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Abstract. In this paper, we prove the global null controllability of the linear heat equation completed
with linear Fourier boundary conditions of the form ∂y

∂n
+ β y = 0. We consider distributed controls

with support in a small set and nonregular coefficients β = β(x, t). For the proof of null controllability,
a crucial tool will be a new Carleman estimate for the weak solutions of the classical heat equation
with nonhomogeneous Neumann boundary conditions.
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1. Introduction

Let Ω ⊂ IRN be a bounded connected open set whose boundary ∂Ω is regular enough (N ≥ 1). Let ω ⊂ Ω
be a (small) nonempty open subset and let T > 0. We will use the notation Q = Ω× (0, T ) and Σ = ∂Ω× (0, T )
and we will denote by n(x) the outward unit normal to Ω at x ∈ ∂Ω. On the other hand, we will denote by C,
C1 , C2 , . . . generic positive constants (usually depending on Ω and ω).

We will consider the linear heat equation with linear Fourier (or Robin) conditions⎧⎪⎪⎨⎪⎪⎩
yt − ∆y +B(x, t) · ∇y + a(x, t) y = v(x, t)1ω in Q,
∂y

∂n
+ β(x, t) y = 0 on Σ,

y(x, 0) = y0(x) in Ω.

(1)

Here, it will be assumed that the coefficients a, B and β satisfy

a ∈ L∞(Q), B ∈ L∞(Q)N , β ∈ L∞(Σ). (2)
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On the other hand, we suppose that v ∈ L2(ω × (0, T )), 1ω is the characteristic function of ω and y0 ∈ L2(Ω).
In (1), y = y(x, t) is the state and v = v(x, t) is the control. It is assumed that we can act on the system only
through ω × (0, T ).

An illustrative interpretation of the data and variables in (1) is the following. The function y can be viewed
as the relative temperature of a body (with respect to the exterior surrounding air). The parabolic equation
in (1) means, among other things, that a heat source v1ω acts on a part of the body. On the boundary, − ∂y

∂n
must be viewed as the normal heat flux, directed inwards, up to a positive coefficient. Thus, the equality

− ∂y

∂n
= β y

means that this flux is a linear function of the temperature. Thus, it is reasonable to suppose that β ≥ 0
(although this assumption will not be imposed in this paper).

The main goal of this paper is to analyze the controllability properties of (1). It will be said that this system
is null controllable at time T if, for each y0 ∈ L2(Ω), there exists v ∈ L2(ω × (0, T )) such that the associated
solution satisfies

y(x, T ) = 0 in Ω. (3)
The null controllability of linear parabolic equations has been intensively studied these last years; see for
instance [1, 4, 5, 7, 8].

In this paper, we will be concerned with (1), where the main difficulties arise from the particular form of the
boundary condition. Indeed, it has been shown in [2, 5] that this is more difficult to analyze than the case of
Dirichlet boundary conditions, considered in [4, 5, 7].

More precisely, what has been proved until now is that (1) is null controllable with B ≡ 0 under the
assumptions (2) whenever βt ∈ L∞(Σ). This was shown in [5]. However, it would be important to prove the
null controllability of (1) without this regularity hypothesis on βt in view of applications to control systems
with nonlinear boundary conditions.

The first main result in this paper concerns a Carleman inequality for a general (adjoint) system of the form⎧⎪⎨⎪⎩
−ϕt − ∆ϕ = f1(x, t) + ∇ · f2(x, t) in Q,

(∇ϕ+ f2(x, t)) · n = f3(x, t) on Σ,

ϕ(x, T ) = ϕ0(x) in Ω,

(4)

where f1 ∈ L2(Q), f2 ∈ L2(Q)N and f3 ∈ L2(Σ). Observe that, as long as ϕ ∈ L2(Q), ∇ϕ+f2 ∈ L2(Q)N and ∇·
(∇ϕ+f2) ∈ H−1(0, T ;L2(Ω)), we can give a sense to the boundary condition in the spaceH−1(0, T ;H−1/2(∂Ω)).

We present now this result:

Theorem 1. Under the previous assumptions on f1 , f2 and f3 , there exist λ, σ1, σ2 and C, only depending
on Ω and ω, such that, for any λ ≥ λ, any s ≥ s = σ1(eσ2λ T + T 2) and any ϕ0 ∈ L2(Ω), the weak solution
to (4) satisfies∫∫

Q

e−2sα(s λ2ξ |∇ϕ|2 + s3 λ4 ξ3 |ϕ|2)dxdt + s2λ3

∫∫
Σ

e−2sα ξ2 |ϕ|2 dσ dt

≤ C

(∫∫
Q

e−2sα(|f1|2 + s2 λ2 ξ2 |f2|2)dxdt

+sλ
∫∫

Σ

e−2sα ξ |f3|2 dσ dt+ s3λ4

∫∫
ω×(0,T )

e−2sα ξ3 |ϕ|2 dxdt

)
. (5)

Here, α = α(x, t) and ξ = ξ(x, t) are appropriate positive functions, again only depending on Ω and ω. They
are given below; see (13)–(14).
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As a consequence of Theorem 1, we can deduce an observability inequality for the adjoint system associated
to (1). More precisely, let us consider the backward in time system⎧⎪⎨⎪⎩

−ϕt − ∆ϕ−∇ · (ϕB(x, t)) + a(x, t)ϕ = 0 in Q,
(∇ϕ+ ϕB(x, t)) · n+ β(x, t)ϕ = 0 on Σ,
ϕ(x, T ) = ϕ0(x) in Ω,

(6)

where ϕ0 ∈ L2(Ω). It will be seen that, for some K of the form

K = eC(1+ 1
T +‖a‖2/3

∞ +‖B‖2
∞+‖β‖2

∞), (7)

the solutions of (6) satisfy ∫∫
Ω×(T/4,3T/4)

|ϕ|2 dxdt ≤ K

∫∫
ω×(0,T )

|ϕ|2 dxdt. (8)

Remark 1. In fact, (8) is not the unique way of saying that (6) is observable. It is indeed more frequent to
use other inequalities of the form

‖ϕ(·, 0)‖2
L2(Ω) ≤ C

∫∫
ω×(0,T )

|ϕ|2 dxdt (9)

for some C. The estimates (9) can be easily deduced from (8) and the energy inequalities satisfied by ϕ.

The second main result in this paper concerns the null controllability of (1). It is the following:

Theorem 2. Let us assume that (2) is satisfied. Then, for each T > 0, (1) is null controllable at time T with
controls v ∈ L2(ω × (0, T )). Moreover, one can find v such that

‖v‖L2(ω×(0,T )) ≤ H ‖y0‖L2 , (10)

with a constant H of the form

H = eC(1+ 1
T +‖a‖2/3

∞ +‖B‖2
∞+‖β‖2

∞+T (‖a‖∞+‖B‖2
∞+‖β‖2

∞)) (11)

for some C = C(Ω, ω).

In the proof of Theorem 2, the main tool is the estimate (8). This arises from a general principle that
asserts that the null controllability of (1) with controls in L2(ω × (0, T )) (depending continuously on the data)
is equivalent to the observability of (6). More details will be given below.

In a second part of this work, which will appear in a forthcoming paper, we will consider controllability
questions for semilinear heat equations completed with nonlinear Fourier boundary conditions of the form

∂y

∂n
+ f(y) = 0 on Σ,

where f : IR �→ IR is locally Lipschitz-continuous. For the analysis of these systems, Theorems 1 and 2 of the
present paper will be crucial.

The rest of this paper is organized as follows. Section 2 is devoted to the proof of Theorem 1. In Section 3,
we deduce the observability inequality (8) and we prove Theorem 2. For completeness, we have included an
Appendix, where we give a detailed proof of the standard Carleman estimate for the solutions of the heat
equation with homogeneous Neumann boundary conditions. (this estimate was already proved in [5]; however,
in this paper, a careful study of the dependence of the constants on s, λ and T is needed).
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2. Proof of Theorem 1

The main arguments used below are similar to those in [6]. This is related to a general strategy which is
used to relax the regularity assumptions on the various coefficients involved in the problem. Here, it will allow
us to proceed without any kind of regularity on the coefficient β = β(x, t).

Let us recall the definition of a weak solution: we say that ϕ is a weak solution to (4) if it satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ ∈ L2(0, T ;H1(Ω)) ∩ C0([0, T ];L2(Ω)),

−〈ϕt, v〉(H1(Ω))′,H1(Ω) +
∫

Ω

∇ϕ · ∇v dx =
∫

Ω

f1(x, t) v dx

−
∫

Ω

f2(x, t) · ∇v dx+
∫

∂Ω

f3(x, t) v dσ

a.e. in (0, T ), ∀v ∈ H1(Ω),

ϕ(x, T ) = ϕ0(x) in Ω.

