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MULTIPLE POSITIVE SOLUTIONS FOR A CLASS OF p-LAPLACIAN

NEUMANN PROBLEMS WITHOUT GROWTH CONDITIONS

Alberto Boscaggin1, Francesca Colasuonno2 and Benedetta Noris3,∗

Abstract. For 1 < p <∞, we consider the following problem

−∆pu = f(u), u > 0 in Ω, ∂νu = 0 on ∂Ω,

where Ω ⊂ RN is either a ball or an annulus. The nonlinearity f is possibly supercritical in the
sense of Sobolev embeddings; in particular our assumptions allow to include the prototype nonlinearity
f(s) = −sp−1 + sq−1 for every q > p. We use the shooting method to get existence and multiplicity
of non-constant radial solutions. With the same technique, we also detect the oscillatory behavior of
the solutions around the constant solution u ≡ 1. In particular, we prove a conjecture proposed in [D.
Bonheure, B. Noris and T. Weth, Ann. Inst. Henri Poincaré Anal. Non Linéaire 29 (2012) 573−588],
that is to say, if p = 2 and f ′(1) > λrad

k+1, with λrad
k+1 the (k + 1)-th radial eigenvalue of the Neumann

Laplacian, there exists a radial solution of the problem having exactly k intersections with u ≡ 1, for
a large class of nonlinearities.

Mathematics Subject Classification. 35J92, 35A24, 35B05, 35B09.

. .

1. Introduction

1.1. Assumptions and main results

The aim of this paper is to investigate the existence of solutions of the following p-Laplacian Neumann
problem 

−∆pu = f(u) in Ω

u > 0 in Ω

∂νu = 0 on ∂Ω,

(1.1)
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where 1 < p < ∞, ν is the outer unit normal of ∂Ω, and we require very mild assumptions on f , which allow
in particular to consider

f(s) = −sp−1 + sq−1 for every q > p (1.2)

as a prototype nonlinearity. Our main purpose is not to impose any growth conditions on f(s) as s → ∞, so
that f may have a supercritical behavior with respect to the critical Sobolev exponent (that is to say, N > p
and q > Np/(N − p) in the prototype nonlinearity (1.2)).

We work in a radial domain Ω ⊂ RN , N ≥ 1, which is either an annulus

Ω = A(R1, R2) := {x ∈ RN : R1 < |x| < R2}, 0 < R1 < R2 <∞,

or a ball

Ω = B(R2) := {x ∈ RN : |x| < R2}, 0 = R1 < R2 <∞,

and we look for radial solutions of (1.1). Throughout the paper, with abuse of notation, we denote u(r) := u(x)
for all |x| = r.

We assume that f satisfies the following conditions:

(freg) f ∈ C([0,∞)) ∩ C1((0,∞));

(feq) f(0) = f(1) = 0, f(s) < 0 for 0 < s < 1 and f(s) > 0 for s > 1;

(f0) there exists C0 ∈ [0,∞) such that lims→0+
f(s)
sp−1 = −C0;

(f1) there exists C1 ∈ [0,∞] such that lims→1
f(s)

|s−1|p−2(s−1) = C1.

We remark that the choice of the constant 1 in (feq) is arbitrary, this constant could be replaced by any
s1 ∈ (0,∞), thus changing accordingly (f1). We also stress that we do not impose at infinity any of the
conditions frequently used in the literature, such as the Ambrosetti−Rabinowitz one.

Remark 1.1. Let us notice that the assumptions (freg) and (f1) are not independent; indeed, the differentia-
bility of f at s = 1 implies C1 ∈ [0,∞) if p = 2 and C1 = 0 if 1 < p < 2. We believe that this regularity
condition can be removed by an approximation argument; however, since it is satisfied for the model nonlin-
earity (1.2), we have preferred to avoid this technical step. We also observe that, in view of (feq), the ratio
f(s)/sp−1 appearing in hypothesis (f0) is negative for s → 0+, so that lim sups→0+ f(s)/sp−1 ≤ 0; actually,
a careful inspection of the proofs shows that, in all the results below, (f0) could be replaced by the weaker
assumption lim infs→0+ f(s)/sp−1 > −∞, that is to say, f(s)/sp−1 is bounded in a right neighborhood of s = 0.

In order to state our main results, let us introduce λrad
k as the k-th radial eigenvalue of −∆pu = λ|u|p−2u in

Ω with Neumann boundary conditions, i.e. 0 = λrad
1 < λrad

2 < λrad
3 < . . . , cf. Section 2.2 for further details. In

case the constant C1 appearing in assumption (f1) is positive, we have the following existence and multiplicity
result.

Theorem 1.2. Let Ω be either the annulus A(R1, R2) or the ball B(R2) and let f satisfy (freg)−(f1).

Assume that C1 > λrad
k+1 for some integer k ≥ 1. Then, there exist at least k non-constant radial solutions

u1, . . . , uk to (1.1). Moreover, uj(r)− 1 has exactly j zeros for r ∈ (R1, R2), for every j = 1, . . . , k.

In particular, if C1 = +∞, then (1.1) has infinitely many non-constant radial solutions.

Noting that in the case p = 2 we have C1 = f ′(1), Theorem 1.2 shows that the conjecture proposed in [8]
holds true, that is to say, if f ′(1) > λrad

k+1 for some integer k ≥ 1, there exists a radial solution of (1.1) having
exactly k intersections with the constant solution u ≡ 1. More precisely, taking into account also Remark 1.1,
we can state the following general result.
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Corollary 1.3. Let Ω be either the annulus A(R1, R2) or the ball B(R2) and let f satisfy (freg)−(feq). If f(s)/s
is bounded in a right neighborhood of s = 0 and f ′(1) > λrad

k+1, then there exist a radial solution u of
−∆u = f(u) in Ω

u > 0 in Ω

∂νu = 0 on ∂Ω,

such that u(r)− 1 has exacly k zeros for r ∈ (R1, R2).

When C1 = 0, a different behavior appears. First, the existence of non-constant solutions of (1.1) depends on
the diameter of the domain. Secondly, if the diameter is sufficiently large, there exist now two solutions having
the same oscillatory behavior, in the sense specified in the following theorem.

Theorem 1.4. Let f satisfy (freg)–(f1) with C1 = 0.

(i) For any integer k ≥ 1 there exists R∗(k) > 0 such that if R2 > R∗(k), then problem (1.1) in Ω = B(R2)
has at least 2k non-constant radial solutions.

(ii) For any integer k ≥ 1 and any ε > 0 there exists R∗(k, ε) > 0 such that if R1 < εR2 and R2 > R∗(k, ε),
then problem (1.1) in Ω = A(R1, R2) has at least 2k non-constant radial solutions.

Denoting these solutions by u+
1 , . . . , u

+
k , u−1 , . . . , u

−
k , we have that each u±j (r) − 1 has exactly j zeros for r ∈

(R1, R2), for every j = 1, . . . , k.

Noting that the prototype nonlinearity (1.2) satisfies the assumptions (freg)−(f1) with

C0 = 1, C1 =


0 if 1 < p < 2,

q − 2 if p = 2,

+∞ if p > 2,

we have the following corollary of Theorems 1.2 and 1.4.

