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SYMMETRY-BREAKING IN A GENERALIZED WIRTINGER INEQUALITY

Marina Ghisi1, Massimo Gobbino2,∗ and Giulio Rovellini3

Abstract. The search of the optimal constant for a generalized Wirtinger inequality in an interval
consists in minimizing the p-norm of the derivative among all functions whose q-norm is equal to 1 and
whose (r−1)-power has zero average. Symmetry properties of minimizers have attracted great attention
in mathematical literature in the last decades, leading to a precise characterization of symmetry and
asymmetry regions. In this paper we provide a proof of the symmetry result without computer assisted
steps, and a proof of the asymmetry result which works as well for local minimizers. As a consequence,
we have now a full elementary description of symmetry and asymmetry cases, both for global and for
local minima. Proofs rely on appropriate nonlinear variable changes.
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1. Introduction

Let (a, b) ⊆ R be an interval. It is well-known that the inequality

π2

∫ b

a

|u(x)|2 dx ≤ (b− a)2
∫ b

a

|u′(x)|2 dx

holds true

• (Poincaré inequality) for every u ∈ C1([a, b]) such that u(a) = u(b) = 0,
• (Wirtinger inequality) for every u ∈ C1([a, b]) such that∫ b

a

u(x) dx = 0.

More generally, given three real numbers p > 1, q > 1, r > 1, after defining p∗ and θ in such a way that

1

p
+

1

p∗
= 1 and θ :=

1

p∗
+

1

q
,
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symmetry of minimizers, variable changes.
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one can show the existence of

• (generalized Poincaré inequality) a largest positive constant λP (p, q) such that

λP (p, q)

(∫ b

a

|u(x)|q dx

)1/q

≤ (b− a)θ

(∫ b

a

|u′(x)|p dx

)1/p

(1.1)

for every u ∈ C1([a, b]) such that u(a) = u(b) = 0,
• (generalized Wirtinger inequality) a largest positive constant λW (p, q, r) such that

λW (p, q, r)

(∫ b

a

|u(x)|q dx

)1/q

≤ (b− a)θ

(∫ b

a

|u′(x)|p dx

)1/p

(1.2)

for every u ∈ C1([a, b]) such that ∫ b

a

|u(x)|r−2u(x) dx = 0. (1.3)

Several problems in the calculus of variations can be reduced to λW (p, q, r), some of which are listed in the
introduction to [7]. We also refer to [4] for further motivations of this search for optimal constants in Sobolev
type inequalities.

The optimal constants in the two inequalities above can be characterized as the minimum of the quotient

(b− a)θ
‖u′‖Lp((a,b))

‖u‖Lq((a,b))
(1.4)

among all intervals [a, b] ⊆ R and all functions u ∈ C1([a, b]) that do not vanish identically in [a, b] and satisfy

• the boundary conditions u(a) = u(b) = 0 in the case of Poincaré inequality,
• the integral condition (1.3) in the case of Wirtinger inequality.

The existence of λP (p, q) and λW (p, q, r) can be proved by applying in a standard way the direct method in
the calculus of variations (see [4, 5]). As a by-product, inequalities (1.1) and (1.2) hold true with the same
constants even if we replace u ∈ C1([a, b]) by u ∈ W 1,p((a, b)), of course subject to the same boundary or
integral conditions.

Due to scale invariance, there is no loss of generality in working in a fixed interval, for example [−1, 1].
Focussing on this interval, in the special case p = q = r = 2 one can compute explicitly the optimal constants
and characterize the equality cases as follows:

• λW (2, 2, 2) = λP (2, 2) = π,
• minimizers (both local and global) to λP (2, 2) are even functions (actually all nonzero multiples of cos(π2x)),

and they are eigenvectors relative to the first eigenvalue of the 1-d Laplacian with Dirichlet boundary
conditions,

• minimizers (both local and global) to λW (2, 2, 2) are odd functions (actually all nonzero multiples of sin(π2x)),
and they are eigenvectors relative to the second eigenvalue of the 1-d Laplacian with Neumann boundary
conditions,

• minimizers to λW (2, 2, 2) can be obtained from minimizers to λP (2, 2) with a “cut-and-paste” procedure, in
the sense that if uP (x) is any equality case for Poincaré inequality, then

uW (x) :=

{−uP (x+ 1) if x ∈ [−1, 0]

uP (x− 1) if x ∈ [0, 1]
(1.5)

realizes the equality in Wirtinger inequality.
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It is reasonable to ask whether these symmetry properties remain true for general values of the parameters p,
q, r. This problem has generated a lot of literature, leading to the following answer.

Theorem 1.1 (Symmetry/asymmetry in generalized Poincaré/Wirtinger inequalities).
Let p > 1, q > 1, r > 1 be three real numbers.
Then the following statements hold true.