(12)

It is well known that, for f1 ∈ L2(Q), f2 ∈ L2(Q)N , f3 ∈ L2(Σ) and ϕ0 ∈ L2(Ω), (4) possesses exactly one weak
solution ϕ.

To prove the Carleman inequality (5), we will need two weight functions:

ξ(x, t) =
eλη0(x)

t(T − t)
, α(x, t) =

e2λ‖η0‖∞ − eλη0(x)

t(T − t)
· (13)

Here, λ ≥ 1 is a parameter to be chosen below and η0 = η0(x) is a function satisfying

η0 ∈ C2(Ω), η0(x) > 0 in Ω, η0(x) = 0 on ∂Ω,
|∇η0(x)| > 0 in Ω \ ω′,

(14)

where ω′ ⊂⊂ ω is a nonempty open set. The existence of η0 satisfying (14) is proved in [5].
For the proof of Theorem 1, we will need an auxiliary result: a Carleman inequality for the solutions to the

heat equation with homogeneous Neumann boundary conditions. This is given in the following result:

Lemma 1. Let f ∈ L2(Q) be given. There exist λ∗, σ∗ and C only depending on Ω and ω such that, for any
λ ≥ λ∗, any s ≥ s∗(λ) = σ∗(e2λ‖η0‖∞ T + T 2) and any q0 ∈ L2(Ω), the weak solution to⎧⎪⎪⎪⎨⎪⎪⎪⎩

−qt − ∆q = f(x, t) in Q,

∂q

∂n
= 0 on Σ,

q(x, T ) = q0(x) in Ω

satisfies

Is,λ(q) ≤ C

(∫∫
Q

e−2sα |f |2 dxdt+ s3λ4

∫∫
ω×(0,T )

e−2sα ξ3 |q|2 dxdt

)
, (15)

where we have used the notation

Is,λ(q) =
∫∫

Q

e−2sα
(
(sξ)−1(|qt|2 + |∆q|2) + sλ2ξ |∇q|2 + s3λ4ξ3 |q|2) dxdt.

This result is a particular case of Lemma 1.2 of Chapter I in [5]. For completeness and also in order to explain
and justify the particular form of the constants λ∗ and s∗(λ), we give a complete proof in the appendix, at the
end of this paper.
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Let us continue with the proof of Theorem 1. We can view ϕ as a solution by transposition of (4). This
means that ϕ is the unique function in L2(Q) satisfying⎧⎪⎪⎨⎪⎪⎩

∫∫
Q

ϕh dxdt =
∫∫

Q

f1(x, t) z dxdt−
∫∫

Q

f2(x, t) · ∇z dxdt

+
∫∫

Σ

f3(x, t) z dσ dt+
∫

Ω

ϕ0(x) z(x, T ) dx ∀h ∈ L2(Q),
(16)

where we have denoted by z the (strong) solution of the following problem:⎧⎪⎪⎨⎪⎪⎩
zt − ∆z = h(x, t) in Q,
∂z

∂n
= 0 on Σ,

z(x, 0) = 0 in Ω.

We will argue as follows. Let us first estimate the second term in the left hand side of (5), i.e.

s3λ4

∫∫
Q

e−2sα ξ3 |ϕ|2 dxdt. (17)

To this end, we will deal with techniques inspired by the arguments in [6].
Thus, let us see that the term in (17) can be bounded by the right hand side of (5), i.e.

s3λ4

∫∫
Q

e−2sα ξ3 |ϕ|2 dxdt ≤ C(Ω, ω)
(∫∫

Q

e−2sα |f1|2 dxdt

+s2λ2

∫∫
Q

e−2sα ξ2 |f2|2 dxdt+ sλ

∫∫
Σ

e−2sα ξ |f3|2 dσ dt

+s3λ4

∫∫
ω×(0,T )

e−2sα ξ3 |ϕ|2 dxdt

)
(18)

for a good choice of the parameters λ and s.
Let us consider the following constrained extremal problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min
1
2

(∫∫
Q

e2sα |z|2 dxdt+ s−3λ−4

∫∫
ω×(0,T )

e2sα ξ−3 |v|2 dxdt

)
subject to v ∈ L2(Q) and⎧⎪⎪⎨⎪⎪⎩

zt − ∆z = s3λ4e−2sαξ3ϕ+ v1ω in Q,
∂z

∂n
= 0 on Σ,

z(x, 0) = 0, z(x, T ) = 0 in Ω.

(19)

Here, s and λ are chosen like in Lemma 1, that is to say, λ ≥ λ∗ and s ≥ s∗(λ) = σ∗(e2λ‖η0‖∞ T + T 2).
By virtue of Lagrange’s principle and arguing as in [6], we are led from (19) to the next optimality system,

which is of fourth order in space and second order in time:⎧⎪⎪⎪⎨⎪⎪⎪⎩
L(e−2sα L∗p) + s3λ4e−2sαξ3p1ω = s3λ4e−2sαξ3ϕ in Q,
∂p

∂n
= 0,

∂

∂n
(e−2sα L∗p) = 0 on Σ,

(e−2sαL∗p)|t=0 = (e−2sαL∗p)|t=T = 0 in Ω.

(20)
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Here, L = ∂t − ∆ is the heat operator and L∗ = −∂t − ∆ is its formal adjoint. If p is a solution to (20) (in an
appropriate sense), then

v̂ = −s3 λ4 e−2sα ξ3 p1ω and ẑ = e−2sαL∗p (21)

solve (19).
Let us show that (20) has a unique weak solution. To this end, we are going to rewrite this problem as a

Lax-Milgram variational equation. Let us introduce the space

X0 =
{
z ∈ C2(Q) :

∂z

∂n
= 0 on Σ

}
and the norm ‖ · ‖X , with

‖q‖2
X =

∫∫
Q

e−2sα |L∗q|2 dxdt+ s3λ4

∫∫
ω×(0,T )

e−2sα ξ3 |q|2 dxdt

for all q ∈ X0 .
Due to Lemma 1, ‖ · ‖X is indeed a norm in X0 . Let X be the completion of X0 for the norm ‖ · ‖X . Then

X is a Hilbert space for the scalar product (· , ·)X , with

(p, q)X =
∫∫

Q

e−2sα (L∗p)(L∗q) dxdt+ s3λ4

∫∫
ω×(0,T )

e−2sα ξ3 p q dxdt.

With this notation, system (20) is equivalent to find a function p ∈ X such that

(p, q)X = 
(q) ∀q ∈ X, (22)

where


(q) = s3 λ4

∫∫
Q

e−2sα ξ3 ϕq dxdt ∀q ∈ X.

Of course, (22) is equivalent to another extremal problem⎧⎨⎩ Minimize
1
2
(q, q)X − 
(q)

subject to q ∈ X.

By virtue of Lemma 1, one can easily check that 
 ∈ X ′. Consequently, one can apply Lax-Milgram lemma and
deduce that there exists a unique solution to (20).

Let us now take
h = s3λ4e−2sαξ3ϕ+ v̂1ω

in (16). This gives

s3λ4

∫∫
Q

e−2sα ξ3 |ϕ|2 dxdt =
∫∫

Q

f1 ẑ dxdt−
∫∫

Q

f2 · ∇ẑ dxdt+
∫∫

Σ

f3 ẑ dσ dt−
∫∫

ω×(0,T )

ϕ v̂ dxdt (23)

(recall that v̂ and ẑ are given by (21)). The idea of the proof of (18) is to bound ẑ, ∇ẑ and v̂ in Q and the
trace of ẑ on Σ in terms of the left hand side of (23). For this purpose, we first multiply the equation in (20)
by p and integrate in Q, which gives

‖p‖2
X ≤ ‖
‖X′ ‖p‖X .
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Consequently,

‖p‖2
X =

∫∫
Q

e2sα |ẑ|2 dxdt+ s−3λ−4

∫∫
ω×(0,T )

e2sα ξ−3 |v̂|2 dxdt ≤ Cs3λ4

∫∫
Q

e−2sα ξ3 |ϕ|2 dxdt, (24)

for λ ≥ λ(Ω, ω), s ≥ σ(Ω, ω)(e2λ‖η0‖∞ T + T 2), since

‖
‖X′ ≤ s3/2λ2

(∫∫
Q

e−2sα ξ3 |ϕ|2 dxdt
)1/2

for this choice of the parameters s and λ. This provides the desired bounds of ẑ and v̂1ω .
Let us now multiply the equation satisfied by ẑ by s−2λ−2e2sαξ−2ẑ and let us integrate in Q. After integration

by parts, we obtain:

1
2
s−2λ−2

∫∫
Q

e2sαξ−2 ∂

∂t
|ẑ|2 dxdt+ s−2λ−2

∫∫
Q

e2sαξ−2 |∇ẑ|2 dxdt− s−1λ−1

∫∫
Q

e2sα ξ−1 ∇η0 · ∇|ẑ|2 dxdt

− 2s−2λ−1

∫∫
Q

e2sα ξ−2 (∇η0 · ∇ẑ) ẑ dxdt = sλ2

∫∫
Q

ξ ϕ ẑ dxdt+ s−2λ−2

∫∫
ω×(0,T )

e2sα ξ−2 v̂ ẑ dxdt,

whence

s−2λ−2

∫∫
Q

e2sα ξ−2 |∇ẑ|2 dxdt− s−1λ−1

∫∫
Σ

e2sαξ−1 ∂η
0

∂n
|ẑ|2 dσ dt =

1
2
s−2λ−2

∫∫
Q

∂

∂t
(e2sα ξ−2) |ẑ|2 dxdt

− s−1λ−1

∫∫
Q

∇ · (e2sα ξ−1 ∇η0) |ẑ|2 dxdt

+ 2s−2λ−1

∫∫
Q

e2sα ξ−2 ∇η0 · ∇ẑ ẑ dxdt+ sλ2

∫∫
Q

ξ ϕ ẑ dxdt

+ s−2λ−2

∫∫
ω×(0,T )

e2sα ξ−2 v̂ ẑ dxdt. (25)

We need now some estimates concerning the weight functions in order to preserve explicit bounds in s, λ and T .
Notice that

∂

∂t
(e2sα ξ−2) = −2(T − 2t) e−λη0

e2sα(s e−λη0
(e2λ‖η0‖∞ − eλη0

) − ξ−1)

≤ C T e2sα(e2λ‖η0‖∞ s+ ξ−1) ≤ C T s e2sα e2λ‖η0‖∞ ,

where we have taken s ≥ C T 2. More generally, observe that, for any fixed m, one also has

|∇(e2sα ξm)| ≤ Cm(Ω, ω) s λ e2sα ξm+1 (26)

whenever s ≥ C T 2. Indeed, we have

∇(e2sα ξm) = e2sα λ∇η0 ξm(2s ξ +m) ≤ C(Ω, ω) e2sα λ ξm(s ξ + 1)

and, taking into account that

C s ξ ≥ 1 for s ≥ T 2

4C
, (27)

we directly get (26).
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Turning back to (25), we obtain

s−2λ−2

∫∫
Q

e2sα ξ−2 |∇ẑ|2 dxdt− s−1λ−1

∫∫
Σ

e2sαξ−1 ∂η
0

∂n
|ẑ|2 dσ dt

≤ C(Ω, ω)
(
T s−1λ−2 e2λ‖η0‖∞

∫∫
Q

e2sα |ẑ|2 dxdt +
∫∫

Q

e2sα |ẑ|2 dxdt+ s−1λ−1

∫∫
Q

e2sα ξ−1 |ẑ|2 dxdt

+s−2

∫∫
Q

e2sα ξ−2 |ẑ|2 dxdt+ s2λ4

∫∫
Q

e−2sα ξ2 |ϕ|2 dxdt

+s−4λ−4

∫∫
Q

e2sα ξ−4 |v̂|2 dxdt
)

+
1
2
s−2λ−2

∫∫
Q

e2sα ξ−2 |∇ẑ|2 dxdt,

where we have taken s ≥ C T 2. Now, we take into account (27) and we deduce that

s−2λ−2

∫∫
Q

e2sα ξ−2 |∇ẑ|2 dxdt− s−1λ−1

∫∫
Σ

e2sαξ−1 ∂η
0

∂n
|ẑ|2 dσ dt

≤ C(Ω, ω)
(∫∫

Q

e2sα |ẑ|2 dxdt+ s3λ4

∫∫
Q

e−2sα ξ3 |ϕ|2 dxdt s−3λ−4

∫∫
Q

e2sα ξ−3 |v̂|2 dxdt
)

for any λ ≥ C(Ω, ω) and any s ≥ C(Ω, ω)(e2λ‖η0‖∞ T + T 2).
From (14), this gives an estimate of the gradient and the trace of ẑ in terms of ẑ, v̂1ω and ϕ. In view of (24),

we now have∫∫
Q

e2sα |ẑ|2 dxdt+ s−2λ−2

∫∫
Q

e2sα ξ−2 |∇ẑ|2 dxdt+ s−1λ−1

∫∫
Σ

e2sαξ−1 |ẑ|2 dσ dt

+ s−3λ−4

∫∫
ω×(0,T )

e2sα ξ−3 |v̂|2 dxdt ≤ C(Ω, ω) s3λ4

∫∫
Q

e−2sα ξ3 |ϕ|2 dxdt

for λ ≥ C(Ω, ω), s ≥ C(Ω, ω)(e2λ‖η0‖∞ T + T 2).
It suffices to combine this inequality and the identity (23) to deduce (18).
Let us now show that

sλ2

∫∫
Q

e−2sα ξ |∇ϕ|2 dxdt ≤ C(Ω, ω)
(∫∫

Q

e−2sα |f1|2 dxdt

+s2λ2

∫∫
Q

e−2sα ξ2 |f2|2 dxdt+ sλ

∫∫
Σ

e−2sα ξ |f3|2 dσ dt +s3λ4

∫∫
ω×(0,T )

e−2sα ξ3 |ϕ|2 dxdt

)
. (28)

To this end, we now have to use not only that ϕ is a solution by transposition but a weak solution as well. More
precisely, let us take

v = sλ2e−2sα(·,t)ξ(·, t)ϕ(·, t)
in (12). Then, let us integrate in (0, T ) and let us perform integrations by parts similarly as we did before. We
get:

− 1
2
sλ2

∫∫
Q

e−2sαξ
∂

∂t
|ϕ|2 dxdt+ sλ2

∫∫
Q

e−2sαξ |∇ϕ|2 dxdt+ sλ2

∫∫
Q

∇ϕ · ∇(e−2sα ξ)ϕdxdt

= sλ2

∫∫
Q

e−2sα ξ f1 ϕdxdt− sλ2

∫∫
Q

f2 · ∇(e−2sα ξ ϕ) dxdt + sλ2

∫∫
Σ

e−2sα ξ f3 ϕdσ dt.
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We integrate by parts again and we obtain

sλ2

∫∫
Q

e−2sαξ |∇ϕ|2 dxdt = −1
2
sλ2

∫∫
Q

(e−2sαξ)t |ϕ|2 dxdt− sλ2

∫∫
Q

∇ϕ · ∇(e−2sα ξ)ϕdxdt

+ sλ2

∫∫
Q

e−2sα ξ f1 ϕdxdt− sλ2

∫∫
Q

f2 · ∇(e−2sα ξ)ϕdxdt

− sλ2

∫∫
Q

f2 · ∇ϕ e−2sα ξ dxdt+ sλ2

∫∫
Σ

e−2sα ξ f3 ϕdσ dt.

In view of (26), we find:

sλ2

∫∫
Q

e−2sαξ |∇ϕ|2 dxdt ≤ C(Ω, ω)
(
T s2 λ2 e2λ‖η0‖∞

∫∫
Q

e−2sα ξ3 |ϕ|2 dxdt + s3λ4

∫∫
Q

e−2sα ξ3 |ϕ|2 dxdt

+
∫∫

Q

e−2sα |f1|2 dxdt + s2λ4

∫∫
Q

e−2sα ξ2 |ϕ|2 dxdt +sλ2

∫∫
Q

e−2sα ξ |f2|2 dxdt

sλ

∫∫
Σ

e−2sα ξ |f3|2 dσ dt+ sλ3

∫∫
Σ

e−2sα ξ |ϕ|2 dσ dt
)

+
1
2
sλ2

∫∫
Q

e−2sαξ |∇ϕ|2 dxdt,

where we have taken s ≥ CT 2 and λ ≥ C. Making several simplifications, we easily see that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sλ2

∫∫
Q

e−2sαξ |∇ϕ|2 dxdt ≤ C

(
s3λ4

∫∫
Q

e−2sα ξ3 |ϕ|2 dxdt

+
∫∫

Q

e−2sα |f1|2 dxdt+ s2λ2

∫∫
Q

e−2sα ξ2 |f2|2 dxdt

+sλ
∫∫

Σ

e−2sα ξ |f3|2 dσ dt+ sλ3

∫∫
Σ

e−2sα ξ |ϕ|2 dσ dt
)
,

(29)

for s ≥ C(e2λ‖η0‖∞ T + T 2) and λ ≥ C, whence (28) follows easily.
Let us finally estimate the trace of ϕ in terms of ϕ and ∇ϕ. Notice that

− s2λ3

∫∫
Q

e−2sα ξ2 (∇η0 · ∇ϕ)ϕdxdt = −1
2
s2λ3

∫∫
Σ

e−2sα ξ2
∂η0

∂n
|ϕ|2 dσ dt

+
1
2
s2λ3

∫∫
Q

∇ · (e−2sα ξ2 ∇η0) |ϕ|2 dxdt.

