COMPARISON BETWEEN W_2 DISTANCE AND \dot{H}^{-1} NORM, AND LOCALIZATION OF WASSERSTEIN DISTANCE *

RÉMI PEYRE^{1,*}

Abstract. It is well known that the quadratic Wasserstein distance $W_2(\cdot, \cdot)$ is formally equivalent, for infinitesimally small perturbations, to some weighted H^{-1} homogeneous Sobolev norm. In this article I show that this equivalence can be integrated to get non-asymptotic comparison results between these distances. Then I give an application of these results to prove that the W_2 distance exhibits some localization phenomenon: if μ and ν are measures on \mathbb{R}^n and $\varphi \colon \mathbb{R}^n \to \mathbb{R}_+$ is some bump function with compact support, then under mild hypotheses, you can bound above the Wasserstein distance between $\varphi \cdot \mu$ and $\varphi \cdot \nu$ by an explicit multiple of $W_2(\mu, \nu)$.

Mathematics Subject Classification. 49Q20, 28A75, 46E35.

Received March 23, 2017.

1. Foreword

This article is divided into two sections, each of which having its own introduction. Section 2 deals with general results of comparison between Wasserstein distance and homogeneous Sobolev norm, while Section 3 handles an application to localization of W_2 distance.

2. Non-asymptotic equivalence between W_2 distance and $\dot{\mathrm{H}}^{-1}$ norm

2.1. Introduction

In all this section, M denotes a connected Riemannian manifold endowed with its distance $dist(\cdot, \cdot)$ and its standard measure λ provided by the volume form (so, in the case $M = \mathbb{R}^n$, λ is the Lebesgue measure). Let us give a few standard definitions which will be at the core of our work:

• For μ, ν two positive measures on M, denoting by $\Pi(\mu, \nu)$ the set of (positive) measures on $M \times M$ whose respective marginals are μ and ν , for $\pi \in \Pi(\mu, \nu)$ one defines

$$I(\pi) := \int_{M \times M} dist(x, y)^2 \pi(\mathrm{d}x, \mathrm{d}y)$$
 (2.1)

Keywords and phrases. Wasserstein distance, homogeneous Sobolev norm, localization.

^{*} Supported by the Austrian Science Fund (FWF) under grant P25815.

¹ Institut Élie Cartan de Lorraine, Campus Aiguillettes, 1 boulevard des Aiguillettes, BP 70239, 54506 Vandœuvre-lès-Nancy Codox, France.

^{*} Corresponding author: remi.peyre@univ-lorraine.fr

and then

$$W_2(\mu, \nu) := \inf\{I(\pi) | \pi \in \Pi(\mu, \nu)\}^{1/2}.$$
(2.2)

W₂ is a (possibly infinite) distance, called the *quadratic Wasserstein distance* ([13], Sect. 7.1). Note that this distance is finite only between measures having the same total mass.

• On the other hand, for μ a (positive) measure on M, if f is a \mathbb{C}^1 real function on M, one denotes

$$||f||_{\dot{\mathbf{H}}^1(\mu)} := \left(\int_M |\nabla f(x)|^2 \mu(\mathrm{d}x) \right)^{1/2},$$
 (2.3)

which defines a semi-norm; for ν a signed measure on M, one then denotes

$$\|\nu\|_{\dot{\mathbf{H}}^{-1}(\mu)} := \sup\{|\langle f, \nu \rangle| \, | \, \|f\|_{\dot{\mathbf{H}}^{1}(\mu)} \leqslant 1\},\tag{2.4}$$

where the duality product $\langle f, \nu \rangle$ denotes the integral of the function f against the measure ν .² We observe that $\|\cdot\|_{\dot{\mathbf{H}}^{-1}(\mu)}$ defines a (possibly infinite) norm, which we will call the $\dot{\mathbf{H}}^{-1}(\mu)$ weighted homogeneous Sobolev norm. Note that this norm is finite only for measures having zero total mass. In the case μ is the standard measure, we will merely write " $\dot{\mathbf{H}}^{-1}$ " for " $\dot{\mathbf{H}}^{-1}(\lambda)$ ".

The W₂ Wasserstein distance is an important object in analysis; but it is non-linear, which makes it harder to study. For infinitesimal perturbations however, the linearized behaviour of W₂ is well known: if μ is a positive measure on M and d μ is an infinitesimally small perturbation of this measure,³ one has formally (see [13], Sect 7.6, or [9], Sect. 7)

$$W_2(\mu, \mu + d\mu) = \|d\mu\|_{\dot{H}^{-1}(\mu)} + o(d\mu).^4$$
(2.5)

More precisely, one has the following equality, known as the Benamou-Brenier formula ([2], Prop. 1.1) (see [10] when M is a general Riemannian manifold): for two positive measures μ, ν on M,

$$W_2(\mu, \nu) = \inf \left\{ \int_0^1 \|d\mu\|_{\dot{H}^{-1}(\mu t)} \, \middle| \, \mu_0 = \mu, \, \, \mu_1 = \nu \right\}.$$
 (2.6)

Then, a natural question is the following: are there *non-asymptotic* comparisons between the W_2 distance and the \dot{H}^{-1} norm? Concretely, we are looking for inequalities like

$$C_{\rm a} \|\mu - \nu\|_{\dot{\mathbf{H}}^{-1}(\mu)} \le W_2(\mu, \nu) \le C_{\rm b} \|\mu - \nu\|_{\dot{\mathbf{H}}^{-1}(\mu)}$$
 (2.7)

for constants $0 < C_a \le C_b < \infty$, under mild assumptions on μ and ν .

2.2. Controlling W_2 by \dot{H}^{-1}

Theorem 2.1. For any positive measures μ, ν on M,

$$W_2(\mu, \nu) \leqslant 2 \|\mu - \nu\|_{\dot{H}^{-1}(\mu)}. \tag{2.8}$$

Proof. We suppose that $\|\mu - \nu\|_{\dot{\mathbf{H}}^{-1}(\mu)} < \infty$, otherwise there is nothing to prove. For $t \in [0,1]$, let

$$\mu_t := (1 - t)\mu + t\nu, \tag{2.9}$$

²The rationale behind the use of duality notation in this article is that we cannot use the notation " $d\mu$ " to refer to the measure of a small volume: see indeed Footnote 3 below.

³Beware that here d μ denotes a small measure on M, not the value of μ on a small volume.

⁴This formula has to be understood in the sense that, for every measure ν , one has $W_2(\mu, \mu + \varepsilon \nu) \stackrel{\varepsilon \to 0}{=} |\varepsilon| \|\nu\|_{\dot{H}^{-1}(\mu)} + o(\varepsilon)$. As explained in the references cited, some regularity assumptions on ν shall be required for that property to hold rigorously: in particular, one must have $\nu \ll \mu$ with a bounded and smooth enough density.

so that $\mu_0 = \mu$, $\mu_1 = \nu$ and $d\mu_t = (\mu - \nu)dt$. Then, by the Benamou–Brenier formula (2.6):

$$W_2(\mu, \nu) \le \int_0^1 \|\mu - \nu\|_{\dot{H}^{-1}(\mu_t)} dt.$$
 (2.10)

Now, we use the following key lemma, whose proof is postponed:

Lemma 2.2. If μ, μ' are two measures such that $\mu' \geqslant \rho \mu$ for some $\rho > 0$, then $\|\cdot\|_{\dot{H}^{-1}(\mu')} \leqslant \rho^{-1/2} \|\cdot\|_{\dot{H}^{-1}(\mu)}$.