(1) (Poincaré inequality – Symmetry of minimizers) Minimizers (both local and global) to λP (p, q) are always
even functions, and λW (p, q, r) ≤ λP (p, q) for every admissible choice of the parameters.

(2) (Wirtinger inequality – Symmetry of minimizers) If q ≤ (2r − 1)p it turns out that λW (p, q, r) = λP (p, q).
Moreover, minimizers (both local and global) to λW (p, q, r) are the odd functions obtained from minimizer
to λP (p, q) through the cut-and-paste procedure (1.5).

(3) (Wirtinger inequality – Asymmetry of minimizers) If q > (2r− 1)p it turns out that λW (p, q, r) < λP (p, q),
and no odd function can be a minimizer for λW (p, q, r) (not even a local minimizer).

The proof of most parts of Theorem 1.1 was achieved in a series of papers of the last 25 years. The following
table sums up the main steps.

Year Reference Symmetry Global Asymmetry Local Asymmetry

1992 [5] r = 2, q ≤ 2p r = 2, q � 1

1992 [5] r = q

1997 [6] r = 2, q > 4p− 1 r = 2, q > 4p− 1

1998 [3] q > 3p

1999–2000 [1, 8] r = 2, q ≤ 2p+ 1

2002 [10] r = 2, q ≤ 3p

2003 [4] q ≤ rp+ r − 1 q > (2r − 1)p

2011 [7] q ≤ (2r − 1)p

2017 [12] r = 2, q > 3p

From the technical point of view, the hardest step was proving symmetry of solutions to λW (p, q, r) in the range
rp + r − 1 < q ≤ (2r − 1)p. This is the content of [10] in the case r = 2 and of [7] for general r. However, the
proofs provided in these papers are “quite technical”, in the sense that they require numerical computations
carried out up to 18 significant digits in order to verify inequalities between functions with more than 10 levels
of parentheses.

The contribution of this paper is twofold.

• We provide a proof of the symmetry of minimizers to λW (p, q, r) in the full range q ≤ (2r − 1)p without
computer assisted steps. Indeed, the key inequality of Proposition 3.4 is established through a suitable
variable change, all whose details can be checked by a human.

• We prove nonexistence of odd local minima to λW (p, q, r) when q > (2r−1)p. This result was already known
for global minima in the same range, but for local minima it was limited to the case r = 2 and q > 4p − 1
(but the argument extends in a straightforward way to q > r2p− (r − 1)2 in the general case).

These two results settle completely the issue of symmetry/asymmetry of local and global minimizers
to λW (p, q, r).

We hope that our techniques could be helpful to approach the many variants and extensions of this problem
to higher dimension that are still active research fields (see for example the survey [9], or the recent papers [2,11]
and the references quoted therein).

This paper is organized as follows. In Section 2 we review the main steps in previous literature that are
needed in our approach. In Section 3 we prove symmetry of minimizers for q ≤ (2r− 1)p. In Section 4 we prove
asymmetry of local minimizers for q > (2r − 1)p.
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2. Survey of previous literature

For the convenience of the reader, in this section we recall briefly the main approaches to Theorem 1.1
developed in the last decades. We focus in particular on the ideas that are needed in the sequel.

Poincaré inequality. The symmetry of minimizers can be proved either via radial rearrangement (see [13]) or
by inspecting the Euler equation associated to the variational problem. The Euler equation has a first integral,
which up to rescaling and affine variable changes can be written in the form

|u′(x)|p + |u(x)|q = 1. (2.1)

From the theory of ordinary differential equations we obtain that all nonzero solutions to (2.1) are periodic
with the same period, which we denote by 4T . In particular, there exists a unique function uP : [−T, T ] → R
such that

u′P (x) = − sgn(x) (1− |uP (x)|q)1/p ∀x ∈ [−T, T ], (2.2)

uP (−T ) = uP (T ) = 0, (2.3)

uP (x) > 0 ∀x ∈ (−T, T ). (2.4)

This is the “unique” equality case in Poincaré inequality, in the following sense.

Proposition 2.1. Let u : [a, b] → R be a local (in the C1 norm) minimizer to (1.4) among all nontrivial
functions u ∈ C1([a, b]) with u(a) = u(b) = 0.

Then the following statements hold true.

(1) There exists three positive real numbers α, β, γ such that

α|u′(x)|p + β|u(x)|q = γ. ∀x ∈ [a, b].

(2) If uP (x) denotes the solution to (2.2)–(2.4), then

u(x) = u

(
a+ b

2

)
uP

(
2T

b− a
(x− a)− T

)
∀x ∈ [a, b].

This proves in particular that the graph of all minimizers, both local and global, is symmetric with respect to
the vertical line through the middle point of [a, b].

