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Abstract. In this paper, we investigate the problem of fast rotating fluids between two infinite plates
with Dirichlet boundary conditions and “turbulent viscosity” for general L2 initial data. We use
dispersive effect to prove strong convergence to the solution of the bimensionnal Navier-Stokes equations
modified by the Ekman pumping term.
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Introduction

In this paper, we investigate the problem of fast rotating viscous fluids between two plates with Dirichlet
boundary conditions. We present the model with so called “turbulent” viscosity. More precisely, we shall study
the limit when ε tends to 0 of the system involving the velocity field uε and the pressure pε

(NSCε)


∆tu

ε + div(uε ⊗ uε) − ν∆huε − βε∆2
3u

ε +
e3 × uε

ε
= −∇pε

div uε = 0
uε
|∆Ω = 0

uε
|t=0 = uε

0 ∈ L2(Ω)

where Ω = R2 ×]0, 1[. We shall use the following notation: if u is a vector on R3 we state u = (u1, u2, u3)
= (uh, u3), and we will note ∆h = ∂2

1 + ∂2
2 . Moreover, if f is a function on Ω, Ff (and also f̂) will denote the

Fourier transform with respect to the horizontal variable xh. Finally in all that follows, the space L2 (with no
argument) will denote the space L2(Ω).

These equations arise in physical contexts when one studies oceanic or atmospheric motions. In general
geophysical flows can be considered as incompressible, and with the length and time scales considered, the
rotation of the Earth can not be neglected and on the contrary plays a major role. Basically under high
rotation, a three dimensional fluid tends to behave like a two dimensional one, and to become invariant in
the direction of the rotation. This well known phenomena, called Taylor Proudman theorem is detailed in the
monographs [7] and [11]. The part of the initial data which depends on the vertical component creates waves,
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called inertial waves, which propagate with a high speed. Moreover, keeping in mind this anisotropy, it is usual
to consider an anisotropic viscosity like in (NSCε), the horizontal “turbulent” diffusion being larger than the
vertical one. In the periodic case we refer to [1, 6, 8] for mathematical studies. In the presence of horizontal
boundaries, boundary layers called Ekman layers appear to match the Dirichlet boundary condition with the
tendency of the fluid to become independent on the third variable x3. It turns out that these layers are always
stable in the case of anisotropic viscosity. For previous studies we refer to [5] and [9]. The aim of this paper
is to combine the study of these layers with the study of the dispersion of the inertial waves (we consider an
unbounded domain).

In the sequel, we shall assume that uε
0 · n = uε,3

0 = 0 on ∆Ω, and div uε
0 = 0. This condition uε,3

0 = 0 implies
the following fact: for any L2 divergence free vector field u, the function ∂3u

3 is L2(]0, 1[) with respect to the
variable x3 with value in H−1(R2). Hence by integration, we get

u3(xh, 1) − u3(xh, 0) = −
∫ 1

0

divh uh(xh, x3)dx3 = 0.

So the vertical mean value of the horizontal part on the vector field is divergence free as a vector field on R2.
Of course, a quantity will play a key role: this is (twice) the energy defined by

Eε(v)(t) def= ‖v(t)‖2
L2 + 2νh

∫ t

0

‖∇hv(t′)‖2
L2dt′ + 2βε

∫ t

0

‖∂3v(t′)‖2
L2dt′.

The reason why we choose the vertical viscosity of the form βε will be explained in Section 1 where we shall
recall the properties of the “well prepared” case. The relation between this choice and the Ekman pumping will
be studied in detail in that next section. First of all we shall study the linear problem in the well prepared case,
which means that the function u0 does not depend on the vertical variable x3. Then we shall investigate the
more delicate case when the initial data u0 does actually depend on the vertical variable x3. We shall compute
explicitly approximate solutions for the linear problem.

To study the real problem we have to deal with non linear terms. In the well prepared case, we have strong
convergence in L2, as well as in the case when the domain is T2 ×]0, 1[ (see [9]). The precise theorem proved
in [9] is the following:

Theorem 1. Let uε be a family of weak solutions of (NSCε) associated with a family of initial data uε
0 of

divergence free vector fields such that

lim
ε→0

uε
0 = (u0, 0) in L2,

where u0 is a divergence free vector field in L2(R2). Denoting by u the global solution of the two dimensional
Navier–Stokes type equations

(NSEν,β)

∆tu + divh(u ⊗ u) − ν∆h u +
√

2β u = −∇hp
divh u = 0
u|t=0 = u0 ,

we have

‖uε − (u, 0)‖L∞(R+;L2) + ‖∇h (uε − (u, 0)) ‖L2(R+;L2) → 0 when ε → 0.

Here we shall prove the following result:

Theorem 2. Let u0 be a divergence free vector field in L2 such that u3
0|∂Ω = 0. Let uε be a family of weak

solutions of (NSCε) associated with u0. Denoting by u the global solution of the two-dimensional Navier–Stokes
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equations

∆tu + divh(u ⊗ u) − ν∆h u + ∇hp +
√

2β u = 0 in D′(R+ ×R2), (0.1)

divh u = 0, and u|t=0 =
∫ 1

0

u0(xh, x3)dx3, (0.2)

we have

‖uε − (u, 0)‖L∞(R+;L2
loc(R

2 ×]0,1[)) + ‖∇h (uε − (u, 0)) ‖L2(R+;L2
loc(R

2 ×]0,1[)) → 0 when ε → 0.

This result is specific to the domain R2 ×]0, 1[. The key point for the proof of this theorem is that the dispersive
phenomenon studied in [4] and [3] is not affected by boundary layers. Let us notice that this result is also true
when the family (uε) is associated with a family of initial data uε

0 which converges to some u0 strongly in L2.
The case when the domain is T2 ×]0, 1[ has been investigated in [10].

To conclude this introduction, let us state some definitions and notations. As the phenomenon studied here
is obviously anisotropic, it is natural to introduce the spaces Hs,0 which are defined as the closure of smooth
compactly supported functions on Ω for the (semi) norm

‖f‖Hs,0
def=

(∫
R2 ×]0,1[

|Ff(ξh, x3)|2dξhdx3

)1/2

.

In this spirit we shall introduce

ET (v) def= sup
0≤t≤T

{
‖v(t)‖2

L2 +
∫ t

0

‖∇hv(t′)‖2
L2dt′

}
and

ET (v) def= sup
0≤t≤T

{
‖v(t)‖2

L2 +
∫ t

0

‖∇hv(t′)‖2
L2dt′ +

∫ t

0

‖v(t′)‖2
L2dt′

}
·

1. The linear problem in the well prepared case

The goal of this section is to recall some results and methods of [9]. The purpose is to have information on
approximate solutions of

(FRF ε)


∂tv

ε − ν∆hvε − βε∂2
3vε +

e3×vε

ε
= −∇pε + fε in R+ ×Ω

div vε = 0 in R+ ×Ω
vε
|t=0 = vε

0 with vε,3
0 = 0

vε
|∂Ω = 0

with

lim
ε→0

fε = f in L2(R+; H−1,0) and lim
ε→0

vε
0 = v0 in L2

where f belongs to L2(R+; H−1(R2)). In all that follows, we shall denote

Lεv
def= ∂tv − ν∆hv − βε∂2

3v +
e3×v

ε
·
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In [9], it is proved in particular that

lim
ε→0

vε = (v, 0) in L∞(R+; L2) ∩ L2(R+; H1,0),

where v is the solution of

(LE)

 ∂tv − ν∆hv +
√

2β v = −∇hp + f in R+ ×R2

divh v = 0 in R+ ×R2

v|t=0 = v0 with v3
0 = 0.

To simplify notations, we shall note in the following v = (v, 0).

In fact, much more is done in [9]. We can sum up those results in the following lemma:

Lemma 1. Let T be in R
+

and let v be a time dependent divergence free vector field in the space L∞([0, T ];
L2(R2)) whose gradient belongs to L2([0, T ]×R2). Let us assume that its Fourier transform is supported in the
ball of center 0 and radius N . Then a family of smooth divergence free vector fields (vε

app)ε>0 whose value is 0
on the boundary of Ω exists such that

Lεvε
app = ∂tv − ν∆hv +

√
2β v + ON (ε

1
2 ) in L2([0, T ]; H−1,0).

