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INTERIOR SPHERE PROPERTY FOR LEVEL SETS OF THE VALUE
FUNCTION OF AN EXIT TIME PROBLEM

Marco Castelpietra1

Abstract. We consider an optimal control problem for a system of the form ẋ = f(x, u), with
a running cost L. We prove an interior sphere property for the level sets of the corresponding value
function V . From such a property we obtain a semiconcavity result for V , as well as perimeter estimates
for the attainable sets of a symmetric control system.
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1. Introduction

Fix a closed set K, the target, and consider a control system of the form{
ẏ(t) = f(y(t), u(t)) u(t) ∈ U ⊆ R

m

y(0) = x,
(1.1)

and a cost functional J(t, x, u) =
∫ t

0 L(y(t′), u(t′)) dt′. The exit time for a trajectory yx,u(t) is τ(x, u) = min{t �
0 : yx,u(t) ∈ K}. We shall be concerned with the optimal control problem, which consists in minimizing, for a
given x ∈ R

n, the cost J(τ(x, u), x, u) over all the controls u. The value function of such a problem is

VK(x) = inf
u(·)

J(τ(x, u), x, u).

In this paper we are interested to study the regularity of VK and its level sets. Some standard assumptions
allow to recover Lipschitz continuity (see [5]). If we consider a trivial running cost L ≡ 1, the value function
turns out to be the minimum time function TK(x) = infu(·) τ(x, u). If the target K is regular, and if the
control system satisfies the Petrov condition, then TK turns out to be semiconcave (see for instance [4]). This
semiconcavity result was also extended to the value function in the case of nonconstant L (see [6]). Cannarsa
and Frankowska (in [3]) prove the local semiconcavity of TK also in the case of non regular target K. They
observe that the level sets of the minimum time function are related with the attainable sets from K in time t,
i.e. A(K, t) = {yx,u(t) : x ∈ K, u(·) control}, for a suitable choice of f . They prove the Interior Sphere Property
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of these sets, and they apply this property to the level sets of TK. So they obtain a local semiconcavity
result, using a Petrov type condition. Still considering non regular target K, Sinestrari (in [8]) proves local
semiconcavity of VK for nonconstant L. The proof uses a direct approach to the problem, and does not involve
the analysis of regularity properties of the level sets.

We study the attainable sets, in the problem with a non trivial running cost. So, for general closed target K,
we recover an Interior Sphere Property for the level sets of VK, and, under Petrov’s condition, local semiconcavity
follows. To obtain regularity results for the level sets of VK, we turn our attention to a suitable time optimal
problem, for which the minimum time function turns out to be equal to the value function VK of the original
problem. We use a natural correspondence between the trajectories of system (1.1) and the trajectories of the
system with dynamics f̄(x, u) = f(x, u)/L(x, u). The above correspondence is obtained by a rescaling of the
time, and preserves the images of the arcs. So a discussion of regularity of L allows to obtain the Interior
Sphere Property for the level sets of VK. Moreover we show an application of the Interior Sphere Property to
the analysis of the perimeters of the level sets of the value function. For the attainable sets in time t the problem
was studied by Alvarez, Cardaliaguet and Monneau (in [1]), and by Cannarsa and Cardaliaguet (in [2]). We
show that, for a system of the form ẏ = f(y)u, the above results can be extended to the case of a nonconstant L.

This paper is structured as follows. Section 2 is devoted to notations, definitions, basic results and assump-
tions. In Section 3, we study the equivalence between a control systems with running cost L and a control
system with a trivial running cost. In Section 4 we analyse the assumptions that we need to obtain the Interior
Sphere Property (using the above equivalence result). Finally, in Sections 5 and 6 we apply these results to the
semiconcavity of the value function V and to the growth estimates for perimeters.

2. Preliminaries

We denote by 〈·, ·〉 the Euclidean scalar product in R
n, and by | · | its norm. For any x ∈ R

n and any r > 0, we
set B(x, r) = {y ∈ R

n : |y − x| < r}, or equivalently Br(x). We also use the abbreviations B(r) = Br = B(0, r)
and B = B(1) (so x+ rB = Br(x)).

For any subset S ⊆ R
n, we denote by S its closure, ∂S the boundary, and Sc = R

n\S the complement.
If S is a measurable set, we indicate with |S| its Lebesgue measure in R

n. And we denote by Hk(S) the
Hausdorff measure of dimension k. For details on the Hausdorff measure, see for instance [7].

We denote by dS the distance function from S, defined as

dS(x) = inf
y∈S

|x− y| x ∈ R
n,

and by bS the signed distance from S, that is

bS(x) = dS(x) − dSc(x).

The contingent cone to S at a point x ∈ S is

TS(x) =
{
v ∈ R

n : lim inf
v↘0

dS(x+ tv)
t

= 0
}
.

The normal cone to S at a point x ∈ S is

NS(x) = {p ∈ R
n : 〈p, v〉 � 0, ∀v ∈ TS(x)} .

The projection of x onto S is the set

πS(x) = {y ∈ S : |x− y| = dS(x)}.
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For simplicity, when the projection is unique, we shall identify a point y with the singleton {y}. Hence πS(x) = y
or πS(x) = {y} will mean the same.

Let us recall the definition of Interior Sphere Property and semiconcavity, which are the regularity properties
we will investigate in the following sections.

