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A NOTE ON THE REGULARITY OF SOLUTIONS
OF HAMILTON-JACOBI EQUATIONS WITH SUPERLINEAR GROWTH

IN THE GRADIENT VARIABLE

Pierre Cardaliaguet1

Abstract. We investigate the regularity of solutions of first order Hamilton-Jacobi equation with
super linear growth in the gradient variable. We show that the solutions are locally Hölder continuous
with Hölder exponent depending only on the growth of the Hamiltonian. The proof relies on a reverse
Hölder inequality.
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1. Introduction

We investigate the regularity of solutions to the Hamilton-Jacobi equation{ −ut(x, t) + b(x, t)|Du(x, t)|q + f(x, t).Du(x, t) = 0 in R
N × (0, T )

u(x, T ) = g(x) for x ∈ R
N (1.1)

under the following assumptions:
q > 1, (1.2)

b : R
N × (0, T ) → R, f : R

N × (0, T ) → R
N and g : R

N → R

are continuous and bounded by some constant M,
(1.3)

b(x, t) ≥ δ > 0 ∀(x, t) ∈ R
N × (0, T ) (1.4)

for some δ > 0.
Regularity of solutions of Hamilton-Jacobi equations with superlinear growth have been the object of several

works (see in particular Lions [6], Barles [2], Rampazzo and Sartori [7]). Our aim is to show that u is locally
Hölder continuous with Hölder exponent and constant depending only M , δ, q and T . What is new compared
to the previous works is that the regularity does not depend on the smoothness of the maps b, f and g, but only
on the growth condition. The motivation for this is the homogenization of Hamilton-Jacobi equations, where
such estimates are needed. Here is our result.
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Theorem 1.1. There is some constant θ = θ(M, δ, q, T ) and, for any τ > 0, some constant Kτ = K(τ, M, δ, q, T )
such that, for any x0, x1 ∈ R

N , for any t0, t1 ∈ [0, T − τ ],

|u(x0, t0) − u(x1, t1)| ≤ Kτ

(
|x0 − x1|(θ−p)/(θ−1) + |t0 − t1|(θ−p)/θ

)
.

The proof of the result relies on the representation of the solution u of (1.1) as the value function of a problem
of calculus of variations (see [1,3]): Namely, setting p = q

q−1 , we have

u(x, t) = inf

(∫ T

t

a(x(s), s) |f(x(s), s) + x′(s)|p ds + g(x(T ))

)
(1.5)

where the infimum is taken over the set of functions x(·) ∈ W 1,p([t, T ], RN) such that x(t) = x and where

a(x, t) =
(

1
b(x, t)

)p−1 (
p−1/(p−1) − p−p/(p−1)

)p−1

.

From now on we work on the control representation of the solution u. To simplify the notations, we assume
without loss of generality that b is also bounded by M and satisfies

a(x, t) ≥ δ > 0 ∀(x, t) ∈ R
N × (0, T ).

The paper is organized as follows. In the first section, we use a kind of reverse Hölder inequality to prove
that the optimal solutions of (1.5) are in some sense slightly “more integrable” than what we could expect. In
the second step we show that this integrability implies the desired Hölder regularity for the value function. In
Appendix, we prove the reverse Hölder inequality.

2. Estimate of the optimal of the controlled system

The key remark of this section is Lemma 2.5 stating that optimal controls are “more integrable” than what
could be expected. This is proved through several steps and the use of a reverse Hölder inequality.

Lemma 2.1. There is a constant K ≥ 0 depending only on M, δ, p, T , such that, for any optimal solution x̄
of (1.5) starting from x0 at time t0, we have

∫ T

t0

|x̄′(s)|p ds ≤ K. (2.1)

Proof of Lemma 2.1. Comparing x̄ with the constant solution x̃(t) = x0 we get

∫ T

t0

a(x̄(s), s)|f(x̄(s), s) + x̄′(s)|p ds + g(x̄(T )) ≤
∫ T

t0

a(x0, s)|f(x0, s)|p ds + g(x0)

with
g(x0) − g(x̄(T )) ≤ 2M,∫ T

t0

a(x̄(s), s)|f(x̄(s), s) + x̄′(s)|p ds ≥ δ

∫ T

t0

|f(x̄(s), s) + x̄′(s)|p ds ≥ δ

2p−1

(∫ T

t0

|x̄′(s)|p ds − Mp(T − t0)

