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NONLINEAR DIFFUSION EQUATIONS WITH VARIABLE COEFFICIENTS
AS GRADIENT FLOWS IN WASSERSTEIN SPACES ∗

Stefano Lisini1

Abstract. We study existence and approximation of non-negative solutions of partial differential
equations of the type

∂tu − div(A(∇(f(u)) + u∇V )) = 0 in (0, +∞) × R
n, (0.1)

where A is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity
condition, f : [0, +∞) → [0, +∞) is a suitable non decreasing function, V : Rn → R is a convex
function. Introducing the energy functional φ(u) =

∫
Rn F (u(x)) dx +

∫
Rn V (x)u(x) dx, where F is a

convex function linked to f by f(u) = uF ′(u) − F (u), we show that u is the “gradient flow” of φ with
respect to the 2-Wasserstein distance between probability measures on the space Rn, endowed with
the Riemannian distance induced by A−1. In the case of uniform convexity of V , long time asymptotic
behaviour and decay rate to the stationary state for solutions of equation (0.1) are studied. A con-
traction property in Wasserstein distance for solutions of equation (0.1) is also studied in a particular
case.
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1. Introduction

The aim of this paper is to study existence, approximation and asymptotic behaviour of non-negative solutions
of evolution equations of the type

∂tu(t, x) − div(A(x)(∇(f(u(t, x))) + u(t, x)∇V (x))) = 0 in (0,+∞) × Rn, (1.1)

with initial datum u0 satisfying

u0 ∈ L1(Rn), u0 ≥ 0, ‖u0‖L1(Rn) = 1,
∫

Rn

|x|2u0(x) dx < +∞. (1.2)
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Here A : Rn → Mn×n is a Borel measurable, symmetric matrix valued function satisfying a uniform ellipticity
condition,

λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2, ∀x ∈ Rn, ∀ξ ∈ Rn, λ > 0, (1.3)
V : Rn → (−∞,+∞] is a function satisfying

V is convex, lower semi continuous, bounded from below, (1.4)

f : [0,+∞) → [0,+∞) is a non decreasing function given by

f(u) := F ′(u)u− F (u),

where F : [0,+∞) → R satisfies

F ∈ C1(0,+∞), F is convex, continuous at 0, F (0) = 0, (1.5)

the condition of superlinear growth at infinity and a condition on behaviour near zero:

lim
z→+∞

F (z)
z

= +∞, lim
z↓0

F (z)
zα

> −∞, for some α >
n

n+ 2
, (1.6)

the McCann convexity condition (see [25]):

the map z �→ znF (z−n) is convex1, (1.7)

and a technical assumption of doubling: there exists a constant C > 0 such that

F (z + w) ≤ C(1 + F (z) + F (w)) ∀z, w ∈ [0,+∞). (1.8)

The existence and approximation of solutions of (1.1) with initial datum (1.2) is obtained interpreting (1.1)
as “gradient flow”, with respect to a suitable Wasserstein distance, of the energy functional (sum of internal
and potential energy functionals)

φ(u) :=
∫

Rn

F (u(x)) dx+
∫

Rn

V (x)u(x) dx (1.9)

defined on the set

D(φ) := {u ∈ L1(Rn) : u ≥ 0, ‖u‖L1(Rn) = 1,
∫

Rn

|x|2u(x) dx < +∞, φ(u) < +∞}. (1.10)

The choice of the domain of φ is justified by the fact that the equation (1.1) is parabolic of second order
and in divergence form. When the initial datum satisfies (1.2) it is natural to look for solutions u ≥ 0 with
‖u(t, ·)‖L1(Rn) = 1. In other words u(t, ·) is a probability density.

The equation (1.1) describes nonlinear (linear in the particular case f(u) = u) diffusion with drift in non-
homogeneous and anisotropic material (see for instance [13] for models of diffusion).

The simplest example of such equation is the heat-porous medium equation with variable coefficients (see [31]
for a complete up-to-date reference on porous medium equation)

∂tu− div(A∇um) = 0, (1.11)

1The McCann condition include also that the mapping z �→ znF (z−n) is non-increasing. This property follows from F (0) = 0
and F convex.
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which corresponds to the choice

F (z) =

{
z log z for m = 1

1
m−1z

m for m > 1,
V = 0. (1.12)

In the case of A(x) ≡ I, where I denotes the identity matrix, the Wasserstein gradient flow structure of the
equation (1.1) was pointed out for the first time in [22] in the case of linear diffusion, and in [28] in the case of
porous medium equation. This point of view was further developed in [5] and [12].

1.1. Gradient flow in Riemannian manifolds

In order to clarify the gradient flow interpretation of equation (1.1) we recall the definition of gradient flow
in a smooth Riemannian manifold.

Given a Riemannian manifold M , with metric tensor g, we denote by 〈·, ·〉x and | · |x the scalar product and
its associated norm on the tangent space TxM . Given a smooth functional φ : M → R, the gradient of φ in M ,
denoted by ∇gφ, is the tangent vector field defined by 〈∇gφ(x),v(x)〉x = diff φ|xv(x), for every vector field v.

The gradient flow of φ in M is the dynamical system whose trajectories are solutions of the differential
equation

ẏ(t) = −∇gφ(y(t)) in Ty(t)M . (1.13)
Along the gradient flow trajectories the functional φ decreases “as fast as possible”, according with the metric
structure. Indeed, given a smooth curve y : [0,+∞) → M , by the chain rule and Cauchy-Schwartz inequality
we have

d
dt
φ(y(t)) = diff φ|y(t)ẏ(t) = 〈∇gφ(y(t)), ẏ(t)〉y(t)

≥ −|∇gφ(y(t))|y(t)|ẏ(t)|y(t) ≥ −1
2
|∇gφ(y(t))|2y(t) −

1
2
|ẏ(t)|2y(t).

(1.14)

Since in every real vector space with scalar product we have that

〈w,v〉 = −1
2
|w|2 − 1

2
|v|2 ⇐⇒ w = −v, (1.15)

equality holds in (1.14) if and only if y solves (1.13). Consequently the gradient flow trajectories of φ in M can
be characterized by the energy identity

d
dt
φ(y(t)) = −1

2
|∇gφ(y(t))|2y(t) −

1
2
|ẏ(t)|2y(t). (1.16)

With suitable notions of modulus of the gradient and modulus of the derivative in metric spaces, the analogous
of the identity (1.16) can be taken as definition of gradient flow trajectory in metric spaces. This generalization
was performed by De Giorgi’s school in [18,19] with the theory of curves of maximal slope (see [5] where the
theory is reformulated).

1.2. The formal interpretation of Otto

In [28] Otto proposed a formal interpretation of the space of probability measures on Rn as a sort of infinite
dimensional Riemannian manifold. The “tangent space” at the “point” μ = uL n can be identified with a
subspace of L2(μ; Rn) with the standard scalar product

〈v,w〉L2(μ;Rn) :=
∫

Rn

〈v,w〉u dx, (1.17)

where 〈·, ·〉 denotes the standard scalar product on Rn.
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Given a smooth curve t �→ ut of probability densities, the associated tangent vector vt can be characterized
as the vector field satisfying the continuity equation

∂tu+ div(vu) = 0 (1.18)

and minimizing

‖vt‖2
L2(μt;Rn) =

∫
Rn

|vt(x)|2ut(x) dx,

where μt = utL n. Differentiating the energy functional (1.9) along a smooth curve t �→ ut with tangent
vector vt we formally obtain the chain rule

d
dt
φ(ut) =

∫
Rn

(
F ′(ut) + V

)
∂tut dx = −

∫
Rn

(
F ′(ut) + V

)
div(vtut) dx

=
∫

Rn

〈∇F ′(ut) + ∇V,vt〉ut dx =
〈∇f(ut)

ut
+ ∇V,vt

〉
L2(μt;Rn)

,
(1.19)

where the last equality is obtained by observing that

u∇F ′(u) = ∇(uF ′(u) − F (u)
)

= ∇f(u). (1.20)

Since 〈∇f(ut)
ut

+ ∇V,vt

〉
L2(μt;Rn)

≥ −
∥∥∥∥∇f(ut)

ut
+ ∇V

∥∥∥∥
L2(μt;Rn)

‖vt‖L2(μt;Rn)

≥ −1
2

∥∥∥∥∇f(ut)
ut

+ ∇V
∥∥∥∥

2

L2(μt;Rn)

− 1
2
‖vt‖2

L2(μt;Rn) ,

(1.21)

we can say, in formal analogy to (1.16), that u is a trajectory of the gradient flow of φ with respect to the formal
Otto’s structure if

d
dt
φ(ut) = −1

2

∥∥∥∥∇f(ut)
ut

+ ∇V
∥∥∥∥

2

L2(μt;Rn)

− 1
2
‖vt‖2

L2(μt;Rn) . (1.22)

Taking into account the chain rule (1.19) and (1.15), we can deduce that u satisfies (1.22) if and only if

vt = −
(∇f(ut)

ut
+ ∇V

)
(1.23)

(the equality in (1.23) is understood in L2(μt; Rn)). Recalling that u satisfies (1.18), from (1.23) we can deduce
that a gradient flow trajectory u solves the partial differential equation (1.1) with A ≡ I.

Formally, the natural distance between two probability densities u0, u1 induced by the Otto’s structure is

d2(u0, u1) = inf
{∫ 1

0

‖vt‖2
L2(μt;Rn) dt : ∂tut + div(vtut) = 0, u0 = u0, u1 = u1

}
. (1.24)

As showed in [5,7], the distance (1.24) coincides with the already known Wasserstein distance between probability
measures in Rn.

In general the equation (1.1) with A �≡ I has the structure

∂tu+ div(vu) = 0, (1.25)

vt = −A
(∇f(ut)

ut
+ ∇V

)
. (1.26)
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In order to obtain an inequality like (1.21) with the vector (1.26) instead of (1.23) it is sufficient to change the
scalar product (1.17), on the “tangent space” of the space of probability densities at the “point” μ = uL n,
with the new scalar product, induced by the matrix G := A−1,

〈v,w〉L2
G(μ;Rn) :=

∫
Rn

〈Gv,w〉u dx. (1.27)

The chain rule (1.19) can be rewritten as

d
dt
φ(ut) =

〈
A∇f(ut)

ut
+A∇V,vt

〉
L2

G(μt;Rn)

, (1.28)

and, denoting as usual ‖v‖2
L2

G(μ;Rn) := 〈v,v〉L2
G(μ;Rn), the inequality (1.21) reads

〈
A∇f(ut)

ut
+A∇V,vt

〉
L2

G(μt;Rn)

≥ −1
2

∥∥∥∥A∇f(ut)
ut

+A∇V
∥∥∥∥

2

L2
G(μt;Rn)

− 1
2
‖vt‖2

L2
G(μt;Rn) . (1.29)

Analogously to (1.22) we can say that u is a trajectory of the gradient flow of φ with respect to this modified
formal Otto’s structure if

d
dt
φ(ut) = −1

2

∥∥∥∥A∇f(ut)
ut

+A∇V
∥∥∥∥

2

L2
G(μt;Rn)

− 1
2
‖vt‖2

L2
G(μt;Rn) . (1.30)

Also in this case, from (1.28), (1.30) and (1.15) we obtain that for a trajectory u of the gradient flow of φ with
respect this new structure, (1.26) holds. Finally from (1.25) we obtain that u solves (1.1).