Wirtinger inequality. In this case the Euler equation, up to rescaling and affine variable changes, has a first
integral of the form

|u′(x)|p + |u(x)|q = 1 + µ|u(x)|r−2u(x), (2.5)

where the Lagrange multiplier µ comes from the integral constraint (1.3). This equation coincides with (2.1)
when µ = 0. In particular, there exists a unique function uW : [−T, T ]→ R such that

u′W (x) = (1− |uW (x)|q)1/p ∀x ∈ [−T, T ], (2.6)

u′W (−T ) = u′W (T ) = 0, (2.7)

u′W (x) > 0 ∀x ∈ (−T, T ). (2.8)

Actually, the function uW (x) can be obtained from uP (x) with a cut-and-paste procedure analogous to (1.5).
This function is the “unique” local and global minimum point to λW (p, q, r) when restricted to odd functions

(namely functions whose graph is symmetric with respect to the middle point of [a, b]), and hence it is also the
unique odd candidate to be a minimum point without the symmetry condition.
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Proposition 2.2. Let us consider the minimization problem for the quotient (1.4) with the integral con-
straint (1.3).

Then the following statements hold true.

(1) If u : [a, b]→ R is any local (in the C1 norm) minimizer, then there exists three positive real numbers α, β,
γ, and a real number δ, such that

α|u′(x)|p + β|u(x)|q = γ + δ|u(x)|r−2u(x) ∀x ∈ [a, b].

Moreover, u(x) is odd if and only if δ = 0.
(2) Let u : [a, b]→ R be a local (in the C1 norm) minimizer in the class of odd functions. If uW (x) denotes the

solution to (2.6)–(2.8), then

u(x) =
b− a
2T

u′
(
a+ b

2

)
uW

(
2T

b− a
(x− a)− T

)
∀x ∈ [a, b].

An auxiliary function. Let Mq,r denote the set of real numbers µ such that the equation

1 + µ|x|r−2x− |x|q = 0 (2.9)

has at least two real solutions, and let x1(µ) < 0 < x2(µ) denote the two solutions closest to the origin. The
set Mq,r is always a connected set with center in the origin, and when q > r − 1 it turns out that Mq,r = R
and (2.9) has always exactly two solutions. We note that in any case x1(µ) ∈ (−1, 0) and x2(µ) > 1 for every
positive element µ ∈Mq,r.

Following [3], let us consider the function Jp,q,r : Mq,r → R defined by

Jp,q,r(µ) :=

∫ x2(µ)

x1(µ)

(
1 + µ|x|r−2x− |x|q

)1/p∗
dx ∀µ ∈Mq,r. (2.10)

We observe that, from the geometric point of view, Jp,q,r(µ) represents one half of the area of the oval subset
of the Euclidean plane defined as {

(x, y) ∈ R2 : |y|p∗ + |x|q ≤ 1 + µ|x|r−2x
}
.

The following result clarifies the deep connection between the minimization of the area of this oval and the
minimization problem for λW (p, q, r).

Proposition 2.3 (Connection between Jp,q,r(µ) and Wirtinger inequality).
Let p > 1, q > 1, r > 1 be three real numbers, let λW (p, q, r) be the optimal constant in Wirtinger inequality,

and let Jp,q,r(µ) be defined by (2.10).
Then the following statements hold true.

(1) It turns out that

λW (p, q, r) = θθp
1/p∗
∗ q1/q min {Jp,q,r(µ) : µ ∈Mq,r} .

(2) There exists an odd global minimizer for λW (p, q, r) if and only if µ = 0 is a minimum point for Jp,q,r(µ).
(3) If there exists a local minimizer for λW (p, q, r) which is not odd, then Jp,q,r(µ) admits a stationary point

µ 6= 0.

Proposition 2.3 above reduces an infinite dimensional variational problem to the minimization of an integral
function of just one real variable.
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Proposition 2.4 (Qualitative behavior of Jp,q,r(µ)).
Let p > 1, q > 1, r > 1 be three real numbers.
Then the function Jp,q,r(µ) defined in (2.10) is an even function of class C2 in Mq,r, and the following

statements hold true.

(1) In the range q > (2r − 1)p it turns out that

J ′′p,q,r(0) < 0. (2.11)

(2) In the range q ≤ (2r − 1)p it turns out that

J ′p,q,r(µ) > 0 ∀µ > 0. (2.12)

Combining Proposition 2.3 and Proposition 2.4 it follows that

• when q ≤ (2r − 1)p the unique stationary point of Jp,q,r(µ) is µ = 0, and therefore uW (x) is the “unique”
global and local minimizer to λW (p, q, r).

• when q > (2r − 1)p the minimum of Jp,q,r(µ) is not achieved for µ = 0, and therefore the global minimizers
to λW (p, q, r) are not odd functions.