Definition 2.1. Let S be closed and r > 0. We say that S has the Interior Sphere Property (or ISP) of radius r
at a point x ∈ ∂S if x belongs to some closed ball yx + rB ⊆ S. We say that S has the (uniform) Interior
Sphere Property of radius r (or r-ISP) if S has the ISP of radius r at every point x ∈ ∂S.

Definition 2.2. A continuous function ϕ : Ω → R, with Ω ⊆ R
n, is called semiconcave if there exists C > 0

such that

ϕ(x+ h) + ϕ(x− h) − 2ϕ(x) � C|h|2,
for all x ∈ Ω, and for all h ∈ R

n such that [x−h, x+h] ⊆ Ω. The constant C is called a semiconcavity constant
for ϕ in Ω. We call SCloc(Ω) the class of the functions which are semiconcave on all compact subsets of Ω.

Remark 2.3. A function ϕ is semiconcave if and only if the function x 	→ ϕ(x) − C|x|2 is concave. Any
semiconcave function in Ω is also locally Lipschitz continuous in Ω, since so are concave functions. �

For more details on Interior Sphere Property and semiconcavity (and their links) we refer the reader to [5].
Now let us describe the system we will study, with the assumption under which we consider it.

2.1. Description of the system and basic assumptions

Let a compact set U ⊂ R
m, m � 1, and a map f : R

n × U → R
n be given. We define the set

F (x) := f(x, U)

of the admissible velocities at a point x ∈ R
n. For any point x ∈ R

n, T > 0, and any measurable function
u : [0, T ] → U , we consider the equation

{
ẏ(t) = f(y(t), u(t)), a.e. t � 0
y(0) = x.

(2.1)

The measurable function u(t) is called an admissible control. Assume that

f is continuous and ∃L0 > 0 such that f(·, u) is Lipschitz
continuous on R

n of rank L0 for every u ∈ U.
(2.2)

Then, for any fixed x and u(·), the Cauchy problem (2.1) has a unique solution in [0, T ], that we call

y(t;x, u) = yx,u(t).

We are interested in studying the set of the points that we can reach by a trajectory of (2.1). Let K ⊆ R
n

be a closed set.

Definition 2.4. For any t � 0, the attainable set from K at time t is

A(K, t) =
{
y(t;x, u) : x ∈ K, u ∈ L1([0, t], U)

}
.

If F (x) is convex for every x ∈ R
n then the set A(K, t) is closed for any t � 0.
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Remark 2.5. Owing to assumption (2.2), for any x ∈ R
n and for any T > 0 there exists Rx,T > 0 such that

y(t;x, u) ∈ x+Rx,TB ∀t ∈ [0, T ]

for any admissible control u. The application (x, T ) 	→ Rx,T can be supposed to be continuous. Vice versa, for
any z ∈ R

n and for any T > 0 there exists R̂z,T such that, if z = y(t;x, u) with t ∈ [0, T ], then x ∈ z + R̂z,TB.
Moreover, if supK×U |f(x, u)| < +∞, then for any T > 0 there exists RT > 0 such that

A(K, t) ⊆ K +RTB ∀t ∈ [0, T ].

Let L : R
n × U → R (running cost) be a continuous function and let J be the cost functional

J(t, x, u) =
∫ t

0

L(yx,u(t′), u(t′)) dt′.

On the running cost L we assume that there exists a number k0 ∈ R such that

L(x, u) � k0 > 0 ∀x ∈ R
n, ∀u ∈ U. (2.3)

In the problem with nonconstant L, we also define the set that is the generalization of the attainable set in
time t.

Definition 2.6. Let K ⊆ R
n be a closed set, and λ � 0. The attainable set from K with cost λ is

AL(K, λ) =
{
yx,u(t) : J(t, x, u) = λ, for some t � 0, x ∈ K, u ∈ L1([0, t], U)

}
.

The attainable set in time t, A(K, t), depends only on f (and K); whereas the attainable set with cost λ,
AL(K, λ), depends also on the running cost L. We are interested in these two sets because A(K, t) and AL(K, λ)
are related with the level sets of, respectively, the minimum time function TK and the value function VK. In
Section 5 we will give more details about this relation.

The properties of the set A(K, t) are well-known (see for instance [3]), therefore we are interested in the
regularity properties of the set AL(K, λ). So, we will assume:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) F (x) is convex for every x ∈ R
n;

(ii) for any compact set X ⊂ R
n, there exists a number

rX > 0 such that F (x) has the Interior Sphere Property
of radius rX for every x ∈ X ;

(iii) f(·, u) is differentiable for every u ∈ U, and for any
compact set X ⊂ R

n, there exists L1(X ) > 0 such that,
for any x, y ∈ X ,
||fx(x, u) − fx(y, u)|| � L1(X )|x − y| ∀u ∈ U ;

(2.4)

where fx denotes the Jacobian matrix of f(x, u) with respect to x. We say that assumption (2.4) holds globally
if r ≡ rX and L1 ≡ L1(X ) are independent of the compact set X .