Taking into account (14), the following is found:

s2λ3

∫∫
Σ

e−2sα ξ2 |ϕ|2 dσ dt ≤ C s2 λ3

∫∫
Q

|∇ · (e−2sα ξ2 ∇η0)| |ϕ|2 dxdt

+ C

(
s3λ4

∫∫
Q

e−2sα ξ3 |ϕ|2 dxdt+ sλ2

∫∫
Q

e−2sαξ |∇ϕ|2 dxdt
)

≤ C

(
s3λ4

∫∫
Q

e−2sα ξ3 |ϕ|2 dxdt+ sλ2

∫∫
Q

e−2sαξ |∇ϕ|2 dxdt
)
,

with s ≥ C(T + T 2) and λ ≥ C.
This last inequality, together with (18) and (29), provides (5) and permits to achieve the proof of Theorem 1.
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3. Controllability of the linear system

This section is devoted to prove Theorem 2. This will be a consequence of the Carleman inequality (5).
We will start with an explicit bound of the weak solution to the linear problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

yt − ∆y +B(x, t) · ∇y + a(x, t) y = f(x, t) in Q,
∂y

∂n
+ β(x, t)y = 0 on Σ,

y(x, 0) = y0(x) in Ω,

(30)

where f ∈ L2(Q), y0 ∈ L2(Ω) and (2) is fulfilled. Then, we will use this result in combination with (5) to
deduce the observability inequality (8) for the solutions to (6). Finally, we will end the proof of theorem 2 in a
classical way, using this observability inequality.

Proposition 1. Under the previous assumptions, the weak solution to (30) satisfies the estimate

‖y‖Y ≤ eC T (1+‖a‖∞+‖B‖2
∞+‖β‖2

∞) (‖f‖L2(Q) + ‖y0‖L2(Ω)) (31)

for some constant C > 0. Here, Y is the usual energy space:

Y = L2(0, T ;H1(Ω)) ∩ C0([0, T ];L2(Ω)).

Proof. The existence and uniqueness of a solution to (30) is well known. Furthermore, the following identity
can be deduced for each t ∈ (0, T ) in a standard way:

1
2

d
dt

∫
Ω

|y(x, t)|2 dx+
∫

Ω

|∇y(x, t)|2 dx+
∫

∂Ω

β(x, t) |y(x, t)|2 dσ

+
∫

Ω

B(x, t) · ∇y(x, t) y(x, t) dx +
∫

Ω

a(x, t) |y(x, t)|2 dx =
∫

Ω

f(x, t) y(x, t) dx. (32)

We will now use the following trace estimate for the functions in H1(Ω):⎧⎪⎨⎪⎩
∫

∂Ω

|u|2 dσ ≤ C

(∫
Ω

(|u|2 + |∇u|2) dx
)1/2 (∫

Ω

|u|2 dx
)1/2

∀u ∈ H1(Ω),
(33)

for some positive C = C(Ω). This inequality can be proved arguing first for regular functions in a dense subspace
of H1(Ω) and then passing to the limit. For a regular function u, (33) is very easy to establish when Ω = IRN

+ .
Then, a standard localization argument leads to the proof in the case of a general domain Ω.

In view of (32) and (33), we have:

1
2

d
dt

∫
Ω

|y(x, t)|2 dx+
∫

Ω

|∇y(x, t)|2 dx ≤ −
∫

Ω

B(x, t) · ∇y(x, t) y(x, t) dx

−
∫

Ω

a(x, t) |y(x, t)|2 dx+
∫

Ω

f(x, t) y(x, t) dx + C ‖β‖∞ ‖y(·, t)‖H1(Ω) ‖y(·, t)‖L2(Ω).
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Combining this and Young’s inequality, we obtain:

d
dt

‖y(·, t)‖2
L2(Ω) + ‖y(·, t)‖2

H1(Ω) ≤ C((1 + ‖a‖∞ + ‖B‖2
∞ + ‖β‖2

∞)‖y(·, t)‖2
L2(Ω) + ‖f(·, t)‖2

L2(Ω))

for all t ∈ (0, T ). From these estimates, it is not difficult to obtain (31).
This ends the proof. �

The announced observability estimate is proved in the following result:

Proposition 2. For every ϕ0 ∈ L2(Ω), the associated solution to (6) satisfies the observability inequality∫∫
Ω×(T/4,3T/4)

|ϕ|2 dxdt ≤ K

∫∫
ω×(0,T )

|ϕ|2 dxdt (34)

for a constant K of the form

K = exp
{
C

(
1 +

1
T

+ ‖a‖2/3
∞ + ‖B‖2

∞ + ‖β‖2
∞

)}
. (35)

Proof. Let ϕ0 ∈ L2(Ω) be given. Notice that the corresponding ϕ solves (4) with

f1 = −aϕ ∈ L2(Q), f2 = ϕB ∈ L2(0, T ;L2(Ω)N ), f3 = −β ϕ ∈ L2(Σ).

Thus, we can apply theorem 1 to ϕ and deduce that

∫∫
Q

e−2sα(s λ2 ξ |∇ϕ|2 + s3 λ4 ξ3 |ϕ|2)dxdt+ s2λ3

∫∫
Σ

e−2sα ξ2 |ϕ|2 dσ dt

≤ C(Ω, ω)
(
‖a‖2

∞

∫∫
Q

e−2sα |ϕ|2 dxdt+ s2λ2‖B‖2
∞

∫∫
Q

e−2sα ξ2 |ϕ|2 dxdt

+s λ ‖β‖2
∞

∫∫
Σ

e−2sα ξ |ϕ|2 dσ dt+ s3λ4

∫∫
ω×(0,T )

e−2sα ξ3 |ϕ|2 dxdt

)

for any λ ≥ λ and any s ≥ σ(e4λ‖η0‖∞T + T 2).
We will now try to eliminate the global terms in the right hand side of this inequality by making a convenient

choice of the parameter s.
Taking s ≥ C T 2 (‖a‖2/3

∞ + ‖B‖2
∞), we see that

C

(
s2λ2‖B‖2

∞

∫∫
Q

e−2sα ξ2 |ϕ|2 dxdt+ ‖a‖2
∞

∫∫
Q

e−2sα |ϕ|2 dxdt
)

≤ 1
2
s3 λ4

∫∫
Q

e−2sα ξ3 |ϕ|2 dxdt.

On the other hand, taking s ≥ C T 2 ‖β‖2∞ , we find that

C sλ ‖β‖2
∞

∫∫
Σ

e−2sα ξ |ϕ|2 dσ dt ≤ 1
2
s2 λ3

∫∫
Σ

e−2sα ξ2 |ϕ|2 dσ dt.
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All this leads to the estimate∫∫
Q

e−2sα ξ3 |ϕ|2 dxdt ≤ C

∫∫
ω×(0,T )

e−2sα ξ3 |ϕ|2 dxdt,

which holds for λ ≥ λ and s ≥ σ(e4λ‖η0‖∞ T + T 2(1 + ‖a‖2/3
∞ + ‖B‖2∞ + ‖β‖2∞)).

Taking into account the properties of the weight functions as well as the choice of s and λ we have made, it
is not difficult to realize that the function

t �→ exp
(
−2smax

x∈Ω
α(t)

)
min
x∈Ω

ξ(t)3

reaches its minimum in (T/4, 3T/4) at t = T/4 and that the function

t �→ exp
(
−2smin

x∈Ω
α(t)

)
max
x∈Ω

ξ(t)3

reaches its maximum in (0, T ) at t = T/2. With this, the previous Carleman inequality directly gives

∫∫
Ω×(T/4,3T/4)

|ϕ|2 dxdt ≤ exp
{
−2s

(
min
x∈Ω

α

(
x,
T

2

)
− max

x∈Ω
α

(
x,
T

4

))}
× min

x∈Ω
ξ

(
x,
T

4

)−3

max
x∈Ω

ξ

(
x,
T

2

)3 ∫∫
ω×(0,T )

|ϕ|2 dxdt,

for the same choice of the parameters s and λ.
Now, taking λ = λ and s = s = σ(e4λ‖η0‖∞ T + T 2(1 + ‖a‖2/3

∞ + ‖B‖2
∞ + ‖β‖2

∞)), we have∫∫
Ω×(T/4,3T/4)

|ϕ|2 dxdt ≤ C(Ω, ω) eC(Ω,ω) s/T 2
∫∫

ω×(0,T )

|ϕ|2 dxdt,

which gives (35) and (34).
This ends the proof of Proposition 2. �

Let us now finish the proof of Theorem 2. We will apply a well known argument that has already been used
in several similar situations (see [3, 5]).