Previous symmetry results. All proofs of symmetry results are based on (2.12). In order to obtain this inequality,
the first step consists in writing the derivative as

J ′p,q,r(µ) =
1

p∗

∫ x2(µ)

x1(µ)

|x|r−2x
(1 + µ|x|r−2x− |x|q)1/p

dx.

Then with an affine variable change one can transform the integrals in [x1(µ), 0] and [0, x2(µ)] into integrals
in [0, 1]. Setting

m := −x1(µ)

x2(µ)
, R :=

1−mq

1 +mr−1 ,

with some algebra one finds that J ′p,q,r(µ) is equal, up to positive quantities, to∫ 1

0

(
xr−1

(1−R+Rxr−1 − xq)1/p
− mrxr−1

(1−R−Rmr−1xr−1 −mqxq)
1/p

)
dx, (2.13)

so that the symmetry result is equivalent to proving that this integral is positive for every m ∈ (0, 1) (m lies in
this interval because |x2(µ)| > |x1(µ)| for positive µ).

• In the first paper [5] it was proved that the integrand is positive for every (x,m) ∈ (0, 1)2, and hence a
fortiori also the integral is positive, when r = 2 and q ≤ 2p.

• In [1,8] the previous argument was refined, and it was shown that the integrand is positive when r = 2 and
q ≤ 2p+ 1.

• In [4] the refined argument was extended to general r, proving that the integrand is positive when q ≤
rp+ r − 1.

• It can be shown that when q > rp+ r − 1 the integrand is negative in a neighborhood of x = 1, and hence
the previous approach cannot be extended. Nevertheless, this does not imply that the integral is negative.

• In [7, 10] a computer assisted proof is provided in order to show that the integral is positive in the range
q ≤ (2r − 1)p.

In Proposition 3.4 below we provide an elementary proof that (2.13) is positive for every m ∈ (0, 1) in the full
range q ≤ (2r − 1)p.
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Previous asymmetry results. We have seen that Propositions 2.3 and 2.4 imply that uW (x) is not a global
minimum point when q > (2r − 1)p. The key tool is inequality (2.11), obtained in [3] in the case r = 2, and in
[7] for general r.

On the other hand, this is not enough to exclude that uW (x) remains a local minimum point also for larger
values of q. In previous literature the nonexistence of odd local minima was known just in a more restrictive
range. The approach was the following (see [6]).

Let [a0, b0] ⊆ R be an interval with a0 = −b0, and let u0 : [a0, b0] → R be any odd function. For every
ε ∈ (0, 1) let us consider the function

uε(x) :=


1

(1 + ε)1/(r−1)
u0

(
x

1 + ε

)
if x ∈ [0, (1 + ε)b0],

1

(1− ε)1/(r−1)
u0

(
x

1− ε

)
if x ∈ [(1− ε)a0, 0].

(2.14)

We observe that uε is defined in the interval [(1 − ε)a0, (1 + ε)b0], whose length is again b0 − a0 because
a0 + b0 = 0. Up to a translation, we can also assume that this interval is exactly [a0, b0], and up to this
translation it turns out that uε → u0 in the C1 norm as ε → 0+. Moreover, uε is obtained from u0 through a
piecewise affine variable change and∫ (1+ε)b0

(1−ε)a0
|uε(x)|r−2uε(x) dx =

∫ b0

a0

|u0(x)|r−2u0(x) dx,

so that uε(x) is a competitor for λW (p, q, r) whenever u0(x) is.
With some standard calculations one finds that

‖u′ε‖p
‖uε‖q

=
‖u′0‖p
‖u0‖q

(
1− q − r2p+ (r − 1)2

2(r − 1)2
ε2 + o(ε2)

)
as ε→ 0+,

which proves that any odd function, and hence in particular uW (x), is not a local minimizer in the range
q > r2p− (r − 1)2.

More recently, the third author [12] proved that uW (x) is not a local minimizer when r = 2 and q > 3p. This
result settles the matter completely in the case r = 2. The idea in [12] was to define uε(x) as the increasing
solution to (2.5) with µ = ε that vanishes at the origin, and suitably modified near one of the endpoints of
the maximal interval where it is increasing in order to fulfill the integral constraint (1.3). Unfortunately this
approach, when extended to general r, does not seem to fill the full gap between (2r − 1)p and r2p− (r − 1)2.

In this paper we go back to the original idea of modifying uW (x) through a variable change. The novelty is
that the variable change we devise in Section 4 is nonlinear. It is less general than (2.14) in the sense that it
does not apply to any odd function, but just to uW (x), which however is the unique candidate to be a local
minimizer. On the other hand, with this variable change we show that uW (x) is not a local minimizer as soon
as q > (2r − 1)p, and therefore whenever it is not a global minimizer. This provides a proof of the asymmetry
result, both for global and local minima, independent of the computation of the second derivative of Jp,q,r(µ).

