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STABILIZATION OF DAMPED WAVES ON SPHERES AND ZOLL SURFACES

OF REVOLUTION

Hui Zhu

Abstract. We study the strong stabilization of wave equations on some sphere-like manifolds, with
rough damping terms which do not satisfy the geometric control condition posed by Rauch−Taylor
[J. Rauch and M. Taylor, Commun. Pure Appl. Math. 28 (1975) 501–523] and Bardos−Lebeau−Rauch
[C. Bardos, G. Lebeau and J. Rauch, SIAM J. Control Optimiz. 30 (1992) 1024–1065]. We begin with an
unpublished result of G. Lebeau, which states that on Sd, the indicator function of the upper hemisphere
strongly stabilizes the damped wave equation, even though the equators, which are geodesics contained
in the boundary of the upper hemisphere, do not enter the damping region. Then we extend this result
on dimension 2, to Zoll surfaces of revolution, whose geometry is similar to that of S2. In particular,
geometric objects such as the equator, and the hemi-surfaces are well defined. Our result states that
the indicator function of the upper hemi-surface strongly stabilizes the damped wave equation, even
though the equator, as a geodesic, does not enter the upper hemi-surface either.
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1. Introduction

1.1. Problem of stabilization and main result

Consider the Cauchy problem of the damped wave equation on a compact Riemannian manifold (M, g)
without boundary. {

(∂2t −∆+ a∂t)u = 0 in D′(R×M),

(u, ∂tu)t=0 = (u0, u1) ∈ H1(M)× L2(M).
(1.1)

Here ∆ = ∆g is the Laplace-Beltrami operator with respect to the metric g. The function a ∈ L∞(M) is non-
negative, and a∂tu is called the damping term, as it causes decay in energy (defined below). There is a unique
solution u ∈ C1(R, L2(M)) ∩ C(R, H1(M)) to (1.1) by the theorem of Hille−Yosida. The energy defined by

E(u, T ) =
1

2
‖∇u(T )‖2L2(M) +

1

2
‖∂tu(T )‖2L2(M) (1.2)

Keywords and phrases. Wave equation, semiclassical analysis, control theory, geodesic flow.
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decays monotonically as T increases, due to the non-negativity of a and the identity

E(u, T ) = E(u, 0)−
ˆ T

0

ˆ
M

a(x)|∂tu(t, x)|2 dx dt. (1.3)

A natural question to ask is whether, as a consequence of the damping effect,

lim
T→+∞

E(u, T ) = 0

for every solution u to (1.1). If this is true, we say that a weakly stabilizes (1.1). When such a stabilization is
uniform for all solutions, or more precisely, if for some function f : R≥0 → R≥0 with limT→+∞ f(T ) = 0 and
every solution u to (1.1), we have for all T ≥ 0,

E(u, T ) ≤ E(u, 0)× f(T ),

then we say that a strongly stabilizes (1.1). It is well known that whenever the strong stabilization holds, the
function f could be chosen of the form

f(T ) = Ce−βT , C > 0, β > 0,

so that we have in fact a uniform exponential decay of energy (see for example [9] for an elementary proof).
When a ∈ C(M), Rauch−Taylor gave in [27] a sufficient condition (a geometric control condition, to be stated

as condition (2) in the following Thm. 1.1) for strong stabilization, followed by Bardos−Lebeau−Rauch [4], who
showed that this is in fact an equivalent condition (even for the similar problem of stabilization on manifolds
with boundaries, which will not be elaborated here).

Theorem 1.1 (Bardos−Lebeau−Rauch). Let (M, g) be a compact Riemannian manifold without boundary, and
0 ≤ a ∈ C(M), then the following two statements are equivalent.

(1) a strongly stabilizes (1.1);
(2) All geodesics of M enter the open set {a > 0}. That is, for x ∈ M , let γ be a geodesic starting from x

(i.e. γ(0) = x), then for some t ≥ 0, γ(t) ∈ {a > 0}.

The proof of Theorem 1.1 in [4] used the propagation theorem developed by Melrose−Sjöstrand [24]. Lebeau [20]
managed to use microlocal defect measures (which is due to Gérard [14] and Tartar [26], see also [8]) and an
argument by contradiction to give a new and much simpler proof. However, when a ∈ L∞(M), it remains
an open problem to give an equivalent condition for strong stabilization, even though the following necessary
condition and sufficient condition are known to be classical, which follow by analyzing the proof of Theorem 1.1.

Proposition 1.2. Let (M, g) be a compact Riemannian manifold without boundary, and let 0 ≤ a ∈ L∞(M),

(1) if a strongly stabilizes (1.1), then all geodesics of M intersect with supp a;
(2) if all geodesics of M enter the open set U(a) =

⋃
ε>0 Int{x : a(x) > ε}, then a strongly stabilizes (1.1).

When a ∈ C(M), condition (2) is also necessary because in this case U(a) = {a > 0}, and we conclude by
Theorem 1.1. However, for general a ∈ L∞(M), these two conditions are not sharp. Typical examples are
as follows. Let M = S2 = {x2 + y2 + z2 = 1}, define the equator Γ = S2 ∩ {z = 0} and the hemispheres
S2± = S2 ∩ {±z > 0}. Let 0 ≤ a ∈ C(S2) be zero exactly on the equator, while a > 0 elsewhere. Theorem 1.1
says that a does not strongly stabilize (1.1), for the equator Γ , as a geodesic, does not enter {a > 0} = S2+∪S2−,
even though all geodesics enter supp a = S2. On the other hand, let a = 1S2+ be the indicator function of the

upper hemisphere, then the equator does not enter U(a) = Int S2+. However, the following unpublished result
due to Gilles Lebeau shows that a indeed strongly stabilizes (1.1).
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Theorem 1.3 (Lebeau, unpublished). For d ≥ 1, let Sd = {x = (x1, . . . , xd+1) ∈ Rd+1 : x21 + · · ·x2d+1 = 1}
be the d-dimensional unit sphere, which inherits the Riemannian metric from Rd+1. Let Sd+ = Sd ∩ {xd+1 > 0}
denote the upper hemisphere, then a(x) = 1Sd+(x) strongly stabilizes (1.1).

We will first give a simple proof of this theorem (see Sect. 1.2) using the spectral distribution of the spherical
Laplacian, and the symmetries of spherical harmonics. Then we extend this result, on dimension 2, to Zoll
surfaces of revolution.

Definition 1.4. A Zoll manifold is a Riemannian manifold whose geodesic flow is periodic. A Zoll surface of
revolution is a 2 dimensional Zoll manifold, on which the group S1 acts smoothly, faithfully, and isometrically.

We refer to Besse [6] for an introduction of Zoll manifold. Some fundamental geometric properties and
examples are stated below. In particular Sd (d ≥ 1) are Zoll manifolds, and S2 is a Zoll surface of revolution. The
geometry of a Zoll surface of revolution resembles much that of S2, which makes it natural for the generalization
of Theorem 1.3. (However, on general Zoll manifolds, such resemblance is not yet clear to the author.) Indeed,
we will use the following two aspects of resemblance for our generalization.

• Local Geometry: On Zoll surfaces of revolution, the geometric objects such as the equator, and the upper and
lower hemi-surfaces are well defined. Moreover, the local geometry near the equator is similar to that near a
great circle of S2.

On a general Zoll manifold, such resemblance is not clear to the knowledge of the author. That is why we
will restrict ourselves to Zoll surfaces of revolution.

• Global geometry: Spectral distribution of the Laplacian−Beltrami operator. See Proposition 1.5. This works
for Zoll manifolds of arbitrary dimension, and states that the Laplacian spectrum on Zoll manifolds of di-
mension d is similar to that of the spherical Laplacian on Sd.

It is worth comparing to the work of Burq−Gérard [10] of a similar stabilization problem on tori, where only
the local geometry is consulted.

Proposition 1.5 (Duistermaat-Guillemin [12]). Let ∆ be the Laplacian−Beltrami operator on a Zoll manifold
of dimension d, then

Spec(−∆) ⊂
⊔
n≥0

In,

where {In}n≥0 is a family of mutually disjointed intervals, such that

In ⊂
]
(n+ β/4)2 −A, (n+ β/4)2 +A

[
(1.4)

for some β > 0, A > 0.

Remark 1.6. When d = 2, we have β = 2. See Proposition 4.35 of [6].

Example 1.7. In particular, let ∆d denote the spherical Laplacian on Sd, then (see Lem. 1.13)

Spec(−∆d) =

{(
n+

d− 1

2

)2

− (d− 1)2

4
: n ∈ N

}
.

We simple let β/4 = (d− 1)/2, and let A be strictly larger than (d− 1)2/4.

Let Σ denote a Zoll surface of revolution, we state some local geometries of Σ. More details could be found
in [6]. For an intuitive understanding, see Figure 1. It is known that Σ is automatically diffeomorphic to S2,



STABILIZATION OF DAMPED WAVES ON SPHERES AND ZOLL SURFACES OF REVOLUTION 27

N

S

(�0, ϕ)

r(�0) = 1

(�, ϕ)

Γ

Figure 1. Zoll surface of revolution.

and there exists exactly two distinct points, respectively called the north pole and the south pole, denoted by N
and S, which are invariant under the actions of S1. We then parametrize the surfaces by coordinates

(`, ϕ) ∈ [0,dist(N,S)]× S1,

where ` is the arc-length parameter of one (and consequently every) geodesic from N to S, and ϕ is the rotational
angle corresponding to the actions of S1, so that the Riemannian metric on Σ is of the form

g = d`2 + r(`)2dϕ2,

where r(`) is the distance from the point (`, ϕ) to the axis of rotation. By Lemma 4.9 of [6], there exists
a unique `0 such that r(`) attains its maximum at ` = `0. There is no loss of generality by assuming that
r(`0) = 1. Moreover we have r′(`0) = 0, r′′(`0) < 0. The curve Γ = {(`0, ϕ) : ϕ ∈ S1} defines a closed
geodesic of period 2π (because r(`0) = 1) called the equator, while the regions Σ+ = {(`, ϕ) : ` > `0} and
Σ− = {(`, ϕ) : ` < `0} are called the upper and lower hemi-surfaces respectively. Similarly to S2, all geodesics
on Σ enter Σ+ except for the equator Γ .

Remark 1.8. If we denote c = −r′′(`0)/2 > 0, then

r(`) = 1− c(`− `0)2 +O
(
(`− `0)3

)
.

This local geometry will be essential in performing a microlocal analysis near Γ that proves our main the-
orem (Thm. 1.10). In particular, if Σ = S2, then we take r(`) = cos `, such that (`, ϕ) ∈ [−π/2, π/2] × S1
parametrizes S2. In this case `0 = 0, and

r(`) = cos ` = 1− 1

2
`2 +O(`3).

Remark 1.9. Using the change of variable r(`) = sin θ, to describe a Zoll surface of revolution, it is equivalent
to give a Riemannian metric to S2. By an abuse of notation, we still use g to denote the metric on Sd obtained
by this isometry. If we parametrize S2 by (θ, ϕ), where θ is the latitude while ϕ is the longitude of S2, then by
Corollary 4.16 of [6], (S2, g) is a Zoll surface of revolution if and only if

g = (1 + h(cos θ))2dθ2 + sin2 θdϕ2,

for some smooth odd function h from [−1, 1] to (−1, 1) with h(1) = h(−1) = 0.

Now we state the main result of this paper.
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Theorem 1.10. Let Σ be a Zoll surface of revolution, then a = 1Σ+ strongly stabilizes (1.1).

