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STABILIZATION OF A LAYERED PIEZOELECTRIC 3-D BODY
BY BOUNDARY DISSIPATION

Boris Kapitonov1, Bernadette Miara2 and Gustavo Perla Menzala3

Abstract. We consider a linear coupled system of quasi-electrostatic equations which govern the
evolution of a 3-D layered piezoelectric body. Assuming that a dissipative effect is effective at the
boundary, we study the uniform stabilization problem. We prove that this is indeed the case, provided
some geometric conditions on the region and the interfaces hold. We also assume a monotonicity
condition on the coefficients. As an application, we deduce exact controllability of the system with
boundary control via a classical result due to Russell.
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1. Introduction

The quasi-electrostatic equations are perhaps the most standard model for piezoelectricity. Here we consider
the evolution problem of a piezoelectric structure whose 3-D displacement field u = u(x, t) = (u1, u2, u3) and
scalar electric potential ϕ = ϕ(x, t) is given by a model on a bounded domain Ω of R

3 with smooth boundary
∂Ω = S0 ∪ S1. Here S0 and S1 are two disjoint closed surfaces and the system read as follows{

utt − div T (u, ϕ) = 0

− divD(u, ϕ) = 0
in Ω × (0,+∞) (1.1)

where u is the mechanical displacement and ϕ is the electric potential. Some classical references where such
models were deduced are [5,6]. From now on summation convention with respect to repeated indices will be used.
In this quasi-electrostatic piezoelectric system T (u, ϕ) is the mechanical stress, D is the electric displacement
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and T and D satisfy the constitutive equations

T ij(u, ϕ) = cijk� εk�(u) + ekij
∂ϕ

∂xk

Di(u, ϕ) = −eik� εk�(u) + dij
∂ϕ

∂xj

where the stress tensor T = (T ij) and the electric displacement D = (Di) are related to the linearized defor-
mation tensor ε(u) = (εij(u)) whose components are given by εk�(u) = 1

2

(
∂u�

∂xk
+ ∂uk

∂x�

)
. The 4th-order elasticity

tensor (cijk�) is symmetric and positive, the 3rd-order coupling tensor (ekij) is symmetric and the 2nd-order
dielectric tensor (dij) is symmetric and positive.

In this article we prefer to rewrite the coupled system (1.1) in a more convenient form which will make
more transparent our discussion of the so-called transmission problem. Let Ai = [ek�i], D(x) = [dk�(x)] and
Aij = [aij

k�] be 3 × 3 matrices where aij
k� is given by

aij
kh = (1 − δihδjk)cikjh + δikδjh cihjk

where δij denotes the standard Kronecker delta. In these notations we have that

div
{
Ak

∂u

∂xk

}
=

∂

∂xi
{eik� εk�(u)}

∂

∂xi
{A∗

i∇ϕ} =
∂

∂xj

{
ek1j

∂ϕ

∂xk
, ek2j

∂ϕ

∂xk
, ek3j

∂ϕ

∂xk

}

and

∂

∂xi

{
Aij

∂u

∂xj

}
=

∂

∂xj
{c1jkhεkh(u), c2jkhεkh(u), c3jkhεkh(u)}

where ∇ denotes the (spatial) usual gradient operator.
Using the above notation we rewrite system (1.1) in the form

⎧⎪⎪⎨⎪⎪⎩
utt − ∂

∂xi

{
Aij

∂u

∂xj
+A∗

i∇ϕ
}

= 0 (1.2)

div
{
Ak

∂u

∂xk
−D∇ϕ

}
= 0 (1.3)

in Ω × (0,+∞). In (1.2) A∗
i denotes the adjoint of Ai. As we mentioned above we are concerned with a

transmission problem associated with system (1.2)–(1.3): we assume that the bounded domain Ω = O0\O1

where O0 and O1 are open bounded domains with O1 ⊂ O0 where O1 denotes the closure of O1, ∂O0 = S0

and ∂O1 = S1. Let us fix an integer n > 1 and k = 1, 2, . . . , n. For each k, let Bk be an open subset with
smooth boundary and such that O1 ⊂ Bk ⊂ O0, Bk ⊂ Bk+1. We set Ω0 = B1\O1 and Ωk = Bk+1\Bk for
k = 1, 2, . . . , n− 1. Also Ωn = O0\Bn.

We consider problem (1.2)–(1.3) with initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x) (1.4)
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Figure 1. n = 1.

Figure 2. n = 3.

and boundary conditions

⎧⎨⎩
(
Aij

∂u

∂xj
+A∗

i ∇ϕ
)
ηi + α(x)ut = 0 on S0 × [0,+∞)

ϕ = 0 on S0 × [0,+∞)
(1.5)

⎧⎨⎩
(
Ak

∂u

∂xk
−D∇ϕ

)
• η = 0 on S1 × [0,+∞)

u = 0 on S1 × [0,+∞).
(1.6)

From now on the dot • denotes the usual inner product in R
3.

Finally we require the transmission conditions

[
D(m−1)∇ϕ(m−1) −Ai

∂u(m−1)

∂xi

]
• η =

[
D(m)∇ϕ(m) −Ai

∂u(m)

∂xi

]
• η (1.7)

u(m−1) = u(m), ϕ(m−1) = ϕ(m) (1.8)

[
A

(m−1)
ij

∂u(m−1)

∂xj
+A∗

i∇ϕ(m−1)

]
ηi =

[
A

(m)
ij

∂u(m)

∂xj
+A∗

i∇ϕ(m)

]
ηi. (1.9)

All these transmission conditions should hold at the interfaces Γm × [0,+∞), m = 1, 2, . . . , n. From here on
η = (η1, η2, η3) will always denote the unit normal vector pointing the exterior of Bm or Ω and D(m), A(m)

ij ,
ϕ(m) or u(m) are the restrictions of the corresponding matrices or functions on Ωm.