3. Symmetry of local and global minimizers

In this section we prove that the integral (2.13) is positive when q ≤ (2r− 1)p. As we have seen, this implies
the symmetry of minimizers in the same range.

The basic tool is the following elementary, but nevertheless powerful, result.

Lemma 3.1. Let f : (0, 1) → (0,+∞) and g : (0, 1) → (0,+∞) be two continuous functions. Let u : [0, 1] →
[0, 1] be an increasing function of class C1 such that u(0) = 0, u(1) = 1, and

u′(x)f(u(x)) > g(x) ∀x ∈ (0, 1). (3.1)
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Then it turn out that ∫ 1

0

f(x) dx >

∫ 1

0

g(x) dx.

Proof. Thanks to assumption (3.1), with the variable change x = u(t) we deduce that∫ 1

0

f(x) dx =

∫ 1

0

f(u(t))u′(t) dt >

∫ 1

0

g(t) dt,

which completes the proof. �

In the following two results we prove the monotonicity of two real functions.

Lemma 3.2. For every pair of real numbers 0 ≤ a < b, the function

ϕa,b(x) :=
1− xa

1− xb
∀x ∈ (0, 1)

is nonincreasing (and decreasing if a > 0).

Proof. The function (b− a)xb− bxb−a + a is nonincreasing in (0, 1) (decreasing if a > 0), and vanishes in x = 1.
It follows that

(b− a)xb − bxb−a + a ≥ 0 ∀x ∈ (0, 1),

and hence

ϕ′a,b(x) = − xa−1

(1− xb)2
·
(
(b− a)xb − bxb−a + a

)
≤ 0 ∀x ∈ (0, 1),

with strict inequalities when a > 0. This implies the required monotonicity. �

Lemma 3.3. For every pair of real numbers 0 < a < b, the function

ψa,b(x) :=
(1− xa)(1 + xb)

1− xa+b
∀x ∈ (0, 1)

is decreasing.

Proof. Since 0 < a < b, for every x ∈ (0, 1) it turns out that b log x < a log x < 0. Therefore, since the function
z → z−1 sinh z is decreasing in (−∞, 0), it follows that

sinh(a log x)

a log x
<

sinh(b log x)

b log x
,

which is equivalent to saying that

b(x−a − xa) < a(x−b − xb) ∀x ∈ (0, 1).

It follows that

ψ′a,b(x) =
xa+b−1

(1− xa+b)2
·
(
b(x−a − xa)− a(x−b − xb)

)
< 0 ∀x ∈ (0, 1),

which implies the required monotonicity. �

We are now ready to state and prove the key inequality.
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Proposition 3.4. Let p > 1, q > 1, r > 1, and m ∈ (0, 1) be real numbers, and let us set

R :=
1−mq

1 +mr−1 . (3.2)

Let us assume that q ≤ (2r − 1)p.
Then it turns out that∫ 1

0

xr−1

(1−R+Rxr−1 − xq)1/p
dx >

∫ 1

0

mrxr−1

(1−R−Rmr−1xr−1 −mqxq)
1/p

dx. (3.3)

Proof. For every m ∈ (0, 1), let us set

D(x) :=
[
1− (1−mr−1)xr−1

]1/(r−1) ∀x ∈ [0, 1], (3.4)

and
u(x) :=

mx

D(x)
∀x ∈ [0, 1]. (3.5)

Simple computations show that

0 < m < D(x) < 1 ∀(x,m) ∈ (0, 1)2. (3.6)

Moreover, it turns out that u(0) = 0, u(1) = 1, and

u′(x) =
m

[D(x)]r
∀x ∈ (0, 1), (3.7)

so that u is an increasing function. Let f(x) and g(x) denote the integrands in the left-hand side and in
the right-hand side of (3.3), respectively. If we show that (3.1) is satisfied, then (3.3) follows from Lemma 3.1.
Keeping (3.5) and (3.7) into account, inequality (3.1) becomes (in the sequel we simply write D instead of D(x))

1−R−R(mx)r−1 − (mx)q > D(2r−1)p
(

1−R+R
(mx)r−1

Dr−1 − (mx)q

Dq

)
,

or equivalently

1−R > Rmr−1xr−1 · 1 +D(2r−1)p−(r−1)

1−D(2r−1)p +mqxq · 1−D(2r−1)p−q

1−D(2r−1)p · (3.8)

Let us estimate the two summands in the right-hand side. For the first one, we deduce from (3.4) that

xr−1 =
1−Dr−1

1−mr−1 ,

and then we observe that the assumptions of Lemma 3.3 are satisfied with a := r−1 and b := (2r−1)p−(r−1).
Therefore, from (3.6) it follows that

mr−1xr−1 · 1 +D(2r−1)p−(r−1)