Remark 1.11. As a direct consequence of our proof, in order for a to strongly stabilize (1.1), it suffices for a to
be bounded from below by a positive constant in a half-neighborhood of the equator. To be precise, this means
that there exists some ε > 0, δ > 0, such that

a(`, ϕ) ≥ δ · 1`0<`<`0+ε(`, ϕ).

However, we will only prove the case when a = 1Σ+ for simplicity.

1.2. Stabilization of Damped Waves on Sd

In this section we prove Theorem 1.3. First we recall the following classical result, due to Lions [21].

Proposition 1.12. Let (M, g) be a compact Riemannian manifold without boundary, and let 0 ≤ a ∈ L∞(M),
then the following two statements are equivalent.

(1) a strongly stabilizes (1.1).
(2) For some T > 0, C > 0, and for every solution u to the Cauchy problem of the undamped wave equation{

(∂2t −∆)u = 0, in D′(R×M);

(u, ∂tu)t=0 = (u0, u1), ∈ H1(M)× L2(M),
(1.5)

the following observability inequality holds,

E(u, 0) ≤ C
ˆ T

0

ˆ
M

a|∂tu|2dx dt. (1.6)

Therefore it remains to establish this observability inequality. Coming back to Sd, we recall some basic properties
of the spherical Laplacian and spherical harmonics (see for example Chap. IV, Sect. 2 of [28]).

Lemma 1.13. Let ∆d denote the spherical Laplacian on Sd, then

(1) Spec(−∆d) =
{
λ2n = n(n+ d− 1) = (n+ d−1

2 )2 − (d−1)2
4 : n ∈ N

}
.

(2) The eigenspace En to −∆d of eigenvalue λ2n consists of spherical harmonics of degree n, which are restric-
tions to Sd of harmonic polynomials of d+ 1 variables, homogeneous of degree n. In particular, if u ∈ En,
then u(−x) = (−1)nu(x).

As a consequence, each u ∈ Hs(Sd) with s ∈ R admits a unique decomposition in distributional sense of the
following form,

u =
∑
n≥0

un, with un ∈ En.

This allows us to specify the Hs(Sd) norm in terms of this decomposition by setting

‖u‖2Hs = ‖(1 +∆)s/2u‖2L2 =
∑
n≥0

〈λn〉2s‖un‖2L2 , with 〈λn〉 =
√

1 + λ2n.

We then introduce a new differential operator as a perturbation of −∆d,

L = −∆d +
(d− 1)2

4
· (1.7)

The advantage of L to −∆d is that the spectrum of L consists of exact squares of arithmetic sequence, Spec(L) =
{(n+ d−1

2 )2 : n ∈ N}, so that

Spec(
√
L) =

{
n+

d− 1

2
: n ∈ N

}
. (1.8)
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Solving the following Cauchy problem{
(∂2t + L)u = 0, in D′(R× Sd);
(u, ∂tu)t=0 = (u0, u1) , ∈ H1(Sd)× L2(Sd),

(1.9)

by using Fourier series,

u(t) = cos(t
√
L)u0 +

√
L
−1

sin(t
√
L)u1

=


∑
n≥0

(
eit(n+

d−1
2 )u+n + e−it(n+

d−1
2 )u−n

)
, d ≥ 2,

u00 + u10t+
∑
n≥1

(
eitnu+n + e−itnu−n

)
, d = 1,

(1.10)

where we write u0 =
∑
n≥0 u

0
n, u1 =

∑
n≥0 u

1
n, with uin ∈ En, and by an explicit calculation, we have for n ≥ 0

when d ≥ 2 and n ≥ 1 when d = 1,

u+n + u−n = u0n, i

(
n+

d− 1

2

)
(u+n − u−n ) = u1n.

If we assume (u0, u1) ∈ Hs ×Hs−1 for some s ∈ R, then this expression gives an a priori bound for ‖u‖L∞locHs .
Indeed, for d ≥ 2 (d = 1 is similar), by the characterization of the Hs norm, and the triangular inequality,

‖u(t)‖2Hs =
∑
n≥0

〈λn〉2s‖eit(n+
d−1
2 )u+n + e−it(n+

d−1
2 )u−n ‖2L2

=
∑
n≥0

〈λn〉2s‖ cos

(
t

(
n+

d− 1

2

))
u0n +

(
n+

d− 1

2

)−1
sin

(
t

(
n+

d− 1

2

))
u1n‖2L2

.
∑
n≥0

〈λn〉2s‖u0n‖2L2 +
∑
n≥0

〈λn〉2s
(
n+

d− 1

2

)−2
‖u1n‖2L2

. ‖u0‖2Hs + ‖u1‖2Hs−1 . (1.11)

When d ≥ 2, we obtain ‖u‖L∞Hs . ‖u0‖Hs +‖u1‖Hs−1 , while for d = 1, the same estimate holds after replacing
‖u‖L∞Hs with ‖u‖L∞locHs , due to the linear growth in time of the term u10t.

Observe that in the expression of the solution, the family of factors {e±it(n+ d−1
2 )}n∈N are orthogonal

in L2([0, 2π]). This fact makes the observability of (1.5) easier to prove, due to the following two reduction
lemmas.

Definition 1.14. We say that a observes (1.9) if for some constants T > 0, C > 0 and every solution u to (1.5),
the observability inequality (1.6) holds. We say that a observes the spherical harmonics, if for some C > 0, and
every spherical harmonic v ∈ ∪n∈NEn,

‖a1/2v‖L2(Sd) ≥ C‖v‖L2(Sd) (1.12)

Lemma 1.15. For M = Sd, let 0 ≤ a ∈ L∞(Sd), if a observes (1.9), then a observes (1.5).

Proof. Let u solve (1.5). We decompose u = v + w such that
(∂2t + L)v = 0, (v, ∂tv)t=0 = (u0, u1);

(∂2t + L)w =
(d− 1)2

4
u, (w, ∂tw)t=0 = (0, 0).
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Now that a observes (1.9), for some T > 0,

E(u, 0) = E(v, 0) .
ˆ T

0

ˆ
Sd
a|∂tv|2dx dt .

ˆ T

0

ˆ
Sd
a|∂tu|2dx dt+

ˆ T

0

ˆ
Sd
a|∂tw|2dxdt.

By Duhamel’s formula, ∂tw(t) = (d−1)2
4

´ t
0

cos
(
(t − s)

√
L
)
u(s) ds. Then we use the boundedness

‖ cos(t
√
L)‖L2→L2 ≤ 1, and the a priori estimate (1.11), to obtain

‖∂tw(t)‖2L2 .
ˆ T

0

‖u(s)‖2L2ds . ‖(u0, u1)‖2L2×H−1 .

Combine the inequalities above, we obtain a weak observability,

E(u, 0) .
ˆ T

0

ˆ
Sd
a|∂tu|2dxdt+ ‖(u0, u1)‖2L2×H−1 .

Then it is a classical argument of uniqueness-compactness due to Bardos−Lebeau−Rauch [4] which allows us
to remove the compact remainder term ‖(u0, u1)‖2L2×H−1 and obtain the (strong) observability. This amounts
to prove by contradiction and extract a subsequence of solutions of (1.5) which violates the observability, but
converges strongly in the energy norm due to the compactness given by the weak observability. This gives us a
solution to (1.5) with non vanishing energy (the energy is now conserved in time because there is no damping
term in (1.5)), say v, such that a∂tv = 0. Then we conclude by showing that, for a 6≡ 0, such solution does not
exist (the only solution to (1.5) with a∂tv = 0 must be constant, and hence with zero energy). For more details,
see the proof of Lemma 2.10. �

Lemma 1.16. If a observes the spherical harmonics, then a observes (1.9).

Proof. We only prove the lemma for d ≥ 2, the proof for d = 1 is almost the same.
We set T = 2π, and use Fubini’s theorem, the explicit formula for solutions (1.10), the orthogonality of the

family {e±it(n+ d−1
2 )}n∈N in L2([0, 2π]), the observability (1.12), and the characterization of Sobolev norms by

spherical harmonics,

ˆ 2π

0

ˆ
Sd
a|∂tu|2dxdt

=

ˆ
Sd
a(x)

ˆ 2π

0

∣∣∣∑
n≥0

(
n+ d−1

2

)(
eit(n+

d−1
2 )u+n (x)− e−it(n+

d−1
2 )u−n (x)

)∣∣∣2dtdx

=

ˆ
Sd
a(x)

∑
n≥0

(
n+ d−1

2

)2(|u+n (x)|2 + |u−n (x)|2
)

dx

&
ˆ
Sd

∑
n≥0

(
n+ d−1

2

)2(|u+n (x)|2 + |u−n (x)|2
)

dx

&
ˆ
Sd

∑
n≥0

(
n+ d−1

2

)2(|u+n (x) + u−(x)|2 + |u+(x)− u−n (x)|2
)

dx

&
ˆ
Sd

∑
n≥0

(
n+ d−1

2

)2|u0n(x)|2 +

ˆ
Sd

∑
n≥0

|u1n(x)|2dx

≥ E(u, 0). �

Then we finish the proof of Theorem 1.3 by showing that a(x) = 1Sd+(x) observes the spherical harmonics.
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Proposition 1.17. On Sd, a(x) = 1Sd+(x) observes the spherical harmonics.

Proof. This comes easily from the symmetry properties of spherical harmonics stated in Lemma 1.13. Indeed,
if v ∈ En, then v(−x) = (−1)nv(x) implies that

‖v‖L2(Sd+) = ‖v‖L2(Sd−)
,

whence the observability

‖a1/2v‖L2(Sd) = ‖v‖L2(Sd+) =
1√
2
‖v‖L2(Sd). �

1.3. Strategy of Proof

1.3.1. Proof of Theorem 1.3

We first analyse the proof of Theorem 1.3 presented above, which consists of the following 4 steps.

Step 1. Reduce the strong stabilization of the damped wave equation (1.1) to the observability (1.6) of the
undamped wave equation (1.5). This is a classical argument.

Step 2. Reduce the observability of the undamped wave equation (1.5) to the observability of the perturbed
wave equation (1.9). This perturbation uses essentially the fact that the spectrum of the spherical Laplacian
is distributed near squares of an arithmetic sequence {(n + d−1

2 )2}n∈N. In fact, the spectrum is exactly of

distance (d−1)2
4 away from this sequence. Therefore, by adding to −∆d the constant (d−1)2

4 , we obtain an

operator L, the spectrum of whose square root is exactly the arithmetic sequence {n+ d−1
2 }n∈N.

Step 3. Reduce the observability of the perturbed wave equation (1.9) to the observability of spherical har-
monics, that is (1.12). To do so, we solve (1.9) explicitly with Fourier series (that is, decomposition in spherical
harmonics), and use the orthogonality of the time factors

{e±itλ}λ∈Spec(√L) =
{

e±it(n+
d−1
2 )
}
n∈N

in L2([0, 2π]) to decouple the space and time variables. In this way, the time variable can be omitted, and we
are left only to consider the spherical harmonics.

Step 4 Prove the observability of spherical harmonics. We use the symmetry of spherical harmonics to show
that the L2 norm of a spherical harmonic is equally distributed on upper and lower hemispheres.

1.3.2. Proof of Theorem 1.10

We will follow this strategy to prove Theorem 1.10, but with the following modifications.

Step 1. Same as above.

Step 2. The only (slight) difference is the definition of the perturbed wave equation, because the perturbation L
of the Laplacian−Beltrami operator −∆ on a Zoll surface of revolution Σ can not be so simply defined as (1.7).
To define L in this situation, we recall Proposition 1.5 and Remark 1.6. For λ ≥ 0 such that λ2 ∈ Spec(−∆),
we let Eλ denote the (minus) Laplacian eigenspace of eigenvalue λ2, and set for n ≥ 0 the linear space

Ẽn =
⊕
λ2∈In

Eλ.



