-varying systems (1.1) by means of discontinuous time-varying
feedback in the Fillipov sense (see [3,8,25]) and existence of appropriate control Lyapunov functions will be a
subject of forthcoming research.
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