Here obviously $\mu_t \geqslant (1-t)\mu$, so

$$W_2(\mu,\nu) \leqslant \int_0^1 (1-t)^{-1/2} \|\mu - \nu\|_{\dot{H}^{-1}(\mu)} dt = 2 \|\mu - \nu\|_{\dot{H}^{-1}(\mu)}. \tag{2.11}$$

Corollary 2.3. If $\mu \geqslant \rho \lambda$ for some $\rho > 0$, then

$$W_2(\mu, \nu) \leqslant 2\rho^{-1/2} \|\mu - \nu\|_{\dot{\mathbf{H}}^{-1}}. \tag{2.12}$$

Proof. Just use that $\|\cdot\|_{\dot{H}^{-1}(\mu)} \leq \rho^{-1/2} \|\cdot\|_{\dot{H}^{-1}}$ by Lemma 2.2.

Proof of Lemma 2.2. Take $\mu' \geqslant \rho\mu$ and let ν be a signed measure on M such that $\mu + \nu$ is positive; then $\mu' + \rho\nu$ is also positive. For m a measure on M, we denote by diag(m) the measure on $M \times M$ supported by the diagonal whose marginals (which are equal) are m, *i.e.*:

$$(\operatorname{diag}(m))(A \times B) := m(A \cap B); \tag{2.13}$$

with that notation,

$$\pi \in \Pi(\mu, \mu + \nu) \Rightarrow \rho \pi + \operatorname{diag}(\mu' - \rho \mu) \in \Pi(\mu', \mu' + \rho \nu), \tag{2.14}$$

and

$$I(\rho\pi + \operatorname{diag}(\mu' - \rho\mu)) = \rho I(\pi). \tag{2.15}$$

Therefore, taking infima,

$$W_{2}(\mu', \mu' + \rho \nu)^{2} = \inf \{ I(\pi') \mid \pi' \in \Gamma(\mu', \mu' + \rho \nu) \}$$

$$\leq \inf \{ I(\rho \pi + \operatorname{diag}(\mu' - \rho \mu)) \mid \pi \in \Gamma(\mu, \mu + \nu) \}$$

$$= \rho \inf \{ I(\pi) \mid \pi \in \Gamma(\mu, \mu + \nu) \} = \rho W_{2}(\mu, \mu + \nu)^{2}. \quad (2.16)$$

For infinitesimally small ν ,⁶ it follows by equation (2.5) that $\|\rho\nu\|_{\dot{\mathrm{H}}^{-1}(\mu')}^2 \leqslant \rho \|\nu\|_{\dot{\mathrm{H}}^{-1}(\mu)}^2$, hence $\|\nu\|_{\dot{\mathrm{H}}^{-1}(\mu')} \leqslant \rho^{-1/2} \|\nu\|_{\dot{\mathrm{H}}^{-1}(\mu)}$. This relation remains true even for non-infinitesimal ν by linearity, which ends the proof. \square

Remark 2.4. Lemma 2.2 could also be proved very quickly by using the definition (2.3)-(2.4) of the $\dot{H}^{-1}(\mu)$ norm. The proof above, however, has the advantage that it does not need the precise expression of $\|\cdot\|_{\dot{H}^{-1}(\mu)}$, but only the fact that it is the linearized W_2 distance.

⁵Beware that here '·' stands for a *measure*, not for a function: otherwise the formula would be false.— When f is a function, $||f||_{\dot{\mathbf{H}}^{-1}(\mu)}$ stands for the $\dot{\mathbf{H}}^{-1}(\mu)$ norm of the measure having density f w.r.t. μ .

⁶To make rigorous the formal argument of taking an infinitestimally small ν , according to Footnote 4 above, one would have to replace ν by $\varepsilon\nu_1$, where ν_1 is a regular enough measure, and to let ε tend to 0; then the regularity assumption on ν_1 would be relaxed by a classical approximation argument. Anyway, Lemma 2.2 can also be proved easily and rigorously without referring to optimal transportation at all, cf. Remark 2.4 below.

2.3. Controlling \dot{H}^{-1} by W_2

Theorem 2.5. Assume M has nonnegative Ricci curvature. Then for any positive measures μ, ν on M such that $\mu \leq \rho_0 \lambda$ and $\nu \leq \rho_1 \lambda$,

$$\|\mu - \nu\|_{\dot{\mathbf{H}}^{-1}} \le \frac{2(\rho_0^{1/2} - \rho_1^{1/2})}{\ln(\rho_0 / \rho_1)} \mathbf{W}_2(\mu, \nu).$$
 (2.17)

(For $\rho_1 = \rho_0$, the right-hand side of (2.17) is to be taken as $\rho_0^{1/2}W_2(\mu,\nu)$ by continuity).

Remark 2.6. For $M = \mathbb{R}^n$ a similar result was already stated in ([7], Prop. 2.8), with a different proof.

Proof. Assume that $W_2(\mu,\nu) < \infty$, otherwise there is nothing to prove. Let $(\mu_t)_{0 \leqslant t \leqslant 1}$ be the displacement interpolation between μ and ν (cf. [14], Chapt. 7), which is such that $\mu_0 = \mu$, $\mu_1 = \nu$ and the infimum in (2.6) is attained with $\|\mathrm{d}\mu_t\|_{\dot{\mathrm{H}}^{-1}(\mu_t)} = W_2(\mu,\nu)\mathrm{d}t \ \forall t$. Since Ricci curvature is nonnegative, the Lott-Sturm-Villani theory tells us that, denoting by $\|\mu\|_{\infty}$ the essential supremum of the density of μ w.r.t. λ , one has $\|\mu_t\|_{\infty} \leqslant \|\mu_0\|_{\infty}^{1-t} \|\mu_1\|_{\infty}^t \leqslant \rho_0^{1-t} \rho_1^t$ (see [14], Cor. 17.19 or [5], Lem. 6.1); so that $\|\cdot\|_{\dot{\mathrm{H}}^{-1}} \leqslant \rho_0^{(1-t)/2} \rho_1^{t/2} \|\cdot\|_{\dot{\mathrm{H}}^{-1}(\mu_t)}$ by Lemma 2.2.