Figures 1 and 2 illustrate simple such situations when n = 1 or n = 3.
The aim of this work is to show that under suitable assumptions on the elastic and dielectric tensors such as

symmetry, coercivity and monotonicity as well as symmetry of the coupling tensor given in Hypothesis 1 and
Hypotesis 3 together with geometrical assumptions given in Hypothesis 2 a result on uniform stabilization holds
(Th. 3.1). As an application, we deduce a controllability result given in Theorem 4.1.
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In order to mention the main result of this paper we give the assumptions on the coefficients or the matrices
in problem (1.2)–(1.9):

Hypothesis 1.

1) We assume that the coefficients cijk� and dij (which are the cartesian components of the piezoelectric
and electric permitivity tensors respectively) are L∞(Ω) and satisfy the following assumptions
cijk� = ck�ij = cjik�, dij = dji

dijξjξi ≥ d0|ξ|2 for some d0 > 0 and any vector ξ = (ξ1, ξ2, ξ3) ∈ R
3

cijk� λk� λij ≥ c0 λij λij for some c0 > 0 and any real symmetric tensor [λij ] of order 3.
2) The 3 × 3 matrices Aij(x) = [aij

k�(x)] (which satisfy A∗
ij = Aji due to the symmetry of cijk�) are such

that

Aij rj • ri ≥ c1

3∑
i=1

|ri|2

for some c1 > 0 and any vector ri = (r1i , r
2
i , r

3
i ) ∈ R

3.
3) The matrices Ai = [ek�i]3×3 are constant matrices with ek�i = eki�, D = [dk�(x)] with dij = dij(x) as

well as cijk� = cijk�(x) are piecewise constant functions which lose continuity only on Γ1,Γ2, . . . ,Γn.
4) α(x) > 0 ∀x ∈ S0, α ∈ C(S0).

Observation 1. For a linear material with Saint-Venant Kirchhoff mechanic behaviour the terms cijkh are
given by

cijkh = λ δijδkh + µ(δikδjh + δihδjk)

where λ and µ are constants such that λ + µ > 0 and µ > 0. In this situation, item 2) of Hypothesis 1 holds
with the constant c1 = µ. In fact, in this case

Aij vj • vi = (λ + µ)

(
3∑

i=1

vi
i

)2

+ µ

3∑
i,j=1

(vj
i )

2 ≥ µ

3∑
i=1

|vi|2.

Assuming Hypothesis 1, we consider the total energy of the structure E(t) associated with problem (1.2)–(1.9)
is given by

E(t) =
n∑

m=0

∫
Ωm

{
|u(m)

t |2 +A
(m)
ij

∂u(m)

∂xj
• ∂u

(m)

∂xi
+D(m)∇ϕ(m) • ∇ϕ(m)

}
dx. (1.10)

Formal calculations show that for every (smooth) solution of problem (1.2)–(1.9) the following identity holds

dE
dt

+ 2
∫

S0

α(x)|ut|2 dΓ = 0 ∀t ≥ 0 (1.11)

where the integral
∫

S0
α|ut|2 dΓ means the surface integral of α|ut|2 over the surface S0.

Observe that when the structure is totally clamped, that is, when S1 = ∂Ω then the energy is constant
along a trajectory. This case was considered by Miara in [14]. The main result of this article shows that the
total energy given by (1.10) decays exponentially to zero as t→ +∞ provided suitable geometric conditions are
imposed on Ω and Γm and monotonicity assumptions on the coefficients of the system. The need for the above
requirements were already noticed by Lions in [13] in the treatment of certain transmission problems. Later
on, Lagnese [10] also used those type of assumptions to prove controllability results for a class of second order
hyperbolic problems.
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Results on control or stabilization of physical systems are quite important specially in the case of systems
driven by coupled equations like thermo-elasticity (see [11]) or magneto-elasticity (see [4]). For those models be
may mention other approaches such as microlocal techniques. An easy way to check whether our monotonicity
conditions (see Hypothesis 3) are optimal or not would be to consider the case when there is no interaction in
the piezoelectric system (that is when Ai = 0). In this case the potential ϕ has to be zero and u satisfies a
wave-like equation that may be chosen to be a scalar wave equation including boundary dissipation. It is well
known (and follows from [10]) that in this situation Hypothesis 3 is optimal. In the general case, that is when
the coupling tensor (eijk) does not vanish, the optimality of Hypothesis 3 would require further study.

There are a large number of contributions concerning piezoelectric equations and/or quasi-electrostatic equa-
tions (see [1,14] and the references therein). However, as far as we know, a transmission problem for such class
of equations was treated only for similar systems (see [7, 10] and the references therein). Uniform stabilization
results for model (1.2)–(1.9) are interesting while studying exact controllability because give us an explicit
expression of the feedback control instead of the difficult computation of an exact control.

In a forthcoming article [8] we consider the case when no dissipation is included (that is, when α ≡ 0). In
that case we obtain a “boundary observation” inequality and use the HUM to solve the exact controllability
problem.

Let us briefly describe the sections of this paper: Solvability of the initial boundary value problem (1.2)–(1.9)
in the appropriate class of functions is outlined in Section 2. This is done via semigroup theory. In Section 3
we prove the exponential decay of the energy via the multiplier method. At this point, we needed to assume
suitable geometric conditions on Ω, the interfaces Γm as well as monotonicity assumptions on the coefficients
of the system.

We use standard notations, for example Hr(Ω) or Hs(∂Ω) will denote the Sobolev spaces of order r and s
on Ω and ∂Ω respectively. The norm of a vector v ∈ R

3 will be denote by |v|. Given a real-valued function g
the notation

∫
S
g dΓ means “the surface integral of g over the surface S”.

2. Well-posedness

In this section we outline the function spaces where the solution pair {u, ϕ} of problem (1.2)–(1.9) is consid-
ered. In order to obtain the main results in the next section it is sufficient to work with smooth solutions.