1−D(2r−1)p =
mr−1

1−mr−1 ·
(1−Dr−1)(1 +D(2r−1)p−(r−1))

1−D(2r−1)p

<
mr−1

1−mr−1 ·
(1−mr−1)(1 +m(2r−1)p−(r−1))

1−m(2r−1)p ·

As for the second summand in (3.8), we observe that x < 1 and the assumptions of Lemma 3.2 are satisfied
with a := (2r− 1)p− q and b := (2r− 1)p (this is the point where it is essential that q ≤ (2r− 1)p). Therefore,
from (3.6) it follows that

mqxq · 1−D(2r−1)p−q

1−D(2r−1)p ≤ m
q · 1−m(2r−1)p−q

1−m(2r−1)p ·
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From the last two estimates it follows that (3.8) is proved if we can show that

1−R ≥ Rmr−1 · 1 +m(2r−1)p−(r−1)

1−m(2r−1)p +mq · 1−m(2r−1)p−q

1−m(2r−1)p ·

Plugging (3.2) into this inequality, we discover that it is actually an equality. �

4. Asymmetry of local and global minimizers

In this section we prove that odd functions are not local minimizers to λW (p, q, r) when q > (2r−1)p. To this
end, we can limit ourselves to showing that the function uW (x) defined by (2.6)–(2.8) is not a local minimizer.
Indeed, we have seen that this is the unique local minimizer in the class of odd functions.

To begin with, we show some relations between integrals of powers of uW (x).

Lemma 4.1. Let uW : [−T, T ]→ R be the solution to (2.6)–(2.8).

Then for every real number s ≥ 0 it turns out that∫ T

−T
|uW (x)|2s dx =

(2s+ 1)p∗ + q

(2s+ 1)p∗

∫ T

−T
|uW (x)|q+2s dx

=
(2s+ 1)p∗ + q

q

∫ T

−T
|u′W (x)|p · |uW (x)|2s dx. (4.1)

Proof. For the sake of shortness we simply write u(x) instead of uW (x). From (2.6) it follows that

|u′(x)|p + |u(x)|q = 1 ∀x ∈ [−T, T ].

Multiplying both sides by |u(x)|2s, and integrating in [−T, T ], we deduce that∫ T

−T
|u′(x)|p · |u(x)|2s dx+

∫ T

−T
|u(x)|q+2s dx =

∫ T

−T
|u(x)|2s dx. (4.2)

On the other hand, from (2.6) it follows also that∫ T

−T
|u|q+2s dx =

∫ T

−T
|u|2su · |u|q−2u

(1− |u|q)1/p
u′ dx = −p∗

q

∫ T

−T
|u|2su

[
(1− |u|q)1/p∗

]′
dx.

Now from (2.6) and (2.7) we deduce that |u(−T )| = |u(T )| = 1, and hence when we integrate by parts we
find that ∫ T

−T
|u(x)|q+2s dx =

(2s+ 1)p∗
q

∫ T

−T
|u(x)|2su′(x) (1− |u(x)|q)1/p∗ dx

=
(2s+ 1)p∗

q

∫ T

−T
|u(x)|2s · |u′(x)|p dx. (4.3)

Combining (4.2) and (4.3) we obtain (4.1). �
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Proof of asymmetry.

A general variable change. Let [a0, b0] ⊆ R be a symmetric interval with a0 = −b0, and let u0 : [a0, b0]→ R be
an odd function of class C1. Let ϕ : [a0, b0] \ {0} → R be a bounded function of class C1. Let us assume that
ϕ is odd, and let M denote the supremum of |ϕ(x)| in [a0, b0] \ {0}. For every ε ∈ (0, 1/M), let us consider the
function gε : [a0, b0]→ R defined as

gε(y) := 1 + εϕ(y) ∀y ∈ [a0, b0] \ {0}. (4.4)

Let us consider the solution yε(x) to the problem

y′ε = gε(yε), yε(0) = 0. (4.5)

Since gε(y) is bounded from below by a positive constant, there exists a (non symmetric) interval [aε, bε] such
that yε(aε) = a0 and yε(bε) = b0, and in addition

yε ∈ C0([aε, bε]) ∩ C1 ([aε, bε] \ {0}) .

Since u0(0) = 0, there exists a unique continuous function uε : [aε, bε]→ R such that

uε(x) := [y′ε(x)]
1/(r−1)

u0(yε(x)) ∀x ∈ [aε, bε] \ {0}. (4.6)

With the variable change y = yε(x) we obtain that∫ bε

aε

|uε(x)|r−2uε(x) dx =

∫ bε

aε

y′ε(x) · |u0(yε(x))|r−2u0(yε(x)) dx

=

∫ b0

a0

|u0(y)|r−2u0(y) dy.