)

and ∫ T

t0

a(x0, s)|f(x0, s)|p ds ≤ Mp+1(T − t0).
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Whence the result with K = 2p−1(Mp+1T + 2M)/δ + MpT . �
Lemma 2.2. There are some constants A ≥ 1 and B ≥ 0 depending only on M, δ, p, T , such that, for any
optimal solution x̄ of (1.5) starting from x0 at time t0, we have

1
h

∫ t0+h

t0

|x̄′(s)|p ds ≤ A

(
1
h

∫ t0+h

t0

|x̄′(s)| ds

)p

+ B ∀h ∈ [0, T − t0]. (2.2)

Proof of Lemma 2.2. Let us fix h ∈ (0, T − t0) and let us define

x̃(t) =
{

x̄(t0+h)−x0
h (t − t0) + x0 if t ∈ [t0, t0 + h].

x̄(t) otherwise.

Since x̄ is optimal and x̃(T ) = x̄(T ) we have

∫ t0+h

t0

a(x̄(s), s)|f(x̄(s), s) + x̄′(s)|p ds ≤
∫ t0+h

t0

a(x̃(s), s)|f(x̃(s), s) + x̃′(s)|p ds.

Then we get the desired result by noticing that

∫ t0+h

t0

a(x̄(s), s)|f(x̄(s), s) + x̄′(s)|p ds ≥ δ

∫ t0+h

t0

|f(x̄(s), s) + x̄′(s)|p ds ≥ δ

2p−1

(∫ t0+h

t0

|x̄′(s)|p ds − Mph

)

and ∫ t0+h

t0

a(x̃(s), s)|f(x̃(s), s) + x̃′(s)|p ds ≤ M

∫ t0+h

t0

|f(x̃(s), s) + x̃′(s)|p ds

≤ 2p−1M(Mph +
∫ t0+h

t0

|(x̄(h) − x0)/h|p ds)

≤ 2p−1M(Mph + h1−p
( ∫ t0+h

t0

|x̄′(s)| ds
)p). �

In the following lemma we get rid of the constant B in (2.2). Assume that α ∈ Lp([t0, T ], R+) satisfies

1
h

∫ t0+h

t0

|α(s)|p ds ≤ A

(
1
h

∫ t0+h

t0

|α(s)| ds

)p

+ B ∀h ∈ [0, T − t0].

Let z(t) =
∫ t

t0

α(s) ds and

z1(s) = max

{
z(s),

(
B

A

)1/p

(s − t0)

}
∀s ∈ [t0, T ].

Set α1(t) = z′1(t). We note for later use that z1(t) ≥ z(t) on [t0, T ] and that, if z1(t) = z(t), then
∫ t

t0
(α1(s))p ds ≤∫ t

t0
(α(s))p ds. We claim:

Lemma 2.3.
1
h

∫ t0+h

t0

|α1(s)|p ds ≤ 2A

(
1
h

∫ t0+h

t0

|α1(s)| ds

)p

∀h ∈ [0, T − t0].
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Proof of Lemma 2.3. Let γ = (B/A)1/p. If z1(t0 + h) = z(t0 + h), then from the definition of z1 we have

B ≤ A(z(t0 + h)/h)p = A(z1(t0 + h)/h)p

and therefore∫ t0+h

t0

|α1(s)|p ds ≤
∫ t0+h

t0

|α(s)|p ds ≤ A

hp−1
(z(t0 + h))p + Bh ≤ 2A

hp−1
(z1(t0 + h))p.

If on the contrary z1(t0 + h) > z(t0 + h), then there is some h1 < h such that z1(t0 + h1) = z(t0 + h1) and
z1(s) = γ(s − t0) on [t0 + h1, t0 + h]. Then we have from the previous step

∫ t0+h

t0

|α1(s)|p ds =
∫ t0+h1

t0

|α1(s)|p ds +
∫ t0+h

t0+h1

|α1(s)|p ds

≤ 2A

hp−1
1

(z1(t0 + h1))p + (h − h1)γp

≤ 2Aγph1 + (h − h1)γp

≤ 2A

hp−1
(z1(t0 + h))p. �

Next we show – in a kind of reverse Hölder inequality – that if a map satisfies the inequality given by
Lemma 2.3, then it is “more integrable” than what we could expect. There are several results of this nature in
the literature since Gehring seminal work [5] (see for instance [4] and the references therein).