The vector field vε
app tends to v in the following sense: a constant CN exists such that

ET (vε
app − v) ≤ CNε

1
2 ET (v). (1.1)

Moreover the family (vε
app) satisfies the following estimates∫ T

0

sup
x3∈]0,1[

‖∇hvε
app(t, ·, x3)‖2

L2(R2)dt ≤ CNET (v) (1.2)

∀p ∈ [2,∞] ,
∫ T

0

∫ 1

0

d(x3)‖∂3v
ε
app(t, ·, x3)‖2

Lp(R2)dtdx3 ≤ CNET (v) and (1.3)∫ T

0

∫ 1

0

d(x3)2‖∂3v
ε
app(t, ·, x3)‖2

L∞(R2)dtdx3 ≤ CNεET (v) (1.4)

where d(x3) denotes the distance from x3 to the boundary of ]0, 1[.

For the reader’s convenience, let us recall briefly the proof of this lemma. The approximate solution is
defined by

vε
app

def= (v, 0) − ε
√

2β

(
Rv,

(
1
2
− x3

)
ω

)
+
((

M0

(
x3

ε
√

2β

)
+ M0

(
1 − x3

ε
√

2β

)
− M0

(
1

ε
√

2β

))
v, 0
)

+ε
√

2β

((
exp

(
− x3

ε
√

2β

)
+ exp

(
− 1 − x3

ε
√

2β

)
− exp

(
− 1

ε
√

2β

))
Rv,(

f

(
x3

ε
√

2β

)
− f

(
1 − x3

ε
√

2β

)
− (1 − 2x3)f

(
1

ε
√

2β

))
ω

)
+2βε2

(
0,

(
exp

(
− x3

ε
√

2β

)
− exp

(
− 1 − x3

ε
√

2β

)
− (1 − 2x3) exp

(
− 1

ε
√

2β

))
ω

)
+e(ε

√
2β)
(
− 6x3(x3 − 1)Rv, x3(x3 − 1)(2x3 − 1)ω

)
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with

M0(ζ) def= M0(ζ) = −e−ζR−ζ , f(ζ) def= −1
2
e−ζ(sin ζ + cos ζ) and ω

def= curlhv.

The function e(ε
√

2β) is exponentially decreasing and can be computed explicitly. From this formula, the proof
of estimates (1.2, 1.3) is straightforward.

2. The linear problem in the ill prepared case

This case is more delicate. The reason why is the following. There is no hope that the term v0,int does not
depend on the vertical variable x3, so we have to deal with very fast time oscillations of the interior solution.
This will lead us to consider the equation in a different way. The goal of this section is to construct approximate
solutions to

(FRF ε)


∂tv

ε − ν∆hvε − βε∂2
3vε +

vε×e3

ε
= −∇pε in Ω

div vε = 0 in Ω
vε
|t=0 = v0

vε
|∂Ω = 0.

Without loss of generality, we can suppose that v0 ∈ L1(Ω); this will be useful in the proof of Strichartz estimates
in Section 4.

First of all, we shall rewrite the system (FRF ε) in terms of the Fourier transform of the horizontal di-
vergence and vorticity. To do so, let us decompose the horizontal part of the initial data on the Hilbert
basis (cos(kπx3))k∈N of L2(]0, 1[). We can write for any horizontal vector field vh,

vh(xh, x3) =
∑
k∈N

vk,h(xh) cos(kπx3). (2.1)

Note that the fact that v is divergence free implies that

v3
0(xh, x3) = −

∑
k≥1

1
kπ

divh vk,h
0 (xh) sin(kπx3). (2.2)

Let us make some preliminary remarks. As the set of functions whose Fourier transform (on R2) is supported
in rings is dense in L2, we can assume that the Fourier transform of the initial data is of this type. Moreover
for L2 functions, boundary values do not make any sense. However, as v is divergence free, we have v3 ∈
C([0, 1] ; H−1(R2)), so the quantity v3

|∂Ω has a meaning.
The case when k = 0 corresponds to well-prepared case and has been recalled in the previous section. The

choice of the basis (cos(kπx3))k∈N for the horizontal component ensures that the boundary condition v3|∂Ω = 0
is satisfied since the vertical component is a linear combination of (sin(kπx3))k∈N thanks to the divergence free
condition. But the terms of type cos(kπx3) will produce time oscillations. As we shall see later on, the situation
is therefore a little bit more complicated than in the well prepared case.

For reasons which will appear clearly when we deal with dispersive phenomena, we need to avoid extreme
horizontal frequencies. So we approximate any divergence free vector field v (resp. time dependent) of L2 (resp.
of L∞([0, T ]; L2) ∩ L2([0, T ]; H1,0)) by

vN
def= F−1

N∑
k=0

(
1CN (ξh)v̂k,h(ξh) cos(kπx3),− 1

kπ
1CN (ξh)F divh vk,h

0 (ξh) sin(kπx3)
)
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where CN denotes the set of all ξh in R2 such that |ξh| ∈ [N−1, N ]. It is obvious that lim
N→∞

vN = v0 in L2 (resp.

in L2([0, T ]; H1,0)).
It is in that situation of boundary conditions that the Rossby operator has a good spectral representation;

let us be more precise on that point, before stating the key lemma.
The first step of the construction of the approximate solution consists in writing the system (FRF ε) in a

simpler way, in fact in terms of the horizontal divergence and horizontal curl of vh. Let us state the following
notation:

d̂h def= F divh vh , ω̂h def= Fcurlhvh , p̂ def= Fp and W def=
(
d̂h, ω̂h,Fv3

)
.

For the sake of simplicity in the notation, we drop the ε in d̂h, ω̂h, p̂h and W . In the following Π1 denotes the
projection on the first coordinate (recall that the first coordinate of W is the horizontal Fourier transform of
the horizontal divergence of the vector field v). Then for vectors of the type(

W k,h(t) cos(kπx3),− 1
kπ

Π1W
k(t) sin(kπx3)

)
,

writing W k,h = (W k,1, W k,2), and pressures of the type p̂k cos(kπx3) the rotating fluid system is equivalent to
the following ordinary differential system

d
dt

W k,1 + ν|ξh|2W k,1 + βε(kπ)2W k,1 − 1
ε
W k,2 = |ξh|2p̂k

d
dt

W k,2 + ν|ξh|2W k,2 + βε(kπ)2W k,2 +
1
ε
W k,1 = 0

d
dt

W k,3 + ν|ξh|2W k,3 + βε(kπ)2W k,3 = kπp̂k

W k,1 + kπW k,3 = 0

W|t=0 = W0.

As usual the divergence free condition (which here turns out to be W k,1 +kπW k,3 = 0) determines the pressure.
Here this gives

p̂k = − 1
ε(|ξh|2 + (kπ)2)

W k,2.

The rotating fluid system can now be written

(FRF ε
k )


d
dt

W k,h + ν|ξh|2W k,h + βε(kπ)2W k,h − 1
ε
RkW k,h = 0

W k,h|t=0 = W k,h
0

with

Rk =
(

0 −λ2
k

1 0

)
and λk

def=
(

(kπ)2

|ξh|2 + (kπ)2

) 1
2

·

Now in order to find the interior solution at order zero, and to get rid of the ε−1 terms in the equation, let us
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write

W =
N∑

k=1

(
Lk

(
t

ε

)
W̃ k(t) cos(kπx3),− 1

kπ
Π1Lk

(
t

ε

)
W̃ k(t) sin(kπx3)

)
where Lk is a function from R+ into L(R2) and W̃ k is a function from R+ into C2, to be determined.

Then looking at the terms of size ε−1 in the above equation (FRF ε
k ), we get

L̇k + RkLk = 0 with Lk(0) = Id,

which gives

Lk(τ) =

 cos τk λk sin τk

− 1
λk

sin τk cos τk

 (2.3)

with, as in all that follows, τk = λkτ . Let us remark that when k = 0 (this corresponds of course to the well
prepared case studied in the previous section), we get Lk = Id because in this case λk = 0.