This means that, whenever u0(x) satisfies the integral constraint (1.3), the function uε(x) satisfies the same
condition for every admissible value of ε.

We can also transform uε(x) in a new function defined in [a0, b0] through a further affine variable change,
and in this sense uε → u0 in the C1 norm as ε→ 0+.

Expansion of the length of the interval . We claim that the length of the interval satisfies

(bε − aε)θ = (b0 − a0)θ
(

1 +
I0
J0
θε2 + o(ε2)

)
as ε→ 0+, (4.7)

where

I0 :=

∫ b0

a0

ϕ2(x) dx, J0 :=

∫ b0

a0

1 dx = b0 − a0.

Indeed, from (4.5) we obtain that

bε − aε =

∫ bε

aε

1 dx =

∫ bε

aε

y′ε(x)

gε(yε(x))
dx =

∫ b0

a0

1

gε(y)
dy.

Moreover, from (4.4) we deduce that

1

gε(y)
=

1

1 + εϕ(y)
= 1− εϕ(y) + ε2ϕ2(y) + o(ε2).

Integrating in [a0, b0], and recalling that ϕ(y) is an odd function, we conclude that

bε − aε =

∫ b0

a0

1

gε(y)
dy = (b0 − a0) + ε2

∫ b0

a0

ϕ2(x) dx+ o(ε2).

Raising both sides to the power θ, we obtain exactly (4.7).
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Expansion of the norm of uε. We claim that the norm of uε in Lq((aε, bε)) satisfies

‖uε‖q = ‖u0‖q
(

1 +
I1
J1
γ1ε

2 + o(ε2)

)
as ε→ 0+, (4.8)

where

γ1 :=
q

2(r − 1)2
− 3

2(r − 1)
+

1

q
,

I1 :=

∫ b0

a0

|u0(x)|q · ϕ2(x) dx, J1 :=

∫ b0

a0

|u0(x)|q dx.

Indeed, from (4.5) we obtain that∫ bε

aε

|uε(x)|q dx =

∫ bε

aε

|u0(yε(x))|q · [gε(yε(x))]
q

r−1−1 · y′ε(x) dx

=

∫ b0

a0

|u0(y)|q · [gε(y)]
q

r−1−1 dy.

Moreover, from (4.4) we deduce that

[gε(y)]
q

r−1−1 = [1 + εϕ(y)]
q

r−1−1 = 1 + ε

(
q

r − 1
− 1

)
ϕ(y) + qγ1ε

2ϕ2(y) + o(ε2).

When we plug this expansion into the integral, the first order term cancels due to the symmetries, and we
conclude that ∫ bε

aε

|uε(x)|q dx =

∫ b0

a0

|u0(y)|q dy + qγ1ε
2

∫ b0

a0

|u0(y)|q · ϕ2(y) dy + o(ε2).

Raising both sides to the power 1/q, we obtain exactly (4.8).

Expansion of the norm of u′ε. Let us assume that there exists a continuous odd function ψ : [a0, b0] → R such
that

ϕ′(x)u0(x) = ψ(x)u′0(x) ∀x ∈ [a0, b0] \ {0}. (4.9)

Then we claim that the norm of u′ε in Lp((aε, bε)) satisfies

‖u′ε‖p = ‖u′0‖p
(

1 +
I2,1γ2,1 + I2,2γ2,2 + I2,3γ2,3

J2
ε2 + o(ε2)

)
as ε→ 0+, (4.10)

where

γ2,1 :=
r2p

2(r − 1)2
− 3

2

r

r − 1
+

1

p
, γ2,2 :=

(p− 1)

2(r − 1)2
, γ2,3 :=

rp

(r − 1)2
− 2

r − 1
,

and

J2 :=

∫ b0

a0

|u′0(x)|p dx, I2,1 :=

∫ b0

a0

|u′0(x)|p · ϕ2(x) dx,

I2,2 :=

∫ b0

a0

|u′0(x)|p · ψ2(x) dx, I2,3 :=

∫ b0

a0

|u′0(x)|p · ϕ(x) · ψ(x) dx.

Indeed, from (4.4) and (4.5) we obtain that

y′′ε (x) = g′ε(yε(y)) · y′ε(x) = εϕ′(yε(x)) · y′ε(x) ∀x ∈ [aε, bε] \ {0},
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and hence, keeping (4.9) into account, the time-derivative of (4.6) turns out to be

u′ε(x) = [y′ε(x)]
1/(r−1) · u′0(yε(x)) ·

(
εψ(yε(x))

r − 1
+ gε(yε(x))

)
∀x ∈ [aε, bε] \ {0},

and therefore (for the sake of shortness, we do not write the explicit dependence on x in the integrals of the
first line) ∫ bε

aε

|u′ε|p dx =

∫ bε

aε

|u′0(yε)|p ·
∣∣∣∣εψ(yε)

r − 1
+ gε(yε)

∣∣∣∣p · [gε(yε)] p
r−1−1 · y′ε dx

=

∫ b0

a0

|u′0(y)|p ·
∣∣∣∣εψ(y)

r − 1
+ gε(y)

∣∣∣∣p · [gε(y)]
(p−r+1)/(r−1)

dy.