32 H. ZHU

Then L is defined by prescribing its action on each Ẽn,

L|Ẽn = (n+ 1/2)2 IdẼn .

Therefore Ẽn are eigenspaces of L, whose elements will be called L-eigenfunctions, and

Spec(
√
L) ⊂ {n+ 1/2 : n ∈ N}.

Moreover, by (1.4), if we set K = ∆ + L, then ‖K‖Ẽn→Ẽn ≤ A, where Ẽn is equipped with the L2(Σ) norm.

Consequently, by the orthogonal direct sum decomposition L2(Σ) = ⊕n≥0Ẽn, we show that K is a bounded
operator on L2(Σ),

‖K‖L2(Σ)→L2(Σ) ≤ A, (1.13)

which plays the same role as the constant (d−1)2
4 in the spherical case. Then the same argument shows that the

observability for (1.5) can be deduced from the observability of the following perturbed wave equation,{
(∂2t + L)u = 0, in D′(R×Σ);

(u, ∂tu)t=0 = (u0, u1) , ∈ H1(Σ)× L2(Σ).
(1.14)

Step 3. Reduce the observability of (1.14) to the observability of L-eigenfunctions, that is to say, for some C > 0,
and every u ∈ ∪n≥0Ẽn,

‖a1/2u‖L2(Σ) ≥ C‖u‖L2(Σ). (1.15)

Recall that in our case, a(x) = 1Σ+(x). To do this, we use the orthogonality of the time factors {e±it(n+1/2)}n∈N
in L2([0, 2π]), which comes with luck from the fact that β = 2 on dimension 2 (recall Rem. 1.6), so that
n + β/4 = n + 1/2. However, this fact is not necessary, for we can always use Ingham’s inequality (see the
original work of Ingham [19], see also [29] for its application in the theory of control).

Step 4. Prove the observability of L-eigenfunctions (1.15). Unfortunately, the simple proof for the observability
of spherical harmonics does not apply, because neither the L-eigenfunctions nor the Laplacian eigenfunctions
on Σ share such strong symmetries as the spherical harmonics. However, we observe that, by the definition
of L, the L-eigenfunctions are quasi-modes. Indeed, let u ∈ Ẽn, normalized in L2 norm, that is, ‖u‖L2(Σ) = 1;
introduce the semiclassical parameter h = (n+ 1/2)−1, then by (1.13)

(−h2∆+ 1)u = −h2Ku = O(h2)L2 .

This suggests a proof by contradiction and analyzing the semiclassical defect measures (see Gérard [15],
Gérard−Leichtnam [16], Lions−Paul [22], see also [8]) of a sequence of L-eigenfunctions, which violates the
observability, that is, ‖1Σ+u‖L2(Σ) = o(1). Such argument is originally due to G. Lebeau, dating back to his
work [20] which uses the propagation of (classical) defect measures; see for example [7,30] for the semiclassical
setting.

A classical argument shows that such semiclassical defect measure, say µ, is supported on the unit cotangent
bundle S∗Σ, vanishes on T ∗Σ+, and is invariant by the (co-)geodesic flow. Therefore µ carries no mass on the
union of geodesics which enter Σ+. Recall that on Σ, every geodesic enter Σ+ within the period of the geodesic
flow (which is, in our case, 2π, by the normalization r(`0) = 1), except for a rogue one, the equator Γ . We are
thus unable to close the routine argument as the L-eigenfunctions may concentrate on Γ (a simple example is
Σ = S2, where the spherical harmonics un(x, y, z) = (x+ iy)n will concentrate on the equator z = 0 as n→∞);
but to conclude that

suppµ ⊂ S∗Σ ∩ {` = `0, ξ = 0} =
{

(`0, ϕ, 0,±1) : ϕ ∈ S1
}
.

To deal with this problem, we take a closer look at the concentration behavior near the equator. It suffices
to show that the speed of concentration from each side of the equator is comparable, so that the L2 norm
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of this sequence of L-eigenfunctions must be comparably distributed on each side as well, which contradicts
to our hypothesis that the observability from the upper hemi-surface is violated by this sequence. Such idea is
achieved by some proper scalings of the latitude coordinate `, and is closely related to the second microlocalization
along the equator, as illustrated by [10]. It is explicitly carried out as follows:

(1) First, to simplify some calculations, we will work on an isothermal coordinate on Σ. There exists an strictly
increasing f ∈ C∞(R) such that

f ′(x) = r(f(x)), f(0) = `0.

Then under the change of variable ` = f(x), the north pole N , the south pole S and the equator Γ now
respectively corresponds to x = −∞, x = ∞ and x = 0. Denoting for simplicity ρ = f ′, the metric g now
writes under the coordinates (x, ϕ) as

g = ρ(x)(dx2 + dϕ2) =
(
1− cx2 +O(x3)

)
(dx2 + dϕ2),

where the positive constant c is the same as in Remark 1.8; and the Laplacian−Beltrami operator writes

∆ = ρ(x)−1(∂2x + ∂2ϕ) =
(
1 + cx2 +O(x3)

)
(∂2x + ∂2ϕ). (1.16)

We also remark that under these coordinates,

L2(M) ' L2(ρ2dx,R)⊗ L2(dϕ,S1).

(2) On a general compact surface of revolution, −∆ is invariant under rotation, and commutes with the in-
finitesimal generator of rotation, that is, Dϕ = 1

i ∂ϕ. We expect each Laplacian eigenspace to be a direct
sum of Dϕ-eigenspaces. Indeed, on Σ, for λ2 ∈ Spec(−∆), the following decomposition holds,

Eλ =
⊕
k∈Z

eikϕAλ,k,

where Aλ,k consists of smooth functions of variable x, such that, whenever w ∈ Aλ,k, we have w ∈
L2(ρ2dx,R); and u(ϕ, x) = eikϕw(x) ∈ L2(M) is a common eigenfunction of −∆ and Dϕ,

−∆u = λ2u, Dϕu = ku.

By (1.16), we have a second order differential equation for w,

−∂2xw + k2w = λ2ρ2w = λ2(1− cx2 +O(x3))w. (1.17)

It is known that the Laplacian eigenfunctions are smooth, in particular at the poles N and S. This gives a
boundary condition for w,

lim
|x|→∞

∂nxw(x) = 0, when k 6= 0, n ∈ N.

Consequently, up to a multiplicative constant, there exists at most one solution to (1.17), which means

dimAλ,k ≤ 1, if k 6= 0.

The case k = 0 poses no problem because as we have seen, suppµ ⊂ {θ = 1}, therefore the terms with
1− h2k2 → 0 (therefore k ∼ h−1 →∞) contribute to almost all of the total mass. Now we set

Ãn,k =
⊕
λ2∈In

Aλ,k,

and obtain the decomposition for L-eigenspaces,

Ẽn =
⊕
k∈Z

eikϕÃn,k.
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(3) Due to the orthogonality of the family {eikϕ}k∈Z in L2(dϕ,S1), we are left to prove the following observ-
ability, that for any sequence {w̃n,k ∈ Ãn,k}n∈N,k∈Z, where the indexes appearing in the sequence satisfy
1 − h2k2 = o(1) as n → ∞ (recall that h = (n + 1/2)−1; such a sequence will be called admissible, see
Def. 2.15), there exits some C > 0, such that for any w̃n,k ∈ Ãn,k in the sequence, we have

‖1x>0w̃n,k‖L2(ρ2dx) ≥ C‖w̃n,k‖L2(ρ2dx). (1.18)

The weight ρ2 is of no importance as w̃n,k concentrates on x = 0 (For a rigorous argument, we will use
an Lithner−Agmon type estimate). In order to prove (1.18), we observe that w̃n,k satisfies a 1-dimensional
stationary semiclassical Schrödinger equation,(

−h2∂2x + V
)
w̃n,k = Ew̃n,k +O(h2)L2→L2w̃n,k,

where V = 1−ρ2 = cx2 +O(x3) near x = 0, and E = 1−h2k2. Then we argue by contradiction and extract
a sequence k = k(n) and set w̃n = w̃n,k which violates the observability, and treat separately two cases,
E = O(h) and E � h (we can show that E & −h2).
(a) If E = O(h), then we use the scaling z = c1/4h−1/2x to obtain a classical Schrödinger equation,(

−∂2z + z2 +O(h1/2)
)
w̃n = (F + o(1))w̃n,

for some 0 ≤ F ∈ R, and shows that w̃n is close to an eigenfunction of the harmonic oscillator −∂2z +z2,
which is either an even functions or an odd function, whose mass are thus equally distributed on each
side of the origin z = 0.

(b) If E � h, then we use another scaling z = c1/2E−1/2, ĥ = c1/2E−1h, and obtain a semiclassical
Schrödinger equation, with a semiclassical parameter ĥ = o(1),(

−ĥ∂2z + z2 + o(1)
)
w̃n = w̃n + o(ĥ)L2→L2w̃n.

The (ĥ-)semiclassical measure of w̃n will be supported on the circle

{(z, ζ) ∈ T ∗Rz : z2 + ζ2 = 1},

and is invariant by rotation (which is induced by the Hamiltonian flow generated by the principal symbol
z2 + ζ2). So the mass of w̃n are also asymptotically equally distributed on each side of the origin z = 0.

2. Proof of Theorem 1.10

2.1. Geometry of Zoll Surfaces of Revolution

Let Σ be a Zoll surface of revolution, we recall some of its basic geometric properties, referring to the
monograph of Besse [6].

2.1.1. Coordinates and Geodesics

Σ is diffeomorphic to S2, and admits a parametrization by local coordinates described as follows. Recall
that S1 acts smoothly, faithfully, and isometrically on Σ, leaving exactly two points fixed, which are called the
north pole and the south pole, denoted respectively by N and S. Fix a geodesic γ0 from N to S, parametrized by
arc length. We assume that the total length of γ0 is equal to π, after a proper normalization. Then as ϕ varies
in S1, γϕ = ϕγ0 varies among all geodesics joining N and S, which are called the meridians. The coordinates
on U = Σ\{N,S} is given by

U 3 γϕ(`) 7→ (`, ϕ) ∈ ]0, π[× S1.
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The coordinate patches near N and S are respectively UN = {N}∪{(`, ϕ) : 0 ≤ ` < π}, and US = {S}∪{(`, ϕ) :
0 < ` ≤ π}. They are diffeomorphic to the 2-dimensional open ball B(0, π) via the usual polar coordinates. The
Riemannian metric on U has the form

g = d`2 + r(`)2dϕ2,

where r(`) is the distance from the axis of rotation (recall Fig. 1). Then Σ being a Zoll surface of revolution
means that the criteria stated in Remark 1.9 is satisfied. There is a well defined differential operator Dϕ on Σ.
It is the differential operator with respect to the the vector fields X on Σ defined as follows: To each point
m = (`, ϕ) ∈ Σ\{N,S}, we associate the unit tangent vector Y (m) ∈ TmΣ, tangent to the parallel S1m (that
is, the orbit of the point m generated by the actions of S1), with direction given by the positive orientation
of S1. Letting X(m) = r(`)Y (m), X(N) = 0, X(S) = 0, then X defines a smooth tangent vector field on Σ.
For u ∈ C∞(Σ), we define

Dϕu =
1

i
〈du,X〉.

On U , we simply have Dϕ = 1
i ∂ϕ, with ∂ϕ being the differentiation with respect to ϕ. Therefore Dϕ is symmetric

and commutes with ∆, at least in a formal way,

[∆,Dϕ] = 0.

Then we state a proposition concerning the geodesics of Σ.