2.2. Preliminary results

In view of our assumptions, we have some immediate consequence. In the following proposition, the Lipschitz
regularity of f yields an estimate for the distance between the sets of admissible velocities F (x); from the Interior
Sphere Property of the sets F (x), we can deduce a Lipschitz constant for ∇bF (x).
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Proposition 2.7. Assume that (2.2), (2.4)(i) and (2.4)(ii) are satisfied, let X ⊂ R
n be a compact set and let

x, y ∈ X . Then
(a) for all v ∈ ∂F (x), |bF (y)(v)| � L0|x− y|;

(b) on ∂F (x) + rX
2 B, the map v 	→ bF (x)(v) is C1,1, and

|∇bF (x)(v) −∇bF (x)(v′)| � 2
rX

|v − v′| ∀v, v′ ∈ ∂F (x) +
rX
2
B.

For the proof we refer the reader to Proposition 3.1 of [3]. These results, that are useful to study the regularity
of the attainable set in time t, can also be helpful when we consider a nontrivial running cost.

Cannarsa and Frankowska, in [3], proved the ISP for the sets A(K, t) using assumptions (2.2) and (2.4) and
a regularity hypothesis on F (x) described in the following.

Definition 2.8. Let X ⊆ R
n be a closed set. We say that x � ∂F (x) is a Lipschitz boundary map on X if

there exist r0 ∈ (0, rX
2L0

] and C0 � 0 such that

|∇bF (y)(v) −∇bF (x)(v)| � C0|x− y| (2.5)

for all x ∈ X , all y ∈ B(x, r0), and all v ∈ ∂F (x). If the property holds true for X = R
n we say, simply, that

x� ∂F (x) is a Lipschitz boundary map.

As usual, we will say that x � ∂F (x) is a locally Lipschitz boundary map if the property holds on any
compact set of R

n. In Section 4 we will give a sufficient condition to ensure that (2.5) is satisfied, but for a
more exhaustive exposition we refer the reader to [3].

Theorem 2.9 (Th. 3.8 of [3]). Let K ⊆ R
n be a closed set. Assume that (2.2) and (2.4) hold globally. Suppose

that
|f(x, u)| � H ∀(x, u) ∈ K × U (2.6)

for some constant H > 0. If x � ∂F (x) is a Lipschitz boundary map, then for any T0 > 0 there exists ρ > 0
such that, for all T ∈ (0, T0), A(K, T ) has the ISP of radius ρT .

3. An equivalence result

In this section we consider a control system of the form (2.1) and a cost J(t, x, u). We show that this is
equivalent to study another control system with running cost L ≡ 1, that is J(t, x, u) = t.

Let us consider the control system⎧⎨
⎩

d
dt
y(t) = f(y(t), u(t)), u(·) is an admissible control

y(0) = ζ ∈ K.
(3.1)

We want to investigate the properties of the attainable set AL(K, λ), where λ is the cost λ = J(t, ζ, u) :=∫ t

0
L(yζ,u(t′), u(t′)) dt′. Define the set of the related control pairs

S(ζ) := {(yζ , u) : yζ(·) = yζ,u(·) is solution to (3.1)}.

Now we define another control system, for which we consider the attainable set in time s. Recall that L is
bounded from below by k0 > 0, and consider the dynamics

f̄(x, u) :=
1

L(x, u)
f(x, u)
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with the control system

⎧⎨
⎩

d
ds
x(s) = f̄(x(s), v(s)), v(·) is an admissible control

x(0) = ζ ∈ K.
(3.2)

For this control system we consider the “cost” J(s, ζ, v) := s. We also define the set of control pairs

S(ζ) := {(xζ , v) : xζ(·) = xζ,v(·) is solution to (3.2)}.

Furthermore, we set

S(K) :=
⋃
ζ∈K

S(ζ), S(K) :=
⋃
ζ∈K

S(ζ).

For simplicity we start analyzing the simplest case K = {0} (then y(0) = x(0) = 0). We will use the notations

yu(t) := y0,u(t), A(t) := A({0}, t), AL(t) := AL({0}, t), J(t, u) := J(t, 0, u),

and S := S(0).
We want to show that system (3.1) is “equivalent” to system (3.2). That is, each trajectory of (3.1) is also a

trajectory of (3.2) (up to a change of parameter). At this aim we define a one to one correspondence ϕ : S → S
as follows. Fix (y, u) ∈ S. Then y = yu is a solution of (3.1) on some interval [0, τ ]. Define the change of
parameter hy : [0, τ ] → R as

s = hy(t) :=
∫ t

0

L(y(t′), u(t′)) dt′. (3.3)

As L is positive, hy(t) is strictly increasing, then there exists the inverse function h−1
y (s). So the pair of functions

ϕ(y, u) := (y ◦ h−1
y , u ◦ h−1

y ) (3.4)

is defined on the interval [0, hy(τ)].
Once ϕ(y, u) is defined, it remains to show if ϕ(y, u) ∈ S and if the application ϕ is invertible. This is the

target of the following proposition.

Proposition 3.1. Let K = {0}. Assume (2.2) and (2.3). Then there exists a one to one correspondence
ϕ : S → S.

Proof. Let ϕ be the application defined by (3.3) and (3.4). We split the proof in three steps.

Step 1. (y, u) ∈ S =⇒ ϕ(y, u) ∈ S.
Let (y, u) a control pair of (3.1) in [0, τ ], and let (x, v) := ϕ(y, u). For any s ∈ [0, hy(τ)] we have that

x(s) = y(h−1
y (s)), and v(s) = u(h−1

y (s)). This is equivalent to write

x(hy(t)) = y(t), v(hy(t)) = u(t).