Then, by the integral triangle inequality for normed vector spaces,

$$\|\mu - \nu\|_{\dot{\mathbf{H}}^{-1}} = \left\| \int_0^1 \mathrm{d}\mu_t \right\|_{\dot{\mathbf{H}}^{-1}} \leqslant \int_0^1 \|\mathrm{d}\mu_t\|_{\dot{\mathbf{H}}^{-1}} \leqslant \int_0^1 \rho_0^{(1-t)/2} \rho_1^{t/2} \|\mathrm{d}\mu_t\|_{\dot{\mathbf{H}}^{-1}(\mu_t)}$$

$$= \left(\int_0^1 \rho_0^{(1-t)/2} \rho_1^{t/2} \mathrm{d}t \right) W_2(\mu, \nu) = \frac{2(\rho_0^{1/2} - \rho_1^{1/2})}{\ln(\rho_0 / \rho_1)} W_2(\mu, \nu). \tag{2.18}$$

Remark 2.7. Taking into account the dimension n of the manifold M, the bound on $\|\mu_t\|_{\infty}$ could be refined into

$$\|\mu_t\|_{\infty} \le \left((1-t) \|\mu_0\|_{\infty}^{-1/n} + t \|\mu_1\|_{\infty}^{-1/n} \right)^{-n}$$
 (2.19)

(cf. [8], Thm. 2.3), which would yield a slightly sharper bound in equation (2.17), namely:

$$\|\mu - \nu\|_{\dot{H}^{-1}} \leqslant \left(\int_{0}^{1} \left((1 - t)\rho_{0}^{-1/n} + t\rho_{1}^{-1/n} \right)^{-n/2} dt \right) W_{2}(\mu, \nu) = \begin{cases} \frac{\rho_{0}^{1/2 - 1/n} - \rho_{1}^{1/2 - 1/n}}{(n/2 - 1)(\rho_{1}^{-1/n} - \rho_{0}^{-1/n})} W_{2}(\mu, \nu) & n \geqslant 2; \\ \frac{\log(\rho_{1} / \rho_{0})}{2(\rho_{0}^{-1/2} - \rho_{1}^{-1/2})} W_{2}(\mu, \nu) & n = 2. \end{cases}$$

$$(2.20)$$

For n=1 it turns out that one can let tend $\rho_1 \to \infty$ in (2.20) without making the integral diverge; which leads to a much more powerful result:

Theorem 2.8. When M is an interval of \mathbb{R} , then under the sole assumption that $\mu \leqslant \rho_0 \lambda$, one has for all positive measures ν on M:

$$\|\mu - \nu\|_{\dot{\mathbf{H}}^{-1}} \le 2\rho_0^{1/2} \mathbf{W}_2(\mu, \nu).$$
 (2.21)

Remark 2.9. For $n \ge 2$ there is no hope to get a bound valid for all ν , because then it can occur that $W_2(\mu,\nu) < \infty$ but $\|\mu - \nu\|_{\dot{H}^{-1}} = \infty$: for instance, take μ to be the uniform measure on the 2-dimensional sphere and ν a Dirac mass.

3. Application to localization of Wasserstein distance

3.1. Introduction

In all this section, we work in the Euclidian space \mathbb{R}^n , whose norm is denoted by $|\cdot|$. dist(x,A) := $\inf\{|x-y|\,|\,y\in A\}$ denotes the distance between a point x and a set A; A^c denotes the complement of A; λ denotes the Lebesgue measure. We will use the following notation to handle measures:

- For μ a measure on \mathbb{R}^n and $f: \mathbb{R}^n \to \mathbb{R}^n$ a measurable map, $f_* \mu$ denotes the pushforward of μ by f, that is, $(f_* \mu)(A) := \mu(f^{-1}(A)).$
- For μ a measure on \mathbb{R}^n and $\varphi \colon \mathbb{R}^n \to \mathbb{R}_+$ a nonnegative measurable function, $\varphi \cdot \mu$ denotes the measure such that $(\varphi \cdot \mu)(\mathrm{d}x) := \varphi(x)\mu(\mathrm{d}x)$.

We will also use the following norms on measures:

- $\|\mu\|_{\dot{H}^{-1}(\nu)}$ has the same definition as in Section 2;
- $\|\mu\|_1 := \int_{\mathbb{R}^n} |\mu(\mathrm{d}x)|$ is the total variation norm of μ ;
- For ν a positive measure with $\mu \ll \nu$, we define

$$\|\mu\|_{L^2(\nu)} := \left(\int_{\text{supp }\nu} \left(\frac{\mu(\mathrm{d}x)}{\nu(\mathrm{d}x)}\right)^2 \nu(\mathrm{d}x)\right)^{1/2}.8$$
 (3.1)

For $A \subset \mathbb{R}^n$, we also denote $\|\cdot\|_{L^2(A)}$ for $\|\cdot\|_{L^2(\mathbf{1}_A \cdot \lambda)}$.

The goal of this section is to give an application of Theorem 2.1 to the problem of localization of the quadratic Wasserstein distance. Morally, the question is the following: take two measures μ, ν on \mathbb{R}^n being close to each other in the sense of W_2 distance; is it true that μ and ν remain close when you consider their restrictions to a subset of \mathbb{R}^n ? Concretely, if φ is a non-negative real function on \mathbb{R}^n with compact support (plus some technical assumptions to be specified later), we want to bound above $W_2(a\varphi \cdot \mu, \varphi \cdot \nu)$ by some multiple of $W_2(\mu, \nu)$ where, in the former expression, a is a constant factor ensuring that $a\varphi \cdot \mu$ and $\varphi \cdot \nu$ have the same mass (for otherwise the distance between $\varphi \cdot \mu$ and $\varphi \cdot \nu$ is generically infinite).

This question, which was my initial motivation for the results of Section 2, was asked to me by Xavier Tolsa, who needed such a result for his paper [12] on characterizing uniform rectifiability in terms of mass transport. Actually Xavier managed to devise a proof of his own ([12], Thm. 1.1), but it was quite long (about thirty pages) and involved arguments of multi-scale analysis. With Theorem 2.1 at hand, however, the reasoning becomes far more direct; moreover we will be able to relax some of the assumptions of Xavier's theorem.

3.2. Statement of the theorem

Theorem 3.1. Let μ, ν be (positive) measures on \mathbb{R}^n having the same total mass; let B be a ball of \mathbb{R}^n (whose radius will be denoted by R when needed). Assume that on B, the density of μ w.r.t. the Lebesque measure is bounded above and below:

$$\exists \ 0 < m_1 \leqslant m_2 < \infty \qquad \forall x \in B \qquad m_1 \lambda(\mathrm{d}x) \leqslant \mu(\mathrm{d}x) \leqslant m_2 \lambda(\mathrm{d}x). \tag{3.2}$$

Let $\varphi \colon \mathbb{R}^n \to \mathbb{R}_+$ be a function such that:

- (i) φ is zero outside B;
- (ii) There exist $0 < c_1 \leqslant c_2 < \infty$ such that for all $x \in B$, $c_1 \operatorname{dist}(x, B^c)^2 \leqslant \varphi(x) \leqslant c_2 \operatorname{dist}(x, B^c)^2$.
- (iii) φ is k-Lipschitz for some $k < \infty$.

⁷Note that in the case μ is a positive measure on \mathbb{R}^n , then $\|\mu\|_1$ is nothing but $\mu(\mathbb{R}^n)$.

⁸What we denote here by $\mu(dx)/\nu(dx)$ here is what is commonly called $(d\mu/d\nu)(x)$: indeed, as we already told, in this article we reserve the use of "du" to denote a mass distribution of infinitesimally small magnitude, rather than for the mass of an infinitely

Then, denoting $a := \|\varphi \cdot \nu\|_1 / \|\varphi \cdot \mu\|_1$,

$$W_2(a\varphi \cdot \mu, \varphi \cdot \nu) \leqslant C(n) \frac{c_2^{3/2} m_2^{3/2}}{c_1^{3/2} m_1^{3/2}} k c_1^{-1/2} W_2(\mu, \nu), \tag{3.3}$$

for $C(n) < \infty$ some absolute constant only depending on n. Moreover, one can bound explicitly C(n) in such a way that $C(n) = O(n^{1/2})$ when $n \to \infty$.