Proposition 2.1. Let Σ be a Zoll surface of revolution, and let r be prescribed as above.

(1) Then r : [0, π] → [0, 1] is smooth, with r(0) = r(π) = 0, r′(0) = 1, r′(π) = −1, r′′(0) = r′′(π) = 0.
There exists a unique `0 ∈ ]0, π[ such that r(`0) = 1. Furthermore, r′(`0) = 0, r′′(`0) < 0. The curve
Γ = {(`0, ϕ) : ϕ ∈ S1} is a geodesic called the equator.

(2) Apart from the equator, every geodesic is contained between a pair of parallels {` = `1} and {` = `2} for
some `1 < `0 < `2, and contacts each of the parallel exactly once.

Corollary 2.2. From this proposition, every geodesic of Σ except for the equator Γ enters the upper hemi-
surface Σ+ = {` > `0}.

To simplify later calculations, we will work on an isothermal coordinate defined on U as follows. Let f ∈
C∞(R) be the solution to the following first order ordinary differential equation,

f ′(x) = r(f(x)), f(0) = `0.

It is not difficult to see that (we refer to [3])

L < f < R, lim
x→−∞

f(x) = 0, lim
x→∞

f(x) = π.

Therefore f defines a diffeomorphism R ' ]0, π[, with the equator now being Γ = {x = 0}. Set x = f−1(`), then
the coordinates (x, ϕ) are isothermal, indeed,

g = f ′(x)2dx2 + r(f(x))2dϕ2 = ρ(x)2(dx2 + dϕ2),

where ρ(x) := r(f(x)) = f ′(x). We have ρ ∈ ]0, 1], and ρ(x) < 1 except for x = 0, where

ρ(0) = 1, ρ′(0) = 0, ρ′′(0) < 0.

We also have, under these coordinates,

L2(Σ) = L2(ρ2dx,R)⊗ L2(dϕ,S1), (2.1)

and the Laplacian−Beltrami operator takes a simple form,

∆ =
1

ρ(x)2
(∂2x + ∂2ϕ). (2.2)
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2.1.2. Laplacian Spectrum and Eigenfunctions

Recall that for some A > 0,

Spec(−∆) ⊂
⊔
n≥0

In, with In ⊂ ](n+ 1/2)2 −A, (n+ 1/2)2 +A[.

For λ ≥ 0 such that λ2 ∈ Spec(−∆), we let Eλ denote the (minus) Laplacian eigenspace of the eigenvalue λ2,
and set for n ≥ 0 the linear space

Ẽn =
⊕
λ2∈In

Eλ.

We define a linear (unbounded) operator L by a compact perturbation of −∆ such that

Spec(L) ⊂ {(n+ 1/2)2 : n ∈ N}.

Indeed, let Πn : L2(Σ)→ Ẽn denote the orthogonal projection, then we formally define

L =
∑
n≥0

(n+ 1/2)2Πn. (2.3)

Next we study the structure of Eλ. Since −∆ commutes with Dϕ, it is natural to expect an orthogonal
decomposition of Eλ into Dϕ eigenspaces. The following proposition is inspired by Beekmann [5].

Proposition 2.3. On each Eλ, we have a direct sum decomposition,

Eλ =
⊕
k∈Z

eikϕAλ,k,

where Aλ,k ⊂ C∞(R) is the solution space to

−∂2xw + k2w = λ2ρ2w, (2.4)

with boundary conditions lim|x|→∞ ∂nxw(x) = 0 for n ∈ N and k 6= 0. In particular,

dimAλ,k ≤ 1, if k 6= 0.

If u(x, ϕ) = eikϕw(x) ∈ eikϕAλ,k, then

−∆u = λ2u, Dϕu = ku.

That is, eikϕAλ,k are eigenspaces of Dϕ, and the decomposition is thus orthogonal.

Proof. The group action of S1 on Σ induces naturally a group action on function spaces by ϕf = f ◦ ϕ−1. Now
that S1 commutes with −∆, Eλ is stable under S1. It is known that the irreducible complex representations
of S1 are all one-dimensional of the form

τk : S1 → U(1) ϕ 7→ eikϕ, k ∈ Z.

Therefore Eλ can be decomposed into τk-invariant subspaces, consisting of functions u(x, ϕ) satisfying

u(x, ϕ) = ϕ−1u(x, 0) = e−ikϕu(x, 0),

which also shows that Dϕu = ku.
To obtain the equation satisfied by w ∈ Aλ,k, it suffices to plug u(x, ϕ) = eikϕw(x) into the equation

−∆u = λ2u. The boundary condition for k 6= 0 comes evidently from the continuity of Dn
ϕu = knu at N and S.

To show that dimAλ,k ≤ 1, let w1 and w2 be two solutions to (2.4), then their Wronskian W (w1, w2), which is
a constant by a direct calculation, vanishes at infinity by the boundary conditions. So these two solutions are
linearly dependent. �
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Corollary 2.4. If 0 6= |k| ≥ λ, then Aλ,k = {0}.

Proof. Suppose w ∈ Aλ,k with 0 6= |k| ≥ λ, then for n ∈ N,

−∂2xw + k2w = λ2ρ2w, lim
|x|→∞

∂nxw(x) = 0.

We will show that w ∈ H1(R) ⊂ C(R) (see Cor. 2.25), so it is legitimate to take L2(R) inner product between w
and the equation to get

0 ≤ ‖∂xw‖2L2(R) = (−∂2xw,w)L2(R) =

ˆ
R

(λ2ρ2(x)− k2)|w(x)|2dx.

However, 0 ≤ ρ ≤ 1, and that ρ(x) < 1 except for x = 0, we see that λ2ρ(x)2 − k2 < 0 except for x = 0.
Therefore w(x) ≡ 0 since it is continuous. �

Corollary 2.5. For k ∈ Z, and λ1 6= λ2,

Aλ1,k ⊥ Aλ2,k with respect to L2(ρ2dx,R).

Proof. For wi ∈ Aλi,k with i = 1, 2, set ui(x, ϕ) = eikϕwi(x), then by (2.1),

0 = (u1, u2)L2(Σ) =
(
eikϕw1, e

ikϕw2

)
L2(ρ2dx,R)⊗L2(dϕ,S1) = 2π(w1, w2)L2(ρ2dx,R). �

Remark 2.6. For n ∈ N, we set

Ãn,k =
⊕
λ2∈In

Aλ,k,

then it is an orthogonal direct sum with respect to L2(ρ2dx,R). And we have

Ẽn =
⊕
k∈Z

eikϕÃn,k.

2.2. Reduction to Observability of L-Eigenfunctions

Since Σ has no boundary, the energy of a solution u to (1.1) does not control its zero frequency. In order to
deal with this problem, we introduce the quotient Sobolev spaces

Hs(Σ) = Hs(Σ)/C = {[u] = u+ C : u ∈ Hs(Σ)},

equipped with the quotient norms. We set in particular,

‖[u]‖H1(Σ) = ‖∇u‖L2(Σ),

so that, for u ∈ C(R, H1(Σ)) ∩ C1(R, L2(Σ)),

E(u, t) =
1

2
‖(u(t), ∂tu(t))‖2H1×L2 .

By the theorem of Hille−Yosida, we have

Proposition 2.7. Define the quotient Laplacian by [∆][u] = [∆u] for [u] ∈ D([∆]) = {[u] ∈ H1(Σ) : ∆u ∈
L2(Σ)}. Set

[A] =

(
0 −[Id]

−j ◦ [∆] a

)
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with D([A]) = D([∆]) × H1(Σ) where [Id] : H1(Σ) → H1(Σ) is the canonical projection, while j : H0(Σ) →
L2(Σ) associates each [w] ∈ H0(Σ) a representative w such that

´
Σ
w dx = 0. Then for all ([u0], u1) ∈ H1(Σ)×

L2(Σ), there exists a unique solution ([u], v) ∈ C(R,H1(Σ))× C1(R, L2(Σ)) of the equation{
∂t
(
[u]
v

)
+ [A]

(
[u]
v

)
= 0,

([u], v)t=0 = ([u0], u1).
(2.5)

Moreover, if u is the solution of (1.1) with initial data (u0, u1), then ([u], ∂tu) is the solution to (2.5).

Proposition 2.8. If 0 ≤ a ∈ L∞(Σ) and a 6≡ 0, then a weakly stabilizes (1.1).

Proof. The idea of the proof comes from [9]. By a density argument, it suffices to suppose that (u0, u1) ∈ D(A), so
that ([u0], u1) ∈ D([A]). Let u denote the corresponding solution to (1.1). Observe that E(u, t) = 1

2‖([u], ∂tu)‖2H
is non-increasing, and that [A] commutes with the evolution of (2.5),∥∥∥( [u]

∂tu

)∥∥∥
[A]

:=
∥∥∥( [u]

∂tu

)∥∥∥
H

+
∥∥∥[A]

(
[u]

∂tu

)∥∥∥
H
≤
∥∥∥([u0]

u1

)∥∥∥
H

+
∥∥∥A([u0]

u1

)∥∥∥
H
<∞. (2.6)

We claim that (D([A]), ‖ · ‖[A]) ↪→ H is compact. Indeed, if
(
[u]n
vn

)
is bounded in D([A]), then un, ∆un, vn, ∇vn

are bounded in L2(Σ). Up to a subsequence, un−
´
M
un → u0 in H1(Σ), so [un]→ [u0] in H1(Σ), and vn → v0

in L2(Σ). By (2.6), there exists a sequence tk → +∞ such that ([u(tk)], ∂tu(tk)) ⇀ ([v0], v1) weakly in D([A]);
and strongly in H1(M) by compactness. Let v be the solution to (1.1) with initial data (v0, v1), where v0 is the
representative of [v0] such that

´
Σ
v0dx = 0, then

E(v, t) =
∥∥∥([v(t)]

∂tv

)∥∥∥
H

=
∥∥∥e−t[A]

(
[v0]

v1

)∥∥∥
H

=
∥∥∥e−t[A] lim

k→∞
e−tk[A]

(
[u0]

u1

)∥∥∥
H

=
∥∥∥ lim
k→∞

e−(t+tk)[A]

(
[u0]

u1

)∥∥∥
H

=
∥∥∥([v0]

v1

)∥∥∥
H

= E(v, 0).

So v satisfies the undamped wave equation (1.5) as well.

We decompose the initial data as v0 =
∑
λ v

0
λ ,v1 =

∑
λ v

1
λ, where λ varies in Spec(

√
−∆) and viλ ∈ Eλ. Then

v00 = 0, and

v(t) = cos(t
√
−∆)v0 +

√
−∆

−1
sin(t
√
−∆)v1 = v10t+

∑
λ6=0

(
eitλv+λ + e−itλv−λ

)
,

where for λ 6= 0,

v+λ + v−λ = v0λ, iλ(v+λ − v
−
λ ) = v1λ.

Now fix λ′ 6= 0, and set wλ′(T, x) = 1
T

´ T
0
∂tv(t, x)e−itλ

′
dt. The fact that a∂tv = 0 implies awλ′ = 0. An explicit

calculation shows

wλ′(T ) = iλ′v+λ′ +
∑
λ6=λ′

iλ

iT (λ− λ′)
(
eiT (λ−λ′) − 1

)
v+λ −

∑
λ

iλ

iT (λ+ λ′)

(
e−iT (λ+λ′) − 1

)
v−λ .