Recalling (4.4), we find that the last integrand is equal to

|u′0(y)|p ·

{
1 + p

(
ϕ(y) +

ψ(y)

r − 1

)
ε+

p(p− 1)

2

(
ϕ(y) +

ψ(y)

r − 1

)2

ε2

}

·
{

1 +
p− r + 1

r − 1
ϕ(y)ε+

(p− r + 1)(p− 2r + 2)

2(r − 1)2
ϕ2(y)ε2

}
+ o(ε2).

Now with some patience we multiply and we integrate in [a0, b0], and we observe that the terms of order 1
cancel due to the symmetries. Then we raise the result to the power 1/p and we get exactly (4.10).

Non-optimal asymmetry result – Back to literature. Just to present a somewhat trivial example, let us consider
for a while the case where ϕ(x) is the piecewise constant function equal to −1 in (a0, 0) and equal to 1 in (0, b0).
Due to the lack of regularity of ϕ, the variable change yε(x) is just piecewise affine, and actually the function
uε(x) defined in (4.6) is analogous to the one defined in (2.14). In this case (4.9) holds true with ψ(x) ≡ 0, and
the expansions (4.7), (4.8), and (4.10) hold true with

I0 = J0, I1 = J1, I2,1 = J2, I2,2 = I2,3 = 0,

and therefore

(bε − aε)θ
‖u′ε‖p
‖uε‖q

= (b0 − a0)θ
‖u′0‖p
‖u0‖q

(
1 + Γp,q,rε

2 + o(ε2)
)
,

where

Γp,q,r = θ − γ1 + γ2,1 = −q − r
2p+ (r − 1)2

2(r − 1)2
·

This implies that every odd function u0(x) is not a local minimum point in the range q > r2p− (r − 1)2, as
already observed.

Optimal asymmetry result. Let us finally focus on the case where u0(x) = uW (x), namely on the unique candidate
to be a local minimum point in general. Let us choose ϕ(x) := |uW (x)|r−2uW (x), and let us observe that this
function satisfies (4.9) with ψ(x) := (r − 1)ϕ(x). As a consequence, the coefficients in (4.7) through (4.10) can
be computed by applying Lemma 4.1 with s = 0 and s = r − 1. We find that expansion (4.7) holds true with

I0 =

∫ b0

a0

|uW (x)|2r−2 dx, J0 = b0 − a0,

expansion (4.8) holds true with

I1 =

∫ b0

a0

|uW (x)|q+2r−2 dx =
(2r − 1)p∗

(2r − 1)p∗ + q
I0, J1 =

∫ b0

a0

|uW (x)|q dx =
p∗

p∗ + q
J0,
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and expansion (4.10) holds true with

I2,1 =
I2,2

(r − 1)2
=

I2,3
r − 1

=

∫ b0

a0

|u′W (x)|p · |uW (x)|2r−2 dx =
q

(2r − 1)p∗ + q
I0,

J2 =

∫ b0

a0

|u′W (x)|p dx =
q

p∗ + q
J0.

Putting things together, with some calculations we end up with

(bε − aε)θ
‖u′ε‖p
‖uε‖q

= (b0 − a0)θ
‖u′W ‖p
‖uW ‖q

(
1 +

I0
J0
Γp,q,rε

2 + o(ε2)

)
,

where

Γp,q,r = θ +
p∗ + q

(2r − 1)p∗ + q

{
−(2r − 1)γ1 + γ2,1 + (r − 1)2γ2,2 + (r − 1)γ2,3

}
= − 2r − 1

2(r − 1)2
· p∗ + q

(2r − 1)p∗ + q
·
(
q − (2r − 1)p

)
.

This implies that uW (x) is not a local minimum point in the range q > (2r− 1)p. �
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Non Linéaire 9 (1992) 29–50.

[6] Y.V. Egorov, On a Kondratiev problem. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 503–507.

[7] I.V. Gerasimov and A.I. Nazarov, Best constant in a three-parameter Poincaré inequality. J. Math. Sci. (N.Y.) 179 (2011)
80–99. Problems in mathematical analysis.

[8] B. Kawohl, Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete Contin. Dynam. Syst.
6 (2000) 683–690.

[9] N. Kuznetsov and A. Nazarov, Sharp constants in the Poincaré, Steklov and related inequalities (a survey). Mathematika 61
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