Let Ω be a bounded region as in the introduction. In Ω we consider the following problem

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

div(D∇ϕ) = divF in Ωm m = 0, 1, . . . , n (2.1)
ϕ = 0 on S0, D∇ϕ • η = F • η on S1 (2.2)

ϕ(m−1) = ϕ(m) on Γm, m = 1, 2, . . . , n (2.3)

D(m−1)∇ϕ(m−1) • η −D(m)∇ϕ(m) • η = F (m−1) • η − F (m) • η on Γm (2.4)
m = 1, 2, . . . , n

where F = (Fk) is a given function belonging to [H1(Ωm)]3. By elliptic theory, there exists a unique solution ϕ
of (2.1)–(2.4) which we denote by ϕ = β(F ). Denote by X the real Hilbert space of pairs {u, v} of three-
component vector-valued functions such that v(m) ∈ [L2(Ωm)]3, u(m) ∈ [H2(Ωm)]3 and u = 0 on S1. The inner
product in X is given by

〈W,W1〉X =
n∑

m=0

∫
Ωm

{
v1 • v2 +Aij

∂u1

∂xj
• ∂u2

∂xi
+ +D∇β

(
Ak

∂u1

∂xk

)
• ∇β

(
Ak

∂u2

∂xk

)}
dx
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whenever W = (u1, v1) and W1 = (u2, v2) belong to X . We will denote by || · ||X the norm in X . In X we
define the unbounded operator A with domain D(A) which consists of all the elements (u, v) ∈ X such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(m) ∈ [H1(Ωm)]3, v
∣∣
S1

= 0[
Aij

∂u

∂xj
+A∗

i∇β
(
Ak

∂u

∂xk

)]
ηi + αv = 0 on S0

u(m−1) = u(m), v(m−1) = v(m) on Γm

A
(m−1)
ij

∂u(m−1)

∂xj
+A∗

i∇β
(
Ak

∂u(m−1)

∂xk

)
ηi

= A
(m)
ij

∂u(m)

∂xj
+A∗

i ∇β
(
Ak

∂u(m)

∂xk

)
ηi on Γm

(2.5)

m = 1, 2, . . . , n. In the domain of A, the operator is given by

A(u, v) =
(
v,

∂

∂xi

{
Aij

∂u

∂xj
+A∗

i∇β
(
Ak

∂u

∂xk

)})
·

Lemma 1. Assume Hypothesis 1 given in the introduction, then the operator A is dissipative, that is
〈A(W ),W 〉X ≤ 0 ∀W ∈ D(A).

Proof. Let W = (u, v) ∈ D(A), then

〈A(W ),W 〉X =
〈(

v,
∂

∂xi

{
Aij

∂u

∂xj
+A∗

i ∇β
(
Ak

∂u

∂xk

)})
, (u, v)

〉
X

=
n∑

m=0

∫
Ωm

[(
∂

∂xi

{
Aij

∂u

∂xj
+A∗

i∇β
(
Ak

∂u

∂xk

)})
• v

+Aij
∂v

∂xj
• ∂u

∂xi
+D∇β

(
Ak

∂v

∂xk

)
• ∇β

(
Ak

∂u

∂xk

)]
dx. (2.6)

Using the boundary and interface conditions we get

n∑
m=0

∫
Ωm

[(
∂

∂xi

{
Aij

∂u

∂xj
+A∗

i∇β
(
Ak

∂u

∂xk

)})
• v dx = −

n∑
m=0

∫
Ωm

Aij
∂u

∂xj
• ∂v

∂xi
dx

−
n∑

m=0

∫
Ωm

A∗
i∇β

(
Ak

∂u

∂xk

)
• ∂v

∂xi
dx−

∫
S0

α|v|2 dΓ. (2.7)
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Observe that the following identities are valid

n∑
m=0

∫
Ωm

{
D∇β

(
Ak

∂v

∂xk

)
• ∇β

(
Ak

∂u

∂xk

)
− A∗

i∇β
(
Ak

∂u

∂xk

)
• ∂v

∂xi

}
dx

=
n∑

m=0

∫
Ωm

(
∇β
(
Ak

∂u

∂xk

)
•
(
D∇β

(
Ak

∂v

∂xk

)
−Ak

∂v

∂xk

)]
dx

=
n∑

m=1

∫
Γm

β

(
Ak

∂u

∂xk

){
D(m−1)∇β(m−1)

(
Ak

∂v

∂xk

)
−Ak

∂v(m−1)

∂xk

}
• η dΓ

−
n∑

m=1

∫
Γm

[
D(m)∇β(m)

(
Ak

∂v

∂xk

)
−Ak

∂v

∂xk

]
• η dΓ

+
∫

S1

β

(
Ak

∂u

∂xk

)[
D∇β

(
Ak

∂v

∂xk

)
−Ak

∂v

∂xk

]
• η dΓ

−
m∑

m=0

∫
Ωm

β

(
Ak

∂u

∂xk

){
div
(
D∇β

(
Ak

∂v

∂xk

))
− div

(
Ak

∂v

∂xk

)}
dx.

From (2.1)–(2.4) it follows that

n∑
m=0

∫
Ωm

{(
D∇β

(
Ak

∂v

∂xk

)
•
(
∇β
(
Ak

∂u

∂xk

)))
−
(
A∗

i∇β
(
Ak

∂u

∂xk

)
• ∂v

∂xi

)}
dx = 0.

Consequently, from (2.4)–(2.8) we obtain that

〈A(u, v), (u, v)〉X = −
∫

S0

α|v|2 dΓ ≤ 0.

�
Now, we consider the adjoint operator A∗. It can be verified that the domain of A∗ consists of all elements
(u, v) ∈ X satisfying (2.5) except that we should change α(x) by −α(x). For (u, v) ∈ D(A∗) we have

A∗(u, v) = −
(
v,

∂

∂xi

{
Aij

∂u

∂xj
+A∗

i ∇β
(
Ak

∂u

∂xk

)})
·

We can verify that A∗ is dissipative. Obviously A is closed and densely defined. It follows by a well known
criteria (see Pazy [15], Cor. I.44) that the operator A generates a strongly continuous semigroup of contractions
{U(t)}t≥0. Furthermore, for f = (f1, f2) ∈ D(A) we have

d
dt
U(t)f = AU(t)f , U(0)f = f

and U(t)f is the unique (strong) solution of problem (1.2)–(1.9). Let f = (f1, f2) ∈ X , f (n) =
(
f