To state the approximation lemma in the general case, we need to define the following family of opera-
tors (L(τ))τ∈R: for any vector v of the form (2.1) and (2.2),

(L(τ)v)(xh , x3)
def= (v0,h(xh), 0) + F−1

∞∑
k=1

(
A(ξh)Lk(τ)A−1(ξh)v̂k,h(ξh) cos(kπx3),

i

kπ
ξh · A(ξh)Lk(τ)A−1(ξh)v̂k,h(ξh) sin(kπx3)

)
(2.4)

where Lk is defined by formula (2.3) and with

A(ξh) def=
(

ξ1|ξh|−2 −ξ2|ξh|−2

ξ2|ξh|−2 ξ1|ξh|−2

)
.

Let us note that (L(τ))τ∈R is bounded in L(Hs,0) for any real number s. Moreover, the restriction of L(τ) to
functions which do not depend on the third variable (which corresponds to the well prepared case) is Id. This
operator L(τ) is the Rossby wave operator.

Similarly we shall need the definition of the following “Ekman operator”:

(Ev)(xh, x3)
def=
√

2β (v0,h(xh), 0) + F−1
∞∑

k=1

(
A(ξh)BkA−1(ξh)v̂k,h(ξh) cos(kπx3),

i

kπ
ξh · A(ξh)BkA−1(ξh)v̂k,h(ξh) sin kπx3

)
(2.5)

with

Bk
def=

(1 − λ2
k)λk

4

 γ−
k − γ+

k −λk(γ+
k + γ−

k )

γ+
k + γ−

k

λk
γ−

k − γ+
k

 and with

γ±
k

def=
(

1 ∓ 1
λk

)√
2β

1 ± λk
·
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Let us notice that the restriction of E on functions which do not depend on the third variable (which again
corresponds to the well prepared case) is

√
2β Id. The key lemma is the following:

Lemma 2. Let (vN )N∈N be a (time-dependent) bounded sequence of divergence free vector fields in the space

L∞([0, T ]; L2) ∩ L2([0, T ]; H1,0)

of the form

vN
def= F−1

N∑
k=0

(
v̂k,h

N (ξh) cos(kπx3),− 1
ikπ

ξh · v̂k,h
N (ξh) sin(kπx3)

)

with Supp v̂ε,k,h
N (ξh) ⊂ CN . A sequence of families (vε

app,N)N∈N of smooth divergence free vector fields whose
value on the boundary of Ω is 0 exists, such that

Lεvε
app,N = L

(
t

ε

)(
∂tvN − ν∆hvN + EvN

)
−∇pε

app,N + Rε
N

where Rε
N tends to 0 in the following sense:

∀η , ∃N1 , ∀N > N1 , ∃ε0 / ∀ε < ε0 , ‖Rε
N‖L∞(R+;H−1,0)∩L∞(R+;L2) < η. (2.6)

The vector field vε
app,N converges to L

(
t

ε

)
vN in the following sense: a constant CN exists such that

ET

(
vε
app,N − L

(
t

ε

)
vN

)
≤ CNεET (vN ). (2.7)

Moreover the family (vε
app,N ) satisfies the following estimates∫ T

0

sup
x3∈]0,1[

‖∇hvε
app,N (t, ·, x3)‖2

L2(R2)dt ≤ CNET (vN ) (2.8)

∀p ∈ [2,∞] ,
∫ T

0

∫ 1

0

d(x3)‖∂3v
ε
app,N (t, ·, x3)‖2

Lp(R2)dtdx3 ≤ CNET (vN ) and (2.9)∫ T

0

∫ 1

0

d(x3)2
∥∥∥∥∂3

(
vε
app,N − L

(
t

ε

)
vN

)∥∥∥∥2

L∞(R2)

dtdx3 ≤ CNεET (vN ). (2.10)

Remark. In the proof, we shall forget the part associated with v̂0,h
N because this case is nothing but the

previous lemma (i.e. the “well-prepared” case).
The proof of this lemma is one of the key points of the paper. In horizontal divergence and curl formulation,

the system (FRF ε) becomes

(F̃RF
ε
)



∂tW
1 + ν|ξh|2W 1 − βε∂2

3W 1 − 1
ε
W 2 = |ξh|2p̂

∂tW
2 + ν|ξh|2W 2 − βε∂2

3W 2 +
1
ε
W 1 = 0

∂tW
3 + ν|ξh|2W 3 − βε∂2

3W 3 = −∂3p̂
W 1 + ∂3W

3 = 0
W|t=0 = W0

W|∂Ω = 0.
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From now on, we shall only consider the above system. Let us search for an approximate solution of the form

W = W0,int + W0,BL + εW1,int + εW1,BL + · · · and

p̂ =
1
ε
p̂−1,int +

1
ε
p̂−1,BL + p̂0,int + p̂0,BL + · · ·

where each component of (vj,int, pj,int) is a function of the form

f

(
t

ε
, t, x3

)
and each component of (vj,BL, pj,BL) is a function of the form

g

(
t

ε
, t,

x3

ε

)
+ h

(
t

ε
, t,

1 − x3

ε

)
·

In all that follows, we shall denote τ = t/ε. First we have to determine the form of W0,int and p̂−1,int. Considering
the decomposition of the initial data, we look for W0,int of the form

N∑
k=1

(
Lk

(
t

ε

)
W̃ k

0,int(t) cos(kπx3),− 1
kπ

Π1Lk

(
t

ε

)
W̃ k

0,int(t) sin(kπx3)
)

where Lk is the function from R+ into L(R2) defined above in (2.3), W̃ k
0,int is a function from R+ into C2

and recall that Π1 denotes the projection on the first coordinate. The vector W̃ k
0,int must be understood as the

image of W k,h
0,int through the “filtering” operator Lk.

Now let us write

W0,int,N
def=

N∑
k=1

(
Lk

(
t

ε

)
W̃ k

0,int cos(kπx3),− 1
kπ

Π1Lk

(
t

ε

)
W̃ k

0,int sin(kπx3)
)

. (2.11)

We now have to determine the boundary layer of size ε0. As the third component of the interior solution at
order 0 is identically 0, then the vertical component of the boundary layer of size ε0 vanishes. This implies
that ∂3p̂

k
−1,BL = 0. We recover the well known fact that the pressure does not vary in the boundary layer.

Now let us study the term of size ε−1 for the horizontal component of the boundary layer. As cos(kπ) = (−1)k

we look for the boundary layer of the form

W k,h
0,BL

def= Mk

(x3

ε

)
Lk

(
t

ε

)
W̃ k

0,int + (−1)kMk

(
1 − x3

ε

)
Lk

(
t

ε

)
W̃ k

0,int.

The term of size ε−1 of

∂tW
k,h
0,BL − βε∂2

3W k,h
0,BL +

1
ε
RW k,h

0,BL

must be equal to 0. So we infer that

MkL̇k − βM ′′
k Lk + RMkLk = 0.
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Let us notice that in the case when k = 0, we have Lk = Id. Now let us assume that k ≥ 1. As L̇k = −RkLk,
it turns out that the equation on the boundary layer is


−βM ′′

k = MkRk − RMk

Mk(0) = − Id
Mk(+∞) = 0.

This is a linear differential equation of order 2 with an initial and a final condition. The solution is

Mk(ζ) = −
∑
±

1
2
µ±

k exp(−ζ±k )M±
k (ζ±k )

with

M±
k (θ) def=

(
cos θ ∓λk sin θ
− sin θ ∓λk cos θ

)

and

ζ±k
def=

ζ√
2β±

k

, β±
k

def=
β

1 ± λk
and µ±

k
def= 1 ∓ 1

λk
·

So stating

E±
k

def= 2ε2β±
k

we infer by definition of Lk that

W k,h
0,BL = −1

2

∑
±

µ±
k exp

− x3√
E±

k

M±
k

 x3√
E±

k

∓ λkt

ε

 W̃ k
0,int

− (−1)k 1
2

∑
±

µ±
k exp

−1 − x3√
E±

k

M±
k

1 − x3√
E±

k

∓ λkt

ε

 W̃ k
0,int.