Let us introduce a function η ∈ C∞(0, T ), with

η(t) = 1 for t ∈ (0, T/4), η(t) = 0 for t ∈ (3T/4, T )

and

|η′(t)| ≤ C/T for t ∈ (0, T ).

Let χ be the weak solution of⎧⎪⎪⎨⎪⎪⎩
χt − ∆χ+B(x, t) · ∇χ+ a(x, t)χ = 0 in Q,
∂χ

∂n
+ β(x, t)χ = 0 on Σ,

χ(x, 0) = y0(x) in Ω.
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and let us put y = w + ηχ. If y is the state associated to v, i.e. the solution to (1), then w satisfies⎧⎪⎪⎨⎪⎪⎩
wt − ∆w +B(x, t) · ∇w + a(x, t)w = −η′(t)χ+ v1ω in Q,
∂w

∂n
+ β(x, t)w = 0 on Σ,

w(x, 0) = 0 in Ω.

(36)

Our task is to find a control v ∈ L2(ω × (0, T )) such that the associated solution to (36) satisfies

w(x, T ) = 0 in Ω. (37)

After this, just taking y = w + ηχ we will have proved our result with a control in L2(ω × (0, T )).
For each ε > 0, let us consider the functional Jε , with⎧⎪⎨⎪⎩

Jε(ϕ0) =
1
2

∫∫
ω×(0,T )

|ϕ|2 dxdt+ ε‖ϕ0‖L2(Ω) −
∫∫

Q

η′ χϕdxdt

∀ϕ0 ∈ L2(Ω),

where, for each ϕ0 ∈ L2(Ω), ϕ is the solution to (6) associated to ϕ0.
It is clear that

ϕ0 �→ Jε(ϕ0)

is a continuous, strictly convex and (in view of (8)) coercive function on L2(Ω). Consequently, it possesses
exactly one minimizer ϕ0

ε and it is not difficult to check that ϕ0
ε = 0 if and only if the solution w̃ to (36)

associated to v = 0 satisfies ‖w̃(·, T )‖L2(Ω) ≤ ε.
Let us denote by ϕε the solution to (6) associated to ϕ0

ε , let us put

vε = ϕε1ω

and let us denote by wε the solution to (36) associated to the control vε. Then

‖wε(·, T )‖L2(Ω) ≤ ε. (38)

Indeed, it is not restrictive to assume that ϕ0
ε �= 0. Accordingly, Jε is differentiable at ϕ0

ε and

(J ′
ε(ϕ

0
ε), ϕ

0)L2(Ω) = 0 ∀ϕ0 ∈ L2(Ω).

That is to say, ⎧⎪⎨⎪⎩
∫∫

ω×(0,T )

ϕε ϕdxdt+
(
ε

ϕ0
ε

‖ϕ0
ε‖L2

, ϕ0

)
L2(Ω)

−
∫∫

Q

η′ χϕdxdt = 0

∀ϕ0 ∈ L2(Ω).

Since ∫∫
ω×(0,T )

ϕε ϕdxdt−
∫∫

Q

η′ χϕdxdt = (wε(·, T ), ϕ0)L2(Ω) ,

we have

(wε(·, T ), ϕ0)L2(Ω) = −
(
ε

ϕ0
ε

‖ϕ0
ε‖L2(Ω)

, ϕ0

)
L2(Ω)

∀ϕ0 ∈ L2(Ω),

which implies (38).
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Since Jε(ϕ0
ε) ≤ Jε(0) = 0, we also have

‖vε‖2
L2(ω×(0,T )) ≤

(∫∫
Ω×(T/4,3T/4)

|ϕε|2 dxdt

)1/2(∫∫
Ω×(T/4,3T/4)

|η′χ|2 dxdt

)1/2

.

From Proposition 2 and the definition of vε, we deduce now that

‖vε‖2
L2(ω×(0,T )) ≤

C

T
K1/2 ‖vε‖L2(Q)

(∫∫
Ω×(T/4,3T/4)

|χ|2 dxdt

)1/2

and, using Proposition 1, we have

‖vε‖L2(ω×(0,T )) ≤ C K1/2 ‖χ‖Y ≤ H ‖y0‖L2(Ω) , (39)

where the constant H is as in (11).
Consequently, vε1ω and wε are uniformly bounded in the spaces L2(ω × (0, T )) and

Z = {w ∈ L2(0, T ;H1(Ω)) : wt ∈ L2(0, T ;H−1(Ω))},

respectively. Obviously, we can extract sequences converging weakly to a control v1ω and the associated solution
w of (36), with

w(x, T ) = 0 in Ω.

We have thus proved the existence of a control v ∈ L2(Q) such that (10) and (37) are fulfilled.
This ends the proof of Theorem 2.

Appendix: Proof of Lemma 1

We divide the proof in three steps:

1 - First, we set ψ = e−sα q and we prove the following inequality:

∫∫
Q

(s−1 ξ−1(|ψt|2 + |∆ψ|2) + s λ2 ξ |∇ψ|2 + s3 λ4 ξ3 |ψ|2) dxdt

− 2s3 λ3

∫∫
Σ

|∇η0|2 ξ3 ∂η
0

∂n
|ψ|2 dσ dt− 4s λ2

∫∫
Σ

|∇η0|2 ξ ∂ψ
∂n

ψ dσ dt

− 4s λ
∫∫

Σ

∂η0

∂n
ξ

∣∣∣∣∂ψ∂n
∣∣∣∣2 dσ dt+ 2s λ

∫∫
Σ

∂η0

∂n
ξ |∇ψ|2 dσ dt

+ 2
∫∫

Σ

∂ψ

∂n
ψt dσ dt− 2s2 λ

∫∫
Σ

αt
∂η0

∂n
ξ |ψ|2 dσ dt

≤ C

(∫∫
Q

e−2sα |f |2 dxdt+ s3 λ4

∫∫
ω×(0,T )

ξ3 |ψ|2 dxdt

)
(40)

for λ ≥ C(Ω, ω) and s ≥ C(Ω, ω)(e2λ‖η0‖∞ T + T 2).
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2 - Then, we set ψ̃ = e−sα̃ q and we prove that∫∫
Q

(s−1 ξ̃−1(|ψ̃t|2 + |∆ψ̃|2) + s λ2 ξ̃ |∇ψ̃|2 + s3 λ4 ξ̃ 3 |ψ̃|2)dxdt

+ 2s3 λ3

∫∫
Σ

|∇η0|2 ξ̃ 3 ∂η
0

∂n
|ψ̃|2 dσ dt− 4s λ2

∫∫
Σ

|∇η0|2 ξ̃ ∂ψ̃
∂n

ψ̃ dσ dt

+ 4s λ
∫∫

Σ

∂η0

∂n
ξ̃

∣∣∣∣∣∂ψ̃∂n
∣∣∣∣∣
2

dσ dt− 2s λ
∫∫

Σ

∂η0

∂n
ξ̃ |∇ψ̃|2 dσ dt

+ 2
∫∫

Σ

∂ψ̃

∂n
ψ̃t dσ dt+ 2s2 λ

∫∫
Σ

α̃t
∂η0

∂n
ξ̃ |ψ̃|2 dσ dt

≤ C

(∫∫
Q

e−2sα̃ |f |2 dxdt+ s3 λ4

∫∫
ω×(0,T )

ξ̃ 3 |ψ̃|2 dxdt

)
(41)

for any λ ≥ C(Ω, ω) and s ≥ C(Ω, ω)(e2λ‖η0‖∞ T + T 2). Here, ξ̃ and α̃ stand for the functions

ξ̃(x, t) =
e−λη0(x)

t(T − t)
, α̃(x, t) =

e2λ‖η0‖∞ − e−λη0(x)

t(T − t)
·

3 - Finally, we add the previous two inequalities and we come back to the original variable ϕ. This will give the
desired inequality (15).

Step 1. Let us put ψ = e−sα q. Since −qt − ∆q = f , we also have

M1ψ +M2ψ = F, (42)

where
M1ψ = 2s λ2 ξ |∇η0|2 ψ + 2s λ ξ∇η0 · ∇ψ − ψt ,

M2ψ = −s2 λ2 ξ2 |∇η0|2 ψ − ∆ψ − s αt ψ,

F = e−sα f − s λ ξ∆η0 ψ + s λ2 ξ |∇η0|2 ψ.
From (42), we have that

‖M1ψ‖2
L2(Q) + ‖M2ψ‖2

L2(Q) + 2(M1ψ,M2ψ)L2(Q) = ‖F‖2
L2(Q). (43)

The main idea is to expand the term 2(M1ψ,M2ψ)L2(Q) and use the particular structure of α and the fact
that s is large enough in order to obtain large positive terms in this scalar product. Denoting by (Miψ)j (1 ≤
i ≤ 2, 1 ≤ j ≤ 3) the j-th term in the above expression of Miψ, we find that

(M1ψ,M2ψ)L2(Q) =
∑

1≤i,j≤3

((M1ψ)i, (M2ψ)j)L2(Q).