Since (y, u) ∈ S, we have that, for any t ∈ [0, τ ],

f(y(t), u(t)) =
d
dt
y(t) =

d
dt
x(hy(t)) =

d
ds
x(hy(t)) · d

dt
hy(t)

=
d
ds
x(hy(t)) · L(y(t), u(t)),
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and then

d
ds
x(hy(t)) =

1
L(y(t), u(t))

f(y(t), u(t)) = f̄(y(t), u(t))

= f̄(x(hy(t)), v(hy(t))).

It follows that, for every s ∈ [0, hy(τ)],
d
ds
x(s) = f̄(x(s), v(s)).

Moreover, by definition, x(0) = y(h−1
y (0)) = y(0). Therefore ϕ(y, u) ∈ S.

Step 2. Define an application ψ : S → S.
We define ψ in analogous way to ϕ, but with a different change of parameter. Let (x, v) a control pair of (3.2)

in [0, σ]. Define gx : [0, σ] → R as

t = gx(s) :=
∫ s

0

1
L(x(s′), v(s′))

ds′.

The definition of gx is well posed, and it is well defined the inverse g−1
x . If we set

ψ(x, v) := (x ◦ g−1
x , v ◦ g−1

x )

and we argue in the same way of the previous step, we find that ψ(x, v) ∈ S for any (x, v) ∈ S (and ψ is well
defined).

Step 3. ψ = ϕ−1.
Fix (y0, u0) ∈ S and let (x0, v0) = ϕ(y0, u0) via the function h0, and (y1, u1) = ψ(x0, v0) via the function g0.
To conclude this step we have to check that (y0, u0) = (y1, u1). We recall that, by hypothesis,

y0(t) = x0(h0(t)) and u0(t) = v0(h0(t))

y1(t) = x0(g−1
0 (t)) and u1(t) = v0(g−1

0 (t)).

It follows that, if h0 = g−1
0 , we conclude the proof. Now, for any t � 0,

t =
∫ t

0

dt′ =
∫ h0(t)

0

dh−1
0 (s′)
ds′

ds′ =
∫ h0(t)

0

1
d

dt′h0(h−1
0 (s′))

ds′

=
∫ h0(t)

0

1
L(y0(h−1

0 (s′)), u0(h−1
0 (s′)))

ds′ =
∫ h0(t)

0

1
L(x0(s′), v0(s′))

ds′

= g0(h0(t)),

and, by invertibility of g0 and h0, we have that h0 = g−1
0 . �

Once we have a one to one correspondence between S and S, it would be useful to see how do ϕ and ψ affect
the cost J and J . The following proposition shows that the cost is an invariant for this correspondence.

Proposition 3.2. Assume (2.2) and (2.3). Let hy and ϕ be the applications defined, respectively, in (3.3) and
(3.4). For any (y, u) ∈ S and for any t � 0 we have that

J(t, u) = J(hy(t), ϕ2(y, u)),

where ϕ2(·) is the second component of ϕ(·).
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Proof. Consider (x, v) = ϕ(y, u) and call s = hy(t). By definition of hy and J , we have that

J(s, v) = s = hy(t) =
∫ t

0

L(y(τ), u(τ)) dτ = J(t, u), (3.5)

and this concludes the proof. �
It follows that AL(λ) = A(λ), where AL(λ) is the attainable set with cost λ for system (3.1), and A(λ) is

the attainable set at time λ for system (3.2). Indeed, from Propositions 3.1 and 3.2, we have that

AL(λ) = {yu(t) : J(t, u) = λ, for some t � 0, u admissible control}
= {xv(λ) : v admissible control}
= A(λ).

It is clear that this equality is independent from the starting point. Hence the result holds true even if we
consider the system starting from a closed set K ⊆ R

n.

Corollary 3.3. Let K ⊆ R
n be a closed set and λ > 0. Assume (2.2) and (2.3). Let AL(K, λ) be the attainable

set with cost λ for system (3.1), and A(K, λ) the attainable set in time λ for system (3.2). Then

AL(K, λ) = A(K, λ).

4. Interior Sphere Property

In this section we consider control system (2.1) and we show that, under suitable assumptions on L, the
set AL(K, λ) has the Interior Sphere Property. In view of Corollary 3.3 we can use some known result for the
attainable set in time t for system (3.2). If f̄(x, u) = 1

L(x,u)f(x, u) satisfies the assumptions of Theorem 2.9, we
obtain an Interior Sphere Property for AL(K, λ). At this aim we will consider a more restrictive running cost

L : R
n → R,

since it is very difficult to obtain the regularity properties needed for f̄ , even if L(x, ·) is very regular.
In the following we give an example of a control system with a running cost L that is very simple (and regular

w.r.t. u) for which AL(K, λ) fails to have the ISP, whereas the set A(K, t) has this property for any t > 0.