Let us remark that the eigenvectors of M±
k and those of Lk are different. Moreover, time oscillations introduce

a phase shift in the boundary layer.
As in the well prepared case, the fact that the boundary layer must be divergence free implies that we have

to introduce a vertical component of the boundary layer of size ε. It is given by the following formula:

ε∂3W
k,3
1,BL = −Π1W

k,h
0,BL.
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So we get

ε∂3W
k,3
1,BL =

1
2

∑
±

µ±
k exp

− x3√
E±

k

cos

 x3√
E±

k

∓ λkt

ε

 W̃ k,1
0,int

∓λk sin

 x3√
E±

k

∓ λkt

ε

 W̃ k,2
0,int


+(−1)k 1

2

∑
±

µ±
k exp

−1 − x3√
E±

k

cos

1 − x3√
E±

k

∓ λkt

ε

 W̃ k,1
0,int

∓λk sin

1 − x3√
E±

k

∓ λkt

ε

 W̃ k,2
0,int

 .

So with the notation

cs± def= cos± sin and γ±
k

def= µ±
k

√
2β±

k ,

we get by integration,

W k,3
1,BL = −1

4

∑
±

γ±
k exp

− x3√
E±

k

cs−

 x3√
E±

k

∓ λkt

ε

 W̃ k,1
0,int

∓λkcs+

 x3√
E±

k

∓ λkt

ε

 W̃ k,2
0,int


+(−1)k 1

4

∑
±

γ±
k exp

−1 − x3√
E±

k

cs−

1 − x3√
E±

k

∓ λkt

ε

 W̃ k,1
0,int

∓λkcs+

1 − x3√
E±

k

∓ λkt

ε

 W̃ k,2
0,int

 .

It is clear that this boundary layer is a sum of a rapidly decreasing function of x3/ε and of a rapidly decreasing
function of (1−x3)/ε. But it is obvious that those two functions do not vanish respectively in x3 = 0 and x3 = 1.
More precisely, up to exponentially small terms, we have, stating again τk = λkτ ,

W k,3
1,BL|x3=0

= −(−1)kW k,3
1,BL|x3=1

= −fk

(
t

ε

)
with

fk(τ) def=
∑
±

γ±
k

4

(
cs±(τk)W̃ k,1

0,int ∓ λkcs∓(τk)W̃ k,2
0,int

)
.
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Now, let us have a look at the terms of size ε0 in the interior system. The system of equations is the following.
(∂t + ν|ξh|2)Wh

0,int,N + ∂τWh
1,int,N + RWh

1,int,N =
( |ξh|2p̂0,int,N

0

)
(∂t + ν|ξh|2)W 3

0,int,N + ∂τW 3
1,int,N = −∂3p̂0,int,N

W 1
1,int,N + ∂3W

3
1,int,N = 0

W 3
1,int,N |∂Ω

= −W k,3
1,BL|∂Ω

.

As usual, we are going to reduce this problem to a problem with a homogeneous Dirichlet boundary condition.
To do so, let us first define the function r` where

r`(x3) = 1 when ` is odd, r`(x3) = 1 − 2x3 when ` is even.

Then let us state

W 1,int,N
def=

N∑
`=1

f`(τ)
(
δ`, 0, r`(x3)

)
with δ` = 1 + (−1)`

and let us look for W1,int,N of the form

W1,int,N = W 1,int,N + W 1,int,N .

Now the above system can be written
(∂t + ν|ξh|2)Wh

0,int,N + (∂τ + R)W
h

1,int,N=
(|ξh|2p̂0,int,N

0

)
− (∂τ + R)Wh

1,int,N

(∂t + ν|ξh|2)W 3
0,int,N + ∂τW

3

1,int,N=−∂3p̂0,int,N − ∂τW 3
1,int,N

W
1

1,int,N + ∂3W
3

1,int,N=0
W

3

1,int,N |∂Ω
=0.

Still as usual, the original boundary condition appears through a forcing term. Considering this boundary
condition on W 1,int,N , it is natural to look for W 1,int,N and p̂0,int,N of the form

W 1,int,N =

(
N∑

k=0

W k,h
1,int,N cos(kπx3),−

N∑
k=1

1
kπ

W k,1
1,int,N sin(kπx3)

)
and

p̂0,int,N =
N∑

k=0

pk
0,int cos(kπx3).

Now let us decompose the forcing term in a low and a high vertical frequency part. This part will be small
when N tends to ∞. Let us notice that in L2(]0, 1[), we have

r`(x3) =
∑
k≥1

r`,k sin(kπx3) with r`,k
def=

1
kπ

(1 + (−1)k+`). (2.12)

So, we write that

W 1,int,N = FN + Rε
N with FN

def=
N∑

`=1

f`(τ)
(

δ`, 0,

N∑
k=1

r`,k sin(kπx3)
)

.
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Obviously, Rε
N satisfies the property (2.6). Now let us project on cosine and sine functions, which yields

(
d
dτ

+ R

)
W

0,h

1,int,N =
N∑

`=1

{
−df`

dτ
(δ`, 0) + f`(τ)(0, δ`)

}
d
dτ

W
0,3

1,int,N = 0

and, when k 6= 0, considering the form of W0,int,N given by (2.11)

Lk(τ)
(

d
dt

+ ν|ξh|2
)

W̃ k
0,int +

(
d
dτ

+ R

)
W

k,h

1,int,N =
( |ξh|2p̂k

0,int

0

)
−Π1

1
kπ

Lk(τ)
(

d
dt

+ ν|ξh|2
)

W̃ k
0,int +

d
dτ

W
k,3

1,int,N = −
∑
`≤N

r`,k
df`

dτ
+ kπp̂k

0,int.

Let us solve first the system when k = 0. As W
0,3

1,int,N = 0 the divergence free condition implies that W
0,1

1,int,N = 0.
So the system becomes

−W
0,2

1,int,N = −
N∑

`=1

df`

dτ
+ |ξh|2p̂0

0,int,N

d
dτ

W
0,2

1,int,N =
N∑

`=1

f`(τ).

Thus we get

W 0
1,int,N =

(
0,

N∑
`=1

∑
±

γ±
`

4λ`

(
∓cs∓(τ`)W̃

`,1
0,int + λ`cs±(τ`)W̃

`,2
0,int

)
, 0

)
.

We also get an explicit formula for p0
0,int,N whose computation is left to the reader.

Let us notice that those terms do not depend on the variable x3 and are bounded in time and time oscillating.
Now let us study the case when k 6= 0. As usual, the divergence free condition will determine the pressure by

p̂k
0,int =

1
|ξh|2 + (kπ)2

∑
`≤N

kπr`,k
df`

dτ
+ W

k,2

1,int,N

 .

So now the system becomes

Lk(τ)
(

d
dt

+ ν|ξh|2
)

W̃ k
0,int +

(
d
dτ

+ Rk

)
W

k,h

1,int,N −
∑
`≤N

 kπr`,k|ξh|2
|ξh|2 + (kπ)2

df`

dτ
0

 = 0. (2.13)

Now we have to remember that the f` are linear maps of W̃ `
0,int whose coefficients oscillate in time with the

frequency
λ`

ε
· This leads to the following lemma whose proof is a series of straightforward computations left to

the reader.
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Lemma 3. We have the following identity:

−
∑
`≤N

 kπr`,k|ξh|2
|ξh|2 + (kπ)2

df`

dτ
0

 = Lk(τ)
(

Bk +
N∑

`=1

Bk,`(τ)
)

W̃ k
0,int

where Bk,`(τ) are matrices whose coefficients are cosine or sine functions of (λk ± λ`)τ for ` 6= k and of λkτ
when ` = k and where

Bk =
(1 − λ2

k)λk

4

 γ−
k − γ+

k −λk(γ+
k + γ−

k )

γ+
k + γ−

k

λk
γ−

k − γ+
k

 ·

Thus the system splits into the two following ones(
d
dt

+ ν|ξh|2 + Bk

)
W̃ k

0,int = 0 and(
d
dτ

+ Rk

)
W

k,h

1,int,N = −Lk(τ)

(
N∑

`=1

Bk,`(τ)

)
W̃ k

0,int.