The natural distance between two probability densities u0, u1, associated to this modified Otto’s structure,
is

d2
G(u0, u1) = inf

{∫ 1

0

‖vt‖2
L2

G(μt;Rn) dt : ∂tut + div(vtut) = 0, u0 = u0, u1 = u1

}
. (1.31)

We will show in Corollary 2.5, in the same spirit of Benamou-Brenier and [5], that the distance dG in (1.31)
coincides with a particular Wasserstein distance in Rn that we will define in the next paragraph and we will
denote by WG.

1.3. Wasserstein distance

We first introduce the Borel measurable symmetric metric tensor G(x) := A−1(x) satisfying (thanks to (1.3))
the uniform ellipticity condition:

Λ−1|ξ|2 ≤ 〈G(x)ξ, ξ〉 ≤ λ−1|ξ|2, ∀x ∈ Rn, ∀ξ ∈ Rn. (1.32)

The Riemannian distance on Rn induced by G is then defined by

d(x, y) = inf
{∫ 1

0

√
〈G(γ(t))γ̇(t), γ̇(t)〉 dt : γ ∈ AC([0, 1]; Rn), γ(0) = x, γ(1) = y

}
, (1.33)

where AC([0, 1]; Rn) denotes the set of absolutely continuous curves in Rn parameterized in the interval [0, 1].
We denote by Rn

G the metric space Rn endowed with the distance d.
The Wasserstein distance between two Borel probability measures μ, ν on Rn

G with finite second moment, is
defined by

WG(μ, ν) :=
(

min
{∫

Rn×Rn

d2(x, y) dγ(x, y) : γ ∈ Γ(μ, ν)
}) 1

2

, (1.34)
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where Γ(μ, ν), called the set of admissible plans between μ and ν, is the set of all Borel probability measures
on Rn × Rn with first marginal μ and second marginal ν, i.e.

Γ(μ, ν) := {γ ∈ P(Rn × Rn) : π1
#γ = μ, π2

#γ = ν}, (1.35)

where π1(x, y) := x and π2(x, y) := y are, respectively, the projections on the first and the second component
and # denotes the push-forward operator on measures (see Sect. 2.2).

We denote by P2(Rn
G) the complete, separable metric space of Borel probability measures with finite

2-moment, endowed with the distance WG (for an introduction to Wasserstein distance see, e.g., [32]). We
say that a curve μ : [0, 1] → P2(Rn

G), t �→ μt is a constant speed geodesic of the metric space P2(Rn
G) if

WG(μs, μt) = |t− s|WG(μ0, μ1), ∀s, t ∈ [0, 1].

In the sequel we often identify the measures which are absolutely continuous with respect to the Lebesgue
measure L n with their densities.

1.4. The approximation scheme for gradient flows

The standard approach to show existence of solutions of equations having a gradient flow structure, is the
variational formulation of the time discretization implicit Euler scheme. This method, in fact, was generalized to
metric spaces in [17] with the theory of minimizing movements, and further developed in [2,5]. In our particular
case the method can be stated as follows.

Given a time step τ > 0 and an initial datum u0 ∈ D(φ), define a sequence uk
τ obtained by solving recursively

uk
τ minimizes in D(φ) the functional u �→ 1

2τ
W 2

G(u, uk−1
τ ) + φ(u), k = 1, 2, 3, . . . (1.36)

starting from u0
τ = u0. Defining the piecewise constant function

uτ (t) := uk
τ if t ∈ ((k − 1)τ, kτ ], (1.37)

a limit point (with respect to the narrow convergence in the space of probability measures) of uτ for τ → 0, is a
candidate to solve the variational formulation of (1.1). We recall that a sequence of Borel probability measures
on Rn, μk ∈ P(Rn) narrowly converges to μ ∈ P(Rn) if

lim
k→+∞

∫
Rn

ϕ(x) dμk(x) =
∫

Rn

ϕ(x) dμ(x) ∀ϕ ∈ Cb(Rn), (1.38)

where Cb(Rn) is the space of continuous bounded functions.
When A ≡ I, the convergence of uτ to a solution of (1.1) is proved in [22] in the case of linear diffusion and [5]

in the general case. In recent years, for other class of evolution equations, this kind of problem has attracted
a lot of attention. Among many papers dealing with similar problems, particularly significant are [1,8,9,26,27].
The case of nonlinear diffusion equations with time-dependent coefficients is considered in [29]. A particular
case of one dimensional variable coefficient Fokker-Planck equation is considered in [23].

We point out that the proof of [22], in the case of linear diffusion and a smooth potential V , is based on a
sort of “first variation” of the functional u �→ 1

2τW
2
I (u, uk−1

τ )+φ(u). It would not be too difficult to extend this
technique when A is of class C2. Here, motivated by the desire to work with lower regularity assumptions on A,
we adopt a purely metric approach, which works when G = A−1 satisfies the following lower semi-continuity
property:

the map x �→ 〈G(x)ξ, ξ〉 is lower semi-continuous ∀ξ ∈ Rn (1.39)
(see also Rem. 1.2 for other conditions). Our approach is based on the theory of minimizing movements and
the theory of curves of maximal slope in metric spaces taking as a reference [5].
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1.5. Statement of the main result

With the usual identification of the absolutely continuous measures with their densities, the energy func-
tional φ can be thought as a functional defined on the metric space P2(Rn

G) in this way, φ : P2(Rn
G) →

(−∞,+∞]

φ(μ) =
{ ∫

Rn F (u(x)) dx +
∫

Rn V (x)u(x) dx if μ = uL n ∈ Pr
2 (Rn

G)
+∞ otherwise, (1.40)

where Pr
2 (Rn

G) denotes the subset of P2(Rn
G) consisting of absolutely continuous measures with respect to the

Lebesgue measure L n. With this convention, the effective domain of φ, i.e. the set {μ ∈ P2(Rn
G) : φ(μ) < +∞}

coincides with (1.10).
In order to motivate the following definition we observe that for a smooth solution u of the equation (1.1), by

the same calculation leading to (1.19), we obtain that the rate of decay of the energy φ along the solution u is

d
dt
φ(μt) = −

∥∥∥∥A∇f(ut)
ut

+A∇V
∥∥∥∥

2

L2
G(μt;Rn)

. (1.41)

It is then natural to define the functional

g(μ) :=

{ ∥∥∥A∇f(u)
u +A∇V

∥∥∥
L2

G(μ;Rn)
if μ = uL n ∈ D(g)

+∞ otherwise,
(1.42)

where the domain of g is defined by

D(g) := {μ = uL n ∈ D(φ) : f(u) ∈W 1,1
loc (Rn),

∇f(u)
u

+ ∇V ∈ L2(μ; Rn)}. (1.43)

We observe that the definition of g makes sense. Indeed the set where u = 0 has null μ measure and the internal
part of the domain of V , Ω := Int(D(V )) is not empty when φ is proper. The gradient of V , ∇V , is defined
L n-a.e. in Ω (indeed the convexity of V implies that V is locally Lipschitz in Ω and consequently L n-a.e.
differentiable in Ω (see, e.g., [21])). Moreover for every μ ∈ D(φ) the support of μ has to be contained in Ω,
and then all the integrals on the whole Rn with respect to the measure μ are in effect integrals on Ω, where ∇V
is defined.

We recall that a curve μ : I → P2(Rn
G), where I is an interval, is called absolutely continuous if there exists

m ∈ L1(I) such that WG(μt, μs) ≤ ∫ t

s
m(r) dr for every s, t ∈ I, s < t. For any absolutely continuous curve

μ : I → P2(Rn
G), there exists the metric derivative (see [5]) defined by

|μ′|(t) := lim
h→0

WG(μt+h, μt)
|h| for L 1-a.e. t ∈ I. (1.44)

We denote by AC2
loc([0,+∞); P2(Rn

G)) the space of locally absolutely continuous curves μ : [0,+∞) → P2(Rn
G),

(i.e. μ is absolutely continuous in any bounded subinterval of [0,+∞)) such that |μ′| belongs to L2
loc([0,+∞)).

Theorem 1.1 (existence and convergence). Assume that A satisfies (1.3) and (1.39), F satisfies (1.5), (1.6),
(1.7), (1.8) and V satisfies (1.4).

Given μ0 = u0L n ∈ D(φ), a minimizer uk
τ in (1.36) exists. Defining the probability measures Mk

τ := uk
τL n

and the piecewise constant function M τ : [0,+∞) → P2(Rn
G) by

M τ (t) := Mk
τ if t ∈ ((k − 1)τ, kτ ], (1.45)

then for every sequence τn → 0 there exists a subsequence (still denoted by τn) and a curve μ ∈ AC2
loc([0,+∞);

P2(Rn
G)) such that

Mτn(t) narrowly converges to μt ∀t ∈ [0,+∞). (1.46)
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For every t ∈ [0,+∞) the measure μt is absolutely continuous with respect to the Lebesgue measure, and the
function u defined by μt = utL n satisfies

f(u) ∈ L1
loc((0,+∞);W 1,1

loc (Rn)), t �→ g(μt) ∈ L2
loc([0,+∞)), (1.47)

the function t �→ φ(μt) is locally absolutely continuous and the energy identity holds

d
dt
φ(μt) = −1

2
g(μt)2 − 1

2
|μ′|2(t) for L 1-a.e. t ∈ [0,+∞), (1.48)

and u is a weak solution of the variable coefficients nonlinear diffusion equation (1.1), in the sense that

d
dt

∫
Rn

ϕ(x)ut(x) dx =
∫

Rn

〈A(x)∇(f(ut(x))) +A(x)∇V (x)ut(x),∇ϕ(x)〉dx ∀ϕ ∈ C∞
c (Rn), (1.49)

where the equality is understood in the sense of distributions in (0,+∞).
Moreover the following convergence results hold:

lim
n→∞φ(M τn(t)) = φ(μt) ∀t ∈ [0,+∞), (1.50)

lim
n→∞ g(M τn(t)) = g(μt) in L2

loc([0,+∞)), (1.51)

lim
n→∞ |M ′

τn
| = |μ′| in L2

loc([0,+∞)), (1.52)

where |M ′
τ | is the piecewise constant function defined by

|M ′
τ |(t) :=

WG(Mn
τ ,M

n−1
τ )

τ
if t ∈ ((n− 1)τ, nτ).