Lemma 2.4. Let A > 1 and p > 1. Then there are constants θ = θ(A, p) > p and C = C(A, p) > 0 such that,
for any α ∈ Lp(0, 1) such that

1
h

∫ h

0

|α(s)|p ds ≤ A

(
1
h

∫ h

0

|α(s)| ds

)p

∀h ∈ [0, 1], (2.3)

we have ∫ h

0

|α(s)| ds ≤ C‖α‖ph
1−1/θ ∀h ∈ [0, 1].

Moreover, the optimal choice of θ is such that γ = 1 − 1/θ is the smallest root of ϕ(s) = sp − A(1 − p + ps).

A possible proof of the lemma is the following: using Gehring’s result we can show that a map α satisfy-
ing (2.3) belongs in some Lr for some r > p with a Lr norm controlled by its Lp norm, and then use Hölder
inequality. We have chosen to present in Appendix a new and direct proof using a completely different approach.

Combining Lemmas 2.2, 2.3 and 2.4 we get:

Lemma 2.5. There are constants θ > p and C depending only on M, δ, p, T such that, for any x0 ∈ R
N and

any t0 < T , if x̄ is optimal for the initial position x0 at time t0, then

∫ t0+h

t0

|x̄′(s)| ds ≤ C(T − t0)1/θ−1/ph1−1/θ ∀h ∈ [t0, T ].

Proof of Lemma 2.5. Let x̄ be optimal for (x0, t0). From Lemma 2.2 we know that

1
h

∫ t0+h

t0

|x̄′(s)|p ds ≤ A

(
1
h

∫ t0+h

t0

|x̄′(s)| ds

)p

+ B ∀h ∈ [0, T − t0]
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for some constants A, B depending only on M, δ, T and p. Setting α(t) = |x̄′(t)|, z(t) =
∫ t

t0
α(s) ds, z1(t) =

max{z(t), (B/A)1/p (t − t0)} and α1(t) = z′1(t), we have from Lemma 2.3:

1
h

∫ t0+h

t0

(α1(s))p ds ≤ 2A

(
1
h

∫ t0+h

t0

α1(s) ds

)p

∀h ∈ [0, T − t0].

Applying Lemma 2.4 to the constants p and 2A and with a proper scaling, we get that there exists θ > p and C2

depending only on M, δ, T and p such that

∫ t0+h

t0

|x̄′(s)| ds ≤
∫ t0+h

t0

α1(s) ds ≤ (T − t0)
1
θ − 1

p C2‖α1‖p h1−1/θ

where we can estimate ‖α1‖Lp([t0,T ]) as follows: Let

t̄ = max{t ∈ [t0, T ] | z1(t) = z(t)}.

Then ∫ T

t0

αp
1(s) ds =

∫ t̄

t0

αp
1(s) ds +

∫ T

t̄

(
B

A

)p

ds ≤
∫ t̄

t0

αp(s) ds +
(

B

A

)p

(T − t̄)

where, from Lemma 2.1, we have ∫ t̄

t0

αp(s) ds ≤ K.

Therefore ‖α1‖p ≤ C3, where C3 = C3(M, δ, p, T ) and the proof is complete. �

3. Regularity of the value function

We are now ready to prove Theorem 1.1.

Space regularity. Let x0, x1 ∈ R
N , t0 < T . We assume that

|x1 − x0| ≤ C
(1 − p/θ)

p − 1
(T − t0)1−1/p ∧ 1, (3.1)

where C and θ are the constants which appear in Lemma 2.5. We claim that

u(x1, t0) − u(x0, t0) ≤ K1(T − t0)−(p−1)(θ−p)/(p(θ−1))|x1 − x0|(θ−p)/(θ−1) (3.2)

where K1 = K1(M, p, T, δ).
Indeed, let x̄ be an optimal trajectory for (x0, t0). For h ∈ (0, T − t0) let

x̃(t) =
{

x̄(t0+h)−x1
h (t − t0) + x1 if t ∈ [t0, t0 + h]

x̄(t) otherwise.