Immediately we have that

W̃ k
0,int(t) = exp(−ν|ξh|2t − Pkt)

 cos δkt λk sin δkt

− 1
λk

sin δkt cos δkt

 W̃ k
0,int(0) with (2.14)

δk
def=

(1 − λ2
k)λk

4
(γ+

k + γ−
k ) ,

Pk
def=

(1 − λ2
k)λk

4
(γ−

k − γ+
k ) and

W k,h
1,int,N = Lk

(
t

ε

) N∑
`=1

Ck,`

(
t

ε

)
W̃ k

0,int(t) (2.15)

where Ck,` are (2 × 2 valued) smooth bounded functions of τ whose derivatives are the Bk,`. So applying
the usual procedure for the higher order terms for boundary layers, we find the complete expression of the
approximate solution.

As far as estimates (2.9) and (2.10) are concerned, the worse terms are obviously W k,h
0,BL. As the support

of FW k,h
0,BL is included in C(N−1, N), it is enough estimate then L2 norm on R2.

From the above formula, we have that

‖∂3W
k,h
0,BL(t, ·, x3)‖L2(R2) ≤

Ck

ε

∑
±

exp

− x3

ε
√

2β±
k

+ exp

− 1 − x3

ε
√

2β±
k

 ‖W̃ k,h
0,int(t, ·)‖L2(R2).

So we infer that∫ 1

0

d(x3)‖∂3W
k,h
0,BL(t, ·, x3)‖2

L2(R2) ≤ Ck‖W k,h
0,int(t, ·)‖2

L2(R2)

∫ 1

0

d(x3)
ε

exp
(
−2

d(x3)
ε

)
dx3

≤ Ck‖W k,h
0,int(t, ·)‖2

L2(R2).
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Moreover, exactly along the same lines, we have that∫ 1

0

d(x3)2‖∂3W
k,h
0,BL(t, ·, x3)‖L2(R2) ≤ Ck‖W k,h

0,int(t, ·)‖2
L2(R2)

∫ 1

0

d(x3)2

ε
exp

(
−2

d(x3)
ε

)
dx3

≤ Ckε‖W k,h
0,int(t, ·)‖2

L2(R2).

The result follows.

3. The non linear estimates

This section consists in proving Theorem 2. Let us first cut off the initial data in the frequency space. To
do so, let us define

u0(xh) def=
∫ 1

0

u0(xh, x3)dx3 ,

uk,h
0 (xh) def=

1
2

∫ 1

0

u0(xh, x3) cos(kπx3)dx3 ,

u0,N
def= F−1(1CN û0) and

uk,h
0,N

def= F−1(1CN ûk,h
0 ).

For any positive real number η, an integer N0 exists, depending of course on η and on the initial data u0 such
that

‖u0 − u0,N − ũ0,N‖L2<
η

4
with

ũ0,N =
N∑

k=1

(
uk,h

0,N (xh) cos(kπx3),− 1
kπ

divh uk,h
0,N (xh) sin(kπx3)

)
.

Let us define uN as the solution of

(LEν,β)

∆tuN − ν∆h uN +
√

2β uN = −∇pN −F−1(1CNF(divh(u ⊗ u)))
divh uN = 0
uN |t=0 = u0,N .

A basic energy estimate implies that, for any positive η, an integer N0 exists such that, for any t in R+ and
any N greater or equal to N0, we have

‖u(t) − uN (t)‖2
L2 + 2

∫ t

0

(
ν‖∇h(u(t′) − uN (t′))‖2

L2 +
√

2β ‖u(t′) − uN (t′)‖2
L2

)
dt′ <

η2

16
· (3.1)

Sobolev embeddings also imply that u belongs to L4(R+ ×R2) and uN converges to u in the space L4(R+ ×R2).
Thus we have

lim
N→∞

F−1(1CNF(divh(u ⊗ u))) = lim
N→∞

divh(uN ⊗ uN ) = divh(u ⊗ u) (3.2)

in the space L2(R+; H−1(R2)).
Now we shall use Lemmas 1 and 2 to define the (sequence of) approximate solutions of the system. Let us

define (uε
wp,N)ε>0 as the families given by Lemma 1 applied with vN = uN solution of (LEν,β); it represents the
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“well prepared” part of the solution. The so-called “ill prepared” part is defined as (uε
ip,N ), the families given

by Lemma 2 applied with vN equal to the solution of the linear problem
∂tvN − ν∆hvN + EvN = −∇pN

div vN = 0
vN |t=0 = ũ0,N .

(3.3)

Of course, we state

uε
app,N

def= uε
wp,N + uε

ip,N . (3.4)

Let us derive the equation satisfied by uε
app,N . Using Lemmas 1, 2 and (3.2), we get that

Lεuε
app,N = Rε

N + ∇pε + divh(uN ⊗ uN ). (3.5)

Using energy estimates, we get that

‖uε
app,N (t)‖2

L2 + 2ν

∫ t

0

‖∇huε
app,N(t′)‖2

L2dt′ + 2βε

∫ t

0

‖∂3u
ε
app,N (t′)‖2

L2dt′

≤ ‖u0‖2
L2 −

∫ t

0

(divh(uN ⊗ uN )(t′)|uε
app,N (t′))L2dt′ + ρε

N

where, as in all that follows, ρε
N denotes generically a scalar quantity such that

∀η , ∃N0 , ∀N > N0 , ∃ε0 / ∀ε < ε0 , ρε
N < η.

In fact, ρε
N will be the sum of a series which tends to 0 uniformly in ε when N goes to ∞ and of terms bounded

by CNεα for some positive α. Thanks to Inequality (2.7) of Lemma 2 we have∥∥∥∥∥uε
app,N − L

(
t

ε

)
vN

∥∥∥∥∥
L2(R+;H1,0)

≤ CNε
1
2 ‖u0‖L2.

So, as divh(uN ⊗ uN ) belongs to L2(R+ ×Ω), we have∫ t

0

(divh(uN ⊗ uN )(t′)|uε
app,N (t′))L2dt′ =

∫ t

0

(divh(uN ⊗ uN )(t′)|uN (t′))L2dt′

+
∫ t

0

(
divh(uN ⊗ uN )(t′)|L

(
t′

ε

)
vN (t′)

)
L2

dt′ + ρε
N .

But uN (and thus divh(uN ⊗ uN )) is a horizontal vector field, and since divh uN = 0, we have∫ t

0

(divh(uN ⊗ uN )(t′)|uN (t′))L2dt′ = 0.

Moreover, by definition of vN and L(τ), we have

(divh(uN ⊗ uN )(t)|L
(

t

ε

)
vN (t′))L2

N∑
k=1

∫
Ω

divh(uN ⊗ uN )(t) · F−1A(ξh)Lk

(
t

ε

)
A−1(ξh)v̂k,h(ξh)(t′) cos(kπx3)dxhdx3.
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But as
∫ 1

0

cos(kπx3)dx3 = 0, if k 6= 0, we have

∫ t

0

(divh(uN ⊗ uN )(t′)|L
(

t′

ε

)
vN (t′))L2dt′ = 0,

so finally ∫ t

0

(divh(uN ⊗ uN )(t′)|uε
app,N (t′))L2dt′ = ρε

N .

As an immediate consequence, it turns out that

‖uε
app,N (t)‖2

L2 + 2ν

∫ t

0

‖∇huε
app,N (t′)‖2

L2dt′ + 2βε

∫ t

0

‖∂3u
ε
app,N (t′)‖2

L2dt′ ≤ ‖u0‖2
L2 + ρε

N . (3.6)

Equation (3.5) can be rewritten as

Lεuε
app,N + uε

app,N · ∇uε
app,N = Rε

N + ∇pε + F ε
N (3.7)

with

F ε
N

def= uε
app,N · ∇uε

app,N − uN · ∇uN .

Now, we use the classical method to prove weak strong type estimates. We are exactly in this situation because
we consider a weak solution uε without any additional regularity and a regular (approximate) solution uε

app,N .
Let us denote by δε the difference uε − uε

app,N , we write that

Eε(t) def= ‖δε(t)‖2
L2 + 2ν

∫ t

0

‖∇hδε(t′)‖2
L2dt′ + 2βε

∫ t

0

‖∂3δ
ε(t′)‖2

L2dt′

= ‖uε(t)‖2
L2 + 2ν

∫ t

0

‖∇huε(t′)‖2
L2dt′ + 2βε

∫ t

0

‖∂3u
ε(t′)‖2

L2dt′

+‖uε
app,N (t)‖2

L2 + 2ν

∫ t

0

‖∇huε
app,N (t′)‖2

L2dt′ + 2βε

∫ t

0

‖∂3u
ε
app,N (t′)‖2

L2dt′

−2(uε(t)|uε
app,N (t))L2 − 4ν

∫ t

0

(∇huε(t′)|∇huε
app,N (t′))L2dt′

−4βε

∫ t

0

(∂3u
ε(t′)|∂3u

ε
app,N (t′))L2dt′.