Corollary 1.5. Let Ω be either the annulus A(R1, R2) or the ball B(R2), and consider the Neumann problem
−∆pu+ up−1 = uq−1 in Ω,

u > 0 in Ω,

∂νu = 0 on ∂Ω,

(1.3)

with q > p. Then:

(i) for p > 2, (1.3) has infinitely many non-constant radial solutions;
(ii) for p = 2 and q − 2 > λrad

k+1 for some k ≥ 1, (1.3) has at least k non-constant radial solutions;
(iii) for 1 < p < 2, for any integer k ≥ 1 and any ε > 0 there exists R∗(k, ε) > 0 such that if R1 < εR2

and R2 > R∗(k, ε), then problem (1.3) in Ω = A(R1, R2) has at least 2k non-constant radial solutions.
Analogously in the case Ω = B(R2).

We remark that all the solutions found in this paper satisfy u(0) < 1 and are increasing near the origin. We
refer to Section 3 for some open problems concerning solutions with u(0) > 1 (we are currently investigating
some of them in [11]). For the special case in which the nonlinearity is a small perturbation of the exponential
function, solutions with u(0) > 1 are found in [41].
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1.2. Pre-existing literature

Semilinear and quasilinear elliptic equations with Sobolev-critical and supercritical growth have been ex-
tensively studied in the literature, but mainly coupled with Dirichlet boundary conditions. Brezis adresses to
Neumann problems Section 6.4 of his survey on Sobolev-critical equations [13], saying that little is known in
this case. The first result of which we are aware concerning Neumann boundary conditions is the one by Lin and
Ni in [30]. The authors consider the equation (1.3) with p = 2, q > 2N/(N − 2) and Ω = B(R2), and prove that
for R2 sufficiently small (1.3) only admits the constant solution, whereas for R2 sufficiently large there exists a
non-constant solution. We also refer to [29] for similar results in the case q < 2N/(N − 2). When q is critical,
this kind of result is no longer true. Indeed, in [1], Adimurthi and Yadava prove that in dimensions N = 4, 5, 6
there exists a decreasing solution in balls of small radius. This depends not only on the dimension N , see [2,14],
but also on the shape of the domain, see [47]. We also wish to mention that [2] is the first paper where (1.3) is
studied for p 6= 2.

As soon as N > p, q > Np/(N − p) and Ω = B(R2), the absence of Sobolev embeddings prevents from
treating (1.3) with the standard variational techniques. Of course, the choice of working in a radial setting allows
to gain some compactness, but not enough, for example, to define the Euler-Lagrange functional associated to
the equation. Recently, some techniques have been proposed to overcome this lack of compactness. Different
methods have been introduced simultaneously and independently, for p = 2, in [9], [26] and [46]. In particular,
in [46], Serra and Tilli get over the lack of compactness by considering the cone of non-negative, non-decreasing
radial functions of H1(Ω). This technique proved to be quite powerful and has been adopted in many of
the subsequent papers that we are going to illustrate. Serra and Tilli prove that, if g satisfies some suitable
assumptions and a(|x|) > 0 is a non-decreasing and non-constant weight, then the radial problem

−∆u+ u = a(|x|)g(u), u > 0 in B(R), ∂νu = 0 on ∂B(R)

admits at least one radially increasing solution. Secchi generalises this result to the case p 6= 2 in [45] using the
same assumptions on g e a.

In [8] and in [16] the authors consider the case a constant, respectively in the cases p = 2 and p > 2 (see
also [15,17,33]). The additional difficulty is now to prove that the solution found is itself non-constant, and this
can be done under an extra condition on g, namely (g3) below.

Theorem 1.6 ([8], Thm. 1.3; [16], Thm. 1.1). Let p ≥ 2 and let g : [0,∞) → R be of class C1([0,∞)) and
satisfy

(g1) lims→0+
g(s)
sp−1 ∈ [0, 1);

(g2) lim infs→∞
g(s)
sp−1 > 1;

(g3) there exists a constant u0 > 0 such that g(u0) = up−1
0 and g′(u0) > λrad

2 +1 if p = 2, or g′(u0) > (p−1)up−2
0

if p > 2.

Then there exists a non-constant, radial, non-decreasing solution of

−∆pu+ up−1 = g(u), u > 0 in B(R), ∂νu = 0 on ∂B(R). (1.4)

Let us first comment the case p = 2. We notice that, in the semilinear case, condition (g3) involves the second
radial eigenvalue of −∆ with Neumann boundary conditions. In fact, the authors in [7] show that a bifurcation
phenomenon is underlying the existence result, at least in the case of the prototype nonlinearity g(u) = |u|q−2u.
They prove that at q − 2 = λrad

k+1, k ≥ 1, a new branch of solutions bifurcates from the constant branch u ≡ 1.
This nontrivial branch consists of solutions having exactly k oscillations around the constant solution 1. We
also refer to [4–6] for other results about this class of problems. As mentioned above, it was conjectured in [8]
that a similar behavior should hold also for a general nonlinearity. If we consider a nonlinearity f related to
g by f(s) = g(s) − s, the conjecture asserts that, if f ′(u0) > λrad

k+1, k ≥ 1, there should exist a radial solution
of (1.1) having exactly k intersections with the constant solution u0. For f asymptotically linear (and hence
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Sobolev-subcritical), this conjecture was proved in [31]. By means of bifurcation techniques, the authors show
that, if f ′(u0) > λrad

k+1 for some k ≥ 1, then there exist at least 2k different non-constant solutions of (1.4), k of
them are increasing and k decreasing in a neighborhood of zero. In the present paper (cf. Cor. 1.3) we are able
to provide a complete proof of the conjecture, without assuming any growth conditions at infinity on f .

We remark that the assumptions (freg)−(f1) are substantially more general than (g1)−(g3). Indeed, we have
f(s) = −sp−1 + g(s) and (g1) requires that the constant C0 defined in (f0) belongs to (0, 1], (g3) requires
that, when p > 2, C1 defined in (f1) satisfies C1 = +∞, and (g2) is equivalent to lim infs→+∞ f(s) > 0.
In addition, in the present paper we find infinitely many solutions of (1.1) in the case C1 = +∞, whereas
in [16] only one solution was found (the non-decreasing one, which we can now prove being indeed strictly
increasing, see (2.8)−(2.9) below). Indeed, to the best of our knowledge, no multiplicity results were known for
problem (1.1) in the case p 6= 2. In particular, for p < 2 we obtain here a multiplicity result which is completely
new in the literature. As already noticed, the behavior for C1 = 0 (corresponding to p < 2 for the prototype
nonlinearity (1.2)) is different from the one for C1 > 0, since the existence of solutions depends on the diameter
of the domain, and solutions always come in couples, so that we find two solutions with the same oscillatory
behavior. In this regard, see also the numerical simulations in Section 3.

For results in a non-radial setting (in the case p = 2), we refer to the recent works [18, 21]. We also wish to
mention the generalisations to systems considered in [10,32] and the extensive literature concerning concentrating
solutions for supercritical Neumann problem with a perturbation parameter, see for example [20,34–38].

1.3. Main ideas of the proof and organization of the paper

We adopt a shooting method: it seems indeed that such a technique turns out to be particularly effective
when trying to identify the different multiplicity scenarios appearing on varying of p; moreover, it allows to
avoid most of the technical assumptions on the nonlinearity. For applications of the shooting method in similar
situations, we refer to [3], where the authors consider the supercritical Hénon equation with Neumann boundary
conditions, and to [40], where the shooting technique is used in the context of quasilinear operators.