This implies that, as T → ∞, wλ′(T ) → iλ′v+λ′ in L2(Σ). Since awλ′ = 0 and λ′ 6= 0, we must have av+λ′ =
0. Therefore v+λ′ = 0 because as a classical result, the nodal set {v+λ′ = 0} is of zero measure. The same

argument shows that v−λ′ = 0 for λ′ 6= 0. And similarly, since 1
T

´ T
0
∂tv(t, x)dt = v10 , we have T → ∞, 0 ≡ av10 ,

whence v10 = 0. Therefore v ≡ 0, and E(u, tk)→ E(v, 0) = 0. �
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Let L be defined by (2.3). Recall the undamped wave equation (1.5){
(∂2t −∆)u = 0, in D′(R×Σ);

(u, ∂tu)t=0 = (u0, u1), ∈ H1(Σ)× L2(Σ),
(1.5)

and the perturbed wave equation (1.14),{
(∂2t + L)u = 0, in D′(R×Σ);

(u, ∂tu)t=0 = (u0, u1) , ∈ H1(Σ)× L2(Σ).
(1.14)

Definition 2.9. Let 0 ≤ a ∈ L∞(Σ), we say that a observes (1.5) (resp. (1.14)), if for some constant C > 0,
T > 0, and every solution u to (1.5) (resp. (1.14)), the observability (1.6) holds. We say that a observes
L-eigenfunctions, if for some constant C > 0 and every L-eigenfunction u ∈ ∪nẼn, the observability (1.15)
holds.

We will reduce the observability of (1.5) to the observability of (1.14), and then to the observability of
L-eigenfunctions. We first state some preliminaries as those used in proving Theorem 1.3. For u ∈ Hs(Σ) with
s ∈ R, there exists a unique decomposition into sums of L-eigenfunctions,

u =
∑
n≥0

un, with un ∈ Ẽn.

Then we specify the Hs(Σ) norm of u by setting

‖u‖2Hs(Σ) =
∑
n≥0

(n+ 1/2)2s‖un‖2L2 .

If we decompose the initial data ui =
∑
n≥0 u

i
n, (i = 0, 1), with uin ∈ Ẽn, then the solution to (1.14) is

u(t) = cos(t
√
L)u0 +

√
L
−1

sin(t
√
L)u1 =

∑
n≥0

(
eit(n+1/2)u+n + e−it(n+1/2)u−n

)
,

where for n ≥ 0

u+n + u−n = u0n, i(n+ 1/2)(u+n − u−n ) = u1n,

and satisfies the a priori estimate ‖u‖L∞Hs(Σ) . ‖(u0, u1)‖Hs(Σ)×Hs−1(Σ).

Lemma 2.10. Let 0 ≤ a ∈ L∞(Σ), if a observes (1.14), then a observes (1.5).

Proof. The proof is a mimic of that of Lemma 1.15. Write K = ∆+L, then by the definition of L, K is bounded
on L2(Σ), with ‖K‖L2→L2 ≤ A. Let u be the solution to (1.5), with initial data (u0, u1). There is no harm in
assuming that

´
Σ
u0 dx = 0. Decompose u = w + v with{

(∂2t + L)v = 0, (v, ∂tv)t=0 = (u0, u1);

(∂2t + L)w = Ku, (w, ∂tw)t=0 = (0, 0).

Now that a observes (1.14),

E(u, 0) = E(v, 0) .
ˆ T

0

ˆ
Σ

a|∂tv|2dxdt .
ˆ T

0

ˆ
Σ

a|∂tu|2dxdt+

ˆ T

0

ˆ
Σ

a|∂tw|2dxdt.
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By Duhamel’s formula, ∂tw(t) =
´ t
0

cos((t− s)
√
L)Ku(s) ds; and we have

‖∂tw(t)‖2L2 .
ˆ T

0

‖u(s)‖2L2ds . ‖(u0, u1)‖2L2×H−1 . ‖([u0], u1)‖2H0×H−1 .,

where the last inequality is because u0 has no zero frequency. Combine the estimates above, we obtain a weak
observability, with a compact remainder term on the right hand side

1

2
‖([u0], u1)‖2H1×L2 = E(u, 0) .

ˆ T

0

ˆ
M

a|∂tu|2dxdt+ ‖([u0], u1)‖2H0×H−1 .

To remove the remainder term and prove the (strong) observability, we appeal to the uniqueness-compactness
argument originally due to Bardos−Lebeau−Rauch [4]. It is an argument by contradiction that carries out
as follows. Suppose that the observability of (1.5) does not hold, then there exists a sequence of initial data
(un0 , u

n
1 ) ∈ H1(Σ)× L2(Σ) such that,

´
Σ
un0 dx = 0, and as n→∞

E(un, 0) =
1

2
‖([un0 ], un1 )‖2H1×L2 = 1,

ˆ n

0

ˆ
Σ

a|∂tun|2dx dt = o(1).

where un are the corresponding solutions (1.5). By Rellich’s compact injection theorem, up to a subsequence,
we assume that, for some ([u0], u1) ∈ H1 × L2,

(1) ([un0 ], un1 ) ⇀ ([u0], u1) weakly in H1(Σ)× L2(Σ);
(2) ([un0 ], un1 )→ ([u0], u1) strongly in H0(Σ)×H−1(Σ).

Passing n→∞ in the weak observability,

1 = E(un, 0) ≤ o(1) + ‖([un0 ], un1 )‖2H0×H−1 → ‖([u0], u1)‖2H0×H−1 .

Therefore, we will get a contradiction by showing that the right hand side vanishes.
To show this, we observe that E(un, t) = E(un, 0) = 1

2‖([u
n
0 ], un1 )‖2H1×L2 is uniformly bounded in t and n.

Therefore [un] is bounded in L∞(R,H1(Σ)) and ∂tu
n is bounded in L∞(R, L2(Σ)). Moreover

´
Σ
un(t, x) dx is

bounded in L∞loc(Rt) (and is of order O(t)). Consequently un is bounded in L∞loc(R, H1(Σ)). The theorem of
Ascoli and the compact injection theorem of Rellich show that, up to a subsequence, there exists a (u, v) ∈
C(R, L2(Σ))× L∞(R, L2(Σ)), such that

(1) un → u strongly in L∞loc(R, L2(Σ));
(2) un ⇀ u respect to the weak-∗ topology of L∞loc(R, H1(Σ));
(3) ∂tu

n ⇀ v with respect to the weak-∗ topology of L∞(R, L2(Σ)).

Pass to the limit in the sense of distribution, we see that u satisfies (1.5), with in particular v = ∂tu. There-
fore ∂t(∂tu

n) = ∆un is bounded in L∞(R, H−1(Σ)), so that ∂tu ∈ C(R, H−1(Σ)), and u ∈ C(R, L2(Σ)) ∩
C1(R, H−1(Σ)). However, since (u0, u1) ∈ H1(Σ) × L2(Σ), there exists a solution in the C(R, H1(Σ)) ∩
C1(R, L2(Σ)). By the uniqueness of the solution in C(R, L2(M)) ∩ C1(R, H−1(M)), these two solutions must
coincide. Therefore, it is legitimate to talk about the energy of u, which is conserved E(u, t) ≡ E(u, 0). On the
other hand, since a∂tu = 0 in D′(Σ), u should also satisfy the damped wave equation (1.1). Then Proposition 2.8
shows that the energy E(u, t) must decay to zero as t→ +∞. Hence E(u, 0) = 0, i.e. ([u0], u1) = (0, 0). �

Lemma 2.11. Let 0 ≤ a ∈ L∞(Σ), if a observes L-eigenfunctions, then a observes (1.14).

Proof. Recall that a solution to (1.14) is of the form

u(t) =
∑
n≥0

(
eit(n+1/2)u+n + e−it(n+1/2)u−n

)
,
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where u±n ∈ Ẽn. Now that a observes L-eigenfunctions, which implies

‖a1/2u±n ‖L2(Σ) & ‖u±n ‖L2(Σ),

we have, by the orthogonality of {e±i(n+1/2)t}n∈N in L2([0, 2π]), and a similar argument to that of Lemma 1.16,

ˆ 2π

0

ˆ
Σ

a|∂tu|2dx dt =

ˆ
Σ

a(x)

ˆ 2π

0

∣∣∣∣∣∑
n≥0

(n+ 1/2)(eit(n+1/2)u+n − e−it(n+1/2)u−n )

∣∣∣∣∣
2

dtdx

= 2π

ˆ
Σ

a(x)
∑
n≥0

∣∣(n+ 1/2)u+n |2 + |(n+ 1/2)u−n
∣∣2dx

= 2π
∑
n≥0

(n+ 1/2)2
ˆ
Σ

a(x)
(
|u+n |2 + |u−n |2

)
dx

&
∑
n≥0

(n+ 1/2)2
ˆ
Σ

(
|u+n |2 + |u−n |2

)
dx

& E(u, 0). �

2.3. Observability of L-Eigenfunctions

This sections aims to prove the observability of L-eigenfunctions, which concludes Theorem 1.10.

Proposition 2.12. Let Σ be a Zoll surface of revolution, then a(x) = 1Σ+(x) observes L-eigenfunctions.

We prove this proposition with an argument by contradiction. If the observability of L-eigenfunctions does
not hold, then there exists a sequence of L-eigenfunctions unm ∈ Ẽnm such that, as m→∞,

‖unm‖L2(Σ) = 1, ‖1Σ+unm‖L2(Σ) = o(1).

If {nm}m≥0 is bounded, then Ẽ := ⊕m≥0Ẽnm is a finite dimensional vector subspace of L2(Σ), consisting only
of low frequencies, on which the estimate holds, for any N > 0,

‖u‖L2(Σ) . ‖u‖H−N (Σ).

Therefore, (Ẽ, ‖·‖L2(Σ)) is relatively compact, and the bounded sequence {unm}m≥0 admits a limit point u ∈ Ẽ,
that is, unm → u in L2(Σ), and hence 1Σ+unm → 1Σ+u in L2(Σ). Consequently,

‖u‖L2(Σ) = 1, ‖1Σ+u‖L2(Σ) = 0.

However this is impossible, for u is a finite sum of Laplacian eigenfunctions, which does not vanish only on a
set of zero measure.

We are left to consider the case where {nm}m≥0 is unbounded. Up to a subsequence, we may assume that nm
increases to ∞. For simplicity of notation, we drop the m subindex, and write n = nm, and introduce the
semiclassical parameter

h = (n+ 1/2)−1.

We then write u(h) = un, which satisfies Lu(h) = h−2u(h), and consequently

(−h2∆− 1)u(h) = −h2Ku(h) = O(h2)L2(Σ). (2.7)
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2.3.1. Concentration of L-Eigenfunctions

We study the semiclassical measures of the sequence u(h) and show that it concentrates on the equator.
This argument is rather standard, we refer to, for example [7], see also [30]. We recall the definition of the
semiclassical measure and some of its basic properties in Appendix A.

We extract a subsequence if necessary, and assume in addition that u(h) is pure (see Rem. A.3 for the
definition).

Proposition 2.13. Let µ be the h-semiclassical measure of u(h), then

suppµ ⊂ S∗Σ ∩ {x = 0, ξ = 0} =
{

(0, ϕ, 0,±1) : ϕ ∈ S1
}
. (2.8)

Proof. Recall that u(h) satisfies the equation (−h2∆−1)u(h) = O(h2)L2(Σ). The principal symbol of −h2∆−1
(in the semiclassical sense) is p(x, ξ) = g−1x (ξ, ξ)− 1, where g−1 is the inverse matrix of g. By Theorem A.5,

suppµ ⊂ T ∗M ∩ {p(x, ξ) = 0} = S∗M, Hpµ = 0.

Now that Hp generates the (co)-geodesic flow on S∗M , we see that µ is invariant by the geodesic flow. Moreover,
our hypothesis ‖1Σ+u(h)‖ = o(1)L2(Σ) implies that

suppµ ∩ T ∗Σ+ = ∅.