Let us compute each of these terms.
First, we have

((M1ψ)1, (M2ψ)1)L2(Q) = −2s3 λ4

∫∫
Q

|∇η0|4 ξ3 |ψ|2 dxdt = A.
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Then,

((M1ψ)2, (M2ψ)1)L2(Q) = −2s3 λ3

∫∫
Q

|∇η0|2 ξ3 (∇η0 · ∇ψ)ψ dxdt

= 3s3 λ4

∫∫
Q

|∇η0|4 ξ3 |ψ|2 dxdt+ s3 λ3

∫∫
Q

∆η0 |∇η0|2 ξ3 |ψ|2 dxdt

+2s3 λ3

∫∫
Q

∂iη
0 ∂ijη

0 ∂jη
0 ξ3 |ψ|2 dxdt

−s3 λ3

∫∫
Σ

|∇η0|2 ξ3 ∂η
0

∂n
|ψ|2 dσ dt = B1 +B2 +B3 +B4.

We clearly have that A+B1 is a positive term. As a consequence of the properties of η0 (see (14)), we have

s3 λ4

∫∫
Q

|∇η0|4 ξ3 |ψ|2 dxdt ≥ C s3 λ4

∫∫
Q

ξ3 |ψ|2 dxdt− C s3 λ4

∫∫
ω′×(0,T )

ξ3 |ψ|2 dxdt

for some C = C(Ω, ω). The first of these last two integrals will stay in the left hand side and the second one
will go to the right.

The boundary term B4 will also stay in the left hand side, while B2 and B3 will be absorbed by simply taking
λ ≥ C(Ω, ω).

We also have

((M1ψ)3, (M2ψ)1)L2(Q) = s2 λ2

∫∫
Q

|∇η0|2 ξ2 ψt ψ dxdt

= −s2 λ2

∫∫
Q

|∇η0|2 ξ ξt |ψ|2 dxdt ≤ C s2 λ2 T

∫∫
Q

ξ3 |ψ|2 dxdt,

which is also absorbed by taking λ ≥ 1 and s ≥ C(Ω, ω)T .
Consequently, we obtain

(M1ψ, (M2ψ)1)L2(Q) = ((M1ψ)1 + (M1ψ)2 + (M1ψ)3, (M2ψ)1)L2(Q)

≥ C s3 λ4

∫∫
Q

ξ3 |ψ|2 dxdt− s3 λ3

∫∫
Σ

|∇η0|2 ξ3 ∂η
0

∂n
|ψ|2 dσ dt

− C s3 λ4

∫∫
ω′×(0,T )

ξ3 |ψ|2 dxdt, (44)

for any λ ≥ C(Ω, ω) and s ≥ C(Ω, ω)T .
On the other hand, we have

((M1ψ)1, (M2ψ)2)L2(Q) = −2s λ2

∫∫
Q

|∇η0|2 ξ∆ψ ψ dxdt

= −2s λ2

∫∫
Σ

|∇η0|2 ξ ∂ψ
∂n

ψ dσ dt+ 2s λ2

∫∫
Q

|∇η0|2 ξ |∇ψ|2 dxdt

+ 4s λ2

∫∫
Q

∂iη
0 ∂ijη

0 ξ ∂jψ ψ dxdt+ s λ3

∫∫
Q

|∇η0|2 ξ∇η0 · ∇|ψ|2 dxdt

= C1 + C2 + C3 + C4.
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We will keep C1 and C2 in the left hand side. For C3 and C4 , we have

C3 ≤ C sλ4

∫∫
Q

ξ |ψ|2 dxdt+ C s

∫∫
Q

ξ |∇ψ|2 dxdt

and

C4 ≤ C s2 λ4

∫∫
Q

ξ2 |ψ|2 dxdt+ C λ2

∫∫
Q

|∇ψ|2 dxdt.

Therefore, by taking s ≥ C T 2, we find that

C1 + C2 + C3 + C4 ≥ −2s λ2

∫∫
Σ

|∇η0|2 ξ ∂ψ
∂n

ψ dσ dt

+ 2s λ2

∫∫
Q

|∇η0|2 ξ |∇ψ|2 dxdt− C s2 λ4

∫∫
Q

ξ2 |ψ|2 dxdt− C

∫∫
Q

(s ξ + λ2) |∇ψ|2 dxdt. (45)

We also have

((M1ψ)2, (M2ψ)2)L2(Q) = −2s λ
∫∫

Q

ξ (∇η0 · ∇ψ)∆ψ dxdt

= −2s λ
∫∫

Σ

∂η0

∂n
ξ

∣∣∣∣∂ψ∂n
∣∣∣∣2 dσ dt+ 2s λ

∫∫
Q

∂ijη
0 ξ ∂iψ ∂jψ dxdt

+ 2s λ2

∫∫
Q

ξ |∇η0 · ∇ψ|2 dxdt+ s λ

∫∫
Q

ξ∇η0 · ∇|∇ψ|2 dxdt

= D1 +D2 +D3 +D4.

As before, we will keep the boundary integral D1 in the left hand side. Also,

D2 ≤ C sλ

∫∫
Q

ξ |∇ψ|2 dxdt.

Moreover, D3 ≥ 0. After some additional computations, we also see that

D4 = s λ

∫∫
Q

ξ∇η0 · ∇|∇ψ|2 dxdt = s λ

∫∫
Σ

ξ
∂η0

∂n
|∇ψ|2 dσ dt

− s λ2

∫∫
Q

|∇η0|2 ξ |∇ψ|2 dxdt− s λ

∫∫
Q

∆η0 ξ |∇ψ|2 dxdt

= D41 +D42 +D43.

Now, we keep once more D41 in the left and we notice that D43 can be bounded in the same form as D2 .
Consequently,

D1 +D2 +D3 +D4 ≥ −2s λ
∫∫

Σ

∂η0

∂n
ξ

∣∣∣∣∂ψ∂n
∣∣∣∣2 dσ dt

+ s λ

∫∫
Σ

∂η0

∂n
ξ |∇ψ|2 dσ dt− s λ2

∫∫
Q

|∇η0|2 ξ |∇ψ|2 dxdt− C sλ

∫∫
Q

ξ |∇ψ|2 dxdt. (46)
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Additionally, we find that

((M1ψ)3, (M2ψ)2)L2(Q) =
∫∫

Q

ψt ∆ψ dxdt

=
∫∫

Σ

∂ψ

∂n
ψt dσ dt = E,

(47)

which will stay in the left hand side.
From (45)–(47), we deduce that

(M1ψ, (M2ψ)2)L2(Q) = ((M1ψ)1 + (M1ψ)2 + (M1ψ)3, (M2ψ)2)L2(Q)

≥ s λ2

∫∫
Q

|∇η0|2 ξ |∇ψ|2 dxdt− 2s λ2

∫∫
Σ

|∇η0|2 ξ ∂ψ
∂n

ψ dσ dt

− 2s λ
∫∫

Σ

∂η0

∂n
ξ

∣∣∣∣∂ψ∂n
∣∣∣∣2 dσ dt+ s λ

∫∫
Σ

∂η0

∂n
ξ |∇ψ|2 dxdt

+
∫∫

Σ

∂ψ

∂n
ψt dσ dt− C s2 λ4

∫∫
Q

ξ2 |ψ|2 dxdt− C

∫∫
Q

(s λ ξ + λ2) |∇ψ|2 dxdt

for any λ ≥ 1. Hence, we have the following for any λ ≥ C(Ω, ω) and any s ≥ C(Ω, ω)T 2:

(M1ψ, (M2ψ)2)L2(Q) ≥ C sλ2

∫∫
Q

ξ |∇ψ|2 dxdt− 2s λ2

∫∫
Σ

|∇η0|2 ξ ∂ψ
∂n

ψ dσ dt− 2s λ
∫∫

Σ

∂η0

∂n
ξ

∣∣∣∣∂ψ∂n
∣∣∣∣2 dσ dt

+ s λ

∫∫
Σ

∂η0

∂n
ξ |∇ψ|2 dxdt+

∫∫
Σ

∂ψ

∂n
ψt dσ dt− C s2 λ4

∫∫
Q

ξ2 |ψ|2 dxdt− C sλ2

∫∫
ω′×(0,T )

ξ |∇ψ|2 dxdt.