(n)
1 , f

(n)
2

) ∈
D(A) such that lim

n→+∞ ||f − f (n)||X = 0. Then, U(t)f (n) satisfies the following identity

∫ T

0

{〈
U(t)f (n),

dψ
dt

〉
X

+ 〈U(t)f (n),A∗ψ〉X
}

dt = −〈f (n), ψ(0)〉X (2.9)

where ψ ∈ L2(0, T ;D(A∗)), ψt ∈ L2(0, T ;X) with ψ(T ) = 0. Passing to the limit in (2.9) we obtain∫ T

0

{〈
U(t)f,

dψ
dt

〉
X

+ 〈U(t)f,A∗ψ〉X
}

dt = −〈f, ψ(0)〉X
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that is, U(t)f is the weak solution in X of the abstract initial-boundary value problem

Wt = A(W ), W (0) = f. �

3. Stabilization

In this section we prove the boundary stabilization result. The proof is based on the theory of multipliers and
it is motivated by the invariance of system (1.2)–(1.3) with constant coefficients relative to the one-parameter
group of dilations in all variables. A good reference for the use of this technique is Komornik’s book [9]. The
multipliers have to be conveniently modified in such a way the extra boundary terms appearing in the identities
can be estimated by appropriate bounds. Let g = g(x) be an auxiliary scalar smooth function on Ω which we
will choose later. Let us fix t0 > 0 and consider the multiplier L1 given by

L1u = (t+ t0)ut + (∇g • ∇)u+ u (3.1)

where ∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)
,

∇g • ∇ =
∂g

∂x1

∂

∂x1
+

∂g

∂x2

∂

∂x2
+

∂g

∂x3

∂

∂x3

and u = (u1, u2, u3). Let L2 the operator

L2ϕ = (t+ t0)ϕ
∂

∂t
−∇g · ∇ϕ. (3.2)

We take the inner product (in R
3) of L1u with equation (1.2) and apply the operator L2ϕ to equation (1.3).

Since {u, ϕ} is a (smooth) solution of (1.2)–(1.9) then adding the identities we obtain

∂F

∂t
= div G+

∂Hi

∂xi
+ J (3.3)

where

F = (t+ t0)
[
|ut|2 +Aij

∂u

∂xj
• ∂u

∂xi
+D∇ϕ • ∇ϕ

]
+ 2 ut •

[
(∇g • ∇)u+ u

]
(3.4)

G = 2(t+ t0)ϕ
∂

∂t

{
D∇ϕ−Ak

∂u

∂xk

}
+ ∇gD∇ϕ • ∇ϕ

− 2(∇ϕ • ∇g)D∇ϕ− 2∇g Ak
∂u

∂xk
• ∇ϕ+ 2(∇g • ∇ϕ)Ak

∂u

∂xk
(3.5)

Hi = 2 {(t+ t0)ut + (∇g • ∇)u+ u} •
{
Aij

∂u

∂xj
+A∗

i ∇ϕ
}

+
∂g

∂xi

[
|ut|2 −Apq

∂u

∂xq
• ∂u

∂xp

]
(3.6)

and

J = (∆g − 1)Aij
∂u

∂xj
• ∂u

∂xi
− 2

∂2g

∂xp∂xi
Aij

∂u

∂xj
• ∂u

∂xp
+ (3 − ∆g)|ut|2 + 2

∂2g

∂xi∂xk
dij

∂ϕ

∂xj

∂ϕ

∂xk

+ (1 − ∆g)D∇ϕ • ∇ϕ+ 2∇ϕ •
{

(∆g − 1)Ak
∂u

∂xk
− ∂2g

∂xi∂xk
Ak

∂u

∂xi
−
(
Ak

∂u

∂xk
• ∇
)
∇g
}
. (3.7)

Observation 2. If we consider g(x) = 1
2 |x−x0|2 for some fixed x0 ∈ R

3 then J ≡ 0. In this case (3.3) will be a
conservation law. However, due to the expressions of G and Hi we would require to have a definite sign for ∂g

∂η ·
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Thus, later on we will choose g as an “small” perturbation of 1
2 |x − x0|2. Let {u, ϕ} be a smooth solution of

(1.2)–(1.9). Integration over Ωm × (0, T ) of identity (3.3) and summation over m implies that

(T + t0)E(T ) + 2
n∑

m=0

∫
Ωm

u
(m)
t •

{
(∇g • ∇)u(m) + u(m)

}
dx
]t=T

t=0

= t0E(0) +
n∑

m=1

∫ T

0

∫
Γm

(VVV m−1 −VVV m)dΓ dt

+
∫ T

0

∫
S0

VVV n dΓ dt+
∫ T

0

∫
S1

VVV 0 dΓ dt+
n∑

m=0

∫ T

0

∫
Ωm

Jm(x, t)dxdt (3.8)

where E(t) is given by (1.10), Jm = Jm(u, ϕ, g) denotes the restriction of J (in (3.7)) to the region Ωm and

Vm = 2
{
(t+ t0)u

(m)
t + (∇g • ∇)u(m) + u(m)

}
•
{(

A
(m)
ij

∂u(m)

∂xj
+A∗

i∇ϕ(m)

)
ηi

}
+
∂g

∂η

(
|u(m)

t |2 −A(m)
pq

∂u(m)

∂xq
• ∂u

(m)

∂xp

)
+
∂g

∂η
D(m)∇ϕ(m) • ∇ϕ(m) + 2(t+ t0)ϕ(m)

(
D(m)∇ϕ(m)

t −Ak
∂2u(m)

∂xk∂t

)
• η

− 2(∇ϕ(m) • ∇g)
(
D(m)∇ϕ(m) −Ak

∂u(m)

∂xk

)
• η − 2

∂g

∂η

(
Ak

∂u(m)

∂xk
• ∇ϕ(m)

)
. (3.9)

Here ∂g
∂η denotes the normal derivative of g at x ∈ Γm (or S0, S1). Next lemma tell us that the differences

Vm−1 − Vm will have “good” sign if we choose g conveniently and assume a monotonicity condition on {A(m)
ij }

and {D(m)}:
Lemma 2. Let {u, ϕ} be a smooth solution of (1.2)–(1.9). Then, the identity

Vm−1 − Vm = −∂g
∂η

{(
A

(m−1)
ij −A

(m)
ij

) ∂u(m−1)

∂xj
• ∂u

(m−1)

∂xi
+A

(m)
ij

[
∂u(m)

∂xj
− ∂u(m−1)

∂xj

]
•
[
∂u(m)

∂xi
− ∂u(m−1)

∂xi

]
+ (D(m) −D(m−1))∇ϕ(m) • ∇ϕ(m) +D(m−1)(∇ϕ(m−1) −∇ϕ(m)) • (∇ϕ(m−1) −∇ϕ(m)

}
(3.10)

holds.