Recall that all geodesics enter Σ+, except for the equator,

suppµ ⊂ S∗M\
⋃
t∈R

etHpS∗Σ+ = S∗Σ ∩ {x = 0, ξ = 0}.

We conclude by a direct calculation, using g|Γ = dx2 + dϕ2. �

Corollary 2.14. Let ε > 0, and χε ∈ C∞c (R) be such that 1[−ε,ε] ≤ χε ≤ 1[−2ε,2ε]. Then

u(h) = χε(1− h2D2
ϕ)u(h) + o(1)L2(Σ),

where χε(1−h2D2
ϕ) is defined by functional calculus, and is thus of (semiclassical) principal symbol χε(1−θ2) (see

for example [11]).

Proof. Let v(h) = u(h) − χε(1 − h2D2
ϕ)u(h), which is pure. Now that Dϕ commute with −∆, by (2.7) we

see that v(h) satisfies (−h2∆ − 1)v(h) = O(h2)L2 . Therefore v(h) is h-oscillating by Example A.9. And by
Proposition A.8, to conclude, it suffices to show that the semiclassical measure ν of v(h) vanishes. Indeed,

ν =
(
1− χε(1− θ2)

)2
µ = 0, since µ is supported in 1− θ2 = 0. �

As a consequence, in particular, for any ε > 0, when h is sufficiently small,

‖u(h)− χε(1− h2D2
ϕ)u(h)‖L2(Σ) ≤ ε.

Fixing a sequence of ε→ 0, we can find a sequence of h = hε → 0, so that

u(h) =
∑

k∈Zn(ε)

eikϕw̃n,k +O(ε)L2(Σ), (2.9)

where Zn(ε) = {k ∈ Z : |1− h2k2| ≤ ε}, and w̃n,k ∈ Ãn,k.
For later convenience, we introduce the notion of admissible sequences.
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Definition 2.15. A 4-tuple (ε, h, k, w̃) is called admissible if

(1) ε > 0, h = (n+ 1/2)−1 for some n ∈ N;
(2) k ∈ Zn(ε), w̃ ∈ Ãn,k.

A sequence of 4-tuple (ε, h, k, w̃) (where by an abuse of notation, we omit the index of the sequence for simplicity)
is called admissible if

(1) each term of the sequence is an admissible 4-tuple;
(2) ε→ 0, h→ 0.

2.3.2. Reduction to Observability of 1-D Stationary Schrödinger Equation

Proposition 2.16. There exists ε0 > 0, h0 > 0 and C > 0, such that for 0 < ε < ε0, 0 < h < h0, if a 4-tuple
(ε, h, k, w̃) is admissible, then we have the following observability,

‖1x>0w̃‖L2(ρ2dx) ≥ C‖w̃‖L2(ρ2dx).

If this proposition is proven, then we can finish the proof of Proposition 2.12, and thus prove Theorem 1.10.
Indeed, we use the decomposition (2.9), (2.1), and the orthogonality of {eikϕ}k∈Z in L2(dϕ, S1), when ε and
h = hε are sufficiently small,

‖1Σ+u(h)‖2L2(Σ) &
∥∥1Σ+

∑
k∈Zn(ε)

eikϕw̃n,k
∥∥2
L2(Σ)

− ε2

&
ˆ
R

1x>0

ˆ
S1

∣∣ ∑
k∈Zn(ε)

eikϕw̃n,k
∣∣2 dϕρ2dx− ε2

&
ˆ
R

1x>0

∑
k∈Zn(ε)

|w̃n,k|2ρ2dx− ε2

&
ˆ
R

∑
k∈Zn(ε)

|w̃n,k|2ρ2dx− ε2

&
ˆ
R

ˆ
S1

∣∣ ∑
k∈Zn(ε)

eikϕw̃n,k
∣∣2 dϕρ2dx− ε2

&
∥∥ ∑
k∈Zn(ε)

eikϕw̃n,k
∥∥2
L2(Σ)

− ε2

& ‖u(h)‖2L2(Σ) − ε
2

& 1− ε2,

which contradicts to our hypothesis that ‖1Σ+u(h)‖L2(Σ) = o(1) as h→ 0.

Before proving Proposition 2.16, we observe that if w̃ ∈ Ãn,k, then w̃ satisfies a one dimensional semiclassical
stationary Schrödinger equation,

(−h2∂2x + V )w̃ = Ew̃ +O(h2)L2→L2w̃, (2.10)

where the potential V = 1− ρ2 satisfies 0 ≤ V < 1 = lim|x|→∞ V (x), and

V = cx2 +O(x3) near x = 0,

recalling that c = −r′′(`0)/2 > 0; while the energy

E = 1− h2k2,
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satisfies by Corollary 2.4 and Proposition 1.5 the estimate

E = 1− λ−2k2 + h2(λ2 − h−2)λ−2k2 & −h2.

To obtain (2.10), we write w̃ =
∑
λ2∈In wλ,k with wλ,k ∈ Aλ,k, then by Proposition 2.1, wλ,k satisfies

(−h2∂2x + V )wλ,k = Ewλ,k + h2(λ2 − h−2)ρ2wλ,k = Ewλ,k +O(h2)ρ2wλ,k. (2.11)

It remains to sum up wλ,k, and use the orthogonality by Corollary 2.5 to obtain the estimate for the remainder
term (be careful that the constant O(h2) varies for different wλ,k, and cannot be moved to the front of the
summation)∥∥∥∥∥ ∑

λ2∈In

O(h2)ρ2wλ,k

∥∥∥∥∥
2

L2

≤ ‖ρ‖2L∞

∥∥∥∥∥ ∑
λ2∈In

O(h2)wλ,k

∥∥∥∥∥
2

L2(ρ2dx)

.
∑
λ2∈In

‖O(h2)wλ,k‖2L2(ρ2dx)

. h4
∑
λ2∈In

‖wλ,k‖2L2(ρ2dx) . h
4

∥∥∥∥∥ ∑
λ2∈In

wλ,k

∥∥∥∥∥
2

L2(ρ2dx)

. h4‖w̃‖2L2

Proof of Proposition 2.16. A first consequence of (2.10) is that, by an Lithner−Agmon type estimate, w̃ decays
exponentially at infinity, so that the weight ρ2 can be dropped (which will be done by Cor. 2.26), and we are
left to prove the observability,

‖1x>0w̃‖L2 & ‖w̃‖L2 .

Then we proceed with an argument by contradiction. Suppose that this observability is not true, then we can
find an admissible sequence of (ε, h, k, w̃) which violates the observability in the sense that

‖1x>0w̃‖L2/‖w̃‖L2 = o(1).

Now that w̃ satisfies (2.10), and as we have seen, since k ∈ Zn(ε), the energy E satisfies

−h2 . E ≤ ε = o(1),

we may assume that, up to a subsequence, either E = O(h), or E � h. We will show that, by Proposition 2.27
and Proposition 2.28, neither of these two cases is possible. This contradiction then finishes the proof. �

2.3.3. Some Lithner−Agmon Type Estimates

In this section we prove some estimates of Lither-Agmon Type, originally due to Lither [23] and Agmon [1].
The argument we used here comes from [11,17]. Let

P (τ) = −h(τ)2∂2x + V (x; τ)

be a Schrödinger operator on R, where the parameter h(τ) and the potential V (·; τ) ∈ C(R) ∩ L∞(R) both
depend on τ → 0. We will consider the following two cases:

(1) h(τ) ≡ 1 does not depend on τ , then we get a classical Schrödinger operator;
(2) h(τ) ≡ τ → 0, and we get a semiclassical Schrödinger operator.

We will estimate the solution u to the equation

P (τ)u = E(τ)u+ f(τ), (2.12)

where E(τ) ∈ R, f ∈ C(R) ∩ L2(R). To do this, we define the Lithner−Agmon distance, for x1, x2 ∈ R,

d(x1, x2; τ) =

∣∣∣∣ˆ x2

x1

(V (x; τ)− E(τ))
1/2
+ dx

∣∣∣∣ .
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For ε > 0, R > 0, let
Φε(x; τ) = (1− ε)d(x, 0; τ), ΦεR(x; τ) = χR(Φε(x; τ)),

where χR(t) = 1t≤R(t)t+ 1t>R(t)R.
We make the following assumption.

Assumption. For all ε > 0, there exist τε > 0, δε > 0, Rε > 0, Cε > 0, such that for 0 < τ < τε, if |x| ≥ Rε,
then V (x; τ) ≥ E(τ) + δε; if |x| ≤ Rε, then |V (x; τ)− E(τ)| < Cε, and Φε(x; τ) ≤ ε.

This assumption implies that Φε(x; τ) → ∞ as |x| → ∞, uniformly for τ sufficiently small. Therefore ΦεR is
constant, equaling to R, for |x| sufficiently large.

We will drop the parameter τ for simplicity. The following proposition comes from [11].

Proposition 2.17. Let u ∈ C2
c (R) and let Φ ∈ Liploc(R) be real valued, then the following identity holds.

h2
ˆ
R
|(eΦ/hu)′|2dx+

ˆ
R

(V − |Φ′|2)e2Φ/h|u|2dx = Re

ˆ
R

e2Φ/hPuūdx. (2.13)

Suppose now that the phase Φ is constant for |x| large, and suppose u ∈ C2(R) ∩D(P ) with D(P ) =
{
w ∈

L2(R) : V w ∈ L2(R), w′′ ∈ L2(R)
}

. Set uR(x) = χ(x/R)u(x), with χ ∈ C∞c (R). Therefore uR ∈ C2
c (R), and the

previous proposition applies.

h2
ˆ
R
|(eΦ/huR)′|2dx+

ˆ
R

(V − |Φ′|2)e2Φ/h|uR|2dx = Re

ˆ
R

e2Φ/hPuRuRdx.

By the Lebesgue dominated convergence theorem, uR → u and V uR → V u both strongly in L2(R) as R→∞.
Now that u ∈ D(P ), PuR → Pu in L2(R). Now that Φ being constant for large |x|, we can pass to the limit on
each side of the identity above, and prove the following corollary.

Corollary 2.18. If u ∈ C2(R) ∩D(P ), and Φ is constant for large |x|, then the identity (2.13) holds.

Now let u ∈ C(R) ∩ L2(R) be a solution to (2.12), then u ∈ C2(R) ∩D(P ), and the corollary applies,

h2
ˆ
R
|(eΦ

ε
R/hu)′|2dx+

ˆ
R

(V − E − |(ΦεR)′|2)e2Φ
ε
R/h|u|2dx

= Re

ˆ
R

e2Φ
ε
R/hfūdx ≤ Aε‖eΦ

ε
R/hu‖2L2 + Cε‖eΦ

ε
R/hf‖2L2 . (2.14)

where Aε = (1− (1− ε)2)δε. For 0 < τ < τε and |x| ≥ Rε, by the definition of ΦεR,

V (x)− E − |(ΦεR)′|2 ≥ (1− (1− ε)2)(V (x)− E) ≥ (1− (1− ε)2)δε = Aε.

Separating domain the integrals in (2.14) into two parts, |x| ≥ Rε and |x| < Rε, we get

h2
ˆ
R
|(eΦ

ε
R/hu)′|2dx+Aε

ˆ
|x|≥Rε

e2Φ
ε
R/h|u|2dx− Cε‖eΦ

ε
R/hf‖2L2

≤
(
‖V (x)− E + (ΦεR)′‖L∞(|x|≤Rε) +Aε

)ˆ
|x|≤Rε

e2Φ
ε
R/h |u|2 dx

≤ Cε
ˆ
|x|≤Rε

e2Φ
ε
R/h |u|2 dx.