From Lemma 2.5 we have

|x̄(t0 + h) − x0| ≤
∫ t0+h

t0

|x̄′(s)| ds ≤ C(T − t0)1/θ−1/ph1−1/θ.
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Therefore, since x̃(T ) = x̄(T ), we have

u(x1, t0) ≤
∫ T

t0

a(x̃(s), s)|f(x̃(s), s) + x̃′(s)|p ds + g(x̃(T ))

≤ u(x0, t0) +
∫ t0+h

t0

a(x̃(s), s)|f(x̃(s), s) + x̃′(s)|p ds

≤ u(x0, t0) + M2p−1(Mph + h1−p|x̄(t0 + h) − x1|p)
≤ u(x0, t0) + M2p−1(Mph + h1−p(|x̄(t0 + h) − x0| + |x0 − x1|)p)

≤ u(x0, t0) + M2p−1(Mph + h1−p(C0h
1−1/θ + |x0 − x1|)p)

where we have set C0 = C(T − t0)1/θ−1/p. Choosing

h =
(

1
C0

p − 1
1 − p/θ

|x0 − x1|
)θ/(θ−1)

we have h ≤ (T − t0) (from assumption (3.1)) and therefore

u(x1, t0) − u(x0, t0) ≤ K ′
1(T − t0)−(θ−p)(p−1)/(p(θ−1))|x1 − x0|(θ−p)/(θ−1)

where K ′
1 = K ′

1(M, δ, p, T ). Whence (3.2).

Time regularity. Let x0 be fixed and t0 < t1 < T − τ . We assume that

t1 − t0 ≤ K3τ
(2θp−p−θ)/(p(θ−1)) (3.3)

for some constant K3 = K3(M, δ, p, T ) to be fixed later, where θ is given by Lemma 2.5. We claim that

|u(x0, t0) − u(x0, t1)| ≤ K2τ
−(θ−p)/θ(t1 − t0)(θ−p)/θ

for some constant K2 = K2(M, δ, p, T ).
Indeed, let x̄ be optimal for (x0, t1). Then setting

x̃(t) =
{

x0 if t ∈ [t0, t1]
x̄(t) otherwise

we have
u(x0, t0) ≤ ∫ t1

t0
a(x0, s)|f(x0, s)|p ds + u(x0, t1)

≤ Mp+1|t1 − t0| + u(x0, t1)
which gives the desired inequality provided K2 is sufficiently large.

To get a reverse inequality, let x̄ be now optimal for (x0, t0). Using Lemma 2.5 we have that

|x̄(t1) − x0| ≤ ∫ t1
t0

|x̄′(s)| ds ≤ C(T − t0)1/θ−1/p(t1 − t0)1−1/θ

≤ C (1−p/θ)
p−1 (T − t1)1−1/p ∧ 1

(3.4)

from the choice of t1 − t0 in (3.3) and K3 sufficiently small. Note that we have

u(x̄(t1), t1) ≤ u(x0, t0) −
∫ t1

t0

a(x̄(s), s)|f(x̄(s), s) + x̄′(s)|p ds ≤ u(x0, t0).
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Hence, using the space regularity of u (recall that (3.4) holds) we get

u(x0, t1) ≤ u(x0, t1) − u(x̄(t1), t1) + u(x0, t0)

≤ u(x0, t0) + K1C(T − t1)−(p−1)(θ−p)/(p(θ−1))|x̄(t1) − x0|(θ−p)/(θ−1)

≤ u(x0, t0) + K2τ
−(θ−p)/θ(t1 − t0)(θ−p)/θ.

4. Appendix: Proof of Lemma 2.4

We note later use that the map ϕ(s) = sp − A(1 − p + ps) has two roots, the smallest one – denoted by γ –
belonging to the interval (1 − 1/p, A1/(p−1)), the other one being larger than A1/(p−1). Moreover, if ϕ(s) ≤ 0,
then s ≥ γ.

Let
E = {α ∈ Lp(0, 1), α ≥ 0, α satisfies (2.3) and ‖α‖p ≤ 1} .

We note that E is convex, closed and bounded in Lp(0, 1). Therefore the problem

ξ(τ) = max
{∫ τ

0

α(s) ds, α ∈ E
}

has a unique maximum denoted ᾱτ for any τ ∈ (0, 1] (uniqueness comes from the fact that inequality (2.3) is
positively homogeneous, which entails that at the optimum inequality ‖α‖p ≤ 1 is an equality).