1.6. Strategy of the proof

The general strategy used here is that of make rigorous the formal assertions given in the paragraph of the
Otto’s interpretation. This strategy was used in the case A ≡ I in [5]. In our case, new difficulties arise because
the Wasserstein distance WG is induced by a non-flat metric, and the functional φ is in general not convex
along geodesics in P2(Rn

G). On the other hand, under our assumptions on F and V , the metric theory in [5]
ensures the well-posedness of the scheme (1.36) and yields the existence of a curve of probability measures
μ : [0,+∞) → P2(Rn

G), t �→ μt, belonging to the space AC2
loc([0,+∞); P2(Rn

G)), which is a so-called curve of
maximal slope for φ in P2(Rn

G). Roughly speaking, a curve of maximal slope is an absolutely continuous curve
satisfying a metric version of the energy identity (1.30), more precisely

d
dt
φ(μt) = −1

2
|μ′|2(t) − 1

2
|∂−φ|2G(μt), (1.53)

where |∂−φ|G is an abstract object, defined in (3.10), which generalizes the modulus of the gradient and |μ′| is
the metric derivative defined in (1.44). In order to recover the energy identity (1.30) from the metric energy
identity (1.53) and to show that u solves (1.1), we will take the following three steps.

The first step, performed in Section 2 and interesting by itself, consists in the study of the existence and
uniqueness of a vector field v associated to a curve μ ∈ AC2([0, T ]; P2(Rn

G)) such that the continuity equa-
tion holds

∂tμt + div(vtμt) = 0 (1.54)
and the following equality holds

|μ′|(t) = ‖vt‖L2
G(μt;Rn) . (1.55)
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The vector field v associated to the curve μ plays the role of the tangent vector field to the curve μ. The content
of Section 2 is a non trivial extension of the analogous theory in the space P2(Rn

I ) developed in Chapter 8
of [5].

In the second step we establish the following equality along the curve μt

|∂−φ|G(μt) =
∥∥∥∥A∇f(ut)

ut
+A∇V

∥∥∥∥
L2

G(μt;Rn)

, (1.56)

which is obtained in (3.27) of Section 3.
The third step is to prove the chain rule (1.28) in order to write

d
dt
φ(μt) =

∫
Rn

〈∇f(ut)
ut

+ ∇V,vt

〉
ut dx =

〈
A∇f(ut)

ut
+A∇V,vt

〉
L2

G(μt;Rn)

, (1.57)

and this follows without difficulties from the analogous result in the space P2(Rn
I ) as shown in Lemma 3.4.

Thanks to (1.55) and (1.56), the energy identity (1.30) follows from (1.53). From the chain rule (1.57), the
energy identity (1.30) and (1.54), we obtain that u is a weak solution of (1.1).

Remark 1.2. Theorem 1.1 provides also the existence of a weak solution of equation (1.1) when the matrix A
is L n-a.e. equal to a matrix Ã whose inverse G̃ := Ã−1 satisfies (1.39) (it is an immediate consequence of
the definition of weak solution (1.49)). A condition on A, ensuring that there exists Ã as before, is that the
discontinuity set S := {x ∈ Rn : A is not continuous at x} is closed and L n(S) = 0. Indeed we can define

Ã(x) :=
{
A(x) if x ∈ Rn \ S
ΛI if x ∈ S,

which satisfies the required properties.

1.7. Asymptotic behaviour

When the potential V is uniformly convex, under the assumption (1.7) on F , the functional φ is uniformly
convex along geodesics in P2(Rn

I ) (see [25], where this notion of convexity was introduced, and [5]). Con-
sequently, there exists a unique minimum point μ∞ = u∞L n of φ which turns out to be a stationary state
of equation (1.1), also in the case of variable coefficients. In the case A ≡ I, the asymptotic behaviour of
solutions of equation (1.1) was studied in [11] (see also [5] for the general metric case). As we will show in
Remark 1.6, φ is, in general, not convex along geodesics of P2(Rn

G) but, thanks to the ellipticity condition (1.3),
the equation (1.1) with variable coefficients has the same asymptotic behaviour of the equation with A ≡ I.

We summarize the properties of asymptotic behaviour in the following theorem, proved in Section 3.

Theorem 1.3 (asymptotic behaviour). In addition to the assumptions of Theorem 1.1 we assume that the
potential V is α-convex for some α > 0, i.e.

V (tx+ (1 − t)y) ≤ tV (x) + (1 − t)V (y) − 1
2
αt(1 − t)|x− y|2, ∀x, y ∈ Rn, ∀t ∈ [0, 1].

Then there exists a unique minimizer μ∞ = u∞L n of the functional φ (μ∞ is called stationary state) and we
have

g(μ)2 ≥ 2λα(φ(μ) − φ(μ∞)) ∀μ ∈ D(φ), (1.58)
where λ is the ellipticity constant of the matrix A in (1.3). Moreover, for every μ0 ∈ D(φ), denoting by μt the
corresponding solution given by Theorem 1.1, we have

φ(μt) − φ(μ∞) ≤ e−2λαt(φ(μ0) − φ(μ∞)) ∀t ∈ (0,+∞) (1.59)
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and

WG(μt, μ∞) ≤ e−λαt

√
2
λα

(φ(μ0) − φ(μ∞)) ∀t ∈ (0,+∞). (1.60)

Remark 1.4. The convergence in generalized entropy (1.59) yields, in the most relevant cases, the strong
L1(Rn) convergence with rates depending, in general, on the nonlinearity of F and the properties of μ∞. In the
case of linear diffusion F (u) = u logu, by means of the Csiszár-Kullback inequality

‖ut − u∞‖2
L1(Rn) ≤ 2(φ(μt) − φ(μ∞)),

we obtain
‖ut − u∞‖L1(Rn) ≤ e−λαt

√
2(φ(μ0) − φ(μ∞)) ∀t ∈ (0,+∞). (1.61)

In the case of porous medium type diffusion F (u) = um, Theorem 31 of [10] (see also [28]) can be applied in
the case m ≤ 2 (see the case (d) after the theorem) and yields

‖ut − u∞‖L1(Rn) ≤ C(φ(μt) − φ(μ∞))1/2, (1.62)

whereas Theorem 32 of [10] can be applied in the case m ≥ 2 and yields

‖ut − u∞‖L1(Rn) ≤ C(φ(μt) − φ(μ∞))1/m. (1.63)

In the general nonlinear case, under some assumptions relating the nonlinear function F and μ∞ that must be
checked in every particular case, Theorem 25 in [10] yields the inequality

‖ut − u∞‖L1(Rn) ≤ U(φ(μt) − φ(μ∞)) (1.64)

where the function U : [0,+∞) → [0,+∞) is an increasing function continuous at 0, depending on the nonlin-
earity F and, in a non explicit way, on the properties of u∞.

1.8. Contractivity

In recent years, the issue of the Wasserstein distance contractivity for the solutions of several classes of
evolution equations has attracted a lot of attention. In general the α-contractivity of the gradient flow of a
functional φ in a geodesic metric space is frequently a consequence of the α-convexity of the functional φ along
geodesics of the metric space (see [12] in the space P2(Rn

I ), [33] in P2(M ) where M is a Riemannian manifold,
and [5] in the abstract metric context). As we will observe in Remark 1.6 below, φ is, in general, not convex
along geodesics in P2(Rn

G) and the condition characterizing the α-convexity of φ in the linear case in P2(Rn
G) is

(1.69). This condition implies the α-contractivity of the gradient flow of φ with respect to WG (see [30,33]). The
condition (1.69), which requires the C2 regularity of A and V , could be hard to check and difficult to write in
terms of the coefficients of A and their partial derivatives. In the following theorem we present a condition that
could be easier to check than (1.69) and implies α-contractivity with respect to the Wasserstein distance WI .

Theorem 1.5. Assume that A = aI with a ∈ C1(Rn) and the condition (1.3) holds, and let F (u) = u logu.
Let μ1

0 = u1
0L

n ∈ D(φ), μ2
0 = u2

0L
n ∈ D(φ) and μ1

t = u1
t L

n, μ2
t = u2

t L
n the solutions given by Theorem 1.1.

If there exists α ∈ R such that

〈∇a(x) −∇a(y), x− y〉 − 〈a(x)∇V (x) − a(y)∇V (y), x− y〉
+ n|

√
a(x) −

√
a(y)|2 ≤ −α|x− y|2 ∀x, y ∈ Rn,

(1.65)

then
WI(μ1

t , μ
2
t ) ≤ e−αtWI(μ1

0, μ
2
0) ∀t ∈ (0,+∞). (1.66)
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We observe that, by the equivalence of the Wasserstein distances
√

Λ−1WI(μ, ν) ≤WG(μ, ν) ≤
√
λ−1WI(μ, ν),

from (1.66) we obtain immediately that

WG(μ1
t , μ

2
t ) ≤

√
Λ/λ e−αtWG(μ1

0, μ
2
0) ∀t ∈ (0,+∞). (1.67)

Clearly the most interesting case in Theorem 1.5 is α > 0, where WG(μ1
t , μ

2
t ) → 0 with exponential decay as

t→ +∞.

Remark 1.6 (convexity of the entropy and Ricci curvature). The space Rn
G with the metric tensor G is a

Riemannian manifold of class Ck when the dependence of A on x ∈ Rn is of class Ck−1. The intrinsic measure
on Rn

G is the Riemannian volume measure γ := (detG)1/2L n.
Given a Borel probability measure μ on Rn, absolutely continuous with respect to L n (or equivalently with

respect to γ), we denote by μ = ργ and μ = uL n its densities. Clearly we have that u = (detG)1/2ρ. The
relative entropy of μ with respect to γ is defined by

Hγ(μ) :=
∫

Rn

ρ log ρ dγ,

and it can be rewritten as
Hγ(μ) =

∫
Rn

u log u dx− 1
2

∫
Rn

log(detG)u dx.

By the result of [30], defining VG(x) := 1
2 log(detG(x)), the functional

φ(μ) :=
∫

Rn

u log u dx+
∫

Rn

V dμ = Hγ(μ) +
∫

Rn

(VG + V ) dμ,

is α-convex along geodesics in P2(Rn
G), i.e.

φ(μt) ≤ (1 − t)φ(μ0) + tφ(μ1) − 1
2
αt(1 − t)W 2

G(μ0, μ1), ∀μ0, μ1 ∈ D(φ),

∀μ : [0, 1] → P2(Rn
G) constant speed geodesic connecting μ0 to μ1, ∀t ∈ [0, 1],

(1.68)

if and only if
Ricx + Hessx(VG + V ) ≥ α. (1.69)

In (1.69) Ricx denotes the quadratic form associated to the Ricci tensor in the Riemannian manifold Rn
G and

Hessx V is the Hessian quadratic form of V (with respect to the Riemannian structure).
In general the expression of condition (1.69) in coordinates is complicated and hard to check. For instance we

explicit condition (1.69) in the case n = 2 and G(x) = g(x)I. The components of the Ricci tensor are Rij = Rs
ijs

(the sum is understood when the index are repeated) where Rl
ijk = Γm

ikΓl
jm − Γm

jkΓl
im + ∂xj Γl

ik − ∂xiΓl
jk are

the components of the Riemann curvature tensor and Γk
ij = 1

2 (δik∂xj log g + δjk∂xi log g − δij∂xk
log g) are the

Christoffel symbols. The components of the HessV are Hij = ∂2
xixj

V − Γk
ij∂xk

V . Computing the Christoffel
symbols we obtain Γ1

11 = Γ2
12 = Γ2

21 = −Γ1
22 = 1

2∂x1 log g and Γ2
22 = Γ1

12 = Γ1
21 = −Γ2

11 = 1
2∂x2 log g.