Adding Aε
´
|x|≤Rε e2Φ

ε
R/h|u|2dx to each side of the inequality, we get

h2
ˆ
R
|(eΦ

ε
R/hu)′|2dx+Aε

ˆ
R

e2Φ
ε
R/h|u|2dx− Cε‖eΦ

ε
R/hf‖2L2

≤ Cε
ˆ
|x|≤Rε

e2Φ
ε
R/h|u|2dx ≤ Cε sup

|x|≤Rε
(e2Φ

ε
R/h)‖u‖2L2 ≤ Cεe2ε/h‖u‖2L2 .

This proves the following proposition.
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Proposition 2.19 (Inhomogeneous Lithner−Agmon Estimate). Under the assumptions above, for each ε > 0,
there exists τε > 0 and Cε > 0, such that for 0 < τ < τε, and R > 0, the following estimate holds

‖h(eΦ
ε
R/hu)′‖2L2 + ‖eΦ

ε
R/hu‖2L2 ≤ Cε

(
e2ε/h‖u‖2L2 + ‖eΦ

ε
R/hf‖2L2

)
.

The following two corollaries are important.

Corollary 2.20 (Homogeneous Lithner−Agmon Estimate). If f = 0, then we obtain the usual (homogeneous)
Lithner−Agmon estimate,

‖h(eΦ
ε
R/hu)′‖2L2 + ‖eΦ

ε
R/hu‖2L2 ≤ Cεe2ε/h‖u‖2L2 .

Observe that, the right hand side of this estimate does not depend on R, we are thus allowed to let R→∞, and
get a finer estimate,

‖h(eΦ
ε/hu)′‖2L2 + ‖eΦ

ε/hu‖2L2 ≤ Cεe2ε/h‖u‖2L2 .

Corollary 2.21. Let χ ∈ L∞(R) be supported in the interior of {x ∈ R : ΦεR(x) = R}, such that 0 ≤ χ ≤ 1,
then

‖χhu′‖2L2 + ‖χu‖2L2 ≤ Cε
(
e−2(R−ε)/h‖u‖2L2 + ‖f‖2L2

)
. (2.15)

Remark 2.22. For any δ > 0, we could modify the phase function ΦεR to some Φ̃R, so that Φ̃R ≡ R for
|x| ≥ Rε + δ, while Φ̃R = ΦεR for |x| ≤ Rε.

Remark 2.23. This is a classical estimate by reversing the operator −h2∂2x + V (x) in the classical forbidden
region, when V is independent of τ ≡ h. For our application in Section 2.3.5, where the potential is VE , it is
believed that such a semiclassical analysis suffices. However, we decide to use the approach above for simplicity
to avoid technique problems caused by the behavior of VE at faraway from the origin.

Proof. Simply notice that

χ(eΦ
ε
R/hu)′ = eR/hχu′, χeΦ

ε
R/hu = eR/hχu, ‖eΦ

ε
R/hf‖L2 ≤ eR/h‖f‖L2 .

The rest of the proof is a straightforward application of the previous proposition. �

We want to apply the discussion above to an admissible 4-tuple (ε, h, k, w̃) for sufficiently small ε and h. So
that τ = h, P = −h2∂2x + V , and E = o(1), and f = O(h2)L2→L2w̃. We are left to verify that w̃ ∈ D(P ). This
requires the following proposition from [25].

Proposition 2.24. Let I = (a−, a+) ⊂ R be a finite or infinite interval, let f ∈ C2(Ī) be real valued and
positive, and let g ∈ C(Ī) be a continuous and complex valued. Let

F (x) =

ˆ {
f−1/4(f−1/4)′′ − gf−1/2

}
dx

be a primitive function of the integrand. Then in I the differential equation

u′′ = (f + g)u

has twice continuously differentiable solutions of the form

u±(x) = f−1/4(x) exp

{
±
ˆ
f1/2(x)dx

}
(1 + ε±(x))

with estimates

max

{
|ε±(x)| , 1

2
f−1/2(x)

∣∣ε′±(x)
∣∣} ≤ exp

{
1

2
Va±,x(F )

}
− 1

provided the total variation Va±,x(F ) of F on the interval (a±, x) being finite. If g is real, then the solutions are
real.
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Corollary 2.25. Let w ∈ Aλ,k, with λ > 0, k 6= 0, then on the interval (R0,∞), w is, up to a multiplicative
constant, of the form

w(x) = [V (x)− E]−1/4 exp

{
−h
ˆ x

0

[V (t)− E]1/2dt

}
(1 + ε(x))

with estimates |ε(y)|+ |ε′(y)| = O(h). We can do the same on (−∞,−R0), and consequently w ∈ H1(R). Since
V ∈ L∞(R), we deduce that w ∈ D(P ). Now that w̃ is a finite sum of such wλ,k, we deduce that w̃ ∈ H1(R).

Proof. Apply the previous proposition with f = h−2 (V − E) and g = 0. Then

F (x) = h

ˆ x

c

[V (t)− E]
−1/4

∂2t [V (t)− E]
−1/4

dt,

from which, for x > R0,

Vx,∞(F ) ≤ Chδ−5/2
(
‖r′‖2L∞ + ‖r′′‖L∞

) ˆ
R
ρ2(t) dt = O(h)

since V (x) = 1− ρ2(x) = 1− r2 (f(x)), f ′(x) = r (f(x)), and that

ˆ
ρ2(t) dt =

1

2π

ˆ 2π

0

dϕ

ˆ
R
ρ2(x) dx =

1

2π
vol(M) <∞. �

Corollary 2.26. There exists ε0 > 0, h0 > 0, C > 0, such that for 0 < ε < ε0, 0 < h < h0, if (ε, h, k, w̃) is an
admissible 4-tuple, then

C−1‖w̃‖L2 ≤ ‖w̃‖L2(ρ2dx) ≤ C‖w̃‖L2 ;

Suppose there exists ε0 > 0, h0 > 0, C > 0, such that for 0 < ε < ε0, 0 < h < h0, if (ε, h, k, w̃) is an admissible
4-tuple, then

‖1x>0w̃‖L2 ≥ C‖w̃‖L2 ,

then there exists ε′0 > 0, h′0 > 0, C ′ > 0, such that for 0 < ε < ε′0, 0 < h < h′0, if (ε, h, k, w̃) is an admissible
4-tuple, then

‖1x>0w̃‖L2(ρ2dx) ≥ C ′‖w̃‖L2(ρ2dx).

Proof. There is no harm in assuming ‖w̃‖L2 = 1, and apply Corollary 2.21 with

f = O(h2)L2→L2w̃ = O(h2).

To do this, we fix 0 < ε < 1 (please do not get confused with ε), and fix R > 2ε, then for some R0 > 0,
χ = 1|x|>R0

is supported in {ΦεR = R}. Then Corollary 2.21 implies that, for some constant Cε > 0,

‖1|x|>R0
w̃‖L2(ρ2dx) ≤ ‖1|x|>R0

w̃‖L2 ≤ Cεh2

Let δ = inf |x|<R0
ρ(x) > 0, then

1 = ‖w̃‖L2 ≥ ‖w̃‖L2(ρ2dx) ≥ ‖1|x|<R0
w̃‖L2(ρ2dx) ≥ δ−1‖1|x|<R0

w̃‖L2

≥ δ−1(1− ‖1|x|>R0
w̃‖L2) ≥ δ−1(1− Cεh2) ≥ 1

2
δ−1,
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when h is sufficiently small. This proves the first statement. To prove the second statement,

‖1x>0w̃‖L2(ρ2dx)/‖w̃‖L2(ρ2dx) ≥ ‖1R0>x>0w̃‖L2(ρ2dx)/‖w̃‖L2

≥ δ−1‖1R0>x>0w̃‖L2/‖w̃‖L2

≥ δ−1
(
‖1x>0w̃‖L2 − ‖1x>R0

w̃‖L2

)
/‖w̃‖L2

≥ δ−1(C − Cεh2)

≥ 1

2
δ−1C,

when h is sufficiently small. �

2.3.4. Case E = O(h)

Proposition 2.27. Let (ε, h, k, w̃) be an admissible sequence such that E = O(h), then for some C > 0 and ε,
h sufficiently small,

‖1x>0w̃‖L2 ≥ C‖w̃‖L2 .

Proof. We first study Laplacian eigenfunctions, rather than L-eigenfunctions for simplicity, for the latter are
finite sums of the former. To do this, we let λ2 ∈ In, k ∈ Zn(ε), and w ∈ Aλ,k. Recall that w satisfies

(−h2∂2x + V )w = Ew +O(h2)L∞w.

Up to a subsequence, we may assume that c−1/2h−1E = F +o(1) for some F ≥ 0, and use the following scaling,

z = c1/4h−1/2x, Vh(z) = c−1/2h−1V (x),

and work under the coordinate z, and with the measure dz. We normalize w so that ‖w‖L2 = 1, and observe
that it satisfies the equation

(−∂2z + Vh)w = Fw + o(1)L∞w.

Notice that Vh(z) = z2 + h1/2O(z3) for |z| . h−1/2, we apply Proposition 2.20 with

τ(h) ≡ 1, P (τ) = −∂2z + Vh(z), Φε(z) = (1− ε)
∣∣∣∣ˆ z

0

(
Vh(t)− F − o(1)L∞

)1/2
+

dt

∣∣∣∣ ,
and get

‖(eΦ
ε

w)′‖2L2 + ‖eΦ
ε

w‖2L2 ≤ Cε‖w‖2L2 ,

which implies

‖eΦ
ε

w‖L2 + ‖h1/2eΦ
ε

w′‖L2 ≤ Cε‖w‖L2 .

Indeed,

‖h1/2eΦ
ε

w′‖L2 ≤ ‖h1/2(eΦ
ε

w)′‖L2 + ‖h1/2(Φε)′eΦ
ε

w‖L2

≤ h1/2Cε‖w‖L2 + (1− ε)(‖V ‖L∞ +O(h))1/2‖eΦ
ε

w‖L2

≤ Cε‖w‖L2 .

Since Φε(z) ≥ α(|z| −M) for some α > 0, M > 0 and is uniform for all small ε, h, we then have

‖w‖L2(|z|≥R) + ‖h1/2∂zw‖L2(|z|≥R) = O(e−αR)‖w‖L2 .
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Fix some 0 < δ < 1/6, and let wχ = χ(hδz)w(z) where χ ∈ C∞0 is a cut-off function equaling to 1 near the
origin. Therefore

w = wχ +O(h−1/2e−αh
−δ

)H1 = wχ +O(h∞)H1 .

Observing that on the support of wχ, Vh(z) = z2 +O(h1/2−3δ), we have,

(−∂2z + z2 − F )wχ = o(1)L∞w + [∂2z , χ(hδz)]w

= o(1)L∞w + 2hδχ′(hδz)w′ + h2δχ′′(hδz)w

= o(1)L2 . (2.16)

Let {vi}i∈N be the complete set of normalized eigenfunctions of the classical harmonic oscillator, −∂2z + z2,
that is, ‖vi‖L2 = 1, and (

−∂2z + z2
)
vi = (2i+ 1)vi.

We know that vi(z) = ciHi(z)e
−z2/2, where ci is a constant of normalization, and Hi is the ith Hermite

polynomial. We will only use the fact that Hi is either an odd function (when i is odd), or an even function
(when i is even).