In order to prove the lemma, we only need to show that

ξ(τ) ≤ Cτγ ∀τ ∈ [0, 1] (4.1)

for a suitable choice of C, because again inequality (2.3) is positively homogeneous in α.

The proof of (4.1) is achieved in two steps. In the first one, we explain the structure of the optima. Then we
deduce from this that ξ satisfies a differential equation, which gives the desired bound.

Structure of the optima. We claim that there is some τ̄ > 0 such that for any τ ∈ (0, τ̄ ),

ᾱτ (t) =

⎧⎨
⎩

aτ on [0, τ)
bτ on [τ, τ1)
A−1/pγtγ−1 on [τ1, 1]

where 0 < bτ ≤ aτ and τ < τ1 < 1.

Proof of the claim. Let x̄τ (t) =
∫ t

0 ᾱτ (s) ds. To show that ᾱτ is constant on [0, τ), we introduce the map
α(s) = x̄τ (τ)

τ on [0, τ), α = ᾱτ otherwise. Then α belongs to E and is also optimal. Hence α = ᾱτ , which shows
that ᾱτ is constant on [0, τ).

With similar arguments we can prove that, if there is a strict inequality in (2.3) for ᾱτ at some h ≥ τ , then ᾱτ

is locally constant in a neighbourhood of h in [τ, 1]. In particular, since ᾱτ is constant on [0, τ), inequality (2.3)
is strict for ᾱτ at τ , and there is a maximal interval [τ, τ1) on which ᾱτ is constant. We set aτ = ᾱτ (0+) and
bτ = ᾱτ (τ+).

In order to show that aτ ≥ bτ , we prove that

the map t → x̄τ (t)/t is nonincreasing. (4.2)

Indeed, let t > 0 be fixed and x(s) = max{x̄τ (s), x̄τ (t)
t s} if s ∈ [0, t] and x = x̄τ otherwise. Let us check that x′

is admissible and optimal. Let I ⊂ (0, t) be the open set {x > x̄τ}. We can write I as the (at most) enumerable
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union of disjoint intervals (ci, di). Since x is affine on each interval (ci, di) with x(ci) = x̄(ci) and x(di) = x̄(di)
we have ∫ di

ci

|x′|p ≤
∫ di

ci

|x̄′
τ |p ∀i. (4.3)

Since x′ = x̄τ a.e. in [0, 1]\I, we get ‖x′‖p ≤ ‖x̄′
τ‖p = 1. Moreover, for any h > 0 such that x(h) = x̄τ (h), (4.3)

and the admissibility of x̄′
τ also give

1
h

∫ h

0

|x′|p ≤ 1
h

∫ h

0

|x̄′
τ |p ≤ A

(
1
h

x̄τ (h)
)p

= A

(
1
h

x(h)
)p

.

If x(h) > x̄τ (h), let h1 = max{s ≤ h | x(s) = x̄τ (s)}. Then x(s) = x̄τ (t)
t s on [h1, h] and so

1
h

∫ h

0
|x′|p = 1

h

∫ h1

0
|x′|p + 1

h

∫ h

h1
|x′|p

≤ Ah1
h

(
1
h1

x(h1)
)p

+ 1
h (h − h1)

(
x̄τ(t)

t

)p

≤ Ah1
h

(
x̄τ (t)

t

)p

+ A 1
h (h − h1)

(
x̄τ (t)

t

)p

≤ A
(

x̄τ (t)
t

)p

= A
(

1
hx(h)

)p
.

So x′ is admissible. Since x(τ) ≥ x̄τ (τ), x is also optimal. So x = x̄τ and (4.2) is proved.
Note that (4.2) implies that aτ ≥ bτ and

sx̄′
τ (s)

x̄τ (s)
≤ 1 < A1/(p−1) for a.e. s ∈ [0, 1]. (4.4)

Let us now assume that τ1 < 1. To prove that ᾱτ (s) = A−1/pγsγ−1 on [τ1, 1], we show that there is an
equality in (2.3) for ᾱτ on [τ1, 1]. Indeed, otherwise, ᾱτ is constant on some maximal interval (u, v) with
τ1 ≤ u < v ≤ 1. We note that equality holds in (2.3) at u because ᾱτ is not locally constant at this point.
Taking the derivative with respect to h in (2.3) at u we get

(ᾱτ (u+))p ≤ − (p − 1)A
up

(x̄τ (u))p +
pA

up−1
(x̄τ (u))p−1ᾱτ (u+),

i.e., (
uᾱτ (u+)
x̄τ (u)

)p

− A

(
1 − p + p

uᾱτ (u+)
x̄τ (u)

)
≤ 0.