Proof. The idea is to use the interface conditions (1.7)–(1.9). In fact, direct calculations using (3.9) and the
interfaces conditions imply that

Vm−1 − Vm = 2(∇g • ∇)(u(m−1) − u(m)) •
(
A

(m)
ij

∂u(m)

∂xj
+A∗

i∇ϕ(m)

)
ηi

− ∂g

∂η

{(
A(m−1)

pq

∂u(m−1)

∂xq
• ∂u

(m−1)

∂xp

)
−
(
A(m)

pq

∂u(m)

∂xq
• ∂u

(m)

∂xp

)
− (D(m−1)∇ϕ(m−1) • ∇ϕ(m−1)) + (D(m)∇ϕ(m) • ∇ϕ(m))

+ 2
(
Ak

∂u(m−1)

∂xk
• ∇ϕ(m−1)

)
− 2
(
Ak

∂u(m)

∂xk
• ∇ϕ(m)

)}
− 2
(
D(m)∇ϕ(m) −Ak

∂u(m)

∂xk

)
• η
(
∇g • ∇ϕ(m−1) −∇g • ∇ϕ(m)

)
. (3.11)
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Now, we use the identity

(∇g • ∇)(u(m−1) − u(m)) =
∂g

∂xi

(
∂u(m−1)

∂xi
− ∂u(m)

∂xi

)
=

∂g

∂xi
ηi

(
∂u(m−1)

∂η
− ∂u(m)

∂η

)
=
∂g

∂η

(
∂u(m−1)

∂η
− ∂u(m)

∂η

)
in order to obtain

2
{
(∇g • ∇)(u(m−1) − u(m))

}
•
{
ηi

(
A

(m)
ij

∂u(m)

∂xj
+A∗

i∇ϕ(m)

)}
= 2

∂g

∂η

{(
∂u(m−1)

∂η
− ∂u(m)

∂η

)
ηi •

(
A

(m)
ij

∂u(m)

∂xj
+A∗

i∇ϕ(m)

)}
= 2

∂g

∂η

{(
∂u(m−1)

∂xi
− ∂u(m)

∂xi

)
•
(
A

(m)
ij

∂u(m)

∂xj
+A∗

i∇ϕ(m)

)}
= 2

∂g

∂η

{
A

(m)
ij

∂u(m)

∂xj
• ∂u

(m−1)

∂xi
−A

(m)
ij

∂u(m)

∂xj
• ∂u

(m)

∂xi

+Ai
∂u(m−1)

∂xi
• ∇ϕ(m) − Ai

∂u(m)

∂xi
• ∇ϕ(m)

}
. (3.12)

In a similar way we obtain

− 2
(
D(m)∇ϕ(m) −Ak

∂u(m)

∂xk

)
• η
{
∇g • ∇ϕ(m−1) −∇g • ∇ϕ(m)

}
= −2

(
D(m)∇ϕ(m) −Ak

∂u(m)

∂xk

)
• η
{
∇g • η

(
∂ϕ(m−1)

∂η
− ∂ϕ(m)

∂η

)}
= 2

∂g

∂η

(
D(m)∇ϕ(m) −Ak

∂u(m)

∂xk

)
• (∇ϕ(m) −∇ϕ(m−1))

= 2
∂g

∂η

{
(D(m)∇ϕ(m) • ∇ϕ(m)) − (D(m)∇ϕ(m) • ∇ϕ(m−1))

+Ak
∂u(m)

∂xk
• ∇ϕ(m−1 −Ak

∂u(m)

∂xk
• ∇ϕ(m)

}
. (3.13)

From (3.11)–(3.13) we obtain the identity

Vm−1 − Vm =
∂g

∂η

{
2A(m)

ij

∂u(m)

∂xj
• ∂u

(m−1)

∂xi
−A

(m)
ij

∂u(m)

∂xj
• ∂u

(m)

∂xi

−A
(m−1)
ij

∂u(m−1)

∂xj
• ∂u

(m−1)

∂xi
− 2D(m)∇ϕ(m) • ∇ϕ(m−1)

+D(m)∇ϕ(m) • ∇ϕ(m) +D(m−1)∇ϕ(m−1) • ∇ϕ(m−1)

+ 2Ak
∂u(m−1)

∂xk
• ∇ϕ(m) − 2Ak

∂u(m)

∂xk
• ∇ϕ(m)

+ 2Ak
∂u(m)

∂xk
• ∇ϕ(m−1) − 2Ak

∂u(m−1)

∂xk
• ∇ϕ(m−1)

}
. (3.14)

Using the interface conditions (1.7) it follows that(
Ak

∂u(m)

∂xk
−Ak

∂u(m−1)

∂xk

)
• η =

(
D(m)∇ϕ(m) −D(m−1)∇ϕ(m−1)

) • η.
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Therefore

2
∂g

∂η

{
Ak

∂u(m−1)

∂xk
• ∇ϕ(m) −Ak

∂u(m)

∂xk
• ∇ϕ(m) +Ak

∂u(m)

∂xk
• ∇ϕ(m−1) −Ak

∂u(m−1)

∂xk
• ∇ϕ(m−1)

}
= 2

∂g

∂η

(
Ak

∂u(m)

∂xk
−Ak

∂u(m−1)

∂xk

)
•
(
∇ϕ(m−1 −∇ϕ(m)

)
= 2

∂g

∂η

(
Ak

∂u(m)

∂xk
−Ak

∂u(m−1)

∂xk

)
• η
{
∂ϕ(m−1)