Remark 3.2. Theorem 3.1 relaxes the assumptions of Theorem 1.1 of [12] on the following points: first, Tolsa's theorem required that $|\nabla \varphi|$ was bounded by a multiple of $dist(\cdot, B^c)$, while ours does not impose any specific control on $|\nabla \varphi|$ near the boundary of B; second, Tolsa's theorem worked only for radially symmetric φ . Also, contrary to [12], our conclusions state explicitly how the bound on $W_2(a\varphi \cdot \mu, \varphi \cdot \nu)$ depends on the constants k, c_1, c_2, m_1, m_2 and on the dimension n.

Remark 3.3. Actually the constraint that the support of φ is a ball is of little importance: we could assume as well that it would be a cube, a simplex, or many other shapes, as the corollary below shows:

Corollary 3.4. Make the same assumptions as in Theorem 3.1, except that B need not be a ball: instead, we only assume that, denoting by B_{\circ} the (true) ball having the same volume as B, there exists a bijection $\Phi \colon B \leftrightarrow B_{\circ}$ mapping the uniform measure on B onto the uniform measure on B_{\circ} (i.e. such that $\Phi \colon (\mathbf{1}_B \cdot \lambda) = \mathbf{1}_{B_{\circ}} \cdot \lambda$) such that Φ is bi-Lipschitz (i.e. such that both Φ and Φ^{-1} are Lipschitz). Denote by $\|\Phi\|_{\text{Lip}}$ and $\|\Phi^{-1}\|_{\text{Lip}}$ the optimal Lipschitz constants for resp. Φ and Φ^{-1} . Then, the conclusion of Theorem 3.1 remains true, except that now you have to replace the factor C(n) by

$$(\|\Phi\|_{\text{Lip}} \|\Phi^{-1}\|_{\text{Lip}})^5 C(n). \tag{3.4}$$

Proof. Consider the measures $\mu_{\circ} := \Phi_{*} \mu$ and $\nu_{\circ} := \Phi_{*} \nu$, and the bump function $\varphi_{\circ} := \varphi \circ \Phi^{-1}$; then, μ_{\circ} , ν_{\circ} and φ_{\circ} satisfy the original assumptions of Theorem 3.1, the roles of ' m_{1} ' and ' m_{2} ' (in the ball situation) being held by m_{1} and m_{2} (in the general situation) themselves, the role of 'k' being held by $\|\Phi^{-1}\|_{\text{Lip}} k$, and the roles of ' c_{1} ' and ' c_{2} ' being held by $c_{1} / \|\Phi\|_{\text{Lip}}^{2}$ and $c_{2} \|\Phi^{-1}\|_{\text{Lip}}^{2}$. Therefore, applying (3.3):

$$W_{2}(a\varphi_{\circ} \cdot \mu_{\circ}, \varphi_{\circ} \cdot \nu_{\circ}) \leq C(n) \|\Phi\|_{Lip}^{4} \|\Phi^{-1}\|_{Lip}^{4} \frac{c_{2}^{3/2} m_{2}^{3/2}}{c_{1}^{3/2} m_{1}^{3/2}} W_{2}(\mu_{\circ}, \nu_{\circ}).$$

$$(3.5)$$

But the optimal transportation plan from μ to ν , with cost $W_2(\mu,\nu)^2$, can be pushed forward by Φ into a (not optimal in general) transportation plan from μ_{\circ} to ν_{\circ} , whose cost will then be $\leqslant \|\Phi\|_{\text{Lip}}^2 W_2(\mu,\nu)^2$; so $W_2(\mu_{\circ},\nu_{\circ}) \leqslant \|\Phi\|_{\text{Lip}} W_2(\mu,\nu)$. Similarly $W_2(a\varphi \cdot \mu,\varphi \cdot \nu) \leqslant \|\Phi^{-1}\|_{\text{Lip}} W_2(a\varphi \cdot \mu_{\circ},\varphi_{\circ} \cdot \nu_{\circ})$. The announced result follows.

3.3. Proof of the main theorem

In the sequel we will shorthand $W_2(\mu, \nu) =: w$, and also $\varphi \cdot \mu =: \hat{\mu}$, resp. $\varphi \cdot \nu =: \hat{\nu}$. Let $g =: \operatorname{id} + S$ be a map achieving optimal transportation from ν to μ , i.e. such that $\mu = g * \nu$ with $\int_{\mathbb{R}^n} |S(y)|^2 \nu(\mathrm{d}y) = w^2 \cdot^{10}$

Our strategy will consist in transforming $\hat{\nu}$ into $a\hat{\mu}$ according to the following procedure:

① We apply the transportation plan g to $\hat{\nu}$; this transforms $\hat{\nu}$ into some measure $\hat{\mu}^*$. The measure $\hat{\mu}^*$ is not supported by B a priori, so we split it into $\hat{\mu}_B^* + \hat{\mu}_c^* := \mathbf{1}_B \cdot \hat{\mu}^* + \mathbf{1}_{B^c} \cdot \hat{\mu}^*$.

⁹For instance, with the estimates of this article, one finds that $C(n) := 47n^{1/2}$ fits—though this may be strongly suboptimal.

 $^{^{10}}$ Actually such an g does not always exist, as it can occur that the optimal transportation plan from ν to μ "splits points" if ν is not regular enough. However it would suffice to use the general formalism of transportation plans to handle that case: we do not do it here to keep notation light, but this is straightforward. Also note that it is not obvious that the infimum in (2.2) is attained: again, that is not a real problem as our proof still works by considering a sequence of transportation plans approaching optimality.

- ② Denoting $a_{\mathsf{c}} := \|\hat{\mu}_{\mathsf{c}}^*\|_1 / \|\hat{\mu}\|_1$, we then transform $\hat{\mu}_{\mathsf{c}}^*$ into $a_{\mathsf{c}}\hat{\mu}$ according to an arbitrary transference plan.
- ③ Finally, denoting $a_B := \|\hat{\mu}_B^*\|_1 / \|\hat{\mu}\|_1$, we transform $\hat{\mu}_B^*$ into $a_B\hat{\mu}$ according to the optimal transference plan: the cost of this operation is $W_2(\hat{\mu}_B^*, a_B\hat{\mu})$, which we bound above by $2 \|\hat{\mu}_B^* a_B\hat{\mu}\|_{\dot{H}^{-1}(a_B\hat{\mu})}$ thanks to Theorem 2.1.

Then, denoting by $W_2(\mathfrak{D}), W_2(\mathfrak{D}), W_2(\mathfrak{D})$ the respective Wasserstein distances of these steps, we shall have $W_2(\hat{\nu}, a\hat{\mu}) \leq W_2(\hat{\mathbb{Q}}) + (W_2(\hat{\mathbb{Q}})^2 + W_2(\hat{\mathbb{Q}})^2)^{1/2}.$

Let us begin with bounding the cost of Step ①. The squared cost of this step is

$$W_2(\mathfrak{D})^2 = \int |S(y)|^2 \hat{\nu}(\mathrm{d}y) = \int |S(y)|^2 \varphi(y) \nu(\mathrm{d}y) \leqslant \sup \varphi \times \int |S(y)|^2 \nu(\mathrm{d}y) = \sup \varphi \times w^2 \leqslant c_2 R^2 w^2, \quad (3.6)$$

whence $W_2(\mathfrak{D}) \leqslant c_2^{1/2} Rw$.