In Section 2.1 we rewrite the radial equation in (1.1) as the planar ODE system

rN−1|u′|p−2u′ = v, v′ = −rN−1f(u),

(cf. (2.5)) and prove local uniqueness, continuous dependence and global continuability of solutions. The shooting
method consists in studying the initial value problem u(R1) = 1−d, v(R1) = 0 and looking for values d ∈ (0, 1)
such that the corresponding solution (ud, vd) satisfies vd(R2) = 0. Thanks to the local uniqueness, we can pass
to polar-like coordinates (ρ(r), θ(r)) around the point (1, 0) (see (2.8)), so that the problem reduces to

find d ∈ (0, 1) such that θd(R2) = kπp for some k ∈ Z,

with πp defined in Lemma 2.3.

In Section 2.2 we recall some known results concerning the associated eigenvalue problem, while Section 2.3 is
devoted to the proof of Theorem 1.2. The main point is to show that, if C1 > λrad

k+1, k ≥ 1, then θd(R2) > (k+1)πp
for d sufficiently close to 0. This can be done by comparing (1.1) with its associated eigenvalue problem. In
Section 2.4 we prove Theorem 1.4; here, the key step is to show that, if R1, R2 are chosen as in the corresponding
statement, then θd(R2) > (k+ 1)πp for some d ∈ (0, 1). This is proved by adapting to our context a phase-plane
argument introduced in [12]. Finally, in Section 3 we present some numerical simulations obtained with the
software AUTO07p [23], and propose some open problems.
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2. Multiplicity of solutions VIA the shooting method

2.1. Preliminary results

First of all, as usual when dealing with positive solutions of a boundary value problem, we introduce a
continuous extension f̂ : R→ R of f by setting

f̂(s) :=

{
f(s) if s ≥ 0,

0 if s < 0.

By taking into account the radial symmetry of (1.1), we consider the following 1-dimensional problem{
−
(
rN−1ϕp(u

′)
)′

= rN−1f̂(u) in (R1, R2),

u′(R1) = u′(R2) = 0,
(2.1)

where
ϕp(s) := |s|p−2s

and the prime symbol ′ denotes the derivative with respect to r. We remark that, in the case Ω = B(R2),
namely R1 = 0, the boundary condition u′(0) = 0 comes from the symmetry and the C1,α(Ω̄)-regularity of the
solutions u of (1.1), cf. ([28], Thm. 2) and also [44]. For future reference, we also note that ϕ−1

p = ϕp′ , where

1

p
+

1

p′
= 1.

We first give the following maximum principle-type result (compare also with [39], Sect. 2).

Lemma 2.1. Let u be a solution of (2.1). Either u ≡ −C, with C ≥ 0, or u(r) > 0 for every r ∈ [R1, R2].

Proof. Let us first prove that either u is a negative constant, or u is non-negative. To this end, suppose by
contradiction that u is non-constant and that u(r0) < 0 for some r0 ∈ (R1, R2). Let [r−, r+] ⊂ [R1, R2] be the
maximal interval containing r0 such that u(r) < 0 for every r ∈ (r−, r+). By the definition of f̂ , we have

f̂(u(r)) = 0 for every r ∈ [r−, r+]. (2.2)

Since u is non-constant, by the equation in (2.1) we get the existence of r1 ∈ (R1, R2) such that u(r1) > 0, that
is to say, r− 6= R1 or r+ 6= R2. Suppose, to fix the ideas, that r+ 6= R2, so that

u(r+) = 0. (2.3)

Now we distinguish two cases: either r− 6= R1 or r− = R1. If the first case occurs, then u(r−) = 0. Hence,
by (2.3) we have u′(r−) ≤ 0 ≤ u′(r+), so that, since ϕp is non-decreasing, ϕp(u

′(r−)) ≤ 0 ≤ ϕp(u
′(r+)) and

also
(r−)N−1ϕp(u

′(r−)) ≤ 0 ≤ (r+)N−1ϕp(u
′(r+)). (2.4)

Then, using the equation in (2.1), (2.2) and (2.4), we obtain that rN−1ϕp(u
′(r)) = 0 for every r ∈ [r−, r+],

implying u = 0 in [r−, r+] as well, a contradiction.
If the second case occurs, that is r− = R1, then u′(r−) = 0. Again (2.2) implies rN−1ϕp(u

′(r)) = 0 for every
r ∈ [R1, r

+] and hence, by (2.3), u = 0 in [R1, r
+], a contradiction.

It remains to show that any non-negative solution of (2.1) is positive. To this aim, we observe that if the
(non-negative) function u vanishes but is not identically zero, then it necessarily has a double zero, that is,
u(r0) = u′(r0) = 0 for some r0 ∈ [R1, R2]. By assumption (f0) and ([43], Thm. 4)-(δ), the solution of this
Cauchy problem is unique and so it has to be u ≡ 0 on [R1, R2], which is a contradiction. �
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In view of the above lemma, from now on we will study problem (1.1) simply by looking for non-constant
solutions of (2.1). This will be done by using a shooting approach: we write the equation in (2.1) as the planar
ODE system in (R1, R2)

u′ = ϕ−1
p

( v

rN−1

)
, v′ = −rN−1f̂(u), (2.5)

we consider the associated Cauchy problem with initial conditions

u(R1) = 1− d, v(R1) = 0, (2.6)

where d ∈ [0, 1], and we look for values d ∈ (0, 1) such that the corresponding solution (ud, vd) is defined on the
whole [R1, R2] and satisfies vd(R2) = 0 (and hence u′d(R2) = 0).

We stress that, when Ω = A(R1, R2) (that is, when R1 > 0), the initial condition v(R1) = 0 plainly
corresponds to u′(R1) = 0; on the other hand, when Ω = B(R2) (that is, when R1 = 0), the situation is more

delicate. Indeed, the ODE system (2.5) exhibits, for r = R1 = 0, a singularity of order r−
N−1
p−1 . When p > N ,

such a singularity is in L1 and system (2.5) can be treated within the Carathéodory theory of ODEs (see, for
instance, [27]); on the contrary, for 1 < p ≤ N this is no longer true. Nonetheless, it can be shown via fixed
point arguments in Banach spaces that the Cauchy problem (2.5)−(2.6) (requiring v(R1) = 0) still has a (local)
solution. All this is nowadays well-known (see [25,43]) and any solution (u(r), v(r)) of (2.5)−(2.6) is such that
u′(R1) = 0 and u solves the equation in (2.1) in the usual sense (namely, u(r) and rN−1ϕp(u

′(r)) = v(r) belong
to C1([R1, R2]) and the equation is satisfied pointwise). See also Remark 2.5.

To make our shooting procedure effective, we now prove the following result of uniqueness, continuous de-
pendence, and global continuability.

Lemma 2.2. For any d ∈ [0, 1], the solution (ud, vd) of (2.5)−(2.6) is unique and can be defined on the whole
[R1, R2]; moreover, if (dn) ⊂ (0, 1) is such that dn → d ∈ [0, 1], then (udn(r), vdn(r))→ (ud(r), vd(r)) uniformly
in r ∈ [R1, R2].