Example 4.1. Let n = m = 2 and u0 = (2, 0) ∈ R
2. Consider the sets

K = {(0, ξ) ∈ R
2 : ξ ∈ [−1, 1]}, U = u0 +B,

and define the functions f and L as

f(x, u) = u, L(x, u) = |u|.
Then the function L(x, ·) is very regular on U (even convex), the dynamics f̄(x, u) = u/|u| is well defined and
its set of the admissible velocities is the arc F (x) = {(cosα, sinα) : α ∈ [−π

6 ,
π
6 ]} for any x ∈ R

2 (see Fig. 1).
So f̄ satisfies assumptions (2.2) and (2.4)(iii), and F (x) is closed, but it is not convex nor it has the ISP

(assumptions (2.4)(i-ii) are not satisfied). In fact, for any t � 0, the attainable set A(K, t) fails to have the
ISP (and in view of Cor. 3.3, the set AL(K, λ) fails too, for any λ � 0). On the other hand, f satisfies all the
assumptions of Theorem 2.9, and A(K, t) has the ISP for any t > 0. Indeed, define the continuous function
g : R × R → R,

g(ξ, t) =

⎧⎪⎨
⎪⎩

√
t2 − (|ξ| − 1)2 ξ ∈ [−1 − t

2 ,−1] ∪ [1, 1 + t
2 ],

t ξ ∈ [−1, 1],√
3

2 t elsewhere.
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Figure 1. The admissible velocities.
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Figure 2. The attainable set.

Then, for any t � 0, the attainable set in time t for f̄ ,

A(K, t) =

{
(x1, x2) ∈ R

2 : −1 − t

2
� x2 � 1 +

t

2
,

√
3

2
t � x1 � g(x2, t)

}
,

has “bad” corners for the ISP at the points Pt = (
√

3
2 t, 1 + t

2 ) and P ′
t = (

√
3

2 t,−1 − t
2 ), whereas the attainable

set in time t for f ,
A(K, t) =

⋃
ξ∈[−1,1]

Bt((2t, ξ)),

has the ISP of radius t (see Fig. 2). �
In order to make f̄ satisfying assumptions of Theorem 2.9, on L, in addition to assumption (2.3), we will

assume that
L ∈ C1,1

loc(R
n). (4.1)

Remark 4.2. Suppose that K is compact. For any fixed time T0 > 0 and for any λ0 > 0, if Assumptions (2.2),
(2.3), (2.4) and (4.1) hold true, then the set A(K, T )∪AL(K, λ) is contained in a compact set for all T ∈ [0, T0]
and for all λ ∈ [0, λ0] (in view of Rem. 2.5), and we can assume that there exist constants such that, for any x, y
and for all u ∈ U , ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|f(x, u)| � M ;
||fx(x, u) − fx(y, u)|| � L1|x− y|;

L(x) � M ;
|L(x) − L(y)| � L2|x− y|;

|Lx(x) − Lx(y)| � L3|x− y|.

(4.2)

So, the dynamics f̄ satisfies assumptions (2.2), (2.4) and (2.6). The same simplifying assumptions can be made
if our analysis is restricted to a compact set X . �
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We have left to find hypothesis guaranteeing that x � ∂F (x) is a Lipschitz boundary map. But it is very
easy, because it is a direct consequence of the same property for the original map F (x).

Proposition 4.3. Let X ⊂ R
n be a compact set. Assume that (2.2), (2.3), (2.4) and (4.1) hold true. If

x� ∂F (x) is a Lipschitz boundary map on X , then x� ∂F (x) is a Lipschitz boundary map on X .

Remark 4.4. With stronger assumptions, a global Lipschitz regularity can be obtained for x � ∂F (x) as
well as the local result in the above proposition. That is, if the simplifying assumptions (4.2) hold true for
any x, y ∈ R

n and if x � ∂F (x) is a Lipschitz boundary map on R
n, then x � ∂F (x) also is a Lipschitz

boundary map on R
n. �

Proof of Proposition 4.3. We want to find C0 and r̄1 such that

|∇bF (y)(v̄x) −∇bF (x)(v̄x)| � C0|x− y| ∀v̄x ∈ ∂F (x), ∀y ∈ B(x, r̄1).

Observe that ∇bF (x)(v̄x) = ∇bF (x)(vx), where vx := L(x)v̄x ∈ ∂F (x). In fact ∇bF (x)(v̄x) is the only unit
vector ν such that

〈ν, v̄ − v̄x〉 � 0 ∀v̄ ∈ F (x).
This implies that L(x)〈ν, v̄ − v̄x〉 = 〈ν, L(x)(v̄ − v̄x)〉 � 0 for all v̄ ∈ F (x). Since F (x) =

{
L(x)v̄ : v̄ ∈ F (x)

}
,

we have that ν is the only unit vector such that 〈ν, v − vx〉 � 0 for all v ∈ F (x), and then ν = ∇bF (x)(vx).
Furthermore ∇bF (y)(v̄x) = ∇bF (y)

(
π∂F (y)(v̄x)

)
= ∇bF (y)(v̄y), where

v̄y := π∂F (y)(v̄x) ∈ ∂F (y).