Now consider Step 2. As $a_c\hat{\mu}$ is supported by B, one has obviously

$$W_{2}(2)^{2} \leqslant \int \left(dist(x,B) + 2R\right)^{2} \hat{\mu}_{c}^{*}(dx) = \int_{B^{c}} \left(dist(x,B) + 2R\right)^{2} \hat{\mu}^{*}(dx). \tag{3.7}$$

From that we deduce that $W_2(2) \leq 2c_2^{1/2}Rw$ by the following computation:

$$\int_{B^{c}} \left(dist(x,B) + 2R \right)^{2} \hat{\mu}^{*}(dx) = \int_{g(y) \notin B} \left(dist(g(y),B) + 2R \right)^{2} \varphi(y) \nu(dy)
\leq c_{2} \int_{\substack{y \in B \\ g(y) \notin B}} \left(dist(g(y),B) + 2R \right)^{2} dist(y,B^{c})^{2} \nu(dy)
\leq c_{2} \int_{\substack{y \in B \\ g(y) \notin B}} \left(R dist(g(y),B) + 2R dist(y,B^{c}) \right)^{2} \nu(dy)
\leq 4c_{2} R^{2} \int_{\substack{y \in B \\ g(y) \notin B}} \left(dist(g(y),B) + dist(y,B^{c}) \right)^{2} \nu(dy)
\leq 4c_{2} R^{2} \int |y - g(y)|^{2} \nu(dy) = 4c_{2} R^{2} w^{2}.$$
(3.8)

Step 3 is the difficult one. We begin with observing that it is easy to bound the $L^2(B)$ distance between $\hat{\mu}_R^*$ and $\hat{\mu}$: indeed, denoting by f =: id + T the inverse map of q, ¹²

$$\|\hat{\mu}_{B}^{*} - \hat{\mu}\|_{L^{2}(\mathbf{1}_{B} \cdot \mu)}^{2} = \int_{B} \left(\frac{\hat{\mu}^{*}(\mathrm{d}x) - \varphi(x)\mu(\mathrm{d}x)}{\mu(\mathrm{d}x)}\right)^{2} \mu(\mathrm{d}x) = \int_{B} \left(\varphi(f(x)) - \varphi(x)\right)^{2} \mu(\mathrm{d}x)$$

$$\leq k^{2} \int_{\mathbb{R}^{n}} |x - f(x)|^{2} \mu(\mathrm{d}x) = k^{2} \int |T(x)|^{2} \mu(\mathrm{d}x) = k^{2} w^{2},$$
(3.9)

(where we used that $\hat{\mu}^*(\mathrm{d}x) = \hat{\nu}(\mathrm{d}(f(x))) = \varphi(f(x))\nu(\mathrm{d}(f(x))) = \varphi(f(x))\mu(\mathrm{d}x)$), so that

$$\|\hat{\mu}_B^* - \hat{\mu}\|_{L^2(B)}^2 \le k^2 m_2 w^2.$$
 (3.10)

¹¹Observe that $a_B + a_c = a$.

 $^{^{12}}$ For f to exist, g should be bijective, which is not always true stricto sensu; but we can safely carry out the reasoning with pretending so, by the same argument as in Footnote 10 on page 1494.

¹³Remember that when ν stands for a measure, $\|\nu\|_{L^2(\mu)}$ means what is more commonly denoted by $\|d\nu/d\mu\|_{L^2(\mu)}$, so that the relation $\mu \leqslant m\lambda$ implies that $\|\nu\|_{\mathrm{L}^{2}(\lambda)}^{2} \leqslant m \|\nu\|_{\mathrm{L}^{2}(\mu)}^{2}$ —while on the other hand, when f stands for a function, one has $\left\|f\right\|_{\mathrm{L}^{2}(\mu)}^{2}\leqslant m\left\|f\right\|_{\mathrm{L}^{2}(\lambda)}^{2}.$

Now we have to link $\|\cdot\|_{L^2(B)}$ with $\|\cdot\|_{\dot{H}^{-1}(\mu)}$. This is achieved by the following lemma, whose proof is postponed:

Lemma 3.5. Define $\hat{\lambda}$ to be the measure on B such that $\hat{\lambda}(dx) := dist(x, B^c)^2 \lambda(dx)$. Then, for any signed measure m on B having total mass zero:

$$||m||_{\dot{\mathbf{H}}^{-1}(\hat{\lambda})} \le C_1(n)^{1/2} ||m||_{\mathbf{L}^2(B)},$$
 (3.11)

where $C_1(n)$ is some absolute constant only depending on n. Moreover, taking $C_1(n) := ((2e+1)n-1) \vee 8e$ fits.

Thanks to Theorem 2.1 and Lemma 3.5, we have that

$$W_{2}(\mathfrak{J}) \leq 2 \|a_{B}\hat{\mu} - \hat{\mu}_{B}^{*}\|_{\dot{H}^{-1}(a_{B}\hat{\mu})} \leq 2(a_{B}c_{1}m_{1})^{-1/2} \|a_{B}\hat{\mu} - \hat{\mu}_{B}^{*}\|_{\dot{H}^{-1}(\hat{\lambda})} \leq 2C_{1}(n)^{1/2} (a_{B}c_{1}m_{1})^{-1/2} \|a_{B}\hat{\mu} - \hat{\mu}_{B}^{*}\|_{L^{2}(B)}.$$

$$(3.12)$$

Next, we compute

$$\|a_{B}\hat{\mu} - \hat{\mu}_{B}^{*}\|_{L^{2}(B)} = \left\| \frac{\|\hat{\mu}_{B}^{*}\|_{1}}{\|\hat{\mu}\|_{1}} \hat{\mu} - \hat{\mu}_{B}^{*} \right\|_{L^{2}(B)} \leqslant \frac{\|\hat{\mu}_{B}^{*}\|_{1} - \|\hat{\mu}\|_{1}}{\|\hat{\mu}\|_{1}} \|\hat{\mu}\|_{L^{2}(B)} + \|\hat{\mu}_{B}^{*} - \hat{\mu}\|_{L^{2}(B)}$$

$$\leqslant \frac{\|\hat{\mu}\|_{L^{2}(B)}}{\|\hat{\mu}\|_{1}} \|\hat{\mu}_{B}^{*} - \hat{\mu}\|_{1} + \|\hat{\mu}_{B}^{*} - \hat{\mu}\|_{L^{2}(B)} \leqslant \left(\frac{\|\hat{\mu}\|_{L^{2}(B)}}{\|\hat{\mu}\|_{1}} \lambda(B)^{1/2} + 1\right) \|\hat{\mu}_{B}^{*} - \hat{\mu}\|_{L^{2}(B)}$$

$$\leqslant \left(\frac{c_{2}m_{2}}{c_{1}m_{1}} \frac{\lambda(B)^{1/2}}{\|\hat{\lambda}\|_{1}} + 1\right) \|\hat{\mu}_{B}^{*} - \hat{\mu}\|_{L^{2}(B)} \leqslant \left(\frac{c_{2}m_{2}}{c_{1}m_{1}} + 1\right) \|\hat{\mu}_{B}^{*} - \hat{\mu}\|_{L^{2}(B)}$$

$$\leqslant \left(\sqrt{6} + 1\right) \frac{c_{2}m_{2}}{c_{1}m_{1}} km_{2}^{1/2} w, \tag{3.13}$$

so that, combining (3.12) and (3.13), we have got:

$$W_2(3) \le (2\sqrt{6} + 2)C_1(n)^{1/2} a_B^{-1/2} \frac{c_2 m_2^{3/2}}{c_1 m_1^{3/2}} \frac{k}{c_1^{1/2}} w.$$
(3.14)

Equation (3.14) is the kind of bound we were looking for, provided $a_B \lesssim 1$. Though this will be the case in practice (since we are mainly interested in cases where ν is close to μ and thus $\hat{\mu}^*$ is close to $\hat{\mu}$), this is not quite satisfactory yet. So, what can we do when $a_B \ll 1$, that is, when $\|\hat{\mu}_B^*\|_1 \ll \|\hat{\mu}\|_1$? In fact that case is easier, because transportation between small measures has low cost, while w has to be large to make $\hat{\mu}_B^*$ very different from $\hat{\mu}$.