Substituting in the components of the Ricci tensor we obtain R11 = R22 = − 1
2Δ log g = − 1

2 (∂2
x1x1

log g +
∂2

x2x2
log g) and R12 = R21 = 0. The condition (1.69) can be written as

− 1
2
Δ log gI +H(log g) − 1

2
∇ log g ⊗∇ log g +

1
2
∇⊥ log g ⊗∇⊥ log g

+H(V ) − 1
2
∇ log g ⊗∇V +

1
2
∇⊥ log g ⊗∇⊥V − αgI ≥ 0
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in the sense of positive definite matrix, where H(ϕ) is the Hessian matrix with respect to the euclidean metric
and ∇⊥ϕ = (∂x2ϕ,−∂x1ϕ). This condition is exactly the Bakry-Emery condition for logarithmic Sobolev
inequalities (see condition (A1) in [6]), precisely

1
2
ΔaI − 1

2
〈∇a,∇V 〉I −H(a) + aH(V ) +

1
2
∇a⊗∇V +

1
2
∇V ⊗∇a− αI ≥ 0.

The equivalence between the two conditions can be proved by using the relations ∂xia = − 1
g∂xi log g,

∂2
xixj

a = 1
g (∂xi log g∂xj log g − ∂2

xixj
log g) and ∇ϕ⊗∇ψ −∇⊥ϕ⊗∇⊥ψ = ∇ϕ⊗∇ψ + ∇ψ ⊗∇ϕ− 〈∇ϕ,∇ψ〉I.

1.9. Contents of the rest of the paper

The proofs of Theorems 1.1, 1.3 and 1.5 are given in Section 3, together with some lemmata and the
definition of curve of maximal slope. In the following Section 2 we study the continuity equation and its link
with Wasserstein distance in Rn with the non smooth Riemannian metric G.

2. Continuity equation in Rn with a non smooth Riemannian metric

2.1. Metric derivative of absolutely continuous curves in Rn
G

We recall that Rn
G denotes the metric space Rn endowed with the distance d defined in (1.33). Given an

interval I, a curve u : I → Rn
G is called absolutely continuous if there exists m ∈ L1(I) such that d(u(t), u(s)) ≤∫ t

s m(r) dr for every s, t ∈ I, s < t. We denote by AC(I; Rn
G) the class of absolutely continuous curves from the

interval I on Rn
G. Clearly the condition (1.32) implies that the distance d is equivalent to the euclidean one. Then

it follows that AC(I; Rn
G) = AC(I; Rn). We recall that for every absolutely continuous curve u ∈ AC(I; Rn

G)
there exists the metric derivative (see [5]) defined and denoted by

|u′|(t) := lim
h→0

d(u(t+ h), u(t))
|h| for L 1-a.e. t ∈ I. (2.1)

The following proposition shows that, under a suitable lower semi continuity assumption on G, the metric
derivative of absolutely continuous curves in Rn

G coincides with the norm (on the tangent space of the Riemannian
manifold Rn

G) of the pointwise derivative.

Proposition 2.1. We assume that the application

x �→ 〈G(x)ξ, ξ〉 is lower semi continuous ∀ξ ∈ Rn. (2.2)

If u ∈ AC(I; Rn
G), where I is an interval, then u̇(t) := limh→0

u(t+h)−u(t)
h exists for L 1-a.e. t ∈ I and

|u′|(t) =
√
〈G(u(t))u̇(t), u̇(t)〉 for L 1-a.e. t ∈ I. (2.3)

Proof. The existence of u̇(t) and |u′|(t) for L 1-a.e. t ∈ I is well known.
In order to prove (2.3) we choose t ∈ I such that |u′|(t) and u̇(t) exist. Using the curve s ∈ [0, 1] �→ u(t+ sh),

which connects u(t) to u(t+ h), we can estimate

d(u(t+ h), u(t)) ≤
∫ 1

0

√
〈G(u(t+ sh))u̇(t+ sh)h, u̇(t+ sh)h〉ds

=

∣∣∣∣∣
∫ t+h

t

√
〈G(u(τ))u̇(τ), u̇(τ)〉 dτ

∣∣∣∣∣ .
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Then it follows that

|u′|(t) ≤
√
〈G(u(t))u̇(t), u̇(t)〉

for any Lebesgue point of τ �→√〈G(u(τ))u̇(τ), u̇(τ)〉.
Conversely, by the assumption of lower semi continuity (2.2), for every ε > 0 and every ξ0 ∈ Sn−1 := {ξ ∈

Rn : |ξ| = 1}, there exists δε(ξ0) > 0 such that

〈G(x)ξ0, ξ0〉 ≥ 〈G(u(t))ξ0, ξ0〉 − ε/2 ∀x ∈ Bδε(ξ0)(u(t)), (2.4)

where Bδ(y) := {z ∈ Rn : |z − y| < δ}.
By the bilinearity and the symmetry of the map (ξ, ξ̄) �→ 〈G(y)ξ, ξ̄〉 and the Cauchy-Schwartz inequality we

have that

|〈G(y)ξ1, ξ1〉 − 〈G(y)ξ2, ξ2〉| = |〈G(y)(ξ1 + ξ2), ξ1 − ξ2〉|
≤ 〈G(y)(ξ1 + ξ2), ξ1 + ξ2〉1/2〈G(y)(ξ1 − ξ2), ξ1 − ξ2〉1/2

and using the ellipticity condition (1.32) we obtain that

|〈G(y)ξ1, ξ1〉 − 〈G(y)ξ2, ξ2〉| ≤ 2λ−1|ξ1 − ξ2|, ∀y ∈ Rn, ∀ξ1, ξ2 ∈ Sn−1. (2.5)

From (2.4) and (2.5) it follows that

〈G(x)ξ, ξ〉 ≥ 〈G(u(t))ξ, ξ〉 − ε ∀x ∈ Bδε(ξ0)(u(t)), ∀ξ ∈ Bελ/8(ξ0) ∩ Sn−1. (2.6)

Choosing a finite set {ξi
0 ∈ Sn−1 : i = 0, 1, . . . , Nε} such that the family {Bελ/8(ξi

0) ∩ Sn−1}i=0,1,...,Nε covers
Sn−1, and setting δε := min{δε(ξi

0) : i = 0, 1, . . . , Nε}, from (2.6) we obtain

〈G(x)ξ, ξ〉 ≥ 〈G(u(t))ξ, ξ〉 − ε ∀x ∈ Bδε(u(t)), ∀ξ ∈ Sn−1.

Finally the bilinearity of the map ξ �→ 〈Gξ, ξ〉, shows that

〈G(x)ξ, ξ〉 ≥ 〈G(u(t))ξ, ξ〉 − ε|ξ|2 ∀x ∈ Bδε(u(t)), ∀ξ ∈ Rn. (2.7)

By the continuity of u there exists hε > 0 such that for every h, |h| < hε we have u(t+ h) ∈ Bδε(u(t)). By the
ellipticity assumption (1.32), the symmetric matrix G(u(t)) − εI is positive definite when ε < Λ−1. Since the
Riemannian distance induced by G in Bδε(u(t)) coincides with d and G(u(t)) − εI is a constant metric tensor
in Bδε(u(t)) (the geodesics in this last case are the segments), (2.7) yields

d(u(t+ h), u(t)) ≥
√
〈(G(u(t)) − εI)(u(t+ h) − u(t)), u(t+ h) − u(t)〉.
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Dividing by |h| and passing to the limit for h→ 0 we obtain

|u′|(t) ≥
√
〈(G(u(t)) − εI)u̇(t), u̇(t)〉.

Being ε arbitrary we conclude. �

Remark 2.2. We observe that the property of lower semi continuity (2.2) has been assumed only to prove the
inequality

|u′|(t) ≥
√
〈G(u(t))u̇(t), u̇(t)〉.

The validity of the equality (2.3) is strictly linked to the possibility of reconstruct the metric G by derivation
of the distance d. More precisely the metric G can be reconstructed by derivation of the distance d if

√
〈G(x)ξ, ξ〉 = lim

t→0+

d(x+ tξ, x)
t

∀ξ ∈ Rn, ∀x ∈ Rn. (2.8)

If the coefficients of G are only Borel, there are examples where this property is not satisfied for x in a set of
positive Lebesgue measure (see [16]). For instance in R2, if we choose G(x) = g(x)I, g(x) := χE(x)+2χR2\E(x)
where E := {(x1, x2) ∈ R2 : x1 ∈ Q or x2 ∈ Q} and χA is the characteristic function of the set A, we have that
d(x, y) = |x1 − y1| + |x2 − y2|, and the equality (2.8) is not satisfied for every x ∈ R2. Also for the intrinsic
distance, defined in [14], which is independent of the equivalence class of G, in general this property is not
satisfied in a set of positive Lebesgue measure as showed in [15] (example 5).

2.2. Absolutely continuous curves in Wasserstein spaces and continuity equation

2.2.1. Push forward of measures

In this paragraph we recall the definition of the push forward operator on measures, frequently used through-
out the paper.

We denote by P(X) the set of Borel probability measures on the separable metric space X. If Y, Z are
separable metric spaces, μ ∈ P(Y ) and F : Y → Z is a Borel map, the push forward of μ through F, denoted
by F#μ ∈ P(Z), is defined as follows:

F#μ(B) := μ(F−1(B)) ∀B ∈ B(Z), (2.9)

where B(Z) is the family of Borel subsets of Z. It is not difficult to check that this definition is equivalent to∫
Z

ψ(z) d(F#μ)(z) =
∫

Y

ψ(F (y)) dμ(y) ∀ψ ∈ Cb(Z). (2.10)

More generally the previous formula holds even if ψ : Z → R is a bounded Borel function or an F#μ-integrable
function.

We also recall the following composition rule:

(G ◦ F )#μ = G#(F#μ) ∀μ ∈ P(Y ), ∀F : Y → Z,G : Z →W Borel maps. (2.11)

2.2.2. Representation of absolutely continuous curves in Wasserstein spaces

Let I := [0, T ]. In the case of the Wasserstein metric space P2(Rn
G), the curves of AC2(I; P2(Rn

G)) (i.e. the
absolutely continuous curves from I to P2(Rn

G) such that their metric derivative, defined in (1.44), |μ′| belongs
to L2(I)) can be represented as superposition of curves of the same kind in the space Rn

G. The superposition
is represented by means of a probability measure on the space of continuous curves in Rn

G, concentrated on the
subset AC2(I; Rn

G). This point of view was studied in [24] for arbitrary metric spaces. We recall here the main
result adapted to our purposes.
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We denote by Γ the separable, complete metric space of continuous curves from the compact interval I to
Rn

G, metrized by the distance of the uniform convergence d∞(u, v) := supt∈I d(u(t), v(t)). We denote by et the
evaluation map, defined as follows:

et : Γ → Rn
G, et(u) := u(t), t ∈ [0, T ].