From the analysis of ϕ, this implies that

ᾱτ (u+) ≥ γ
x̄τ (u)

u
·

Let us define

x(s) = x̄τ (s) on [0, u], x(s) =
x̄τ (u)

uγ
sγ on [u, v], x(s) =

x(v−)
x̄τ (v)

x̄τ (s) on [v, 1]

and α = x′. Since α(u+) = γ x̄τ (u)
u ≤ ᾱτ (u+), one easily checks that x ≤ x̄τ and α ≤ ᾱτ on [0, 1]. Moreover, a

straightforward verification shows that x satisfies (2.3). Hence x is also optimal, which is impossible. So there
is an equality in (2.3) for ᾱτ on [τ1, 1]. Taking the derivative in this equality shows that ᾱτ solves

ᾱp
τ (s) = − pA

sp−1
(x̄τ (s))p +

A

sp
(x̄τ (s))p−1ᾱτ (s) on [τ1, 1].
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From (4.4) and the analysis of ϕ, this implies that x̄′
τ (s) = γ x̄τ (s)

s on [τ1, 1]. Hence x̄τ (s) = Csγ for some
constant C. Since there is an equality in (2.3) at h = 1 and since ‖ᾱτ‖p = 1, 1 = A(x̄τ (1))p and therefore
C = A−1/p.

Finally we have to show that τ1 < 1 for any τ ∈ (0, τ̄). Indeed, assume otherwise that τ1 = 1 for arbitrary
small τ . Since x(t) = A−1/ptγ is admissible, we have aτ τ ≥ A−1/pτγ . Hence aτ → +∞ as τ → 0+. Moreover
the constraint ‖ᾱτ‖p = 1 implies that bτ is bounded when τ → 0+. Hence, for any k large, we can find τ > 0
such that aτ > kbτ . Writing inequality (2.3) at h = kτ then gives

ap
ττ ≤ A

(1 + k)p−1τp−1
(aτ τ + bτkτ)p ≤ A

(1 + k)p−1τp−1
(2aττ)p =

2pA

(1 + k)p−1
ap

ττ

whence a contradiction since k is arbitrarily large.

A differential equation for ξ. To complete the proof of (4.1), we are going to show that ξ is locally Lipschitz
continuous and satisfies

(−τ)ξ′(τ) + γξ(τ) = 0 for a.e. τ ∈ (0, τ̄). (4.5)

From this (4.1) follows easily for a suitable choice of C.

Proof of (4.5). Let us extend the optimal solutions by A−1/pγsγ−1 on [1, +∞) for τ ∈ (0, τ̄). For λ > 0, let

αλτ (s) = ᾱτ (λs) s ≥ 0.

Then αλτ satisfies (2.3) and

‖αλτ‖p = λ−1/p

(
1 +

∫ λ

1

ᾱp
τ

)1/p

.

Hence αλτ/‖αλτ‖p is admissible and

ξ
( τ

λ

)
≥
∫ τ/λ

0
αλτ

‖αλτ‖p
=

λ1/p−1ξ(τ)(
1 +

∫ λ

1 ᾱp
τ

)1/p
(4.6)

with an equality for λ = 1. In particular, this shows that ξ is locally Lipschitz continuous in (0, 1]. Moreover, at
each point τ at which ξ has a derivative, we have, by taking the derivative with respect to λ at λ = 1 in (4.6):

(−τ)ξ′(τ) = (1/p− 1)ξ(τ) − ξ(τ)
p

ᾱp
τ (1) = ξ(τ)(1/p − 1 − Aγp/p) = −γξ(τ)

on (0, τ̄ ). Whence (4.5). �

Acknowledgements. We wish to thank Guy Barles for useful discussions. This work was partially supported by the ANR
(Agence Nationale de la Recherche) through MICA project (ANR-06-BLAN-0082).



376 P. CARDALIAGUET

References

[1] M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser
(1996).

[2] G. Barles, Regularity results for first order Hamilton-Jacobi equations. Differ. Integral Equ. 3 (1990) 103–125.
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