(48)

Let us now consider the scalar product

((M1ψ)1, (M2ψ)3)L2(Q) = −2s2 λ2

∫∫
Q

|∇η0|2 αt ξ |ψ|2 dxdt

≤ C(Ω, ω) e2λ‖η0‖∞ s2 λ2 T

∫∫
Q

ξ3 |ψ|2 dxdt, (49)

Obviously, this will be absorbed by the term in s3 λ4 in (44) if we take λ ≥ 1 and s ≥ C(Ω, ω) e2λ‖η0‖∞ T .
Furthermore,

((M1ψ)2, (M2ψ)3)L2(Q) = −2s2 λ
∫∫

Q

αt ξ (∇η0 · ∇ψ)ψ dxdt

= −s2 λ
∫∫

Σ

αt
∂η0

∂n
ξ |ψ|2 dσ dt+ s2 λ2

∫∫
Q

αt |∇η0|2 ξ |ψ|2 dxdt

+ s2 λ

∫∫
Q

∇αt · ∇η0 ξ |ψ|2 dxdt+ s2 λ

∫∫
Q

αt ∆η0 ξ |ψ|2 dxdt.

With λ ≥ 1, the last three terms in the left hand side can be bounded by

C(Ω, ω) e2λ‖η0‖∞ s2 λ2 T

∫∫
Q

ξ3 |ψ|2 dxdt.
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Thus, we have

((M1ψ)2, (M2ψ)3)L2(Q) ≥ −s2 λ
∫∫

Σ

αt
∂η0

∂n
ξ |ψ|2 dxdt− C e2λ‖η0‖∞ s2 λ2 T

∫∫
Q

ξ3 |ψ|2 dxdt. (50)

Finally, we have

((M1ψ)3, (M2ψ)3)L2(Q) = s

∫∫
Q

αt ψt ψ dxdt ≤ C e2λ‖η0‖∞ s T 2

∫∫
Q

ξ3 |ψ|2 dxdt, (51)

since
αtt ≤ C e2λ‖η0‖∞ ξ2(1 + T 2 ξ) ≤ C e2λ‖η0‖∞ T 2 ξ3.

From (49)–(51), we deduce that, for λ ≥ C(Ω, ω) and s ≥ C(Ω, ω) e2λ‖η0‖∞ T , one has

(M1ψ, (M2ψ)3)L2(Q) = ((M1ψ)1 + (M1ψ)2 + (M1ψ)3, (M2ψ)3)L2(Q)

≥ G− C s3 λ2

∫∫
Q

ξ3 |ψ|2 dxdt,
(52)

where

G = −s2 λ
∫∫

Σ

αt
∂η0

∂n
ξ |ψ|2 dσ dt.

Taking into account (44), (48) and (52), we obtain

(M1ψ,M2ψ)L2(Q) ≥ C

∫∫
Q

(s λ2 ξ |∇ψ|2 + s3 λ4 ξ3 |ψ|2) dxdt

−s3 λ3

∫∫
Σ

|∇η0|2 ξ3 ∂η
0

∂n
|ψ|2 dσ dt− 2s λ2

∫∫
Σ

|∇η0|2 ξ ∂ψ
∂n

ψ dσ dt

−2s λ
∫∫

Σ

∂η0

∂n
ξ

∣∣∣∣∂ψ∂n
∣∣∣∣2 dσ dt+ s λ

∫∫
Σ

∂η0

∂n
ξ |∇ψ|2 dxdt

+
∫∫

Σ

∂ψ

∂n
ψt dσ dt− s2 λ

∫∫
Σ

αt
∂η0

∂n
ξ |ψ|2 dσ dt

−C
∫∫

ω′×(0,T )

(s λ2 ξ |∇ψ|2 + s3 λ4 ξ3 |ψ|2) dxdt

for any λ ≥ C(Ω, ω) and s ≥ C(Ω, ω)(e2λ‖η0‖∞ T + T 2). Using (43), this gives

‖M1ψ‖2
L2(Q) + ‖M2ψ‖2

L2(Q) +
∫∫

Q

(s λ2 ξ |∇ψ|2 + s3 λ4 ξ3 |ψ|2) dxdt

+ 2(B4 + C1 +D1 +D41 + E +G) ≤ C
(
‖F‖2

L2(Q)

+s λ2

∫∫
ω′×(0,T )

ξ |∇ψ|2 dxdt+ s3 λ4

∫∫
ω′×(0,T )

ξ3 |ψ|2) dxdt

)

≤ C

(∫∫
Q

e−2sα |f |2 dxdt+ s2 λ4

∫∫
Q

ξ2 |ψ|2 dxdt

+s λ2

∫∫
ω′×(0,T )

ξ |∇ψ|2 dxdt+ s3 λ4

∫∫
ω′×(0,T )

ξ3 |ψ|2) dxdt

)
.
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Thus, we also have

‖M1ψ‖2
L2(Q) + ‖M2ψ‖2

L2(Q) +
∫∫

Q

(s λ2 ξ |∇ψ|2 + s3 λ4 ξ3 |ψ|2) dxdt

+ 2(B4 + C1 +D1 +D41 + E +G) ≤ C

(∫∫
Q

e−2sα |f |2 dxdt

+s λ2

∫∫
ω′×(0,T )

ξ |∇ψ|2 dxdt+ s3 λ4

∫∫
ω′×(0,T )

ξ3 |ψ|2) dxdt

)
(53)

for λ ≥ C(Ω, ω) and s ≥ C(Ω, ω)(e2λ‖η0‖∞ T + T 2).
The next step is to try to add integrals of |∆ψ|2 and |ψt|2 to the left hand side of (53). This can be made

using the expressions of Miψ (i = 1, 2). Indeed, we have

s−1

∫∫
Q

ξ−1 |ψt|2 dxdt ≤ C

(
s λ2

∫∫
Q

ξ |∇ψ|2 dxdt +s λ4

∫∫
Q

ξ |ψ|2 dxdt+ ‖M1ψ‖2
L2(Q)

)
and

s−1

∫∫
Q

ξ−1 |∆ψ|2 dxdt ≤ C

(
s3 λ4

∫∫
Q

ξ3 |ψ|2 dxdt +s T 2 e4λ‖η0‖∞
∫∫

Q

ξ3 |ψ|2 dxdt+ ‖M2ψ‖2
L2(Q)

)
for s ≥ C T 2. Accordingly, we deduce from (53) that

∫∫
Q

(
(sξ)−1(|ψt|2 + |∆ψ|2) + s λ2 ξ |∇ψ|2 + s3 λ4 ξ3 |ψ|2) dxdt

+ 2(B4 + C1 +D1 +D41 + E +G) ≤ C

(∫∫
Q

e−2sα |f |2 dxdt

+s λ2

∫∫
ω′×(0,T )

ξ |∇ψ|2 dxdt+ s3 λ4

∫∫
ω′×(0,T )

ξ3 |ψ|2) dxdt

)
(54)

for λ ≥ C(Ω, ω) and s ≥ C(Ω, ω)(e2λ‖η0‖∞ T + T 2).
We are now ready to eliminate the second integral in the right hand side. To this end, let us introduce a

function θ = θ(x), with
θ ∈ C2

c (ω), θ ≡ 1 in ω′, 0 ≤ θ ≤ 1

and let us make some computations:

s λ2

∫∫
ω′×(0,T )

ξ |∇ψ|2 dxdt ≤ s λ2

∫∫
ω×(0,T )

θ ξ |∇ψ|2 dxdt

= −s λ2

∫∫
ω×(0,T )

θ ξ∆ψ ψ dxdt− s λ2

∫∫
ω×(0,T )

ξ (∇θ · ∇ψ)ψ dxdt

− s λ3

∫∫
ω×(0,T )

θ ξ (∇η0 · ∇ψ)ψ dxdt ≤ ε s−1

∫∫
ω×(0,T )

ξ−1 |∆ψ|2 dxdt

+ C

(
s3 λ4

∫∫
ω×(0,T )

ξ3 |ψ|2 dxdt+ s λ4

∫∫
ω×(0,T )

ξ |ψ|2 dxdt

)
,
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where we have used that λ ≥ 1. In view of this estimate, we deduce that the integral on |∇ψ|2 of the right hand
side of (54) can be suppressed if the last integral is performed in the slightly greater set ω × (0, T ). From (54)
and this remark, we deduce (40).