∂η
− ∂ϕ(m)

∂η

}
= 2

∂g

∂η

(
D(m)∇ϕ(m) −D(m−1)∇ϕ(m−1)

)
• η
{
∂ϕ(m−1)

∂η
− ∂ϕ(m)

∂η

}
= 2

∂g

∂η

(
D(m)∇ϕ(m) −D(m−1)∇ϕ(m−1)

)
•
{
∇ϕ(m−1) −∇ϕ(m)

}
= 2

∂g

∂η

{
−D(m)∇ϕ(m) • ∇ϕ(m) +D(m)∇ϕ(m) • ∇ϕ(m−1)

−D(m−1)∇ϕ(m−1) • ∇ϕ(m−1) +D(m−1)∇ϕ(m−1) • ∇ϕ(m)

}
. (3.15)

From (3.14) and (3.15) we deduce that

Vm−1 − Vm =
∂g

∂η

{
2A(m)

ij

∂u(m)

∂xj
• ∂u

(m−1)

∂xi
−A

(m)
ij

∂u(m)

∂xj
• ∂u

(m)

∂xi

−A
(m−1)
ij

∂u(m−1)

∂xj
• ∂u

(m−1)

∂xi
−D(m)∇ϕ(m) • ∇ϕ(m)

−D(m−1)∇ϕ(m−1) • ∇ϕ(m−1) + 2D(m−1)∇ϕ(m−1) • ∇ϕ(m)

}
. (3.16)

The conclusion of Lemma 3.1 follows from (3.16) observing the validity of the identities

A
(m)
ij

∂u(m)

∂xj
• ∂u

(m)

∂xi
+A

(m−1)
ij

∂u(m−1)

∂xj
• ∂u

(m−1)

∂xi
− 2A(m)

ij

∂u(m)

∂xj
• ∂u

(m−1)

∂xi

=
(
A

(m−1)
ij −A

(m)
ij

) ∂u(m−1)

∂xj
• ∂u

(m−1)

∂xi

+A
(m)
ij

(
∂u(m)

∂xj
− ∂u(m−1)

∂xj

)
•
(
∂u(m)

∂xi
− ∂u(m−1)

∂xi

)

and

D(m)∇ϕ(m) • ∇ϕ(m) +D(m−1)∇ϕ(m−1) • ∇ϕ(m−1) − 2D(m−1)∇ϕ(m−1) • ∇ϕ(m)

= D(m−1)
(
∇ϕ(m−1) −∇ϕ(m)

)
•
(
∇ϕ(m−1) −∇ϕ(m)

)
+ (D(m) −D(m−1))∇ϕ(m) • ∇ϕ(m). �
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Let us choose a convenient function g(x): Let Φ(x) be a solution of the elliptic problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆Φ = 1 in Ω

∂Φ
∂η

= 2
Vol(Ω)

area(S0)
on S0

∂Φ
∂η

= − Vol(Ω)
area(S1)

on S1

(3.17)

which admits a solution Φ(x) ∈ C2(Ω) ∩ C1(Ω). Let δ > 0, x0 ∈ R
3 (to be chosen later) and define

g(x) = δΦ(x) +
1
2
|x− x0|2. (3.18)

Now we concentrate our discussion in estimating the term
n∑

m=0

∫ T

0

∫
Ωm

Jm dxdt in (3.8).

Lemma 3. Under the assumptions of Lemma 2 Hypothesis 1 and choosing g(x) as in (3.18) we have

n∑
m=0

∫ T

0

∫
Ωm

Jm dxdt ≤ δ c̃

∫ T

0

E(t) dt

for any δ > 0 and some positive constant c̃ which depends only on Φ and the norms of the matrices Aij , Ai

and D.

Proof. The index m will be omitted in order to simplify notations. With our choice of g(x), straightforward
calculations show that Jm (given by (3.7)) can be written as

Jm = 2δ
{
Ak

∂u

∂xk
− ∂2Φ
∂xi∂xk

Ak
∂u

∂xi
−
(
Ak

∂u

∂xk
• ∇
)
∇Φ
}
• ∇ϕ

+ 2δ
{(

Aij
∂u

∂xj
• ∂u

∂xi

)
− ∂2Φ
∂xp∂xi

Aij
∂u

∂xj
• ∂u

∂xp
+

∂2Φ
∂xi∂xk

dij
∂ϕ

∂xj

∂ϕ

∂xk

}
− δ

{
|ut|2 +Aij

∂u

∂xj
• ∂u

∂xi
+D∇ϕ • ∇ϕ

}
. (3.19)

Let us estimate each term on the right hand side of (3.19). We consider vi = ∂2Φ
∂xp∂xi

∂u
∂xp

and ε > 0, then, we
can write

−2Aij
∂u

∂xj
• vi = −Aij

(√
ε
∂u

∂xj
+

1√
ε
vj

)
•
(√

ε
∂u

∂xi
+

1√
ε
vi

)
+ εAij

∂u

∂xj
• ∂u

∂xi
+ ε−1Aij vj • vi

≤ εAij
∂u

∂xj
• ∂u

∂xi
+ ε−1Aij vj • vi (3.20)

because Aij satisfies Assumption 2) in Hypothesis 1.
Let c3 and c4 be the following numbers

c3 = max
x∈Ω

i,j=1,2,3

||Aij(x)||, c4 = max
x∈Ω

i,j=1,2,3

∣∣∣∣∂2Φ(x)
∂xi∂xj

∣∣∣∣ ,
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where ||Aij || denotes the norm of the matrix Aij . With the above notations, we have

|vi| ≤ C4

3∑
j=1

∣∣∣∣ ∂u∂xj

∣∣∣∣
and

|Aijvj • vi| ≤ ||Aij || |vj | |vi| ≤ c3

⎛⎝ 3∑
j=1

|vj |
⎞⎠2

≤ 9 c3 c24

{
3∑

i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣
}2

≤ 27 c3 c24
3∑

i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣2
≤ 27 c−1

1 c3 c
2
4Aij

∂u

∂xj
• ∂u

∂xi
(3.21)

where c1 > 0 is as in item 2) of Hypothesis 1.
From (3.20) and (3.21) we obtain the inequality