The computations are the following. First, it is obvious that

$$W_2(\mathfrak{F}) = W_2(\hat{\mu}_B^*, a_B \hat{\mu}) \leqslant 2R \|\hat{\mu}_B^*\|_1^{1/2}. \tag{3.15}$$

 $^{^{14} \}text{This step comes from the computation } \lambda(B)^{1/2} \left\| \hat{\lambda} \right\|_{\text{L}^2(B)} \ / \ \left\| \hat{\lambda} \right\|_1 = (\int_0^1 r^{n-1} \mathrm{d}r)^{1/2} \left(\int_0^1 (1-r)^4 r^{n-1} \mathrm{d}r \right)^{1/2} \ / \left(\int_0^1 (1-r)^2 r^{n-1} \mathrm{d}r \right) = (6(1+n)(2+n) \ / \ (3+n)(4+n))^{1/2} \leqslant \sqrt{6} \ \forall n.$

Next, observing that $\varphi(f(x)) \geqslant \frac{c_1}{c_2}\varphi(x) - 2c_1 \operatorname{dist}(x, B^{\mathsf{c}})|T(x)|,^{15}$ we compute that

$$\|\hat{\mu}_{B}^{*}\|_{1} = \int_{B} \varphi(f(x))\mu(\mathrm{d}x) \geqslant \int_{B} \left(\frac{c_{1}}{c_{2}}\varphi(x) - 2c_{1}\operatorname{dist}(x, B^{\mathsf{c}})|T(x)|\right)\mu(\mathrm{d}x)$$

$$\geqslant \frac{c_{1}}{c_{2}}\|\hat{\mu}\|_{1} - 2c_{1}\left(\int_{B}\operatorname{dist}(x, B^{\mathsf{c}})^{2}\mu(\mathrm{d}x)\right)^{1/2}\left(\int_{B}|T(x)|^{2}\mu(\mathrm{d}x)\right)^{1/2}$$

$$= \frac{c_{1}}{c_{2}}\|\hat{\mu}\|_{1} - 2c_{1}\|\operatorname{dist}(\cdot, B^{\mathsf{c}})^{2} \cdot \mu\|_{1}^{1/2} w \geqslant \frac{c_{1}}{c_{2}}\|\hat{\mu}\|_{1} - 2c_{1}m_{2}^{1/2}\|\hat{\lambda}\|_{1}^{1/2} w, \tag{3.17}$$

whence

$$w \geqslant \frac{\left(\frac{c_1}{c_2} \|\hat{\mu}\|_1 - \|\hat{\mu}_B^*\|_1\right)^+}{2c_1 m_2^{1/2} \|\hat{\lambda}\|_1^{1/2}} = \frac{\left(\frac{c_1}{c_2} - a_B\right)^+ \|\hat{\mu}\|_1}{2c_1 m_2^{1/2} \|\hat{\lambda}\|_1^{1/2}} \geqslant \frac{m_1^{1/2}}{2c_1^{1/2} m_2^{1/2}} \left(\frac{c_1}{c_2} - a_B\right)^+ \|\hat{\mu}\|_1^{1/2}. \tag{3.18}$$

So,

$$W_2(\mathfrak{D}) \leqslant 2R \|\hat{\mu}_B^*\|_1^{1/2} = 2Ra_B^{1/2} \|\hat{\mu}\|_1^{1/2} \leqslant 4Rc_1^{1/2} \frac{m_2^{1/2}}{m_1^{1/2}} \frac{a_B^{1/2}}{(\frac{c_1}{c_2} - a_B)^+} w. \tag{3.19}$$

In the end, choosing either (3.14) if $a_B \ge c_1 / 2c_2$ or (3.19) if $c_1 / 2c_2$, and observing that $c_1 \le kR^{-1}$, one has always:

$$W_2(3) \leqslant \left((4\sqrt{3} + 2\sqrt{2})C_1(n)^{1/2} \vee 4\sqrt{2} \right) \frac{c_2^{3/2} m_2^{3/2}}{c_1^{3/2} m_1^{3/2}} \frac{k}{c_1^{1/2}} w. \tag{3.20}$$

Remark 3.6. To bound $W_2(\mathfrak{F})$ in the situation where $a_B \ll 1$, we could also have started from " $\varphi(f(x)) \geqslant 1$ " $\varphi(x) - k|T(x)| \text{" (instead of "} \varphi(f(x)) \geqslant \frac{c_1}{c_2} \varphi(x) - 2c_1 \operatorname{dist}(x, B^{\mathbf{c}}) |T(x)| \text{") to get another bound analogous to (3.17)}.$ Following such an approach, the factor $(c_2/c_1)^{3/2}$ in (3.19) would be improved into (c_2/c_1) in the analogous formula; however the dimensional factor would behave in O(n) rather than in $O(n^{1/2})$.

3.4. Proof of Lemma 3.5

It still remains to prove Lemma 3.5, whose statement we recall to be:

Lemma 3.7. Denoting $\hat{\lambda} := dist(\cdot, B^c)^2 \cdot \lambda$, one has, for any signed measure m on B having total mass zero:

$$||m||_{\dot{\mathbf{H}}^{-1}(\hat{\lambda})} \le (((2e+1)n-1) \lor 8e)^{1/2} ||m||_{\mathbf{L}^{2}(B)}.$$
 (3.21)

—In the sequel, " $((2e+1)n-1) \vee 8e$ " will be shorthanded into " $C_1(n)$ ".

Remark 3.8. The bound (3.21) is within a constant factor of being optimal, uniformly in n, as one sees by taking a linear function f in (3.24).

Proof of the lemma. We begin with translating the lemma into a functional analysis statement by a duality argument. Recall the duality definition of $||m||_{\dot{\mathbf{H}}^{-1}(\hat{\lambda})}$ from Section 2:

$$||m||_{\dot{\mathbf{H}}^{-1}(\hat{\lambda})} := \sup\{|\langle f, m \rangle| \, | \, ||f||_{\dot{\mathbf{H}}^{1}(\hat{\lambda})} \le 1\}.$$
 (3.22)

$$\varphi(f(x))\geqslant c_1\ dist(f(x),B^{\mathsf{c}})^2\geqslant c_1\left(\left(dist(x,B^{\mathsf{c}})-|T(x)|\right)^+\right)^2\geqslant c_1\ dist(x,B^{\mathsf{c}})^2-2c_1\ dist(x,B^{\mathsf{c}})|T(x)|\geqslant \frac{c_1}{c_2}\varphi(x)-2c_1\ dist(x,B^{\mathsf{c}})|T(x)|. \tag{3.16}$$

¹⁵This follows from the computation:

There is a similar duality formula for $||m||_{L^2(R)}$:

$$||m||_{\mathcal{L}^{2}(B)} = \sup\{|\langle f, m \rangle| \, | \, ||f||_{\mathcal{L}^{2}(B)} \le 1\},$$
 (3.23)

where, for f a function, $||f||_{L^2(B)}$ has its usual meaning, namely $||f||_{L^2(B)} := (\int_B f(x)^2 \lambda(\mathrm{d}x))^{1/2}$. Since m is assumed to have total mass zero, $|\langle f, m \rangle|$ does not change when one adds a constant to f. On the other hand, when f describes the set $\{||f_0 + a|| | | a \in \mathbb{R}\}$, $||f||_{L^2(B)}$ is minimal when a is such that f has zero mean on B, while the value of $||f||_{\dot{H}^1(\hat{\lambda})}$ remains constant. As a consequence, we can restrict the supremum in (3.22) and (3.23) to those f having zero mean on B. Thus, the lemma will be implied f0 by proving that

$$\langle f, \mathbf{1}_B \cdot \lambda \rangle = 0 \quad \Rightarrow \quad \|f\|_{\mathbf{L}^2(B)} \leqslant C_1(n)^{1/2} \|f\|_{\dot{\mathbf{H}}^1(\hat{\lambda})}.$$
 (3.24)

Going back to the definitions of $\|\cdot\|_{\dot{\mathrm{H}}^{-1}(\hat{\lambda})}$ and $\|\cdot\|_{\mathrm{L}^{2}(B)}$, relaxing the condition on f to be centred by projecting it orthogonally in $\mathrm{L}^{2}(B)$ onto the subspace of centred functions, and denoting by P the uniform probability measure on B, Equation (3.24) turns into:

$$\forall f \qquad \operatorname{Var}_{P}(f) \leqslant C_{1}(n) \int dist(x, B^{c})^{2} |\nabla f(x)|^{2} P(dx), \tag{3.25}$$

which we recognize to be a so-called "improved Poincaré inequality" [3, 6]. In general, Poincaré inequalities, bounding the variance of f by a quadratic integral of its first derivative, are linked with the exponential convergence of a certain diffusion Markov process towards equilibrium (cf. [1], Chap. 2): that probabilistic vision initially guided me to tackle Equation (3.25), although this will not be apparent in the sequel.

To prove (3.25), the first key idea (inspired by [4]) is to separate radial and spherical coordinates. This is, considering the bijection

$$\varphi \colon (0,R) \times \mathbb{S}^{n-1} \to B \setminus \{0\}$$

$$(r,\theta) \mapsto r\theta$$
(3.26)

(the origin of space being set at the center of B), we introduce the measure $\tilde{P} := \varphi^{-1} {}_{*}P$, which is obviously the product measure $\tilde{P}_r \otimes \tilde{P}_{\theta}$, where \tilde{P}_r is the probability measure on (0,R) such that $\tilde{P}_r(\mathrm{d}r) := nR^{-n}r^{n-1}\mathrm{d}r$, resp. \tilde{P}_{θ} is the uniform measure on the sphere \mathbb{S}^{n-1} . With this notation, we perform can a change of variables to see that (3.25) is equivalent to proving that, for all $g \in L^2(\tilde{P})$:

$$C_1(n)^{-1} \operatorname{Var}_{\tilde{P}}(g) \leq \int_0^R \int_{\mathbb{S}^{n-1}} (R - r)^2 (|\nabla_r g(r, \theta)|^2 + r^{-2} |\nabla_\theta g(r, \theta)|^2) \tilde{P}_r(dr) \tilde{P}_\theta(d\theta), \tag{3.27}$$

where ∇_r and ∇_θ denote the gradient along resp. the r coordinate and the θ coordinate ¹⁸. We will denote the right-hand side of (3.27) by $\mathcal{E}(g,g)$.

Because $\tilde{P} = \tilde{P}_r \otimes \tilde{P}_\theta$, we know that $L^2(\tilde{P})$ can be seen as (the closure of) the tensor product of $L^2(\tilde{P}_r)$ and $L^2(\tilde{P}_\theta)$:

$$L^{2}(\tilde{P}) = \operatorname{cl}(L^{2}(\tilde{P}_{r}) \overset{\perp}{\otimes} L^{2}(\tilde{P}_{\theta})), \tag{3.28}$$

where the symbol ' $\overset{\perp}{\otimes}$ ' means that the Hilbertian structure of $L^2(\tilde{P})$ is compatible with the Hilbertian structures of $L^2(\tilde{P}_r)$ and $L^2(\tilde{P}_\theta)$ —i.e., that $\langle h_a \otimes u_a, h_b \otimes u_b \rangle_{L^2(\tilde{P})} = \langle h_a, h_b \rangle_{L^2(\tilde{P}_r)} \times \langle u_a, u_b \rangle_{L^2(\tilde{P}_\theta)}$. Now consider the spherical harmonics Y_0, Y_1, \ldots , which by definition are an orthonormal basis, in $L^2(\tilde{P}_\theta)$, of eigenfunctions of the

¹⁶Here we implicitly assume that $\int_B |f(x)| \lambda(\mathrm{d}x) < \infty$, which is legitimate since an approximation argument allows to restrict the suprema in (3.22) and (3.23) to those f having a C^∞ continuation on $\mathrm{cl}(B)$.

¹⁷Actually there is even equivalence.

¹⁸In the latter case, we have to use the Riemannian definition of the gradient on \mathbb{S}^{n-1} .

Laplace–Beltrami operator Δ on \mathbb{S}^{n-1} ; and call ℓ_0, ℓ_1, \ldots the associated eigenvalues, which are known to be such that (up to permuting indices) $Y_0 \equiv 1$ with $\ell_0 = 0$, and $\ell_i \leqslant -(n-1) \ \forall i \neq 0$ (see for instance [11]). By construction, $L^2(\tilde{P}_{\theta}) = \operatorname{cl}\left(\bigoplus_{i \in \mathbb{N}}^{\perp} (\mathbb{R} \cdot Y_i)\right)$; therefore, one has that

$$L^{2}(\tilde{P}) = \operatorname{cl}\left(\bigoplus_{i \in \mathbb{N}}^{\perp} L^{2}(\tilde{P}_{r}) \cdot Y_{i}\right) : \tag{3.29}$$

in other words, the functions of $L^2(\tilde{P})$ are those of the form

$$g(r,\theta) = \sum_{i \in \mathbb{N}} h_i(r) Y_i(\theta), \tag{3.30}$$

with $\sum_i \|h_i\|_{\mathrm{L}^2(\tilde{P}_r)}^2 < \infty$, and the correspondence is bijective. An interesting point is that, then, one has:

$$\operatorname{Var}_{\tilde{P}}(g) = \operatorname{Var}_{\tilde{P}_r}(h_0) + \sum_{i \neq 0} \|h_i\|_{L^2(\tilde{P}_r)}^2.$$
(3.31)

On the other hand, one has

$$\mathcal{E}(g,g) = -\langle Lg, g \rangle_{\mathbf{L}^2(\tilde{P})},\tag{3.32}$$

where

$$(Lg)(r,\theta) := (R-r)^2 \Delta_r g + \left((n-1) \frac{(R-r)^2}{r} - 2(R-r) \right) e_r \cdot \nabla_r g + \frac{(R-r)^2}{r^2} \Delta_\theta g.$$
 (3.33)