As uε is a Leray solution of (RFε), it satisfies the energy inequality. So thanks to inequality (3.6) we get

Eε(t) ≤ 2‖u0‖2
L2 − 2(uε|uε

app,N )L2 − 4ν

∫ t

0

(∇huε(t′)|∇huε
app,N (t′))L2dt′

− 4βε

∫ t

0

(∂3u
ε(t′)|∂3u

ε
app,N (t′))L2dt′ + ρε

N .

As uε
app,N is a smooth function such that uε

app,N |∂Ω
= ∂tu

ε
app,N |∂Ω

= 0, the function

t 7→ (uε(t)|uε
app,N(t))L2



458 J.-Y. CHEMIN ET AL.

is C1, so we can write, using (3.7) and the fact that a × e3 · b + b × e3 · a = 0,

d
dt

(uε|uε
app,N )L2 =

(
ν∆huε + βε∂2

3uε − uε · ∇uε −∇pε
∣∣∣uε

app,N

)
L2

+
(
ν∆huε

app,N + βε∂2
3uε

app,N − uε
app,N · ∇uε

app,N −∇pε
app + F ε

N

∣∣∣uε
)

L2
.

By an integration by parts allowed by the fact that uε and uε
app,N vanish at the boundary, we have

d
dt

(uε|uε
app,N )L2 = −2ν(∇huε|∇huε

app,N)L2 − 2βε(∂3u
ε|∂3u

ε
app,N )L2

− (uε · ∇uε|uε
app,N)L2 − (uε

app,N · ∇uε
app,N |uε)L2 + (F ε

N |uε)L2 .

The fact that uε
app,N is a smooth function and that uε and uε

app,N are divergence free vector fields that vanish
on the boundary imply that

(uε · ∇uε|uε
app,N)L2 + (uε

app,N · ∇uε
app,N |uε)L2 = (δε · ∇δε|uε

app,N)L2 .

Using again the fact that uε
app,N is a smooth function and that uε and uε

app,N are divergence free vector fields
that vanish on the boundary, we infer that

d
dt

(uε|uε
app,N )L2 = −2ν(∇huε|∇huε

app,N )L2 − 2βε(∂3u
ε|∂3u

ε
app,N )L2 − (δε · ∇δε|uε

app,N )L2 + (F ε
N |uε)L2 .

By integration and using Lemmas 1 and 2 we get that

(uε|uε
app,N)L2(t) = ‖u0‖2

L2 + ρε
N

−2ν

∫ t

0

(∇huε(t′)|∇huε
app,N (t′))L2dt′ − 2βε

∫ t

0

(∂3u
ε(t′)|∂3u

ε
app,N (t′))L2dt′

−
∫ t

0

(δε(t′) · ∇δε(t′)|uε
app,N(t′))L2dt′ +

∫ t

0

(F ε
N (t′)|uε(t′))L2dt′.

So we infer that

Eε(t) ≤ 2
∫ t

0

(δε(t′) · ∇δε(t′)|uε
app,N (t′))L2dt′ + 2

∫ t

0

(F ε
N (t′)|uε(t′))L2dt′ + ρε

N . (3.8)

Now let us state the lemmas which will enable us to conclude the proof of Theorem 2.

Lemma 4. Let u (resp. v) be any vector field (resp. divergence free vector field) in H2(Ω) (resp. H1
0 (Ω)). If

we define

N(u)2 def= sup
x3∈[0,1]

‖∇hu(·, x3)‖2
L2(R2) +

∫ 1

0

d(x3)‖∂3u(·, x3)‖2
L4(R2)dx3,

then we have

(v · ∇v|u)L2 ≤ ν

4
‖∇hv‖2

L2 +
C

ν
N(u)2‖v‖2

L2.

In the following lemma, and subsequently, we note ON (ε
1
2 ) a quantity of the order of magnitude ε

1
2 , depending

on N .
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Lemma 5. We have ∫ t

0

(F ε
N (t′)|uε(t′))L2dt′ = ON (ε

1
2 ).

The proof of this lemma uses in a crucial way dispersive estimates which are summarized in the following lemma:

Lemma 6. Let p ∈ [1, +∞] be given, and let us denote by

uε
0,int,N

def= L
(

t

ε

)
uN (3.9)

where uN is the solution of

∂tuN − ν∆huN + EuN = 0

with the initial data u0,N . Then we have

‖uε
0,int,N − uN‖Lp(R+;L∞(Ω)) ≤ CNε

1
2− 1

4p ‖u0‖L2 .

The following corollary is the result of an easy interpolation.

Corollary 1. For any p ∈ [1, +∞], any α > 0 and any q ∈]2, +∞], we have

‖∂α(uε
0,int,N − uN )‖Lp(R+;Lq(Ω)) = ρε

N .

Let us postpone the proof of those lemmas to the next paragraph and to Section 4. They imply that

Eε(t) ≤ ν

2

∫ t

0

‖∇hδε(t′)‖2
L2dt′ +

C

ν

∫ t

0

N(uε
app,N (t′))2‖δε(t′)‖2

L2dt′ + ρε
N .

But Lemmas 1 and 2 imply in particular that there is a constant CN such that for any ε,∫ ∞

0

N(uε
app,N(t))2dt ≤ CN‖u0‖2

L2.

So a Gronwall lemma implies that

sup
t≥0

‖uε(t) − uε
app,N (t)‖2

L2 + 2ν

∫ ∞

0

‖∇h(uε(t′) − uε
app,N (t′))‖2

L2dt′ = ρε
N . (3.10)

Now we can conclude the proof of Theorem 2. From (2.7) we infer that

sup
t≥0

‖uε(t) − uε
0,int,N(t)‖2

L2 + 2ν

∫ ∞

0

‖∇h(uε − uε
0,int,N )(t′)‖dt′ = ρε

N .

Thanks to the above corollary, we infer that for any compact subset K of Ω, we have

sup
t≥0

‖uε(t) − uN (t)‖2
L2 + 2ν

∫ ∞

0

‖∇h(uε − uN )(t′)‖dt′ = ρε
N .

The result follows from the fact that uN converges towards u in the energy space, as N goes to infinity.
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Now let us prove the lemmas we have admitted above, starting with Lemma 4. We have to estimate

Ij,k
def=
∫

Ω

vj(x)vk(x)∂kuj(x)dx.

The case when k 6= 3 is easier. Let us write that

|Ij,k| ≤
∫ 1

0

‖v(·, x3)‖2
L4(R2)‖∇hu(·, x3)‖L2(R2)dx3.

Using the fact that ‖a‖2
L4(R2) ≤ ‖a‖L2(R2)‖∇ha‖L2(R2), we have by definition of N(u),

|Ij,k| ≤
∫ 1

0

‖v(·, x3)‖L2(R2)‖∇hv(·, x3)‖L2(R2)‖∇hu(·, x3)‖L2(R2)dx3

≤ N(u)
∫ 1

0

‖v(·, x3)‖L2(R2)‖∇hv(·, x3)‖L2(R2)dx3

≤ N(u)‖v‖L2‖∇hv‖L2.

So Lemma 4 is proved for Ij,k which k 6= 3. When k = 3, we shall use the following lemma:

Lemma 7. Let v be a divergence free vector field in H1
0 (Ω). Then we have for almost every xh ∈ R2

sup
x3∈]0,1[

|v3(xh, x3)|
d(x3)

1
2

≤ ‖ divh vh(xh, ·)‖L2(]0,1[).

Let us prove Lemma 7. As v is a smooth divergence free vector field whose value on the boundary is 0, we have

v3(xh, x3) =
∫ x3

0

∂3v
3(xh, y3)dy3

= −
∫ x3

0

divh vh(xh, y3)dy3.

Using Cauchy–Schwarz inequality, we have

|v3(xh, x3)|2 ≤ x3

∫ 1

0

| divh vh(xh, y3)|2dy3.