−2δ
∂2Φ

∂xp∂xi
Aij

∂u

∂xj
• ∂u

∂xp
≤ δ(ε+ 27(ε c1)−1 c3 c

2
4)Aij

∂u

∂xj
• ∂u

∂xi
· (3.22)

Similarly, we estimate

2δ
∂2Φ

∂xi∂xk
dij

∂ϕ

∂xj

∂ϕ

∂xk
≤ δ ε1D∇ϕ • ∇ϕ+ δ ε−1

1 Dψ • ψ

for any ε1 > 0 where ψi = ∂2Φ
∂xi∂xk

∂ϕ
∂xk

, ψ = (ψ1, ψ2, ψ3) in order to obtain

2δ
∂2Φ

∂xi∂xk
dij

∂ϕ

∂xj

∂ϕ

∂xk
≤ δ(ε1 + 9(d0ε1)−1 c5c

2
4)D∇ϕ • ∇ϕ (3.23)

where d0 > 0 is as in Hypothesis 1 and c5 = ||D||.
Following the same reasoning as above we get the estimates

−2δ∇ϕ •
(
Ak

∂u

∂xk
• ∇
)
∇Φ ≤ δ

(
3ε2 d−1

0 c24D∇ϕ • ∇ϕ)+ δ

(
3(c0ε2)−1 c26Aij

∂u

∂xj
• ∂u

∂xi

)
(3.24)

where ε2 > 0 and c6 = max
k=1,2,3

||Ak||.
Also

2δ∇ϕ •Ak
∂u

∂xk
≤ δ

(
ε3d

−1
0 c6D∇ϕ • ∇ϕ+ 3c6(c0ε3)−1Aij

∂u

∂xj
• ∂u

∂xi

)
(3.25)

−2δ∇ϕ • ∂2Φ
∂xi∂xk

Ak
∂u

∂xi
≤ δ

(
ε4 d

−1
0 c6D∇ϕ • ∇ϕ

+ 27(c0ε4)−1 c6 c
2
4Aij

∂u

∂xj
• ∂u

∂xi

)
(3.26)

for any ε3 > 0 and ε4 > 0.
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From the above estimates (3.22)–(3.26) we deduce from (3.19) that

Jm ≤ δ

{
c7Aij

∂u

∂xj
• ∂u

∂xi
+ c8D∇ϕ • ∇ϕ

}
− δ

{
|ut|2 +Aij

∂u

∂xj
• ∂u

∂xi
+D∇ϕ • ∇ϕ

}
(3.27)

where c7 and c8 are positive constants. Integration of inequality (3.27) in Ωm×(0, T ) and adding in m completes
the proof of Lemma 3.2 by taking c̃ = max{c7, c8}. �

From now on we fix δ0 > 0 such that δ0c̃ < 1 where c̃ is as in Lemma 3.2. Thus, we will work with the
auxiliary function

g(x) = δ0 Φ(x) +
1
2
|x− x0|2.

Our next goal is to estimate the surface integrals (over S0 × (0, T ) and S1 × (0, T ) in (3.8)).
Now, we will impose geometric conditions on Ω and Γm.

Hypothesis 2. There exists a point x0 ∈ R
3 such that

a) (x− x0) • η > −2δ0
Vol(Ω)

area(S0)
for all x ∈ S0

b) (x− x0) • η ≤ δ0
Vol(Ω)

area(S1)
, for all x ∈ S1

c) δ0
∂Φ
∂η

+ (x− x0) • η ≥ 0 for all x ∈ Γm

m = 1, 2, . . . , n, where η = η(x) denotes the unit outward normal to S0, S1 or Γm.

Remark 1. We note that the above assumptions on Hypothesis 2 are valid when δ0 = 0 for star-shaped surfaces
S1,Γ1,Γ2, . . . ,Γn and strongly star-shaped surface S0, i.e.

(x− x0) • η > 0, ∀x ∈ S0.

Moreover, if Γ1,Γ2, . . . ,Γn are strongly star-shaped with respect to a point x0, then the above conditions hold
with δ0 > 0 for a class of domains which includes star-shaped domains.

Let λ0 > 0 be such that

∂g

∂η
≥ λ0|∇g| for any x ∈ S0

which is possible since ∂g
∂η = δ0

Vol(Ω)
Area(S0) + (x − x0) • η > 0 on S0 and S0 is compact. Using the boundary

conditions (1.5)–(1.6) we find that

Vn = − ∂

∂t

{
α|u|2}− [2α(t+ t0) − ∂g

∂η

]
|ut|2 − ∂g

∂η

{
Apq

∂u

∂xq
• ∂u

∂xp
+D∇ϕ • ∇ϕ

}
− 2αut • (∇g • ∇)u

(3.28)

on S0. Also

V0 =
∂g

∂η

{(
Aij

∂u

∂xj
• ∂u

∂xi

)
+ (D∇ϕ • ∇ϕ)

}
on S1. (3.29)
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Observe that

−2αut • (∇g • ∇)u ≤ 2α|ut| |(∇g • ∇)u| ≤ α ε−1
0 |ut|2 |∇g| + α ε0|∇g|

(
3∑

i=1

|∇ui|2
)

≤ α ε−1
0 |∇g| |ut|2 + α ε0 c

−1
1 |∇g|Aij

∂u

∂xj
• ∂u

∂xi
(3.30)

for any ε0 > 0 where c1 > 0 is as in Hypothesis 1.
Let ε0 = c1λ0 γ

−1
1 where γ1 = max

x∈S0
α(x). It follows from (3.28) and (3.30) that

Vn ≤ − ∂

∂t

{
α|u|2}− [2α(t+ t0) − ∂g

∂η
− αγ1(c1λ0)−1 |∇g|

]
|ut|2 (3.31)

on S0. We choose t0 > 0 large enough so that
[
2α(t+ t0) − ∂g

∂η − αγ1(c1λ0)−1|∇g|
]
> 0 for any t ≥ 0 and

x ∈ S0. Also from Hypothesis 2 we obtain that

V0 ≤ 0 on S1. (3.32)