Proof. We first focus on the uniqueness; notice that by this we mean that (ud, vd) remains unique as long as
defined and, in turn, this requires us to investigate the local uniqueness of any Cauchy problem

u(r̄) = ū, v(r̄) = v̄,

associated with (2.5), where r̄ ∈ [R1, R2] and (ū, v̄) ∈ [0, 1] × {0} if r̄ = 0 and (ū, v̄) ∈ R2 if r̄ > 0. If r̄ 6= 0,
v̄ 6= 0 and ū 6= 0, this follows from the Cauchy-Lipschitz Theorem. Otherwise, this is a non trivial issue for
three different reasons: first, for r̄ = 0 the system is singular (this being possible, of course, only if R1 = 0);
second, the system is not Lipschitz continuous when v = 0 for p > 2 (since ϕ−1

p is not Lipschitz at zero); third,

the system is not Liptschiz continuous when u = 0 for 1 < p < 2 (since f̂ is not Lipschitz at zero). This subtle
problem has been extensively investigated in [43]; according to Theorem 4 therein, we can conclude that the
uniqueness holds true in each of the following cases:

• r̄ ≥ 0, ū = 0 and v̄ = 0: this follows from (f0), corresponding to case (δ) of ([43], Thm. 4);
• r̄ ≥ 0, v̄ = 0 and ū 6∈ {0, 1} for p > 2: this follows from the facts that f̂(u) 6= 0 for 0 < u 6= 1, corresponding

to case (β)(v) of ([43], Thm. 4), and that f̂(u) ≡ 0 for u < 0, since in this can the equation can be explicitly
solved;

• ū = 0 and v̄ 6= 0 (hence, r̄ > 0) for 1 < p < 2: this follows again from (f0), corresponding to case (α)(iii) of
([43], Thm. 4).

Thus, the only remaining possibility to be analyzed is r̄ ≥ 0, ū = 1 and v̄ = 0; in this case, we must show that
the only solution is u ≡ 1. To this end, we define the function

H(r) :=
|u′(r)|p

p′
+ F̂ (u(r)),
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with r in a neighborhood of r̄, F̂ (u) =
∫ u

1
f̂(s) ds. Notice that, in view of (feq) and of the definition of f̂ , it

holds that F̂ (s) ≥ 0 for any s ∈ R and F̂ (s) = 0 if and only if s = 1. Hence H(r) ≥ 0 and H(r) = 0 if and only
if u(r) = 1 and u′(r) = 0. In particular, H(r̄) = 0. Observing that

|u′(r)|p = |ϕp(u′(r))|p
′

and that

(ϕp(u
′(r)))

′
= −N − 1

r
ϕp(u

′(r))− f̂(u(r)) for r 6= 0,

a straightforward computation yields

H ′(r) = −N − 1

r
|u′(r)|p ≤ 0 for r 6= 0.

It follows that H(r) = 0 for r ≥ r̄, so that u(r) = u(r̄) = 1 for r ≥ r̄ ≥ 0. If r̄ = 0, this is enough to conclude; if
r̄ > 0 we also need to check the backward uniqueness. To this end, we observe that

|H ′(r)| = N − 1

r
|u′(r)|p ≤ ηH(r)

for r > 0 in a neighborhood of r̄ and η > 0 a suitable constant (depending on the neighborhood). Hence, by
Gronwall’s Lemma,

H(r) ≤ H(r̄)eη|r−r̄|

for r in a (left) neighborhood of r̄. Again, this implies H(r) = 0 and, finally, u(r) = 1 in a (left) neighborhood
of r̄.

We now prove that the solution (ud, vd) can be globally extended to the whole interval [R1, R2]. By contra-
diction, suppose that its maximal interval of definition is [R1, r

∗) for some r∗ ≤ R2; then, the standard theory
of ODEs implies that

lim
r→(r∗)−

(|ud(r)|+ |vd(r)|) = +∞. (2.7)

Since F̂ ≥ 0 and H ′(r) ≤ 0, we get

|u′d(r)|p

p′
≤ H(r) ≤ H(R1) for all r ∈ [R1, r

∗),

that is |u′d| is bounded. Consequently,

|vd(r)| = rN−1|u′d(r)|p−1 ≤ C and |ud(r)| ≤ ud(R1) +

∫ r

R1

|u′d(s)|ds ≤ C ′

for all r ∈ [R1, r
∗) and for some C, C ′ > 0. Hence, (2.7) cannot occur, and so (ud, vd) can be extended to the

whole interval [R1, R2].

Finally, having proved the uniqueness and global continuability, the continuous dependence property follows
from the standard theory of ODEs (compare again with [43]). �

Notice now that, as a consequence of the uniqueness of the solutions to the Cauchy problems proved in
Lemma 2.2, we have that, if d ∈ (0, 1],

(ud(r), u
′
d(r)) 6= (1, 0) for every r ∈ [R1, R2].
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Accordingly, we can investigate the behavior of the solution (ud, vd) to (2.5)−(2.6), by introducing a system of
polar-like coordinates around the point (1, 0). Precisely, we setu(r)− 1 = ρ(r)

2
p cosp(θ(r))

v(r) = −ρ(r)
2
p′ sinp(θ(r)),

(2.8)

where (cosp, sinp) is the unique solution of 
x′ = −ϕp′(y),

y′ = ϕp(x),

x(0) = 1, y(0) = 0.

These functions were first introduced in [19] (see also [22], [24]). They are called p-cosine and p-sine functions
because they share many properties with the classic cosine and sine functions, as we recall below.

Lemma 2.3 ([48], Lem. 2.1). Let πp := 2π(p−1)1/p

p sin(π/p) , then

(i) both cosp(θ) and sinp(θ) are 2πp-periodic;
(ii) cosp is even in θ and sinp is odd in θ;
(iii) cosp(θ + πp) = − cosp(θ), sinp(θ + πp) = − sinp(θ);
(iv) cosp(θ) = 0 if and only if θ = πp/2 + kπp, k ∈ Z, and sinp(θ) = 0 if and only if θ = kπp, k ∈ Z;
(v) d

dθ cosp(θ) = −ϕp′(sinp(θ)) and d
dθ sinp(θ) = ϕp(cosp(θ));

(vi) | cosp(θ)|p/p+ | sinp(θ)|p
′
/p′ ≡ 1/p.

Via the change of coordinates (2.8), system (2.5) is transformed into
ρ′(r) =

p

2ρ(r)
u′(r)

[
ϕp(u(r)− 1)− r(N−1)p′ f̂(u(r))

]
θ′(r) =

rN−1

ρ2(r)

[
(p− 1)|u′(r)|p + (u(r)− 1)f̂(u(r))

]
.

(2.9)

Moreover, we can write the initial condition (2.6) as

ρ(R1) = d
p
2 , θ(R1) = πp, (2.10)

and denote the corresponding solution by (ρd, θd). It is then easy to realize that the couple (ρd, θd) gives rise to
a solution of (2.1) (and in turn of (1.1)) if and only if θd(R2) = kπp for some k ∈ Z.

We conclude this preliminary section by noting for further convenience that, as an immediate consequence
of Lemma 2.2, (2.8) and Lemma 2.3, we have the following.