As the same is true for the upper boundary, Lemma 7 is proved.

Lemma 7 implies that

∀x3 ∈]0, 1[ , ‖v(·, x3)‖L2(R2) ≤ d(x3)
1
2 ‖ divh vh‖L2 .

Now let us write that

|Ij,3| ≤
∫ 1

0

‖v(·, x3)‖L4(R2)‖v3(·, x3)‖L2(R2)‖∂3u(·, x3)‖L4(R2)dx3

≤ ‖ divh vh‖L2

∫ 1

0

‖v(·, x3)‖L4(R2)d(x3)
1
2 ‖∂3u(·, x3)‖L4(R2)dx3.
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Using Cauchy–Schwarz and Sobolev inequalities, that inequality implies that

|Ij,3| ≤ ‖ divh vh‖L2

(∫ 1

0

‖v(·, x3)‖2
L4(R2)dx3

) 1
2
(∫ 1

0

d(x3)‖∂3u(·, x3)‖2
L4(R2)dx3

) 1
2

≤ ‖∇hv‖ 3
2
L2‖v‖

1
2
L2N(u).

Using a log-concavity inequality, Lemma 4 is proved.

Now let us prove Lemma 5. To begin with let us decompose F ε
N as

F ε
N = F ε

N,1 + F ε
N,2 with

F ε
N,1

def= uε
app,N · ∇uε

app,N − uε
0,int,N · ∇uε

0,int,N and

F ε
N,2

def= uε
0,int,N · ∇uε

0,int,N − uN · ∇uN .

These two terms will be estimated in two different ways. The estimate on F ε
N,1 does not use any dispersion

estimates but the one on F ε
N,2 does indeed. To estimate F ε

N,1, let us write

F ε
N,1 = F ε,h

N,11 + F ε,h
N,12 + F ε,3

N,11 + F ε,3
N,12 with

F ε,h
N,11

def= (uε,h
app,N − uε,h

0,int,N ) · ∇huε
app,N

F ε,h
N,12

def= uε,h
0,int,N · ∇h(uε

app,N − uε
0,int,N )

F ε,3
N,11

def= (uε,3
app,N − uε,3

0,int,N )∂3u
ε
app,N and

F ε,3
N,12

def= uε,3
0,int,N∂3(uε

app,N − uε
0,int,N ).

As usual, terms which do not contain vertical derivatives are easier to deal with. Using Cauchy–Schwarz and
Sobolev inequalities, we get

∣∣∣(F ε,h
N,11|uε)L2

∣∣∣ ≤ sup
x3∈]0,1[

‖∇huε
app,N‖L2(R2)

×
∫ 1

0

‖(uε
app,N − uε

0,int,N )(·, x3)‖L4(R2)‖uε(·, x3)‖L4(R2)dx3

≤ N(uε
app,N)

∫ 1

0

‖∇h(uε
app,N − uε

0,int,N)(·, x3)‖
1
2
L2(R2)

×‖uε
app,N − uε

0,int,N (·, x3)‖
1
2
L2(R2)

‖∇huε(·, x3)‖
1
2
L2(R2)

‖uε(·, x3)‖
1
2
L2(R2)

dx3.

Using estimates (2.7) and (2.8) of Lemma 2, we have that

∫ ∞

0

|(F ε,h
N,11(t)|uε(t))L2 |dt ≤ CNε

1
2 ‖u0‖2

L2 .
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Note that E(T ) is bounded uniformly in time. The estimate about F ε,h
N,12 will be proved following the same

lines. We have

|(F ε,h
N,12|uε)L2 | ≤ sup

x3∈]0,1[

‖uε
0,int,N (·, x3)‖L4(R2)

×
∫ 1

0

‖∇h(uε
app,N − uε

0,int,N )(·, x3)‖L2(R2)‖uε‖L4(R2)dx3

≤ CN‖u0‖L2N(uε
0,int,N )

1
2 ‖∇h(uε

app,N − uε
0,int,N )‖L2‖∇huε‖ 1

2
L2.

So it turns out that ∫ ∞

0

|(F ε,h
N,12(t)|uε(t))L2 |dt ≤ CNε

1
2 ‖u0‖2

L2 .

As it is now usual, terms which contain vertical derivatives are estimated in another way. Using Lemma 7, we
have

‖(uε,3
app,N − uε,3

0,int,N )(·, x3)‖L2(R2) ≤ d(x3)
1
2 ‖∇h(uε

app,N − uε
0,int,N)‖L2 .

So we have

|(F ε,3
N,11|uε)L2 | ≤ ‖∇h(uε

app,N − uε
0,int,N )‖L2

∫ 1

0

d(x3)
1
2 ‖∂3u

ε
app,N (·, x3)‖L∞(R2)‖uε(·, x3)‖L2(R2)dx3.

By Cauchy–Schwarz inequality, we have that

|(F ε,3
N,11|uε)L2 | ≤ ‖∇h(uε

app,N − uε
0,int,N )‖L2

(∫ 1

0

d(x3)‖∂uε
app,N(·, x3)‖L∞(R2)dx3

) 1
2

‖uε‖L2 .

So applying inequalities (2.7) and (2.9) of Lemma 2 we get that∫ ∞

0

|(F ε,3
N,11(t)|uε(t))L2 |dt ≤ CNε

1
2 ‖u0‖2

L2 .

To estimate the term F ε,3
N,12, let us observe that

uε,3
0,int,N (xh, x3) = −

N∑
k=1

1
kπ

divh uε,k,h
0,int,N (xh) sin(kπx3).

So it turns out that

‖uε,3
0,int,N(·, x3)‖L2(R2) ≤ CNd(x3)‖∇huε

0,int,N‖L2 .

So we find

|(F ε,3
N,12|uε)L2 | ≤ ‖∇huε

0,int,N‖L2

∫ 1

0

d(x3)‖∂3(uε
app,N − uε

0,int,N )(·, x3)‖L∞(R2)‖uε(·, x3)‖L2(R2)dx3.

So by Cauchy–Schwarz inequality, we get

|(F ε,3
N,12|uε)L2 | ≤ ‖∇huε

0,int,N‖L2‖uε‖L2

∫ 1

0

d(x3)2‖∂3(uε
app,N − uε

0,int,N )(·, x3)‖2
L∞(R2)dx3.
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The estimate (2.10) allows to conclude that∫ ∞

0

|(F ε,3
N,12(t)|uε(t))L2 |dt ≤ CNε

1
2 ‖u0‖2

L2 .

So we have that ∫ ∞

0

|(F ε
N,1(t)|uε(t))L2 |dt ≤ CNε

1
2 ‖u0‖2

L2.

Let us notice that no dispersion effects have been used to prove this estimate. But we shall use them to estimate∫ ∞

0

|(F ε
N,2(t)|uε(t))L2 |dt.

As u3
N = 0, let us write that

F ε
N,2 = F ε

N,21 + F ε
N,22 with

F ε
N,21

def=
2∑

j=1

∂j(u
ε,j
0,int,Nuε

0,int,N − uj
NuN ) and

F ε
N,22

def=
2∑

j=1

∂3((u
ε,3
0,int,N − u3

N )uε
0,int,N ).

As uε
0,int,N is a (finite) sum of products of a function of the horizontal variable those Fourier transform is

included in the ball of center 0 and radius N by a function cos(kπx3) or sin(kπx3) we have, for j ∈ {1, 2},

‖F ε
N,2j(t)‖L2 ≤ CN‖(uε

0,int,N − uN )(t)‖L∞(‖uε
0,int,N (t)‖L2 + ‖uN (t)‖L∞).

So using Lemma 6 and of course the conservation of energy for (NSE) and the fact that L(τ) is uniformly
bounded on L2, we can write that∫ ∞

0

|(F ε
N,2(t)|uε(t))L2 |dt ≤ CN‖uε

0,int,N − uN‖L1(R+;L∞)‖u0‖2
L2 ≤ CNε

1
4 ‖u0‖2

L2.

Lemma 5 is now proved and thus Theorem 2 also.