Note that, again, we have ∇bF (y)(v̄y) = ∇bF (y)(vy), where vy := L(y)v̄y. Thus

|∇bF (y)(v̄x) −∇bF (x)(v̄x)| = |∇bF (y)(vy) −∇bF (x)(vx)|;

where we point out that we don’t know if vy is π∂F (y)(vx) (it is not the case, in general). Due to Proposition 2.7,
we have that

|∇bF (y)(vy) −∇bF (x)(vx)| � |∇bF (y)(vy) −∇bF (y)

(
π∂F (y)(vx)

) | + |∇bF (y)

(
π∂F (y)(vx)

) −∇F (x)(vx)|
= |∇bF (y)(vy) −∇bF (y)

(
π∂F (y)(vx)

) | + |∇bF (y)(vx) −∇bF (x)(vx)|
� 2
rX

|vy − π∂F (y)(vx)| + C0|x− y|.

Then we have to bound |vy −π∂F (y)(vx)| � |vy − vx|+ |vx −π∂F (y)(vx)|. But we know that, by Proposition 2.7,
|vx − π∂F (y)(vx)| = |bF (y)(vx)| � L0|x− y|. Moreover

|vy − vx| = |L(y)v̄y − L(x)v̄x|
� |L(y)v̄y − L(y)v̄x| + |L(y)v̄x − L(x)v̄x|
� L(y)|v̄y − v̄x| + |v̄(x)| · |L(y) − L(x)|
�

(
M L0 +

M

k0
L2

)
|x− y|,

where we used the constants of Remark 4.2, and L0 is the constant such that |f̄(x, u)− f̄(y, u)| � L0|x−y|. For
instance we can take L0 = ML0+ML2

k2
0

. And this concludes the proof, by taking C0 = 2
rX

(
M L0 + M

k0
L2 + L0

)
+

C0, and eventually by reducing r̄1 from r1 to rX
2L0M

. �

In this way we have already proved one of our main results.
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Theorem 4.5. Let K ⊆ R
n be a closed set. Assume that (2.2), (2.3), (2.4) and (4.1) hold true, and let

x� ∂F (x) be a locally Lipschitz boundary map. Then the following are true:

(i) for any λ > 0, AL(K, λ) has the ISP at any point of ∂AL(K, λ) (in general, not uniform);
(ii) for any compact set X ⊂ R

n, and for any λ0 > 0 there exists ρ = ρ(X , λ0) such that AL(K, λ) has the
ISP of radius ρλ at any point x ∈ ∂AL(K, λ) ∩ X , for all λ ∈ (0, λ0);

(iii) if K is a compact set, then for any λ0 > 0 there exists ρ = ρ(λ0) such that AL(K, λ) has the ISP of
radius ρλ for all λ ∈ (0, λ0);

(iv) if L ∈ C1,1(Rn), the functions |f |, |L| and |Lx| are globally bounded, (2.4) holds globally, and x� ∂F (x)
is a Lipschitz boundary map on R

n, then for any λ0 > 0 there exists ρ = ρ(λ0) such that A(K, λ) has
the ISP of radius ρλ for all λ ∈ (0, λ0).

Proof. Point (iv) follows from Theorem 2.9, Corollary 3.3 and Remark 4.4. Indeed, simplifying assumptions (4.2)
are satisfied on R

n, and f̄ satisfies assumptions of Theorem 2.9.
Point (iii) follows from Remark 4.2, since we can suppose simplifying assumptions (4.2). So, assumptions of

point (iv) are satisfied.
To prove point (ii), fix a number ρ0 > 0 and set X ′ := X + 2ρ0λ0B. Note that, for any λ ∈ [0, λ0], if

J(t, x, u) = λ, then t ∈ [0, λ0
k0

]. From Remark 2.5 there exists R̂ = R̂(X ′, λ0
k0

) such that, if yx,u(t) ∈ AL(K, λ)∩X ′

with J(t, x, u) = λ, then x ∈ K ∩ (X ′ + R̂B) =: K′. Since K′ is compact and AL(K, λ) ∩ X ′ ⊆ AL(K′, λ), the
conclusion follows from point (iii), possibly reducing ρ to ρ0.

Finally, point (i) is a direct consequence of point (ii). �

In Theorem 4.5, we need that x � F (x) is a locally Lipschitz boundary map. In view of Proposition 4.3,
it suffices to have the same regularity for F . Then we propose a sufficient condition to obtain this Lipschitz
regularity for F (and then for F ).

Proposition 4.6. Let X ⊂ R
n be a compact set. Assume that (2.2), (2.3), (2.4) and (4.1) hold true. Suppose

that there exists C2 � 0 such that, for all (x, u) ∈ X × U satisfying f(x, u) ∈ ∂F (x) + r
2B,

∣∣[fx(x, u′) − fx(x, u)]∗∇bF (x)(f(x, u))
∣∣ � C2 |f(x, u′) − f(x, u)| ∀u′ ∈ U.

Then x� ∂F (x) is a Lipschitz boundary map on X .

For the proof, we refer the reader to Proposition 3.9 of [3].

5. Application to value function

We still consider a control system of the form (2.1), i.e.

{
ẏ(t) = f(y(t), u(t)), a.e. t � 0
y(0) = x.

But we look at the system from another point of view. In the previous sections, we were interested to study
the trajectories starting from a point x in the set K. In this section we consider the trajectories starting from
a generic point x ∈ R

n, and we want to minimize the time (or cost) to arrive at the set K.
Let K ⊆ R

n a closed set, called target. And let x ∈ R
n be a point, u(·) a control. We consider the transfer

time to K
τK(x, u) = inf{t � 0 : y(t;x, u) ∈ K},

where we set τK(x, u) := +∞ if y(t;x, u) /∈ K for all t � 0. The minimum time function is TK(x) =
infu(·) τK(x, u).
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Let L : R
n → R be the running cost, and consider the cost functional

J(x, u) =
∫ τ(x,u)

0

L(y(t;x, u)) dt,

and the value function
VK(x) = inf

u(·)
J(x, u).