Corollary 2.4. If (dn) ⊂ (0, 1) is such that dn → d ∈ (0, 1], then (ρdn(r), θdn(r))→ (ρd(r), θd(r)) uniformly in
r ∈ [R1, R2]. Furthermore,

lim
d→0

sup
r∈[R1,R2]

ρd(r) = 0. (2.11)

Remark 2.5. It is worth noticing that, when R1 > 0 (that is, if Ω is an annulus), we can perform a change of
variables which transfors the equation appearing in (2.1) into a simpler one. Precisely, for r ∈ (R1, R2), let

t(r) :=

∫ r

R1

s
−
N − 1

p− 1 ds =


p− 1

p−N

(
r

p−N
p−1 −R

p−N
p−1

1

)
if p 6= N

ln
r

R1
if p = N ;
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then, t(r) is invertible with inverse

r(t) =


(
p−N
p− 1

t+R
p−N
p−1

1

) p−1
p−N

if p 6= N

R1e
t if p = N.

Setting

w(t) := u(r(t)), T := t(R2), a(t) := r(t)
p(N−1)

p−1 ,

we find that (2.1) is equivalent to {
−(ϕp(w

′))′ = a(t)f̂(w) in (0, T )

w′(0) = w′(T ) = 0.

The same procedure can be used in the case R1 = 0 (namely, Ω is a ball) with p > N , since also in this case
r(t), and consequently a(t), is well defined for all t ∈ [0, T ]. However, here we prefer to work always with the
boundary value problem (2.1) in order to produce a common proof for all our results.

2.2. The associated eigenvalue problem

Consider the eigenvalue problem {
−∆pφ = λ|φ|p−2φ in Ω

∂νφ = 0 on ∂Ω,
(2.12)

where Ω is one of the two radial open domains defined in the introduction, and λ ∈ R. Since we are interested
only in the radial eigenvalues of (2.12), we can rewrite (2.12) as the following 1-dimensional eigenvalue problem{

−(rN−1ϕp(φ
′))′ = λrN−1ϕp(φ) in (R1, R2)

φ′(R1) = φ′(R2) = 0.
(2.13)

The following result is well-known.

Theorem 2.6 ([44], Thm. 1). The eigenvalue problem (2.13) has a countable number of simple eigenvalues
0 = λ1 < λ2 < λ3 < . . . , limk→∞ λk = +∞, and no other eigenvalues. The eigenfunction φk that corresponds
to the k-th eigenvalue λk has k − 1 simple zeros in (R1, R2).

We remark that for every 1 ≤ k ∈ N, if we denote by λk the k-th eigenvalue of (2.13) and by λrad
k the k-th

radial eigenvalue of (2.12),
λk = λrad

k .

Following Sturm’s theory, we are now going to clarify the relationship between the eigenvalues λrad
k and an

angular coordinate ϑ analogous to the one defined in the previous section. Accordingly, we consider the change
of variables φ(r) = %λ(r)

2
p cosp(ϑλ(r))

rN−1ϕp(φ
′(r)) = −%λ(r)

2
p′ sinp(ϑλ(r)),

(2.14)

where the functions sinp, cosp are defined as in the previous section. Then, the eigenvalue problem (2.13) reads as
%′λ(r) =

p

2%(r)

(
1− λr(N−1)p′

)
ϕp(φ(r))φ′(r),

ϑ′λ(r) =
rN−1

%(r)2
[(p− 1)|φ′(r)|p + λ|φ(r)|p] ,
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with boundary conditions
ϑλ(R1) = πp and ϑλ(R2) = jπp

for some j ∈ N. Notice that the function r 7→ ϑλ(r) is strictly increasing. As a consequence, if λ = λk for k ≥ 1,
the fact that φk has k − 1 simple zeros in (R1, R2) reads as

ϑλk
(R1) = πp and ϑλk

(R2) = kπp. (2.15)

For further convenience, we also observe that, by (2.14),

r(N−1)p′ |φ′|p = %2
λ| sinp(ϑλ)|p

′
and |φ|p = %2

λ| cosp(ϑλ)|p,

so that

ϑ′λ = rN−1

[
p− 1

r(N−1)p′
| sinp(ϑλ)|p

′
+ λ| cosp(ϑλ)|p

]
. (2.16)

2.3. The proof of Theorem 1.2

Proof. By (f1), we know that for all n ∈ N there exists δ = δ(n) > 0 such that for every s satisfying |s− 1| < δ
it holds

f̂(s)(s− 1) = f(s)(s− 1) >


(
C1 −

1

n

)
|s− 1|p if C1 ∈ (0,∞),

n|s− 1|p if C1 = +∞.

Then, by (2.9), we get that if |u(r)− 1| < δ(n)

θ′(r) >


rN−1

ρ(r)2

[
(p− 1)|u′(r)|p +

(
C1 −

1

n

)
|u(r)− 1|p

]
if C1 ∈ (0,∞),

rN−1

ρ(r)2
[(p− 1)|u′(r)|p + n|u(r)− 1|p] if C1 = +∞.

(2.17)

Furthermore, we deduce from (2.8) that

r(N−1)p′ |u′|p = ρ2| sinp(θ)|p
′

and |u− 1|p = ρ2| cosp(θ)|p.

Hence, combining the latter equalities with (2.17), we obtain by (2.11) that for every n there exists δ′ = δ′(n) > 0
such that for all d ∈ (0, δ′)

θ′d(r) >


rN−1

[
p− 1

r(N−1)p′
| sinp(θd(r))|p

′
+

(
C1−

1

n

)
| cosp(θd(r))|p

]
if C1 ∈ (0,∞),

rN−1

[
p− 1

r(N−1)p′
| sinp(θd(r))|p

′
+ n| cosp(θd(r))|p

]
if C1 = +∞

(2.18)

for all r ∈ [R1, R2].
Now, in both cases (i.e., 0 < C1 < +∞ and C1 = +∞), let k ≥ 1 be an integer such that C1 > λrad

k+1. For n
so large that

n > λk+1 and C1 −
1

n
> λk+1,

relation (2.18) becomes

θ′d(r) > rN−1

[
p− 1

r(N−1)p′
| sinp(θd(r))|p

′
+ λk+1| cosp(θd(r))|p

]



1636 A. BOSCAGGIN ET AL.

Hence, recalling (2.16) with λ = λk+1 and using the Comparison Theorem for ODEs, we obtain for d small
enough

θd(r) > ϑλk+1
(r) for all r ∈ (R1, R2]. (2.19)

In particular, by (2.15)
θd(R2) > (k + 1)πp

for d sufficiently close to 0. Since θ1(R2) = πp, by the continuity of the map d 7→ θd(R2) (see Corollary 2.4),
we have that for all j = 1, . . . , k there exists dj ∈ (0, 1) for which θdj (R2) = (j + 1)πp. This corresponds to
u′dj (R2) = 0, providing the desired solution uj of (1.1).