We write wχ =
∑
αivi, and have∑

i≥0

|αi|2 = ‖wχ‖2L2 = ‖w‖2L2 + o(1) = 1 + o(1). (2.17)

By (2.16),

o(1)L2 = (−∂2z + z2 − F )wχ =
∑
i≥0

(2i+ 1− F )αivi,

which gives ∑
i≥0

(2i+ 1− F )2|αi|2 = o(1). (2.18)

Let i0 ∈ N be such that |2i0 + 1− F | attains the minimum among all |2i+ 1− F0|. Then for any integer i 6= i0,
|2i+ 1− F0| ≥ |i− i0|, and hence, ∥∥∑

i 6=i0

αivi
∥∥2
L2 =

∑
i 6=i0

|αi|2 = o(1).

Combining with (2.17), we have αi0 = 1 + o(1). And by consequence,

w = wχ + o(1)L2 = αi0vi0 +
∑
i 6=i0

αivi + o(1)L2 = αi0vi0 + o(1)L2 = vi0 + o(1)L2 .

Moreover, we have by (2.18), that (2i0 + 1− F ) |αi0 |
2

= o(1), which implies

F = 2i0 + 1.

In particular i0 depends only on F , not on λ. As a consequence, we claim that, for this admissible subsequence,
which satisfies E = O(h), when ε and h are sufficiently small, there can be at most one λ2 ∈ In, such that
Aλ,k 6= {0}. Therefore, Ãn,k = Aλ,k. So if w̃ ∈ Ãn,k, then w̃ = vi0 + o(1)L2 . This concludes the proof, since vi0
is either an odd function, or an even function, whose L2 norm is thus equally distributed on each side of the
origin.

To prove the claim, we argue by contradiction and use the orthogonality given by Corollary 2.5. Indeed,
suppose we can find for arbitrary small ε and h two distinct λ1, λ2 such that λ2i ∈ In, (i = 1, 2), and that
Aλi,k 6= {0}, then we can choose wi ∈ Aλi,k, such that ‖wi‖L2 = 1. By the analysis above, we see that
wi = vi0 + o(1)L2 . Using the orthogonality of w1 and w2 with respect to L2(ρ2dz),

0 = (w1, w2)L2(ρ2dz) = (vi0 , vi0)L2(ρ2dz) + o(1)→ (vi0 , vi0)L2(ρ2dz) 6= 0,

we obtain a contradiction. �
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2.3.5. Case E � h

Proposition 2.28. Let (ε, h, k, w̃) be an admissible sequence such that E � h, then for some C > 0, and ε, h
sufficiently small,

‖1x>0w̃‖L2 ≥ C‖w̃‖L2 .

Proof. We use the scaling

z = c1/2E−1/2x, ĥ = c1/2E−1h, VE(z) = E−1V (x),

and work under the z coordinate and the measure dz. We normalize w̃ by ‖w̃‖L2 = 1, and observe that it
satisfies the equation

(−ĥ2∂2z + VE)w̃ = w̃ +O(h2/E)ρ2w̃ = w̃ + o(ĥ)L2 . (2.19)

Let χ ∈ C∞c (R) be equal to 1 in a neighbourhood of |z| ≤ 1, and 0 ≤ χ ≤ 1, then we apply Corollary 2.21 and
the remark after it,

‖(1− χ)ĥw̃′‖2L2 + ‖(1− χ)w̃‖2L2 = O(ĥ∞)‖w̃‖2L2 + o(h2) = o(ĥ2),

which implies

‖χw̃‖L2 = 1 + o(ĥ). (2.20)

In order to conclude, it suffices to prove that, for some δ > 0, and ĥ sufficiently small,

‖1z>0χw̃‖L2 ≥ δ. (2.21)

Let χ̃ ∈ C∞c (R) be such that χχ̃ = χ, then χw̃ satisfies the equation

(−ĥ2∂2z + χ̃VE)(χw̃) = χw̃ + o(ĥ)L2 + [ĥ2∂2z , χ]w̃

= χw̃ + o(ĥ)L2 + 2ĥ2χ′w̃′ + ĥ2χ′′w̃ = χw̃ + o(ĥ)L2 . (2.22)

The bottom line comes from the the inhomogeneous Lithner−Agmon estimate and the fact that suppχ′ ∪
suppχ′′ ⊂ {|z| > 1}. This equation first implies that χw̃ is ĥ-oscillating (see Example A.9), whose ĥ-semiclassical
measure µ will thus not vanish, for we have (2.20). Now that χw̃ is supported in suppχ, we have evidently,

suppµ ⊂ suppχ× Rζ .

By the fact that χ̃(z)VE(z)→ χ̃(z)z2 in C∞c (R), and Corollary A.4, we see that

suppµ ⊂ {(z, ζ) : ζ2 + χ̃(z)z2 = 1}.

Combing the results above,

suppµ ⊂ suppχ× Rζ ∩ {(z, ζ) : ζ2 + χ̃(z)z2 = 1} ⊂ {(z, ζ) : ζ2 + z2 = 1},

because χ̃ = 1 on suppχ. Moreover µ is invariant by the Hamiltonian flow generated by the Hamiltonian vector
field

Hζ2+χ̃(z)z2 = (−2ζ, 2χ̃(z)z + χ̃′(z)z2),

which, when restricted to suppµ, is (−2ζ, 2z), and generates the rotation of the circle ζ2 + z2 = 1. There-
fore (2.21) must be satisfied, because otherwise µ|z>0 = 0, and by the invariance under flow, µ = 0, which is a
contradiction. �
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Appendix A. Semiclassical Measure

In this section we recall some basic properties of semiclassical measures. For details we refer to [8,15,16,22,30].
In what follows (M, g) will either be the flat Euclidean space Rd or a compact Riemannian manifold without
boundary. The theory of semiclassical measure works for general Riemannian manifolds, we strict ourselves
to these simple cases so that we can give some simple proofs for some of the following results, which already
satisfies our needs.

Theorem A.1. Let u(h) (0 < h < h0) be bounded in L2(M). Then there exists a sequence hn → 0 and a positive
Radon measure µ on T ∗M (which is called an h-semiclassical measure of u(h)) such that for all a ∈ C∞c (T ∗M),

lim
n→∞

(a(x, hnD)u(hn), u(hn))L2(M) =

ˆ
T∗M

a(x, ξ) dµ(x, ξ).

Remark A.2. We call µ an h-semiclassical measure to emphasize the importance of the parameter h, for
different parameter can be used. When there is no ambiguity, we simply call µ a semiclassical measure.

Remark A.3. When there is no need to extract a subsequence, we say u(h) is pure, and µ is “the” semiclassical
measure of u(h).

We also need the following corollary.

Corollary A.4. Let u(h) (0 < h < h0) be pure, with semiclassical measure µ. Suppose {an}n and a are
functions in C∞c (T ∗M) such that an → a in C∞(T ∗M), then

lim
n→∞

(a(x, hnD)u(hn), u(hn))L2(M) =

ˆ
T∗M

a(x, ξ) dµ.

This corollary is a simple consequence of Theorem A.1 and the following L2-estimate (we refer to [30], Thm. 5.1)
that, for some N > 0, and all a ∈ C∞c (T ∗M),

‖a(x, hD)‖L2→L2 ≤ C sup
|α|≤Nd

h|α|/2‖∂αx,ξa‖L∞ .

Theorem A.5. Let u(h) (0 < h < h0) be pure, with semiclassical measure µ. Let p ∈ Sm(T ∗M)
(where Sm(T ∗M) is the Hörmander class, see [18]).

p(x, hD)u(h) = o(1)L2 ⇒ suppµ ⊂ {p = 0}
p(x, hD)u(h) = o(h)L2 ⇒ Hpµ = 0,

where Hp = (−∂H∂ξ
∂
∂x
, ∂H∂x

∂
∂ξ

).

Remark A.6. By consequence of Corollary A.4, Theorem A.5 could be improved a little bit. Instead of a single
symbol p, we can consider a sequence of symbols {pn}n≥0 ⊂ Sm(T ∗M), such that pn → p in C∞loc(M). Then

pn(x, hnD)u(hn) = o(1)L2 ⇒ suppµ ⊂ {p = 0}
pn(x, hnD)u(hn) = o(hn)L2 ⇒ Hpµ = 0.

For a pure sequence u(h), even if its semiclassical measure µ = 0, we do not generally have u(h)→ 0 strongly
in L2(M). However, this is the case if u(h) is in addition h-oscillating.

Definition A.7. A sequence u(h) is called h-oscillating if for some χ ∈ C∞(R) such that 0 ≤ χ ≤ 1, χ = 0 in
a neighborhood of the origin, and χ = 1 outside a neighborhood of the origin, then

lim
R→+∞

lim sup
h→0

‖χ(−h2∆/R)u(h)‖L2 = 0.
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Proposition A.8. Let u(h) be a pure and h-oscillating sequence with vanishing semiclassical measure, then
u(h)→ 0 strongly in L2(M).

Proof. Let χ be chose as in the definition above. Write χR(·) = χ(·/R) for simplicity, and decompose

‖u(h)‖2L2 =
(
(1− χ2

R(−h2∆))u(h), u(h)
)
L2 +

(
χ2
R(−h2∆)u(h), u(h)

)
L2 .

Observe that (1 − χ2
R(−h2∆)) is a semiclassical pseudodifferential operator with principal symbol 1 −

χ2
R(g−1x (ξ, ξ)) ∈ C∞c (T ∗M), therefore, since µ = 0,

lim
h→0

(
(1− χ2

R(−h2∆))u(h), u(h)
)
L2 =

ˆ
T∗M

(
1− χ2

R(g−1x (ξ, ξ))
)

dµ(x, ξ) = 0.

While for the second term, by our hypothesis of h-oscillation,

lim
R→+∞

lim sup
h→0

(
χ2
R(−h2∆)u(h), u(h)

)
L2 = lim

R→+∞
lim sup
h→0

‖χR(−h2∆)u(h)‖2L2 = 0.

Combine these two limit behaviors,

lim sup
h→0

‖u(h)‖2L2 = lim
R→+∞

lim sup
h→0

‖u(h)‖2L2 = 0. �

Example A.9. Suppose that u(h) is a pure sequence satisfying

(−h2∆+ V )u(h) = o(1)L2 ,

where V ∈ C∞c (M) then u(h) is h-oscillating. Indeed, by adding to V some constant, we may assume that V ≥ 1.
So that −h2∆+V is a self-adjoint operator with uniformly (in h) bounded resolvent ‖(−h2∆+V )−1‖L2→L2 ≤ 1.
After this modification u(h) satisfies an equation of the form

(−h2∆+ V )u(h) = Eu(h) + o(1)L2 ,

for some constant E ∈ R. Denote ψ(z) = z−1χ(z) ∈ C∞c (R), and ψR(z) = ψ(z/R), then apply each side of the
equation above by R−1ψR(−h2∆+ V ), we obtain

χR(−h2∆+ V )u(h) = ER−1ψR(−h2∆+ V )u(h) + o(1)L2 .

Now that M is either compact or Euclidean, we have a uniform elliptic estimate g−1x (ξ, ξ) & |ξ|2, whence for R
sufficiently large and for (x, ξ) ∈ T ∗M ,

χR/2(g−1x (ξ, ξ))χR(g−1x (ξ, ξ) + V (x)) = χR/2(g−1x (ξ, ξ)).

Therefore, apply the equation above by χR/2(−h2∆), and by a symbolic calculus, we have

χR/2(−h2∆)u(h) = ER−1O(1)L2 + o(1)L2 ,

which implies that, for R sufficiently large,

lim sup
h→0

‖χR/2(−h2∆)u(h)‖L2 = O(R−1).

We also remark that this argument works when V depends on h, but remains bounded in C∞c (M).
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[23] L. Lithner, A theorem of the Phragmén-Lindelöf type for second-order elliptic operators. Arkiv för Matematik 5 (1964) 281–285.
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