We call the level sets of VK, controllable set to K with cost � λ,

C(K, λ) = {x ∈ R
n : VK(x) � λ} .

Moreover C(K) = {x ∈ R
n : VK(x) < +∞} is the controllable set to K.

Remark 5.1. In this set-up, we can take advantage of results of Section 4. If we consider a control sys-
tem starting from the set K, and with dynamics f̂ = −f , we have that the associated attainable set with
cost λ, ÂL(K, λ), has an interesting relation with the controllable set C(K, λ). In fact, in general we have that
ÂL(K, λ) ⊆ C(K, λ), and, in particular,

∂C(K, λ) ⊆ ∂ÂL(K, λ).

Proof. Suppose that x0 ∈ ∂C(K, λ). In view of continuity of VK, we have that VK(x0) = λ. Then x0 ∈ ÂL(K, λ).
Moreover, x0 cannot be in the interior of ÂL(K, λ). Otherwise there is a ball Bρ(x0) ⊆ ÂL(K, λ), i.e. for
any x ∈ Bρ(x0), we have that VK(x) � λ. Then Bρ(x0) ⊆ C(K, λ), and this contradicts x0 ∈ ∂C(K, λ). �

Proposition 5.2. Assume that (2.2), (2.3), (2.4) and (4.1) are satisfied, and that x � ∂F (x) is a locally
Lipschitz boundary map. Then we have the following:

(i) the level sets of the value function VK have the Interior Sphere Property at any point (in general, not
uniform);

(ii) for any compact set X ⊂ R
n and for any λ > 0, there exists ρ = ρ(X , λ) such that the level set of VK,

i.e. C(K, λ), has the Interior Sphere Property of radius ρ for all x ∈ ∂C(K, λ) ∩ X .

Remark 5.3. Note that, for the level sets of VK, a uniform ISP can be obtained with stronger assumptions, as
well as the ISP of the attainable sets in Theorem 4.5. �

Proof of Proposition 5.2. Take a point x ∈ ∂C(K, λ). In view of Remark 5.1, x ∈ ∂ÂL(K, λ). By Theorem 4.5(i)
there exist yx ∈ ÂL(K, λ) and ρ > 0 such that

x ∈ Bρ(yx) ⊆ ÂL(K, λ).

Again, Remark 5.1 implies that Bρ(yx) ⊆ C(K, λ), and point (i) is proved. Moreover, from point (ii) of
Theorem 4.5 it follows that ρ is constant for x ∈ ∂C(K, λ) ∩ X . �

As in Section 3, we can emphasize the equivalence with a problem depending only on time. We can consider a
control system similar to (2.1), but with dynamics f̄(x, u) = 1

L(x)f(x, u). Then we have the associated transfer
time τ̄K(x, u), the functional cost

J(x, u) =
∫ τ̄K(x,u)

0

dt = τ̄K(x, u),

and the value function
V K(x) = inf

u(·)
J(x, u) = TK(x).

Finally we have the controllable set to K in time � t, C(K, t), and the controllable set to K, C(K).
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Proposition 5.4. Assume that (2.2) and (2.3) are satisfied. Then we have the following:
(i) J(x, u) = τ̄K(x, ϕ2(u));
(ii) VK(x) = TK(x);
(iii) C(K, λ) = C(K, λ) and C(K) = C(K);

where ϕ is the function defined in (3.4).

Proof. Set σ(x, u) =
∫ τK(x,u)

0 L(yx,u(t)) dt. In view of (3.5) we have that the trajectory ϕ1(yx,u) is defined
on [0, σ(x, u)], and

J(x, u) =
∫ τK(x,u)

0

L(yx,u(t)) dt = σ(x, u).

On the other hand, by construction,

yx,u([0, τK(x, u))) ∩ K = ∅ =⇒ ϕ1(yx,u)([0, σ(x, u))) ∩ K = ∅,

and ϕ1(yx,u)(σ(x, u)) = yx,u(τK(x, u)) ∈ K. Then

J(x, u) = σ(x, u) = τ̄K(x, ϕ2(u)).

Hence (i) is proved, and (ii) and (iii) follow obviously. �

We can apply these equivalence results to obtain regularity properties for the value function VK. For the
minimum time function TK it is possible to obtain local semiconcavity in C(K) \ K, provided that control
system (2.1) satisfies the Petrov condition

∃μ > 0 such that min
u∈U

〈f(x, u), p〉 < −μ|p|, ∀x ∈ ∂K, ∀p ∈ NK(x). (5.1)

In fact, jointly with the ISP of target K, condition (5.1) yields that TK ∈ SCloc(C(K) \ K) (see [4]). Moreover,
using Remark 5.1 and Proposition 5.2, it is possible to obtain semiconcavity of TK also in the case of more
general target K. An easy adaptation of Theorem 5.2 of [3] yields the following proposition.