In order to prove the oscillatory behavior of uj it suffices to remark that, since θdj (r) is monotone increasing
(see (2.9) and recall (feq)), there exist exactly j radii r1, . . . , rj ∈ (R1, R2) such that θdj (r1) = 3

2πp, θdj (r2) =
5
2πp, . . . , θdj (rj) =

(
j + 1

2

)
πp. �

Remark 2.7. Let ϑC1 be the angular coordinate defined in (2.14) with λ = C1. In the case C1 < ∞, we can
show that θd → ϑC1

uniformly in [R1, R2] for d → 0+ (in particular, this holds true also for C1 = 0), thus
obtaining a stronger relation than (2.19). Indeed, by (2.9) and (f1), we have as d→ 0

θ′d = (p− 1)r(N−1)(1−p′)| sinp(θd)|p
′
+ C1r

N−1| cosp(θd)|p + rN−1 o(ρ
2
d| cosp(θd)|p)

ρ2
d

·

Now, Corollary 2.4 and | cosp(θd)|p = O(1) provide o(ρ2
d| cosp(θd)|p)/ρ2

d = o(1) as d → 0+. On the other hand,
by (2.16),

ϑ′C1
= (p− 1)r(N−1)(1−p′)| sinp(ϑC1

)|p
′
+ C1r

N−1| cosp(ϑC1
)|p,

whence
|θ′d − ϑ′C1

| ≤ L|θd − ϑC1 |+ o(1) as d→ 0+,

with L = L(p, C1, sinp, cosp) > 0 being related to the Lipschitz constants of | sinp(·)|p
′

and | cosp(·)|p. Therefore,
for all ε > 0 and all r ∈ [R1, R2],

|θd(r)− ϑC1(r)| ≤ L
∫ r

R1

|θd(s)− ϑC1(s)|ds+ ε for d sufficiently small.

By Gronwall’s inequality, for all r ∈ [R1, R2]

|θd(r)− ϑC1
(r)| ≤ εeL(r−R1) for d sufficiently small

and so, by the arbitrariness of ε > 0,

|θd − ϑC1 | → 0 uniformly in [R1, R2] as d→ 0+.

2.4. The proof of Theorem 1.4

We will adapt an argument introduced in [12], and make use of the following result proved therein.

Lemma 2.8 ([12], Cor. 5.1). Let us consider the system{
ρ′ = P(r, ρ, θ)

θ′ = Θ(r, ρ, θ),
(2.20)

being P, Θ : [r1, r2] × R+
0 × [θ1, θ2] → R continuous functions. Suppose that the uniqueness for the Cauchy

problem associated with (2.20) is ensured and let γ : [θ1, θ2] → R be a function of class C1, with γ(θ) > 0 for
every θ ∈ [θ1, θ2]. Assume

P(r, γ(θ), θ) ≤ γ′(θ)Θ(r, γ(θ), θ) for every r ∈ [r1, r2], θ ∈ [θ1, θ2].
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Then for every (ρ, θ) : I → R+
0 × [θ1, θ2] solution to (2.20) (being I ⊂ [r1, r2] an interval) and r0 ∈ I,

ρ(r0) ≤ γ(θ(r0)) =⇒ ρ(r) ≤ γ(θ(r)) for every r ∈ (r0,+∞) ∩ I.

For the proof of Theorem 1.4, it is convenient to write the equation in (2.1) as the planar system in (R1, R2)

u′ = ϕ−1
p

((
R2

r

)N−1

v

)
, v′ = −

(
r

R2

)N−1

f̂(u). (2.21)

The advantage of this new scaling is that the maximum of the weight (r/R2)N−1 in [R1, R2] is independent
of R2, a property that will be useful in the sequel. While, concerning the minimum of the same weight, we
will use the fact that it is positive in [εR2, R2] for any ε > 0. Comparing (2.21) with (2.5), it is immediately
realized that all the properties discussed in Section 2.1 still hold true for this slightly different planar formulation
of (2.1). In particular, we define (ud, vd) as the solution of (2.21) satisfying (ud(R1), vd(R1)) = (1 − d, 0) and
we pass to polar-like coordinates around the point (1, 0) as in (2.8), that is,x(r) := u(r)− 1 = ρ(r)

2
p cosp(θ(r))

y(r) := v(r) = −ρ(r)
2
p′ sinp(θ(r)).

We thus obtain (compare with (2.9)) the system
ρ′ =

p

2ρ

(
R2

r

)(N−1)(p′−1)

ϕp′(y)

[
ϕp(x)−

(
r

R2

)(N−1)p′

f̂(x+ 1)

]
=: P(r, ρ, θ)

θ′ =
1

ρ2

(
R2

r

)(N−1)(p′−1)
[

(p− 1)|y|p
′
+

(
r

R2

)(N−1)p′

f̂(x+ 1)x

]
=: Θ(r, ρ, θ),

(2.22)

with initial conditions (2.10). We also write

P(r, ρ, θ) =: ρS

(
r, ρ

2
p cosp(θ),−ρ

2
p′ sinp(θ)

)
and

Θ(r, ρ, θ) =: U

(
r, ρ

2
p cosp(θ),−ρ

2
p′ sinp(θ)

)
,

where, noting that |x|p + (p− 1)|y|p′ = ρ2,

S(r, x, y) =
p

2

(
R2

r

)(N−1)(p′−1)

·
ϕp′(y)

[
ϕp(x)−

(
r

R2

)(N−1)p′

f̂(x+ 1)

]
|x|p + (p− 1)|y|p′

and

U(r, x, y) =

(
R2

r

)(N−1)(p′−1)

·

[
(p− 1)|y|p′ +

(
r

R2

)(N−1)p′

f̂(x+ 1)x

]
|x|p + (p− 1)|y|p′

·

• Proof of Theorem 1.4. We treat the two cases Ω = B(R2) and Ω = A(R1, R2) simultaneously, by taking into
account that the condition R1 < εR2 is trivially verified for all ε > 0 when R1 = 0, that is in the case of the
ball. Hence, if Ω = B(R2), for any k ≥ 1 we can fix any ε > 0 and consider R∗ only depending on k.
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For d ∈ [0, 1] let (ρd, θd) be the solution of (2.22) with initial conditions (2.10). The key point is to show
that for any integer k ≥ 1 and any ε > 0, there exists R∗(k, ε) > 0 such that for R1 < εR2 and R2 > R∗(k, ε)
there exists dk ∈ (0, 1) such that θdk(R2) > (k + 1)πp. From this, one can easily conclude. Indeed, on one hand
θ1(R2) = πp. On the other hand, θd(R2) < 2πp for d small enough, since by Remark 2.7 it holds θd(R2)→ ϑ0(R2)
for d→ 0 and ϑ0(r) ≡ πp. Then, by continuity, it is possible to find for any j = 1, . . . , k two values

0 < d−j < dk < d+
j < 1

such that θd±j
(R2) = (j+1)πp, giving rise to the desired solutions u±j . The oscillatory behavior is then proved as

in Theorem 1.1. In fact, by (2.22) θd±j
is increasing for every j = 1, . . . , k, and consequently, there exist exactly

2j radii r−1 , . . . , r
−
j , r

+
1 , . . . , r

+
j ∈ (R1, R2) such that θd±j

(r±1 ) = 3
2πp, θd±j

(r±2 ) = 5
2πp,. . . , θd±j

(r±j ) =
(
j + 1

2

)
πp.