Theorem 2.3. If μ ∈ AC2(I; P2(Rn
G)), then there exists η ∈ P(Γ) such that

(i) η is concentrated on AC2(I; Rn
G);

(ii) (et)#η = μt, ∀t ∈ I;
(iii)

|μ′|2(t) =
∫

Γ

|u′|2(t) dη(u) for L 1-a.e. t ∈ I.

2.2.3. Continuity equation and minimal vector field

Let I = [0, T ]. Given a narrowly continuous (i.e. sequentially continuous with respect to the narrow
convergence) curve μ : I → P2(Rn

G), t �→ μt, we can associate to it the probability measure μ̄ ∈ P(I × Rn)
defined by ∫

I×Rn

ψ(t, x) dμ̄(t, x) :=
1
T

∫ T

0

∫
Rn

ψ(t, x) dμt(x) dt (2.12)

for every bounded Borel function ψ : I × Rn → R. If v : I × Rn → Rn is a time dependent vector field such
that v ∈ L2(μ̄; Rn), we say that (μ,v) satisfies the continuity equation

∂tμt + div(vtμt) = 0, (2.13)

if the relation
d
dt

∫
Rn

ϕdμt =
∫

Rn

〈∇ϕ,vt〉dμt ∀ϕ ∈ C∞
c (Rn) (2.14)

holds in the sense of distributions in the interval (0, T ).
For notational convenience, we define the following set,

EC(Rn) :=
{
(μ,v) : μ : I → P2(Rn) is narrowly continuous, v ∈ L2(μ̄; Rn),

(μ,v) satisfies the continuity equation
}
.

Given v ∈ L2(μ̄; Rn), we observe that

‖vt‖2
L2

G(μt;Rn) :=
∫

Rn

〈G(x)vt(x),vt(x)〉dμt(x) < +∞ for L 1-a.e. t ∈ I.

Theorem 2.4. Assume that G satisfies (1.32) and (2.2).
If μ ∈ AC2(I; P2(Rn

G)) then there exists a unique vector field ṽ : I × Rn → Rn such that (μ, ṽ) ∈ EC(Rn)
and

|μ′|(t) = ‖ṽt‖L2
G(μt;Rn) for L 1-a.e. t ∈ I. (2.15)

Moreover ṽ satisfies
‖ṽt‖L2

G(μt;Rn) ≤ ‖vt‖L2
G(μt;Rn) for L 1-a.e. t ∈ I, (2.16)

for every vector field v such that (μ,v) ∈ EC(Rn).

Proof. Let η ∈ P(Γ) be a measure satisfying (i), (ii) and (iii) of Theorem 2.3. We set η̄ := 1
T L 1

|I⊗η ∈ P(I×Γ).
Defining the evaluation map e : I × Γ → I × Rn

G by e(t, u) = (t, et(u)), it is immediate to check that e#η̄ = μ̄.
The disintegration of η̄ with respect to e (see e.g. [20] for the disintegration theorem) yields a Borel family of
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probability measures η̄t,x on Γ concentrated on {u ∈ Γ : et(u) = x} such that for every ϕ ∈ L1(η̄), ϕ : I×Γ → R,
we have

u �→ ϕ(t, u) ∈ L1(η̄t,x) for μ̄-a.e. (t, x) ∈ I × Rn, (2.17)

(t, x) �→
∫

Γ

ϕ(t, u) dη̄t,x(u) ∈ L1(μ̄), (2.18)∫
I×Γ

ϕ(t, u) dη̄(t, u) =
∫

I×Rn

∫
Γ

ϕ(t, u) dη̄t,x(u) dμ̄(t, x) (2.19)

and the measures η̄t,x are uniquely determined for μ̄-a.e. (t, x) ∈ I × Rn.
We define the vector field ṽ in the following way

ṽt(x) :=
∫

Γ

u̇(t) dη̄t,x(u) for μ̄-a.e. (t, x) ∈ I × Rn, (2.20)

and we check that ṽ satisfies the required properties.
First of all ṽ is well defined. Indeed the set

S := {(t, u) ∈ I × Γ : u̇(t) exists, |u′|(t) exists,
√
〈G(u(t))u̇(t), u̇(t)〉 = |u′|(t)}

is a Borel set and, by Proposition 2.1 and Fubini’s Theorem, being η̄ concentrated on I×AC2(I,Rn
G), we obtain

that η̄(I × Γ \ S) = 0. Then the map (t, u) ∈ I × Γ �→ u̇(t) ∈ Rn is well defined for η̄-a.e. (t, u) ∈ I × Γ. For
μ̄-a.e. (t, x) ∈ I × Rn, we have that η̄t,x({u : (t, u) ∈ I × Γ \ S}) = 0, and the map u �→ u̇(t) is well defined for
η̄t,x-a.e. u ∈ Γ.

Now we show that ṽ ∈ L2(μ̄; Rn). Using Jensen’s inequality, (2.19), the property η̄(S) = 1 and (iii) of
Theorem 2.3 we obtain

1
T

∫ T

0

‖ṽt‖2
L2

G(μt;Rn) dt =
∫

I×Rn

〈G(x)ṽt(x), ṽt(x)〉dμ̄(t, x)

=
∫

I×Rn

〈G(x)
∫

Γ

u̇(t) dη̄t,x(u),
∫

Γ

u̇(t) dη̄t,x(u)〉dμ̄(t, x)

≤
∫

I×Rn

∫
Γ

〈G(x)u̇(t), u̇(t)〉dη̄t,x(u) dμ̄(t, x)

=
∫

I×Γ

〈G(u(t))u̇(t), u̇(t)〉dη̄(t, u)

=
∫

I×Γ

|u′|2(t) dη̄(t, u) =
1
T

∫ T

0

|μ′|2(t) dt < +∞.

(2.21)

Now we prove that (2.14) holds. Taking ϕ ∈ C∞
c (Rn), the mapping t �→ ∫

Rn ϕdμt is absolutely continuous.
Indeed, for every s, t ∈ I, taking an optimal plan (i.e., a minimizer in (1.34)) γs,t ∈ Γ(μs, μt), we have∣∣∣∣

∫
Rn

ϕdμt −
∫

Rn

ϕdμs

∣∣∣∣ ≤
∫

Rn×Rn

|ϕ(y) − ϕ(x)| dγs,t(x, y)

≤ C sup
x∈Rn

‖∇ϕ(x)‖
∫

Rn×Rn

d(x, y) dγs,t(x, y)

≤ C sup
x∈Rn

‖∇ϕ(x)‖WG(μs, μt).

Then, for L 1-a.e. t ∈ I,

d
dt

∫
Rn

ϕdμt =
d
dt

∫
Γ

ϕ(et(u)) dη(u) =
∫

Γ

〈∇ϕ(et(u)), u̇(t)〉dη(u)
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and taking into account the definition of ṽ we obtain

d
dt

∫
Rn

ϕdμt =
∫

Rn

〈∇ϕ, ṽt〉dμt for L 1-a.e. t ∈ I. (2.22)

Since this pointwise derivative is also a distributional derivative, we can conclude.
Now we prove (2.15) and (2.16). Using the same argument of the proof of (2.21) we obtain that for every

[a, b] ⊂ I ∫ b

a

‖ṽt‖2
L2

G(μt;Rn) dt ≤
∫ b

a

|μ′|2(t) dt (2.23)

and it follows that
‖ṽt‖L2

G(μt;Rn) ≤ |μ′|(t) for L 1-a.e. t ∈ I. (2.24)

On the other hand for every v ∈ L2(μ̄; Rn) such that (μ,v) satisfies the continuity equation, by Theo-
rem 8.2.1 of [5] (see also Thm. 12 of [3]) there exists ζ ∈ P(Γ) such that (et)#ζ = μt and ζ is concentrated
on the set {u ∈ AC2(I; Rn) : u is an integral solution of u̇(t) = vt(u(t))}. Taking s, t ∈ I with s < t and
γs,t := (es, et)#ζ ∈ Γ(μs, μt), we have

W 2
G(μs, μt) ≤

∫
Rn×Rn

d2(x, y) dγs,t(x, y) =
∫

Γ

d2(es(u), et(u)) dζ(u)

≤
∫

Γ

(t− s)
∫ t

s

〈G(u(r))u̇(r), u̇(r)〉dr dζ(u)

=
∫

Γ

(t− s)
∫ t

s

〈G(u(r))vr(u(r)),vr(u(r))〉dr dζ(u)

= (t− s)
∫ t

s

∫
Rn

〈G(x)vr(x),vr(x)〉dμr(x) dr,

(2.25)

where the last equality follows by Fubini-Tonelli Theorem. Lebesgue differentiation Theorem implies that

|μ′|(t) ≤ ‖vt‖L2
G(μt;Rn) for L 1-a.e. t ∈ I, (2.26)

and (2.16) follows recalling (2.24). Now (2.15) is an obvious consequence of (2.24) and (2.26) applied to ṽ.
The uniqueness of ṽt is a consequence of the linearity of the continuity equation with respect to the vector field,

the uniform convexity of the norm of L2
G(μt,R

n) (indeed it is a Hilbert space) and the minimality property (2.16).
�

Corollary 2.5 (Benamou-Brenier formula for WG). For every μ0, μ1 ∈ P2(Rn
G) we have

W 2
G(μ0, μ1) = inf

{∫ 1

0

‖vt‖2
L2

G(μt;Rn) dt : (μ,v) ∈ EC(Rn), μ0 = μ0, μ1 = μ1

}
. (2.27)

Proof. If (μ,v) ∈ EC(Rn) and μ connects μ0 to μ1, by (2.25) we obtain

W 2
G(μ0, μ1) ≤

∫ 1

0

‖vt‖2
L2

G(μt;Rn) dt.

On the other hand, since Rn
G is a geodesic space, by Proposition 1 in [24], P2(Rn

G) is a geodesic space too.
Taking μ a constant speed geodesic connecting μ0 to μ1 and ṽ the associated vector field given by Theorem 2.4
we obtain

W 2
G(μ0, μ1) =

∫ 1

0

|μ′|2(t) dt =
∫ 1

0

‖ṽt‖2
L2

G(μt;Rn) dt. �
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3. Proof of the main results

The proof of Theorem 1.1 is based on the general theory of curves of maximal slope in metric spaces as
developed in [5]. Here we recall the definition of curve of maximal slope for φ together with the notions of slope
of φ and upper gradient for φ.

Definition 3.1 (local slope). The functional |∂φ|G : P2(Rn
G) → [0,+∞] defined by

|∂φ|G(μ) := lim sup
WG(μ,ν)→0

(φ(μ) − φ(ν))+

WG(μ, ν)
(3.1)

is called the local slope of the functional φ.