The following inequality can be proved by standard arguments

2
n∑

m=0

∫
Ωm

u
(m)
t •

{
(∇g • ∇)u(m) + u(m)

}
dx+

∫
S0

α|u|2 dΓ

≤ c10

n∑
m=0

∫
Ωm

[
|u(m)

t |2 +A
(m)
ij

∂u(m)

∂xj
• ∂u

(m)

∂xi

]
dx ≤ c10E(t) (3.33)

for some positive constant c10 (which can be chosen as c10 = max{2, c−1
1 (k+ max

x∈Ω
|∇g(x)|)} where k > 0 is such

that
n∑

m=0

∫
Ωm

|u(m)|2 dx+
∫

S0

α|u|2 dΓ ≤ k

n∑
m=0

∫
Ωm

|∇u(m)
i |2 dx

where u(m) = (u(m)
1 , u

(m)
2 , u

(m)
3 ) ∈ [H1(Ωm)]3 with u(m−1) = u(m) on Γm, m = 1, 2, . . . , n.)

Hypothesis 3. The coefficients of system (1.2)–(1.3) satisfy the following monotonicity conditions(
A

(m−1)
ij −A

(m)
ij

)
vj • vi ≥ 0 for any vi ∈ R

3, 1 ≤ m ≤ n(
D(m) −D(m−1)

)
v • v ≥ 0 for any v ∈ R

3, 1 ≤ m ≤ n.

Theorem 3.1. Let us assume Hypothesis 1, 2 and 3. Let {u, ϕ} be the unique solution of problem (1.2)–(1.9)
as shown in Section 2. Then, there exists positive constants c and w such that

E(t) ≤ c exp(−wt)E(0) ∀t ≥ 0

where E(t) is given by (1.10).
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Proof. It follows from identity (3.8) using Lemmas 3.1 and 3.2 together with (3.31), (3.32), (3.33) and Hypoth-
esis 3 that

(T + t0)E(T ) ≤ (2c10 + t0)E(0) + δ0c̃

∫ T

0

E(t)dt (3.34)

where δ0c̃ < 1 (as in Lem. 3.2), holds for any T > 0.
Let us denote by h(T ) the right hand side of (3.34). Clearly h′(T )

h(T ) ≤ δ0 c̃
T+t0

therefore h(T ) ≤ (T+t0)
p

tp
0

h(0)
where p = δ0c̃ < 1. Returning to (3.34) we obtain that

E(T ) ≤ c11
(T + t0)1−p

E(0) (3.35)

where c11 = (2c10 + t0)t
−p
0 . Now, we choose T = T̃ > 0 large enough in (3.35) so that T ∗ = c11

(T̃+t0)1−p
< 1. The

semigroup (see Pazy [15]) property implies the conclusion of Theorem 3.1. �

4. Application: exact controllability

In this section, we use the main result obtained above in order to prove exact boundary controllability to an
arbitrary state of solutions of (1.2)–(1.9) where instead of the first boundary condition in (1.5) we consider(

Aij
∂u

∂xj
+A∗

i∇ϕ
)
ηi = h(x, t) on S0 × [0,+∞) (4.1)

where f = (u0, u1) (in (1.4)) is an arbitrary element of the space X (defined in Sect. 2). The formulation of the
exact boundary control for the above system is the following: given the initial distribution f = (u0, u1), a time
T > 0 and a desired terminal state g = (g1, g2), find a vector-valued function h = h(x, t) such that the solution
of (1.2)–(1.9) with condition (4.1) instead of the first boundary condition in (1.5), satisfies the conditions

u(x, T ) = g1(x), ut(x, T ) = g2(x).

Let {U(t)}t≥0 be the semigroup associated with problem (1.2)–(1.9) (with condition (4.1) instead of the first
boundary condition in (1.5)). Consider the following equation in X :

w − U∗(T )U(T )w = f − U∗(T )g.

The operator F (T ) = U∗(T )U(T ) takes X into itself and ||F (T )|| < 1 for any T > T ∗ where T ∗ was chosen
in the proof of Theorem 3.1 as T ∗ = c11

(T̃+t0)1−p
with T̃ large enough so that T ∗ < 1. Thus, we can solve this

equation for any f and g ∈ Y with w satisfying

||w|| ≤ C(||f || + ||g||).

Consequently, if we choose w = (I − F (T ))−1(f − U∗(T )g) where I denotes the identity and set

V (x, t) = U(t)w − U∗(T − t)(U(T )w − g) ≡ (ũ, ṽ) − (
≈
u,

≈
v).
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It follows that

V (x, 0) = f(x), V (x, T ) = g(x)

and (u, v) = V (x, t) is a weak solution of (1.2)–(1.9) (with condition (4.1) instead of the first boundary condition
in (1.5)) with h(x, t) = −α(ṽ +

≈
v). We observe that by the energy identity

||h||2L2(S0×(0,T )) ≤ C
(||f ||2X + ||g||2X

)
.

Thus, we arrive to the following assertion:

Theorem 4.1. Assume that Ω, Γm and the coefficients satisfy the assumptions of Theorem 3.1. Then, for
any T > T ∗, given any initial data f = (u0, u1) ∈ X and any g = (g1, g2) ∈ X there exists a control h(x, t) ∈
L2(S0 × (0, T )) such that the corresponding solution of (1.2)–(1.9) (with the above mentioned modification in
(1.5)) satisfies

u(x, T ) = g1(x), ut(x, T ) = g2(x).

Moreover

||h||L2(S0×(0,T )) ≤ C̃
(||f ||X + ||g||X

)
for some positive constant C̃.

5. Conclusions

In this work we consider a three-dimensional layered piezoelectric body with a dissipative mechanism effective
at the boundary and appropriate transmission conditions at the interfaces. Using the multiplier technique we
conclude that the total energy E(t) decays exponentially as t→ +∞, provided that the coefficients of the model
satisfy a monotonicity condition and the domain as well as the interfaces also satisfy geometric requirements. As
an application of our result we deduce exact controllability of the system with boundary control via a classical
result due to Russell [17].
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