From now on, we thus focus on the proof of the above claim; this requires, however, several auxiliary defini-
tions. First of all, we set

M−(x, y) :=



p

2
·
ϕp′(y)

(
ϕp(x)− f̂(x+ 1)

)
(p− 1)|y|p′ + f̂(x+ 1)x

if xy ≥ 0,

p

2
·
ϕp′(y)

(
ϕp(x)− ε(N−1)p′ f̂(x+ 1)

)
(p− 1)|y|p′ + ε(N−1)p′ f̂(x+ 1)x

if xy ≤ 0,

and

M+(x, y) :=



p

2
·
ϕp′(y)

(
ϕp(x)− ε(N−1)p′ f̂(x+ 1)

)
(p− 1)|y|p′ + ε(N−1)p′ f̂(x+ 1)x

if xy ≥ 0,

p

2
·
ϕp′(y)

(
ϕp(x)− f̂(x+ 1)

)
(p− 1)|y|p′ + f̂(x+ 1)x

if xy ≤ 0.

A straightforward calculation shows that

M−(x, y) ≤ S(r, x, y)

U(r, x, y)
≤M+(x, y) (2.23)

for all r ∈ [εR2, R2] and all (x, y) ∈ R2 \ {(0, 0)}. For example, the inequality M− ≤ S/U is equivalent to

ϕp′(y)f̂(x+ 1)ρ2

(
r

R2

)(N−1)p′

≤ ϕp′(y)f̂(x+ 1)ρ2, if xy ≥ 0,

and to

ϕp′(y)f̂(x+ 1)ρ2

(
r

R2

)(N−1)p′

≤ ϕp′(y)f̂(x+ 1)ρ2ε(N−1)p′ , if xy ≤ 0,

from which we see that the first inequality in (2.23) is satisfied for r ∈ [εR2, R2], (x, y) ∈ R2 \{(0, 0)}. The proof
of the second inequality in (2.23) is similar.

Then, we define ρ±(θ; θ̄, ρ̄) as the solution of
dρ

dθ
= ρM±

(
ρ2/p cosp(θ),−ρ2/p′ sinp(θ)

)
ρ±(θ̄; ρ̄, θ̄) = ρ̄

(2.24)
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and we set for any ρ̄ > 0
mk(ρ̄) := inf

θ̄∈[0,2πp), θ∈[θ̄,θ̄+kπp]
ρ−(θ; ρ̄, θ̄),

Mk(ρ̄) := sup
θ̄∈[0,2πp), θ∈[θ̄,θ̄+kπp]

ρ+(θ; ρ̄, θ̄).

Since ρ ≡ 0 is a solution of the equation in (2.24), by continuous dependence,

lim
ρ̄=0+

Mk(ρ̄) = 0.

Moreover, by uniqueness mk(ρ̄) > 0 for every ρ̄ > 0. Hence, we can choose 0 < ρ̌k < ρ∗k < ρ̂k such that

0 < ρ̌k < mk(ρ∗k) ≤ ρ∗k ≤Mk(ρ∗k) < ρ̂k < 1. (2.25)

Finally, we set

δ∗k := inf
ρ̌k≤ρ≤ρ̂k

εN−1f̂(x+ 1)x+ (p− 1)|y|p′

|x|p + (p− 1)|y|p′
·

We are now in a position to prove that, if R1 < εR2 and

R2 > R∗(k, ε) :=
πpk

(1− ε)δ∗k
,

then our claim holds true, namely there exists dk ∈ (0, 1) such that

θdk(R2) > (k + 1)πp.

We first observe that, since ρ1(r) = 0 and ρ0(r) = 1 for any r ∈ [R1, R2], there exists dk ∈ (0, 1) such that

ρdk(εR2) = ρ∗k,

reasoning as in Corollary 2.4. We are now going to show that

θdk(R2)− θdk(εR2) > kπp, (2.26)

which concludes the proof since θdk(R1) = πp and, by (2.22), θdk is a non-decreasing function. We distinguish
two cases. If ρdk(r) ∈ [ρ̌k, ρ̂k] for any r ∈ [εR2, R2], we easily conclude: indeed, by the expression of θ′ in (2.22),
the definition of δ∗k and the choice of R2,

θdk(R2)− θdk(εR2) =

∫ R2

εR2

θ′dk(r) dr ≥ R2(1− ε)δ∗k > kπp.

Otherwise, we let r̄ ∈ [εR2, R2) be the largest value such that ρdk(r) ∈ [ρ̌k, ρ̂k] for any r ∈ [εR2, r̄] and we prove
in this case that

θdk(r̄)− θdk(εR2) > kπp,

implying (2.26) again in view of the monotonicity of θdk .
Suppose by contradiction that this is not true and, just to fix the ideas, that ρdk(r̄) = ρ̂k (in the case

ρdk(r̄) = ρ̌k the argument is analogous). Observe also that, again by the monotonicity of θdk , we have θdk(r)−
θdk(εR2) ≤ kπp for any r ∈ [εR2, r̄]. Now, we consider the function γ(θ) = ρ+(θ; ρ∗k, θ̄), where θ̄ ∈ [0, 2πp) is
such that θdk(εR2) ≡ θ̄ mod 2πp. By the definition of Mk(ρ∗k) and (2.25), it holds

γ(θ) < ρ̂k for every θ ∈ [θ̄, θ̄ + kπp];

moreover, from (2.23) and (2.24) we obtain

P(r, γ(θ), θ) ≤ γ′(θ)Θ(r, γ(θ), θ) for every r ∈ [εR2, r̄], θ ∈ [θ̄, θ̄ + kπp].

Lemma 2.8 then implies that
ρdk(r) ≤ γ(θdk(r)) for every r ∈ [εR2, r̄],

so that ρdk(r̄) ≤Mk(ρ∗k) < ρ̂k, a contradiction. �
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Figure 1. The first two bifurcation branches for problem (3.1) in the case p = 2. The color of
each solution in the right plot corresponds to the color of the branch it belongs to in the left
plot. (a) Bifurcation diagram: u(0) as function of q. (b) Solutions belonging to the first two
branches for q ' 50.

3. Numerical simulations and open problems

We present here some numerical simulations performed with the software AUTO-07p [23]. We consider
problem (1.3) in dimension N = 1, more precisely

−(ϕp(u
′))′ + up−1 = uq−1 in (0, 1)

u > 0 in (0, 1)

u′(0) = u′(1) = 0.

(3.1)

In Figure 1 we represent the first two bifurcation branches for problem (3.1) in the case p = 2. The black line
represents the constant solution u ≡ 1; the branches bifurcate at points q = 2 + λrad

k , k = 2, 3. The solutions
belonging to the lower part of the first branch are monotone increasing, the ones belonging to the upper part
of the first branch are monotone decreasing, in both cases they all intersect once the constant solution u ≡ 1.
Solutions of the lower part of the second branch present exactly one interior maximum point, solutions of
the upper part of the second branch have exactly one interior minimum point, in both cases they have two
intersections with u ≡ 1, and so on. The solutions that we have found in Corollary 1.5-(ii) belong to the lower
parts of the branches, since they all satisfy u(0) < 1. Much more general simulations for p = 2 can be found
in [7]. We remark that, as explained therein, the global behavior of the upper parts of the branches can be
investigated when the nonlinearity is subcritical (in particular, for N = 1) or when the problem is considered
in an annular domain, while it appears as an open problem in the general setting. We believe that the shooting
technique adopted in this paper could also lead to results similar to the ones obtained in [7], providing (in
the subcritical setting) multiple positive solutions with u(0) > 1. Notice, however, that here we do not obtain
bifurcation continua, but just multiple solutions for a fixed value of q (studying their behavior with respect to
a parameter is possible in principle, but requires additional arguments from planar topology, see [42]).