Step 2. The proof of (41) is very similar to the proof of (40). We will only sketch the main points.
We start from the identity

M1ψ̃ +M2ψ̃ = F̃ ,

where
M̃1ψ̃ = 2s λ2 |∇η0|2 ξ̃ ψ̃ − 2s λ ξ̃∇η0 · ∇ψ̃ − ψ̃t ,

M̃2ψ̃ = −s2 λ2 |∇η0|2 ξ̃ 2 ψ̃ − ∆ψ̃ − s α̃t ψ̃,

F̃ = e−sα̃ f + s λ ξ̃∆η0 ψ̃ + s λ2 |∇η0|2 ξ̃ ψ̃.
We then have

‖M̃1ψ̃‖2
L2(Q) + ‖M̃2ψ̃‖2

L2(Q) + 2(M̃1ψ̃, M̃2ψ̃)L2(Q) = ‖F̃‖2
L2(Q) . (55)

After a lengthy computation, we find that

(M̃1ψ, M̃2ψ)L2(Q) ≥ C

∫∫
Q

(s λ2 ξ̃ |∇ψ̃|2 + s3 λ4 ξ̃3 |ψ̃|2) dxdt

+2(B̃4 + C̃1 + D̃1 + D̃41 + Ẽ + G̃) − C

∫∫
ω′×(0,T )

(s λ2 ξ̃ |∇ψ̃|2 + s3 λ4 ξ̃ 3 |ψ̃|2) dxdt

for any λ ≥ C(Ω, ω) and s ≥ C(Ω, ω)(e2λ‖η0‖∞ T + T 2), where

B̃4 = s3 λ3

∫∫
Σ

|∇η0|2 ξ̃ 3 ∂η
0

∂n
|ψ̃|2 dσ dt,

C̃1 = −2s λ2

∫∫
Σ

|∇η0|2 ξ̃ ∂ψ̃
∂n

ψ̃ dσ dt,

D̃1 = 2s λ
∫∫

Σ

∂η0

∂n
ξ̃

∣∣∣∣∣∂ψ̃∂n
∣∣∣∣∣
2

dσ dt, D̃41 = −s λ
∫∫

Σ

∂η0

∂n
ξ̃ |∇ψ̃|2 dxdt,

Ẽ =
∫∫

Σ

∂ψ̃

∂n
ψ̃t dσ dt, G̃ = s2 λ

∫∫
Σ

α̃t
∂η0

∂n
ξ̃ |ψ̃|2 dσ dt.

This, together with (55), gives

‖M1ψ̃‖2
L2(Q) + ‖M2ψ̃‖2

L2(Q) +
∫∫

Q

(s λ2 ξ̃ |∇ψ̃|2 + s3 λ4 ξ̃ 3 |ψ̃|2) dxdt

+ 2(B̃4 + C̃1 + D̃1 + D̃41 + Ẽ + G̃) ≤ C
(
‖F̃‖2

L2(Q)

+s λ2

∫∫
ω′×(0,T )

ξ̃ |∇ψ̃|2 dxdt+ s3 λ4

∫∫
ω′×(0,T )

ξ̃3 |ψ̃|2) dxdt

)
. (56)

With similar arguments to those in the first step, we can now assume that, in (56), ‖F̃‖2
L2(Q) is replaced by∫∫

Q

e−2sα̃ |f |2 dxdt
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and ‖M̃1ψ̃‖2
L2(Q) + ‖M̃2ψ̃‖2

L2(Q) is replaced by∫∫
Q

s−1 ξ−1(|ψ̃t|2 + |∆ψ̃|2) dxdt.

Finally, for λ ≥ C(Ω, ω) and s ≥ C(Ω, ω)T 2 large enough, we can replace the integrals of |∇ψ̃|2 and |ψ̃|2 in the
right hand side by

s3 λ4

∫∫
ω×(0,T )

ξ̃ 3 |ψ̃|2 dxdt.

This yields the estimate (41).

Step 3. Now, let us add the inequalities (40) and (41) and let us check that all the integrals on Σ can be
simplified, so that there will only remain integrals in Q.

Since η0 = 0 on ∂Ω, we have

ξ = ξ̃, α = α̃ and ψ = ψ̃ on Σ. (57)

Consequently, B4 + B̃4 = 0 and G+ G̃ = 0.
Let us see that

∂ψ̃

∂n
≡ −∂ψ

∂n
on Σ. (58)

From the definitions of ψ and ψ̃, we have

∂iψ = e−sα
(
∂iq + s λ ∂iη

0 ξ q
)
, ∂iψ̃ = e−sα̃

(
∂iq − s λ ∂iη

0 ξ̃ q
)
, (59)

whence
∂ψ

∂n
= s λ

∂η0

∂n
ξ e−sα q,

∂ψ̃

∂n
= −s λ ∂η

0

∂n
ξ̃ e−sα̃ q on Σ

and we certainly have (58).
We deduce from (57) and (58) that C1 + C̃1 = 0, D1 + D̃1 = 0 and E + Ẽ = 0.
On the other hand, since ϕ satisfies a zero Neumann condition and η0 = 0 on ∂Ω, we also have

|∇ψ|2 = |∇ψ̃|2 on Σ,

whence D41 + D̃41 = 0.
With all this, we obtain

s−1

∫∫
Q

(ξ−1(|ψt|2 + |∆ψ|2) + ξ̃−1(|ψ̃t|2 + |∆ψ̃|2)) dxdt

+ s λ2

∫∫
Q

(ξ |∇ψ|2 + ξ̃ |∇ψ̃|2) dxdt+ s3 λ4

∫∫
Q

(ξ3 |ψ|2 + ξ̃ 3 |ψ̃|2) dxdt

≤ C

(
s3 λ4

∫∫
ω×(0,T )

(
ξ3 |ψ|2 + ξ̃ 3 |ψ̃|2

)
dxdt +

∫∫
Q

(
e−2sα + e−2sα̃

) |f |2 dxdt
)
, (60)

for λ ≥ C(Ω, ω) and s ≥ C(Ω, ω)(e2λ‖η0‖∞ T + T 2).
From the definitions of ξ, ξ̃, α and α̃, we have

ξ̃ ≤ ξ, e−2sα̃ ≤ e−2sα in Q,
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so (60) yields∫∫
Q

(
(sξ)−1(|ψt|2 + |∆ψ|2) + s λ2 ξ |∇ψ|2 + s3 λ4 ξ3 |ψ|2) dxdt

≤ C

(∫∫
Q

e−2sα |f |2 dxdt+ s3 λ4

∫∫
ω×(0,T )

ξ3 |ψ|2 dxdt

)
, (61)

for any λ ≥ C(Ω, ω) and s ≥ C(Ω, ω)(e2λ‖η0‖∞ T + T 2).
We finally turn back to ϕ. For the moment, we have

s−1

∫∫
Q

ξ−1
(|ψt|2 + |∆ψ|2) dxdt+ s λ2

∫∫
Q

ξ |∇ψ|2 dxdt+ s3 λ4

∫∫
Q

e−2sα ξ3 |q|2 dxdt

≤ C

(∫∫
Q

e−2sα |f |2 dxdt+ s3 λ4

∫∫
ω×(0,T )

e−2sα ξ3 |q|2 dxdt

)
. (62)

Using (59), we find that

s λ2

∫∫
Q

e−2sα ξ |∇q|2 dxdt ≤ C sλ2

∫∫
Q

ξ |∇ψ|2 dxdt+ C s3 λ4

∫∫
Q

e−2sα ξ3 |q|2 dxdt.

Accordingly, the previous integral of |∇q|2 can be added to the left hand side of (62):

s−1

∫∫
Q

ξ−1 |ψt|2 dxdt+ s−1

∫∫
Q

ξ−1 |∆ψ|2 dxdt+ s λ2

∫∫
Q

ξ |∇q|2 dxdt+ s3 λ4

∫∫
Q

e−2sα ξ3 |q|2 dxdt

≤ C

(
s3 λ4

∫∫
ω×(0,T )

e−2sα ξ3 |q|2 dxdt+
∫∫

Q

e−2sα |f |2 dxdt

)
.

For ∆q, we use the identity

∆ψ = e−sα(∆q + s λ∆η0 ξ q + s λ2 |∇η0|2 ξ q + 2s λ ξ∇η0 · ∇q + s2 λ2 |∇η0|2 ξ2 q)

and we obtain

s−1

∫∫
Q

e−2sα ξ−1 |∆q|2 dxdt ≤ C

(
s−1

∫∫
Q

ξ−1 |∆ψ|2 dxdt

+s λ2

∫∫
Q

e−2sα ξ |q|2 dxdt+ s λ4

∫∫
Q

e−2sα ξ |q|2 dxdt

+s λ2

∫∫
Q

e−2sα ξ |∇q|2 dxdt+ s3 λ4

∫∫
Q

e−2sα ξ3 |q|2 dxdt
)
.

Finally, for qt , we get

s−1

∫∫
Q

e−2sα ξ−1 |qt|2 dxdt ≤ C(Ω, ω)
(
s−1

∫∫
Q

ξ−1 |ψt|2 dxdt +s e4λ‖η0‖C(Ω) T 2

∫∫
Q

e−2sα ξ3 |q|2 dxdt
)
,

where we have used the identity
qt = esα(ψt + s αt ψ).
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Thus, taking λ ≥ 1 and s ≥ C(Ω, ω)(e2λ‖η0‖∞ T + T 2), we are able to introduce all terms of Is,λ(q) in the left
hand side of (62). This yields (15) and concludes the proof of Lemma 1.
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