Clearly D(|∂φ|G) ⊂ D(φ).
In the case A = I, under our assumptions on F and V , the local slope of φ can be characterized by (see [5],

Thm. 10.4.6)

|∂φ|I(μ) =

{ ∥∥∥∇f(u)
u + ∇V

∥∥∥
L2

I(μ;Rn)
if μ = uL n ∈ D(|∂φ|I)

+∞ otherwise,
(3.2)

where the effective domain of the local slope is

D(|∂φ|I) = {μ = uL n ∈ D(φ) : f(u) ∈ W 1,1
loc (Rn),

∇f(u)
u

+ ∇V ∈ L2(μ; Rn)}. (3.3)

The derivation of the explicit expression (3.2) of the slope is based on the convexity of φ along geodesics on
P2(Rn

I ) with respect to the distance WI (the convexity is ensured by the assumption (1.7) on F and the
convexity of V ). Since, in general, the functional φ is not convex along geodesics on P2(Rn

G) with respect to
the distance WG (see Rem. 1.6), the computation of the slope could be more difficult.

A possible generalization of the modulus of the gradient for functionals defined in the metric space P2(Rn
G)

is the following notion of upper gradient.

Definition 3.2 (upper gradient). A Borel function g : P2(Rn
G) → [0,+∞] is called a strong upper gradient

for φ if, for every μ ∈ AC2
loc(I; P2(Rn

G)) such that g(μ)|μ′| ∈ L1
loc(I) we have

|φ(μt) − φ(μs)| ≤
∫ t

s

g(μr)|μ′|(r) dr ∀s, t ∈ I, s < t. (3.4)

In particular, if g(μ)|μ′| ∈ L1
loc(I) then φ ◦ μ is locally absolutely continuous and

∣∣∣∣ d
dt
φ(μt)

∣∣∣∣ ≤ g(μt)|μ′|(t) for L 1-a.e. t ∈ I. (3.5)

As showed in [5], |∂φ|I is a strong upper gradient for φ in the space P2(Rn
I ).

The notions of metric derivative (see (1.44)) and upper gradient allow to define the concept of curve of
maximal slope. We refer to the introduction and [5] for the motivation of this definition.

Definition 3.3 (curve of maximal slope). We say that μ : [0,+∞) → P2(Rn
G) is a curve of maximal slope

for φ, with respect to the strong upper gradient g, if μ ∈ AC2
loc([0,+∞); P2(Rn

G)) and

1
2

∫ t

s

g2(μr) dr +
1
2

∫ t

s

|μ′|2(r) dr = φ(μs) − φ(μt) ∀s, t ∈ [0,+∞), s < t. (3.6)
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The equality (3.6) is called energy identity.
The first fundamental Lemma 3.4 is a sort of chain rule in the space P2(Rn

G). The proof of this lemma uses
the similar result in the “flat” space Rn

I , which holds since the functional φ is geodesically convex in the space
P2(Rn

I ).

Lemma 3.4. Let μ ∈ AC2
loc(I; P2(Rn

G)), ṽt be the vector field given by Theorem 2.4 and g be defined in (1.42). If

t �→ g(μt)|μ′|(t) ∈ L1
loc(I) (3.7)

then t �→ φ ◦ μt is locally absolutely continuous and the chain rule holds:

d
dt
φ(μt) =

∫
Rn

〈∇f(ut(x))
ut(x)

+ ∇V (x), ṽt(x)
〉

dμt(x) for L 1-a.e. t ∈ I, (3.8)

where μt = utL n.

Proof. By the equivalence of the distances WG and WI , (3.2), (1.42) and (3.7) we have that∫
J
|∂φ|I(μt)|μ′|I(t) dt < +∞ for every bounded interval J ⊂ I, where |μ′|I denotes the metric derivative

of μ with respect to WI . Since φ is convex along geodesics in P2(Rn
I ), the Wasserstein chain rule result of

Section 10.1.2 of [5] shows that φ ◦ μt is absolutely continuous and

d
dt
φ(μt) =

∫
Rn

〈∇f(ut(x))
ut(x)

+ ∇V (x),vt(x)
〉

dμt(x) for a.e. t ∈ I, (3.9)

where vt is the vector field associated to the curve μt given by Theorem 2.4 in the case of the identity matrix
G = I.

Moreover, by Corollary 10.3.15 of [5], the vector field ∇f(ut(x))
ut(x) belongs to the closure of {∇ϕ : ϕ ∈ C∞

c (Rn)}
in the topology of L2(μt; Rn). Since Theorem 2.4 implies that div((vt − ṽt)μt) = 0 in the sense of distribution,
then by density∫

Rn

〈∇f(ut(x))
ut(x)

+ ∇V (x),vt(x)
〉

dμt(x) =
∫

Rn

〈∇f(ut(x))
ut(x)

+ ∇V (x), ṽt(x)
〉

dμt(x),

and (3.8) follows from (3.9). �
In order to state the second lemma, we define the relaxed slope |∂−φ|G by

|∂−φ|G(μ) := inf
{

lim inf
n→+∞ |∂φ|G(μn) : μn → μ narrowly, sup

n
WG(μn, μ) < +∞, sup

n
φ(μn) < +∞

}
. (3.10)

Lemma 3.5. The function g defined in (1.42) is a strong upper gradient for φ, and the following inequality
holds

g(μ) ≤ |∂−φ|G(μ) ∀μ ∈ D(g). (3.11)

In the following proofs the functional φ is often written as φ(μ) = F (μ) + V (μ), where the internal energy
functional F : P2(Rn

G) → (−∞,+∞] is defined by

F (μ) :=
{ ∫

Rn F (u(x)) dx if μ = uL n ∈ Pr
2 (Rn)

+∞ otherwise,

and the potential energy functional V : P2(Rn
G) → (−∞,+∞] by

V (μ) :=
∫

Rn

V (x) dμ(x).
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We postpone the proof of Lemma 3.5 until after the proof of Theorem 1.1.

Proof of Theorem 1.1. By (1.5) and (1.6), the functional F is lower semi continuous with respect to the narrow
convergence in WG-bounded sets, i.e. it satisfies

sup
n
WG(μn, μ) < +∞, μn → μ narrowly ⇒ lim inf

n→+∞ F (μn) ≥ F (μ) (3.12)

(see e.g. Chap. 9 of [5] and also general lower semi-continuity results in [4]); by (1.4), the functional V is lower
semi continuous with respect to the narrow convergence, i.e.

μn → μ narrowly ⇒ lim inf
n→+∞ V (μn) ≥ V (μ) (3.13)

(see Chap. 5 in [5]); the Wasserstein distance WG is lower semi continuous with respect to the narrow conver-
gence, i.e.

μn → μ, νn → ν narrowly ⇒ lim inf
n→+∞WG(μn, νn) ≥WG(μ, ν) (3.14)

(it is a standard basic property that can be found e.g. in [32]). The application of Dunford Pettis theorem
yields that WG-bounded sublevel sets of φ are narrowly sequentially compact, i.e.

if {μn} is a sequence in P2(Rn
G) with sup

m,n
WG(μn, μm) < +∞, sup

n
φ(μn) < +∞

then {μn} admits a narrowly convergent subsequence.
(3.15)

The functional
Φ(μ) :=

1
2τ
W 2

G(μ,M) + φ(μ) (3.16)

defined in P2(Rn
G) for fixed M ∈ D(φ) and τ > 0, is bounded from below. Indeed by the condition on behaviour

near zero in (1.6) we have that there exist c1, c2 ≥ 0 such that the negative part of F ◦ u satisfies

F−(u(x)) ≤ c1u(x)α + c2u(x). (3.17)

Then, for μ = uL n ∈ D(F ), we have

F (μ) =
∫

Rn

F+(u(x)) dx −
∫

Rn

F−(u(x)) dx ≥ −c1
∫

Rn

u(x)α dx− c2

∫
Rn

u(x) dx

= −c1
∫

Rn

u(x)α dx− c2.

(3.18)

Since it is not restrictive to assume α < 1, an application of Hölder’s inequality yields∫
Rn

u(x)α dx ≤
(∫

Rn

(1 + |x|2)u(x) dx
)α(∫

Rn

(1 + |x|2)−α/(1−α) dx
)1−α

< +∞ (3.19)

because of the condition α > n
n+2 and μ ∈ P2(Rn). The inequality d2(x, y) ≥ λ|x− y|2 ≥ λ(1

2 |y|2 − |x|2) yields

W 2
G(μ,M) ≥ λ

2

∫
Rn

|x|2 dμ(x) − λ

∫
Rn

|x|2 dM(x). (3.20)

From (3.18), (3.19), (3.20) and (1.4) we obtain

φ(μ) +
1
2τ
W 2

G(μ,M) ≥ −c2 + inf V − c3

(
1 +

∫
Rn

|x|2 dμ(x)
)α

+
λ

4τ

∫
Rn

|x|2 dμ(x) − λ

2τ

∫
Rn

|x|2 dM(x),
(3.21)
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which implies that
inf

μ∈P2(Rn
G)

Φ(μ) > −∞. (3.22)

Since the properties (3.12), (3.13), (3.14), (3.15) show that the functional Φ defined in (3.16) for fixed M ∈ D(φ)
and τ > 0, is narrow lower semi continuous in sublevel sets of Φ, and the sublevel sets of Φ are narrowly
sequentially relatively compact, for (3.22) a minimum of Φ exists.

The properties (3.12), (3.13), (3.14), (3.15), (3.22) are exactly the assumptions needed in Chapter 2 of [5]
to work with the theory of gradient flows in metric spaces (in our case the metric space is P2(Rn

G) and the
weak topology σ is the narrow topology). In particular the narrow compactness of the family of piecewise
constant solutions Mτ and consequently the existence of the curve μ ∈ AC2

loc([0,+∞); P2(Rn
G)) satisfying the

property (1.46) is a consequence of Proposition 2.2.3 of [5].
We recall now Theorem 2.3.3 of [5]. It states that under the assumptions (3.12), (3.13), (3.14), (3.15), (3.22),

if |∂−φ|G is a strong upper gradient for φ and μ ∈ AC2
loc([0,+∞); P2(Rn

G)) is a limit point, in the sense of
(1.46), of the approximate piecewise constant M τ , then μ is a curve of maximal slope for φ with respect to the
upper gradient |∂−φ|G and the convergence properties (1.50), (1.51), (1.52) hold.