In the case p < 2, the branches persist for p sufficiently close to 2, but now both the upper and the lower
part of each branch split into two. In Figure 2 we represent this phenomenon for p = 1.97. Now we have four
branches. According to the simulations, none of them seems to bifurcate from the constant solution: each branch
seems to be unbounded on both sides, and one side seems to converge to the constant solution u ≡ 1 as q → +∞,
as if the bifurcation point had escaped to infinity. For this reason, each branch contains two solutions having
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Figure 2. The first four “bifurcation” branches for problem (3.1) in the case p = 1.97. The
color of each solution in the last two plots corresponds to the color of the branch it belongs
to in the first plot. (a) Bifurcation diagram: u(0) as function of q. Notice that the new folded
parts of the branches appear in the figure almost completely overlapped with the branch of
the constant solution. (b) “Large” solutions belonging to the first four branches for q ' 50. (c)
“Almost constant” solutions belonging to the first four branches, q ' 50; again, note that the
green and the blue solutions appear almost completely overlapped.

the same oscillatory behavior, thus giving rise to the double of solutions with respect to the case p = 2. Once
again, the solutions that we have found in Corollary 1.5-(iii) belong to the lower branches, since they all satisfy
u(0) < 1. The existence of solutions satisfying u(0) > 1 for p < 2 is for the moment an open problem. Similarly
as in the case p = 2, we conjecture that such solutions should exist when f has Sobolev-subcritical growth, or
when the domain is an annulus, thus giving rise, in the assumptions of Theorem 1.4, to 4k radial solutions.

We wish to mention that the solutions presented in Figure 2 could not be detected by bifurcating from the
constant. Instead, we adopted the following technique. We started from a solution of the problem with p = 2
and q equal to a certain value q̄. We considered bifurcation for this solution in the parameter p (with q = q̄
fixed). This provides a continuum of solutions up to a certain minimum value pmin, as shown for example in
Figure 3. The two solutions obtained in this way for a certain p̄ satisfying pmin ≤ p̄ < 2 can be used as a starting
point to obtain the graph in Figure 2 (with p = p̄ fixed and q variable). According to this discussion, it seems
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Figure 3. Bifurcation in the parameter p, starting from p = 2 for q = q̄ fixed. In particular,
for p < 2, a branch of solutions (in red) is obtained; this folded branch persists for p ≥ pmin,
giving rise to a couple of solutions for every p ∈ (pmin, 2).

Figure 4. Partial bifurcation diagram for problem (3.1) with p = 2.1: the first branches of
solutions bifurcating at q = p. The color of each solution in the right plot corresponds to the
color of the branch it belongs to in the left plot. (a) Bifurcation diagram: u(0) as function of q.
(b) Solutions belonging to the first branches for q ' 50.

to be an interesting question whether the multiplicity scheme of Theorem 1.4 could be obtained when varying p
instead of the diameter of the domain, that is if, given a domain and given k ≥ 1, it is possible to obtain 2k
solutions for any p ∈ (pmin(k), 2).

Finally, when p > 2, there seems to persist a phenomenon of bifurcation from the constant solution. We con-
jecture that in this case infinite branches bifurcate from the same point q = p, giving rise to a very degenerate
situation. Notice that this would be coherent with the result of Corollary 1.5-(i). In Figure 4 we present the
first bifurcation branches for p = 2.1. Some numerical difficulties occur also in this case, probably due to the
fact that an infinite number of curves meet at q = p and that these curves start with an almost flat shape. In
order to detect the blue and green branches, we took advantage of the monotonicity of the solutions belonging
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to them; to find the other two branches we adopted the method described above for the case p < 2. Also in this
case, the existence of solutions satisfying u(0) > 1 is an open problem.
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[19] M. del Pino, M. Elgueta and R. Manásevich, A homotopic deformation along p of a Leray-Schauder degree result and existence
for (|u′|p−2u′)′ + f(t, u) = 0, u(0) = u(T ) = 0, p > 1. J. Differ. Equ. 80 (1989) 1–13.

[20] M. Del Pino, M. Musso, C. Román and J. Wei, Interior bubbling solutions for the critical Lin-Ni-Takagi problem in dimension 3.
Preprint arXiv:1512.03468 (2015).

[21] M. del Pino, A. Pistoia and G. Vaira, Large mass boundary condensation patterns in the stationary Keller-Segel system.
J. Differ. Equ. 261 (2016) 3414–3462.

[22] M.A. del Pino, R.F. Manásevich and A.E. Murúa, Existence and multiplicity of solutions with prescribed period for a second
order quasilinear ODE. Nonlin. Anal. 18 (1992) 79–92.

[23] E.J. Doedel and B.E. Oldeman, Auto-07p: Continuation and bifurcation software for ordinary differential equations. Concordia
University. Available at: http://cmvl.cs.concordia.ca/auto/ (2012).

https://arxiv.org/abs/1802.07110
http://arxiv.org/abs/1709.04646
http://arxiv.org/abs/1512.03468
http://cmvl.cs.concordia.ca/auto/


1644 A. BOSCAGGIN ET AL.

[24] C. Fabry and D. Fayyad, Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlin-
earities. Rend. Istit. Mat. Univ. Trieste 24 (1994) 207–227, 1992.

[25] B. Franchi, E. Lanconelli and J. Serrin, Existence and uniqueness of nonnegative solutions of quasilinear equations in Rn.
Adv. Math. 118 (1996) 177–243.

[26] M. Grossi and B. Noris, Positive constrained minimizers for supercritical problems in the ball. Proc. Amer. Math. Soc. 140
(2012) 2141–2154.

[27] J.K. Hale, Ordinary differential equations. Pure Appl. Math. Vol. XXI. Wiley-Interscience, New York-London-Sydney (1969).

[28] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations. Nonl. Anal. 12 (1988) 1203–1219.

[29] C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system. J. Differ. Equ. 72 (1988)
1–27.

[30] Ch.Sh. Lin and W.-M. Ni, On the diffusion coefficient of a semilinear Neumann problem. In Calcul. Variat. Partial Differ. Eqs.
Trento (1986). Vol. 1340 of Lect. Notes Math. Springer, Berlin (1988) 160–174.

[31] Y. Lu, T. Chen and R. Ma, On the Bonheure-Noris-Weth conjecture in the case of linearly bounded nonlinearities. Discrete
Contin. Dyn. Syst. Ser. B 21 (2016) 2649–2662.

[32] R. Ma, T. Chen and H. Wang, Nonconstant radial positive solutions of elliptic systems with Neumann boundary conditions.
J. Math. Anal. Appl. 443 (2016) 542–565.

[33] R. Ma, H. Gao and T. Chen, Radial positive solutions for Neumann problems without growth restrictions. Complex Var.
Elliptic Equ. 62 (2017) 848–861.

[34] A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains. Geom.
Funct. Anal. 15 (2005) 1162–1222.

[35] A. Malchiodi, W.-M. Ni and J. Wei, Multiple clustered layer solutions for semilinear Neumann problems on a ball. Ann. Inst.
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