Proposition 5.5. Suppose that assumptions (2.2), (2.4) and (5.1) are satisfied. If x � ∂F (x) is a locally
Lipschitz boundary map, then TK is locally semiconcave in C(K) \ K.

As an immediate consequence, due to Proposition 5.4, we have that VK is locally semiconcave in C(K) \ K.

Theorem 5.6. Suppose that assumptions (2.2), (2.3), (2.4), (4.1) and (5.1) are satisfied. If x � ∂F (x) is a
locally Lipschitz boundary map, then the value function VK is locally semiconcave in C(K) \ K.

Remark 5.7. We point out that Sinestrari [8], in a similar set-up, proves local semiconcavity for VK. He
proves local semiconcavity with a direct approach and, as a consequence, the ISP of the level set is obtained
(so, requesting controllability assumption (5.1)). On the contrary, this paper is focused on the Interior Sphere
Property of the attainable sets and of the level sets of VK (without assuming (5.1)), and the equivalence between
the minimum time TK and the value function VK.

However we want to emphasize some differences on the assumptions required to obtain semiconcavity for VK.
In particular, he requires a C1 regularity and a local semiconcavity for the running cost L, and a nondegeneracy
property for f , i.e.

‖fx(x, u′) − fx(x, u)‖ � C|f(x, u′) − f(x, u)|.
Note that, on the one hand, this nondegeneracy property is stronger than boundary Lipschitz continuity that we
require on the map x� ∂F (x) (even a little bit more than sufficient condition in Prop. 4.6). On the other hand
our assumption (4.1) on L is stronger than those in [8]. Indeed C1,1

loc regularity implies both local semiconcavity
and local semiconvexity. �
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6. Perimeter estimates

As an easy consequence of the previous sections and of the results in [2], we have perimeter estimates in the
case of some special control systems.

We restrict our attention to a control system of the form{
ẏ(t) = f(y(t))u(t), u(t) ∈ B

y(0) = x
(6.1)

with f : R
n → R

n×n, and K ⊂ R
n a nonempty compact set. In this section, with some extra assumption on f

and L, we show that the attainable set AL(K, λ) is a set of finite perimeter (in the sense of De Giorgi), and
that the growth of the perimeter is controlled by the cost λ.

For the reader’s convenience we briefly introduce the basic instruments, but for details we refer the reader
to [7].

Let I ⊆ R
n be an open set.

Definition 6.1. A function g ∈ L1(I) has bounded variation in I if

sup
{∫

I
g divϕ dx : ϕ ∈ C1

c(I,Rn), |ϕ| � 1
}
<∞.

Definition 6.2. A measurable set E ⊆ R
n has finite perimeter in I if the characteristic function χE has

bounded variation in I.

The total variation of g in I is

‖Dg‖(I) = sup
{∫

I
g divϕ dx : ϕ ∈ C1

c(I,Rn), |ϕ| � 1
}

;

and the perimeter of a measurable set E in I is given by P (E, I) := ‖DχE‖(I). Clearly, these definitions can
be easily extended to the Borel sets.

For sets of finite perimeter E, one can introduce the essential boundary ∂∗E, in which, for all point x, the unit
normal νE(x) coincides with the local integral average of the normals on the boundary. The measure theoretic
boundary ∂∗E is the set of points x ∈ R

n such that

lim sup
r→0+

|B(x, r) ∩ E|
rn

> 0 and lim sup
r→0+

|B(x, r) \ E|
rn

> 0.

And it is a known fact that
∂∗E ⊆ ∂∗E, Hn−1(∂∗E \ ∂∗E) = 0.

Finally, the perimeter of a set E in an open set I coincides with the restriction of Hn−1 to ∂∗E, calculated
on I. For instance, if E is a smooth, open subset of R

n,

P (E, I) = Hn−1(∂E ∩ I).

Since the attainable set in time t has the ISP, then A(K, t) is a set of finite perimeter (see [1]). Moreover we
have the following perimeter estimates (see [2]).

Proposition 6.3. Let be f ∈ C2(Rn; Rn×n), the matrix f(x) invertible for any x ∈ R
n, and let f and f−1 be

globally bounded. Then, for any T > 0 A(K, T ) has finite perimeter. Moreover there are constants c1 and c2
such that, for any t1, t2 with 0 < t1 < t2 � T , we have

Hn−1(∂∗A(K, t2)) � C
(
t2
t1

)c2

ec1(t2−t1)Hn−1(∂∗A(K, t1)).
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In the same way of the Section 4, we can take advantage of this result for the sets AL(K, λ). At this aim we
have to find the assumptions on f(·) and L(·) that provides the assumptions of this proposition. Then we need
that: ⎧⎨

⎩
(i) f, L are of class C2

(ii) f is invertible
(iii) f, f−1, L are bounded, and L(x) � k > 0 for all x ∈ R

n.
(6.2)

Hence, in view of Corollary 3.3 and Proposition 6.3, we have perimeter estimates also for the attainable sets
with cost λ.

Proposition 6.4. Assume (6.2). Then, for any Λ > 0, there are constants c1, c2 such that for any 0 < λ1 <
λ2 � Λ

Hn−1(∂∗AL(K, λ2)) � C
(
λ2

λ1

)c2

ec1(λ2−λ1)Hn−1(∂∗AL(K, λ1)).
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