Since Lemma 3.5 yields that |∂−φ|G is a strong upper gradient for φ, Theorem 2.3.3 of [5] can be applied.
Consequently the following energy identity holds

1
2

∫ t

s

|∂−φ|2G(μr) dr +
1
2

∫ t

s

|μ′|2(r) dr = φ(μs) − φ(μt) ∀s, t ∈ [0,+∞), s < t, (3.23)

and (1.50), (1.51), (1.52) hold. By (3.11) we obtain that

1
2

∫ t

s

g2(μr) dr +
1
2

∫ t

s

|μ′|2(r) dr ≤ φ(μs) − φ(μt) ∀s, t ∈ [0,+∞), s < t (3.24)

and g(μ) ∈ L2
loc([0,+∞)). Since by Lemma 3.5 g is a strong upper gradient for φ, we have that

φ(μs) − φ(μt) ≤
∫ t

s

|μ′|(r)g(μr) dr ≤ 1
2

∫ t

s

g2(μr) dr +
1
2

∫ t

s

|μ′|2(r) dr, (3.25)

then (3.6) follows by (3.24) and (3.25).
Now by (3.23), (3.24) and (3.25) we have that

φ(μs) − φ(μt) =
1
2

∫ t

s

|∂−φ|2G(μr) dr +
1
2

∫ t

s

|μ′|2(r) dr

=
1
2

∫ t

s

g2(μr) dr +
1
2

∫ t

s

|μ′|2(r) dr

=
∫ t

s

|μ′|(r)g(μr) dr ∀s, t ∈ [0,+∞), s < t.

(3.26)

Since |μ′|g(μ) ∈ L1
loc(0,+∞), then φ(μ) is locally absolutely continuous and (1.48) follow easily from (3.26). It

is a direct consequence of (3.26) that

|∂−φ|2G(μt) = g2(μt) for L 1-a.e. t ∈ (0,+∞). (3.27)

Now we show that μt = utL n is a weak solution of the equation (1.1).
Let ṽ be the vector field associated to μ given by Theorem 2.4. From (3.26) we have

− d
dt
φ(μt) =

1
2
|μ′|2(t) +

1
2
g2(μt) for L 1-a.e. t ∈ (0,+∞)
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which can be rewritten, by (2.15) and the definition of g, as

− d
dt
φ(μt) =

1
2
‖ṽt‖2

L2
G(μt;Rn) +

1
2

∥∥∥∥A∇f(ut)
ut

+A∇V
∥∥∥∥

2

L2
G(μt;Rn)

for L 1-a.e. t ∈ (0,+∞).

On the other hand (3.8) implies that

d
dt
φ(μt) =

∫
Rn

〈G(x)A(x)
(∇f(ut(x))

ut(x)
+ ∇V (x)

)
, ṽt(x)〉dμt(x) for L 1-a.e. t ∈ (0,+∞).

Then equality holds in Cauchy-Schwartz inequality in the Hilbert space L2
G(μt; Rn), and this implies that

ṽt(x) = −A(x)
∇f(ut(x))
ut(x)

−A(x)∇V (x) for μt-a.e. x ∈ Rn. (3.28)

Now (1.49) follows from (3.28) since (μ, ṽ) satisfies the continuity equation in the sense of (2.14). �

Proof of Lemma 3.5. First of all we prove that g is an upper gradient.
Let μ ∈ AC2

loc(I; P2(Rn
G)) such that t �→ g(μt)|μ′|(t) ∈ L1

loc(I). By Lemma 3.4, Cauchy-Schwartz inequality
and Theorem 2.4, we have

∣∣∣∣ d
dt
φ(μt)

∣∣∣∣ =
∣∣∣∣
∫

Rn

〈∇f(ut(x))
ut(x)

+ ∇V (x), ṽt(x)
〉

dμt(x)
∣∣∣∣

=
∣∣∣∣
∫

Rn

〈G(x)A(x)
(∇f(ut(x))

ut(x)
+ ∇V (x)

)
, ṽt(x)〉dμt(x)

∣∣∣∣
≤
∥∥∥∥A∇f(ut)

ut
+A∇V

∥∥∥∥
L2

G(μt;Rn)

‖ṽt‖L2
G(μt;Rn) = g(μt)|μ′|(t)

which states that g is an upper gradient.
Now we prove that

g(μ) ≤ |∂φ|G(μ) ∀μ ∈ D(g). (3.29)

Let ξ ∈ C∞
c (Ω; Rn) be a regular vector field, where Ω := Int(D(V )), and let X(t, x) be the flow associated to ξ:

i.e. the unique solution of the Cauchy problem

Ẋ(t, x) = ξ(X(t, x)), X(0, x) = x, t ∈ R. (3.30)

Fixing μ ∈ D(g) we consider the curve μt := X(t, ·)#μ and we observe that for t sufficiently small μt ∈ D(φ).
Denoting, as usual, by μ = uL n and μt = utL n, we observe that ut ⇀ u weakly in L1(Ω) as t → 0 (indeed
μt narrowly converges to μ and the family {ut}t∈(−ε,ε) is equiintegrable). By the L1 weak convergence of ut

to u, the regularity of ξ and the ellipticity condition (1.3), the mapping t �→ ‖ξ‖2
L2

G(μt;Rn) is continuous at 0.
Consequently we have

lim
t↓0

1
t

∫ t

0

‖ξ‖2
L2

G(μs;Rn) ds = ‖ξ‖2
L2

G(μ;Rn) . (3.31)
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By the definition of WG, using the admissible plan (i(·), X(t, ·))#μ, where i denotes the identity map on Rn,
the definition of Riemannian distance d, and (3.31) we have

W 2
G(μ, μt) ≤

∫
Rn

d2(x,X(t, x)) dμ(x) ≤
∫

Rn

t

∫ t

0

〈G(X(s, x))Ẋ(s, x), Ẋ(s, x)〉ds dμ(x)

= t

∫
Rn

∫ t

0

〈G(X(s, x))ξ(X(s, x)), ξ(X(s, x))〉ds dμ(x) (3.32)

= t

∫ t

0

‖ξ‖2
L2

G(μs;Rn) ds = t2(‖ξ‖2
L2

G(μ;Rn) + o(t)).

The definition of |∂φ|G and (3.32) yield

|∂φ|G(μ) ≥ lim
t↓0

φ(μt) − φ(μ)
WG(μt, μ)

≥ 1
‖ξ‖L2

G(μ;Rn)

lim
t↓0

φ(μt) − φ(μ)
t

· (3.33)

In order to compute limt↓0
φ(μt)−φ(μ)

t we consider the decomposition φ(μ) = F (μ) + V (μ). By the regularity
of the flow X(t, ·), changing variable in the integral, for t sufficiently small we obtain

F (μt) − F (μ) =
∫

Rn

F

(
u(x)

det(∇(X(t, x)))

)
det(∇(X(t, x))) − F (u(x)) dx

=
∫

Rn

Ψ(u(x), det(∇(X(t, x)))) − Ψ(u(x), 1) dx,

where Ψ(z, s) := sF ( z
s ) is defined for z ∈ [0,+∞) and s ∈ (0,+∞). An elementary computation shows that

∂
∂sΨ(z, s) = −f( z

s ). Using the monotonicity of f , the doubling condition (1.8) and the inequality

F (w) ≤ wF ′(w) ≤ F (2w) − F (w),

for s > 1/2 we have

0 ≤ f
(z
s

)
≤ f(2z) = F ′(2z)2z − F (2z) ≤ F (4z)− 2F (2z) ≤ F (4z) − 4F (z)

≤ C(1 + 4F (z)) + 4F−(z).
(3.34)

Since det(∇(X(0, x))) = 1 and d
dt det(∇(X(t, x))) = div ξ(X(t, x)) det(∇(X(t, x))), and ξ has compact support,

by (3.34) we can pass to the limit

lim
t↓0

F (μt) − F (μ)
t

=
∫

Rn

d
dt

Ψ(u(x), det(∇(X(t, x))))|t=0
dx

= −
∫

Rn

f(u(x))
d
dt

det(∇(X(t, x)))|t=0
dx

= −
∫

Rn

f(u(x)) div ξ(x) dx (3.35)

=
∫

Rn

〈∇f(u(x)), ξ(x)〉dx.
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Moreover, since V is locally Lipschitz in Ω and ξ has compact support in Ω, we have

lim
t↓0

V (μt) − V (μ)
t

= lim
t↓0

1
t

∫
Rn

(V (X(t, x)) − V (x))u(x) dx

=
∫

Rn

〈∇V (x), ξ(x)〉u(x) dx. (3.36)

Finally (3.35), (3.36) and (3.33) yield

|∂φ|G(μ) ≥ 1
‖ξ‖L2

G(μ;Rn)

∫
Rn

〈∇f(u(x)) + ∇V (x)u(x), ξ(x)〉dx

=
1

‖ξ‖L2
G(μ;Rn)

∫
Rn

〈G(x)(A(x)
∇f(u(x))
u(x)

+A(x)∇V (x)), ξ(x)〉dμ(x).

By the density of C∞
c (Ω; Rn) in L2

G(μ; Rn) (recall that the support of μ is contained in Ω) and duality formula
for the norm in L2

G(μ; Rn) we obtain (3.29).
Now we prove that g is lower semi continuous with respect to the narrow convergence in bounded sublevel

sets of φ. Precisely we prove that:

μn → μ narrowly, sup
m,n

WG(μm, μn) < +∞, sup
n
φ(μn) < +∞ =⇒ lim inf

n→∞ g(μn) ≥ g(μ). (3.37)

Setting
l := lim inf

n
g(μn),

it is not restrictive to assume (if necessary extracting a subsequence) that

sup
n
g(μn) < +∞, lim

n
g(μn) = l < +∞, (3.38)

since the case l = +∞ is obvious.
Denoting by wnun := A

1
2 (∇f(un) + ∇V un) we can write g(μn) =

∫
Rn |wn|2 dμn. By (3.38) and the narrow

convergence of μn to μ, Theorem 5.4.4 of [5] states that there exists a vector field w ∈ L2(μ; Rn) such that, up
to extracting a subsequence,

lim
n

∫
Rn

〈ϕ,wn〉dμn =
∫

Rn

〈ϕ,w〉dμ ∀ϕ ∈ C0
c (Rn; Rn), (3.39)

and
lim inf

n

∫
Rn

|wn|2 dμn ≥
∫

Rn

|w|2 dμ. (3.40)

We must only prove that

A
1
2 (x)(∇f(u(x)) + ∇V (x)u(x)) = w(x)u(x) for L n-a.e. x ∈ Rn. (3.41)

Since supn F (μn) < +∞, supnWG(μn, μ) < +∞ and F is superlinear, by weak compactness in L1(Ω) we have
that un ⇀ u weakly in L1(Ω). Since ∇V is locally bounded in Ω we have

lim
n

∫
Rn

〈ϕ,A 1
2∇V (x)〉un(x) dx =

∫
Rn

〈ϕ,A 1
2∇V (x)〉u(x) dx ∀ϕ ∈ C0

c (Ω; Rn). (3.42)

Now we show that the sequence f(un) is bounded in BVloc(Rn), i.e., for every Ω̃ ⊂⊂ Rn the sequence f(un)|Ω̃
is bounded in BV (Ω̃).
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The convexity of F yields f(u) ≤ F (2u) − 2F (u), and using the doubling condition (1.8), we obtain that
f(un) is bounded in L1

loc(R
n). Moreover

∫
Rn

|∇f(un(x))| dx =
∫

Rn

∣∣∣∣∇f(un(x))
un(x)

∣∣∣∣un(x) dx ≤
(∫

Rn

∣∣∣∣∇f(un(x))
un(x)

∣∣∣∣
2

un(x) dx

) 1
2

(3.43)

which is bounded by (3.38) and (1.3).
By compactness in BVloc(Rn) (see Thm. 3.23 of [4]) there exists a function L ∈ BVloc(Rn) such that, up to

considering a subsequence, f(un) → L in L1
loc(R

n). Again, up to considering a subsequence, we can suppose
that f(un(x)) → L(x) for L n-a.e. x ∈ Rn.