4. Proof of the Strichartz type inequality

In this final section, we shall prove Lemma 6, stated in the previous section. This type of estimate in the case
of rotating fluids has been investigated in [3] and [4] in various situations. For the convenience of the reader,
we give here a self contained proof. Thanks to the definition of L (see (2.4)) we have that

uε
0,int,N − uN =

N∑
k=1

(
Ak ? Iε

k(t, xh) cos(kπx3),− 1
kπ

divh Ak,N ? Iε
k(t, xh) sin(kπx3)

)
with

Iε
k(t, xh) def=

∫
R2

e
i(xh|ξh)+i kπ

((kπ)2+|ξh|2)1/2
t
ε−νt|ξh|2

γ̂k(ξh)dξh

where Ak is a L1 function on R2 and γk is a linear function of d̂k and ω̂k. Now let ϕN be a radial function
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in D(R2 \{0}) whose value is 1 near CN . We have

Iε
k = Kk

(
t

ε
,t, ·
)

? γk with

Kk(τ, t, xh) def=
∫
R2

e
i(xh|ξh)+i kπ

((kπ)2+|ξh|2)1/2 τ−νt|ξh|2
ϕN (ξh)dξh.

As usual in the proof of Strichartz type estimates, we start by proving a so called dispersive estimate which
here is the following:

Lemma 8. There exist constants CN and cN such that for any k ≤ N , we have

‖Kk(τ, t, ·)‖L∞(R2) ≤
CN

τ
1
2

e−cN t.

Let us prove Lemma 8. Using the rotation invariance on R2, we may assume that xh = (x1, 0). So we have to
estimate

Kk(τ, t, x1, 0) =
∫
R

eix1ξ1

∫
R

e
i kπ

((kπ)2+ξ2
1+ξ2

2)1/2 τ−νt(ξ2
1+ξ2

2)
ϕN (ξ1, ξ2)dξ2dξ1.

Now let us define the function αk by

αk(ξ2)
def= ∂ξ2

kπ

((kπ)2 + ξ2
1 + ξ2

2)1/2
=

ξ2kπ

((kπ)2 + ξ2
1 + ξ2

2)3/2
·

We notice that

|αk(ξ2)| ≥ CN |ξ2|. (4.1)

Similarly we define the vector field Xk by

Xka
def=

1
1 + τα2

k(ξ2)
(1 + iαk(ξ2)∂ξ2a).

This vector field acts only on the ξ2 variable and satisfies obviously

Xke
iτ kπ

((kπ)2+ξ2
1+ξ2

2)1/2 = e
iτ kπ

((kπ)2+ξ2
1+ξ2

2)1/2
.

An integration by parts allows us to obtain

Kk(τ, t, x1, 0) =
∫
R

eix1ξ1

∫
R

e
i kπ

((kπ)2+ξ2
1+ξ2

2)1/2 τ
(tXk)

(
ϕN (ξ1, ξ2)e−νt(ξ2

1+ξ2
2)
)

dξ2dξ1.

But easy computations yield

tXk

(
ϕN (ξ1, ξ2)e−νt(ξ2

1+ξ2
2)
)

=
(

1
1 + τα2

k(ξ2)
− i(∂ξ2αk)

1 − τα2
k(ξ2)

(1 + τα2
k(ξ2))2

)
− iαk(ξ2)

1 + τα2
k(ξ2)

∂ξ2

(
ϕN (ξ1, ξ2)e−νt(ξ2

1+ξ2
2)
)

.
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Using (4.1), it turns out that ∣∣∣ tXk

(
ϕN (ξ1, ξ2)e−νt(ξ2

1+ξ2
2)
)∣∣∣ ≤ CN

e−cN t

1 + τ |ξ2|2
,

so going back to Kk, we get

|Kk(τ, t, xh)| ≤ CNe−cN t

∫
CN

dξ1dξ2

1 + τ |ξ2|2

≤ CN

τ1/2
e−cNt,

which proves Lemma 8.
Now let us finish the proof of Lemma 6. As an immediate corollary of the result above, we have

‖Kk

(
t

ε
,t, ·
)
‖L∞(R2) ≤

CNε1/2

t1/2
e−cN t‖γk‖L1(R2). (4.2)

Now we shall use a duality argument, otherwise known as the TT ∗ argument. Once we have observed that

‖a‖L1(R+;L∞(R2)) = sup
ϕ∈B

∫
R+ ×R2

a(t, xh)ϕ(t, xh) dxhdt

with B def= {ϕ ∈ D(R+ ×R2), ‖ϕ‖L∞(R+;L1(R2)) ≤ 1}, we can write

‖Kk

(
t

ε
, t, ·
)
∗ γk‖L1(R+;L∞(R2)) = sup

ϕ∈B

∫
R+ ×R4

Kk

(
t

ε
,t, x − y

)
γk(y)ϕ(t, x) dxdydt

= sup
ϕ∈B

∫
R+ ×R2

γk(y)
(∫

R2
Kk

(
t

ε
,t, x − y

)
ϕ(t, x) dx

)
dydt.

A Cauchy–Schwarz inequality then yields

‖Kk

(
t

ε
, t, ·
)
∗ γk‖L1(R+;L∞(R2)) ≤ ‖γk‖L2(R2) sup

ϕ∈B

∥∥∥∥∫
R+

Ǩk

(
t

ε
, t, ·
)
∗ ϕk(t, ·)dt

∥∥∥∥
L2(R2)

.

By Fourier–Plancherel, we have∥∥∥∥∫
R+

Ǩk

(
t

ε
,t, ·
)
∗ ϕ(t, ·)dt

∥∥∥∥2

L2(R2)

= (2π)2
∥∥∥∥∫

R+
K̂k

(
t

ε
,t, ·
)

ϕ̂(t, ·)dt

∥∥∥∥2

L2(R2)

and we can write∥∥∥∥∫
R+

K̂k

(
t

ε
,t, ·
)
∗ ϕ̂(t, ·)dt

∥∥∥∥2

L2(R2)

≤ C

∫
R+ ×R+ ×R2

K̂k

(
t

ε
, t,−ξh

)
ϕ̂(t, ξh)K̂k

(s

ε
, s, ξh

)
ϕ̂(s, ξh)dξhdtds.

But by definition of K, we have

K̂k

(
t

ε
,t,−ξh

)
K̂k

(s

ε
, s, ξh

)
= K̂k

(
t − s

ε
,t + s,−ξh

)
.
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It follows that∥∥∥∥∫
R+

Ǩk

(
t

ε
,t, ·
)
∗ ϕ(t, ·)dt

∥∥∥∥2

L2(R2)

≤ C

∫
R+ ×R+ ×R2

F
(
Ǩk

(
t − s

ε
,t + s, ·

)
∗ ϕ(t, ·)

)
ϕ̂(s, ξh)dξhdtds.

Now we use Fourier–Plancherel again to get∥∥∥∥∫
R+

Ǩk

(
t

ε
,t, ·
)
∗ ϕ(t, ·)dt

∥∥∥∥2

L2(R2)

≤ C

∫
R+ ×R+ ×R2

(
Ǩk

(
t − s

ε
,t + s, ·

)
∗ ϕ(t, ·)

)
(x)ϕ(s,−x)dxdtds

≤ C

∫
R+ ×R+

∥∥∥∥Ǩk

(
t − s

ε
,t + s, ·

)
∗ ϕ(t, ·)

∥∥∥∥
L∞(R2)

‖ϕ(s, ·)‖L1(R2)dtds.

Using the dispersion estimate (4.2), we get∥∥∥∥∫
R+

Ǩk

(
t

ε
,t, ·
)
∗ ϕ(t, ·)dt

∥∥∥∥2

L2(R2)

≤ CN

∫
R+ ×R+

ε1/2

(t − s)1/2
e−cN (t+s)‖ϕ(t, ·)‖L1(R2)‖ϕ(s, ·)‖L1(R2)dsdt,

so ∥∥∥∥∫
R+

Ǩk

(
t

ε
,t, ·
)
∗ ϕ(t, ·)dt

∥∥∥∥2

L2(R2)

≤ CNε1/2‖ϕ‖2
L∞(R+;L1(R2))

∫
R+ ×R+

e−cN(t+s)

(t − s)1/2
dsdt

≤ CNε1/2‖ϕ‖2
L∞(R+;L1(R2)).

Lemma 6 is proved.
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