The monotonicity of the mapping z �→ f(z) and a truncation argument yield that L(x) = f(u(x)) for L n-a.e.
x ∈ Rn. Then for every ϕ ∈ C0

c (Rn; Rn) we have (see for instance Prop. 3.13 of [4])

lim
n

∫
Rn

〈ϕ,∇f(un)〉dx =
∫

Rn

〈ϕ,∇f(u)〉dx. (3.44)

Since for every measurable subset B ⊂ Rn we have

∫
B

|∇f(un(x))| dx =
∫

B

∣∣∣∣∣∇f(un(x))√
un(x)

∣∣∣∣∣
√
un(x) dx

≤
(∫

B

|∇f(un(x))|2
un(x)

dx

) 1
2 (∫

B

un(x) dx
) 1

2

the equintegrability of {un} (recall that un is L1 weakly convergent) and the bound (3.38) imply the equin-
tegrability of {∇f(un)}. Then the convergence of ∇f(un) is also weak in L1, and the symmetry of A implies
that

lim
n

∫
Rn

〈ϕ,A 1
2∇f(un)〉dx =

∫
Rn

〈ϕ,A 1
2∇f(u)〉dx ∀ϕ ∈ C0

c (Rn; Rn). (3.45)

Taking into account (3.39), (3.42) and (3.45) we deduce (3.41).
The inequality (3.11) is a consequence of the definition (3.10) of |∂−φ|G, the property (3.37) and the inequal-

ity (3.29). �
Proof of Theorem 1.3. The proof follows by the analogous result for the case A = I Theorem 2.1 of [11] (or
Lem. 2.4.13 of [5]) and the ellipticity condition (1.3) on A. The existence and uniqueness of the stationary
state μ∞ is exactly the same for the case A = I and follows by the geodesically strict convexity of φ on P2(Rn

I )
(see e.g. [11,25]).

By the ellipticity of A, (3.2) and the definition of g, we have

g(μ)2 =
∫

Rn

〈A
(∇f(u)

u
+ ∇V

)
,
∇f(u)
u

+ ∇V 〉dμ ≥ λ

∫
Rn

∣∣∣∣∇f(u)
u

+ ∇V
∣∣∣∣
2

dμ = λ|∂φ|2I(μ). (3.46)

Since by Theorem 2.1 of [11] we have

|∂φ|2I(μ) ≥ 2α(φ(μ) − φ(μ∞)) ∀μ ∈ D(φ),

(1.58) follows from (3.46).
Let t �→ μt be the curve given from Theorem 1.1. It is a consequence of (3.26) that t �→ φ(μt) is locally

absolutely continuous and
d
dt
φ(μt) = −g2(μt) for L 1-a.e. t ∈ (0,+∞). (3.47)
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Now (1.59) is a consequence of (1.58), (3.47) and Gronwall’s Lemma.
Again for Theorem 2.1 of [11], we have that

WI(μ, μ∞) ≤
√

2
α

(φ(μ) − φ(μ∞)) ∀μ ∈ D(φ)

and (1.60) follows by (1.59) and the inequality

WG(μ, ν) ≤
√
λ−1WI(μ, ν). �

Proof of Theorem 1.5. Applying Lemma 4.3.4 of [5] we obtain that the map t �→ WI(μ1
t , μ

2
t ) is absolutely

continuous and

d
dt
W 2

I (μ1
t , μ

2
t ) ≤

∂

∂s
W 2

I (μ1
s, μ

2
t )|s=t +

∂

∂s
W 2

I (μ1
t , μ

2
s)|s=t for L 1-a.e. t ∈ (0,+∞). (3.48)

Moreover we recall that (see Prop. 8.4.7 and Rem. 8.4.8 of [5]) for any absolutely continuous curve μt in P2(Rn)
and any measure σ ∈ P2(Rn), and for a Borel vector field vt such that

∫ T

0

∫
Rn |vt(x)|2 dμt(x) dt < +∞ for

every T > 0 and (μt,vt) satisfies the continuity equation, we have

d
dt
W 2

I (μt, σ) = 2
∫

Rn×Rn

〈x− y,vt(x)〉dγ(x, y) ∀γ ∈ Γo(μt, σ) for L 1-a.e. t ∈ (0,+∞), (3.49)

where Γo(μt, σ) denotes the subset of Γ(μt, σ) consisting of minimizers in (1.34) in the case A = I.
We denote by r : Rn → Rn the optimal transport map for the euclidean quadratic cost |x − y|2 from μ1

t to
μ2

t and we recall that r#μ1
t = μ2

t , r is μ1
t -a.e. differentiable and det(∇r(x)) > 0 for μ1

t -a.e. x ∈ Rn and there
exists a μ1

t negligible set N such that r is strictly monotone on Rn \N . We also recall that r is μ1
t -essentially

injective and the optimal transport map from μ2
t to μ1

t is the inverse function r−1 (for all these properties see
Sect. 6.2 of [5]).

Since u1 and u2 are weak solutions given by Theorem 1.1 of the equation (1.1) with f(u) = u, by (1.47)
ui

t ∈W 1,1(Rn), i = 1, 2 and

∫ T

0

∫
Rn

(∣∣∣∣∇ui
t(x)

ui
t(x)

∣∣∣∣
2

+ |∇V (x)|2
)
ui

t(x) dxdt < +∞

for every T > 0, i = 1, 2. Then we can apply (3.49) with γ = (i, r)#μ1
t and vt(x) = −a(x)∇u1

t (x)

u1
t (x)

− a(x)∇V (x)
obtaining that

∂

∂s
W 2

I (μ1
s, μ

2
t )|s=t = −2

∫
Rn

〈x− r(x), a(x)
∇u1

t (x)
u1

t (x)
+ a(x)∇V (x)〉u1

t (x) dx, (3.50)

and, similarly, with γ = (i, r−1)#μ2
t and vt(x) = −a(x)∇u2

t (x)

u2
t (x)

− a(x)∇V (x) obtaining that

∂

∂s
W 2

I (μ1
t , μ

2
s)|s=t = −2

∫
Rn

〈y − r−1(y), a(y)
∇u2

t (y)
u2

t (y)
+ a(y)∇V (y)〉u2

t (y) dy. (3.51)

Then by (3.48), (3.50) and (3.51)

d
dt
W 2

I (μ1
t , μ

2
t ) ≤ −2

∫
Rn

〈x− r(x), a(x)∇u1
t (x)〉dx − 2

∫
Rn

〈y − r−1(y), a(y)∇u2
t (y)〉dy

− 2
∫

Rn

〈x− r(x), a(x)∇V (x)〉u1
t (x) dx − 2

∫
Rn

〈y − r−1(y), a(y)∇V (y)〉u2
t (y) dy.

(3.52)
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Since r#μ1
t = μ2

t , the second line of (3.52) can be written as

− 2
∫

Rn

〈x− r(x), a(x)∇V (x)〉u1
t (x) dx − 2

∫
Rn

〈y − r−1(y), a(y)∇V (y)〉u2
t (y) dy =

− 2
∫

Rn

〈x− r(x), a(x)∇V (x) − a(r(x))∇V (r(x))〉u1
t (x) dx.

(3.53)

The estimate of the first line of (3.52) requires a bit more work. Since u1
t and u2

t belong to W 1,1(Rn) and r
and r−1 are monotone and a ∈ C1(Rn), using a similar argument of the proof of Lemma 10.4.5 of [5], and a
truncation argument, the following weak formula of integration by parts holds (tr∇ is the absolutely continuous
part of the distributional divergence)

∫
Rn

〈a(x)(r(x) − x),∇u1
t (x)〉dx ≤ −

∫
Rn

tr∇(a(x)(r(x) − x))u1
t (x) dx, (3.54)

and similarly ∫
Rn

〈a(y)(r−1(y) − y),∇u2
t (y)〉dy ≤ −

∫
Rn

tr∇(a(y)(r−1(y) − y))u2
t (y) dy. (3.55)

Since

tr∇(a(x)(r(x) − x)) = 〈∇a(x), r(x) − x〉 + a(x) tr∇(r(x) − x)

= 〈∇a(x), r(x) − x〉 + a(x)(tr∇r(x) − n),

by (3.54), (3.55) and r#μ1
t = μ2

t we have

− 2
∫

Rn

〈x− r(x), a(x)∇u1
t (x)〉dx − 2

∫
Rn

〈y − r−1(y), a(y)∇u2
t (y) dy

≤ 2
∫

Rn

(〈x − r(x),∇a(x)〉 + (n− tr∇r(x))a(x))u1
t (x) dx

+ 2
∫

Rn

(〈y − r−1(y),∇a(y)〉 + (n− tr(∇r(r−1(y)))−1)a(y))u2
t (y) dy

= 2
∫

Rn

(〈x − r(x),∇a(x)〉 + (n− tr∇r(x))a(x))u1
t (x) dx

+ 2
∫

Rn

(〈r(x) − x,∇a(r(x))〉 + (n− tr(∇r(x))−1)a(r(x)))u1
t (x) dx

= 2
∫

Rn

〈x − r(x),∇a(x) −∇a(r(x))〉u1
t (x) dx

+ 2
∫

Rn

(na(x) + na(r(x)) − a(x) tr∇r(x) − a(r(x)) tr(∇r(x))−1)u1
t (x) dx.

(3.56)

Since all the eigenvalues λi(x) of ∇r(x) are strictly positive, we easily obtain

−a(x) tr∇r(x) − a(r(x)) tr(∇r(x)−1) = −
n∑

i=1

(a(x)λi(x) + a(r(x))(λi(x))−1)

≤ −2n
√
a(x)

√
a(r(x))



NONLINEAR DIFFUSION EQUATIONS IN WASSERSTEIN SPACES 739

and then by (3.56)

− 2
∫

Rn

〈x− r(x), a(x)∇u1
t (x)〉dx − 2

∫
Rn

〈y − r−1(y), a(y)∇u2
t (y)〉dy

≤ 2
∫

Rn

(〈x− r(x),∇a(x) −∇a(r(x))〉 + n
(√

a(x) −
√
a(r(x))

)2)
u1

t (x) dx.
(3.57)

Combining (3.52) with (3.53) and (3.57) and using the assumption (1.65) we obtain

d
dt
W 2

I (μ1
t , μ

2
t ) ≤ −2α

∫
Rn

|x− r(x)|2u1
t (x) dx = −2αW 2

I (μ1
t , μ

2
t )

and therefore
WI(μ1

t , μ
2
t ) ≤ e−αtWI(μ1

0, μ
2
0) ∀t ∈ (0,+∞). �
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