From (3.33) we see that, since the Y_i are eigenfunctions of Δ_{θ} , all the $L^2(\tilde{P}_r) \cdot Y_i$ are invariant by L, and that one has:

$$\mathcal{E}(g,g) = \sum_{i \in \mathbb{N}} \int_0^R \left((R-r)^2 |\nabla h_i(r)|^2 - \ell_i \frac{(R-r)^2}{r^2} h_i(r)^2 \right) \tilde{P}_r(dr).$$
 (3.34)

So, proving (3.27) becomes equivalent to proving that both following formulas hold for all $h \in L^2(\tilde{P}_r)$:

$$\operatorname{Var}_{\tilde{P}_r}(h) \leqslant C_1(n) \int_0^R (R-r)^2 |\nabla h(r)|^2 \tilde{P}_r(\mathrm{d}r); \tag{3.35}$$

$$||h||_{L^{2}(\tilde{P}_{r})}^{2} \leq C_{1}(n) \int_{0}^{R} \left((R-r)^{2} |\nabla h(r)|^{2} + (n-1) \frac{(R-r)^{2}}{r^{2}} h(r)^{2} \right) \tilde{P}_{r}(dr).$$
(3.36)

Let us start with (3.35). In all the sequel of the proof, we introduce

$$b := 1 - n^{-1}. (3.37)$$

By the Cauchy–Schwarz inequality, one has, for all $r \in (bR, R)$:

$$(h(r) - h(bR))^{2} = \left(\int_{bR}^{r} h'(s) ds \right)^{2} \le \left(\int_{bR}^{r} (R-s)^{-3/2} ds \right) \times \int_{bR}^{r} (R-s)^{3/2} |\nabla h(s)|^{2} ds$$

$$\le 2 \left((R-r)^{-1/2} - (R-bR)^{-1/2} \right) \int_{bR}^{r} (R-s)^{3/2} |\nabla h(s)|^{2} ds$$

$$\le 2(R-r)^{-1/2} \int_{bR}^{r} (R-s)^{3/2} |\nabla h(s)|^{2} ds.$$

$$(3.38)$$

Integrating and using Fubini's formula, it follows that

$$\int_{bR}^{R} (h(r) - h(bR))^{2} \tilde{P}_{r}(dr) \leq 2 \int_{s=bR}^{R} \left(\int_{r=s}^{R} nR^{-n}(R-r)^{-1/2}r^{n-1}dr \right) (R-s)^{3/2} |\nabla h(s)|^{2} ds$$

$$\leq 2 \int_{s=bR}^{R} \left(\int_{r=s}^{R} nR^{-n}(b^{-1}s)^{n-1}(R-r)^{-1/2}dr \right) (R-s)^{3/2} |\nabla h(s)|^{2} ds$$

$$= 2b^{-(n-1)} \int_{s=bR}^{R} \left(\int_{r=s}^{R} (R-r)^{-1/2}dr \right) (R-s)^{3/2} |\nabla h(s)|^{2} \tilde{P}_{r}(ds)$$

$$= 4b^{-(n-1)} \int_{s=bR}^{R} (R-s)^{2} |\nabla h(s)|^{2} ds. \tag{3.39}$$

One can apply the same line of reasoning for $r \in (0, bR)$: the (unweighted this time) Cauchy–Schwarz inequality then yields $(h(r) - h(bR))^2 \le (bR - r) \int_r^{bR} |\nabla h(s)|^2 ds$, whence:

$$\int_{0}^{bR} (h(r) - h(bR))^{2} \tilde{P}_{r}(dr) \leq \int_{s=0}^{bR} \left(\int_{r=0}^{s} nR^{-n}(bR - r)r^{n-1}dr \right) |\nabla h(s)|^{2}ds
\leq bR^{-(n-1)} \int_{s=0}^{bR} \left(\int_{r=0}^{s} nr^{n-1}dr \right) |\nabla h(s)|^{2}ds = bR \int_{0}^{bR} |\nabla h(s)|^{2}s^{n}ds
\leq bn^{-1}R^{2} \int_{0}^{bR} |\nabla h(s)|^{2}\tilde{P}_{r}(ds) \leq b(1-b)^{-2}n^{-1} \int_{0}^{bR} (R-s)^{2} |\nabla h(s)|^{2}\tilde{P}_{r}(ds).$$
(3.40)

Summing (3.39) and (3.40), we get that

$$\int_{0}^{R} (h(r) - h(bR))^{2} \tilde{P}_{r}(dr) \leq (4b^{-(n-1)} \vee b(1-b)^{-2}n^{-1}) \int_{0}^{s} (R-s)^{2} |\nabla h(s)|^{2} \tilde{P}_{r}(ds), \tag{3.41}$$

where $(4b^{-(n-1)} \vee b(1-b)^{-2}n^{-1})$ can itself be bounded by $((n-1) \vee 4e)$. The left-hand-side of (3.41) being an upper bound for $\operatorname{Var}_{\tilde{P}_r}(h)$, this proves (3.35).

Now we turn to (3.36). For $r \in (bR, R)$ we have, similarly to (3.38), that

$$(h(r) - h(br))^{2} \leq 2(R - r)^{-1/2} \int_{br}^{r} (R - s)^{3/2} |\nabla h(s)|^{2} ds, \tag{3.42}$$

so that

$$h(r)^2 \le 2h(br)^2 + 4(R-r)^{-1/2} \int_{br}^r (R-s)^{3/2} |\nabla h(s)|^2 ds.$$
 (3.43)

Then, integrating and applying Fubini's formula:

$$\int_{bR}^{R} h(r)^{2} \tilde{P}_{r}(\mathrm{d}r) \leq 2 \int_{bR}^{R} h(br)^{2} \tilde{P}_{r}(\mathrm{d}r) + 4 \int_{s=b^{2}R}^{R} \left(\int_{r=s \vee bR}^{b^{-1}s \wedge R} nR^{-n} r^{n-1} (R-r)^{-1/2} \mathrm{d}r \right) (R-s)^{3/2} |\nabla h(s)|^{2} \mathrm{d}s.$$

$$(3.44)$$

By change of variables, the first term of the right-hand side of (3.44) is equal to $2b^{-n} \int_{b^2R}^{bR} h(s)^2 \tilde{P}_r(\mathrm{d}s)$, which we can bound by

$$2b^{-(n-2)}\frac{(1-b)^{-2}}{n-1}\int_{b^2R}^{bR}(n-1)\frac{(R-r)^2}{r^2}h(s)^2\tilde{P}_r(\mathrm{d}s) \leq 2ne\int_0^R(n-1)\frac{(R-r)^2}{r^2}h(s)^2\tilde{P}_r(\mathrm{d}s). \tag{3.45}$$

The second term of the right-hand side of (3.44) is itself bounded by

$$4b^{-(n-1)} \int_{s=b^2 R}^{R} \left(\int_{r=s}^{R} (R-r)^{-1/2} dr \right) (R-s)^{3/2} |\nabla h(s)|^2 \tilde{P}_r(ds) \leqslant 8e \int_{0}^{R} (R-s)^2 |\nabla h(s)|^2 \tilde{P}_r(ds). \tag{3.46}$$

This way, we have bounded $\int_{bR}^R h(r)^2 \tilde{P}_r(\mathrm{d}r)$.

On the other hand, it is trivial that, for $r \leq bR$,

$$h(r)^2 \le \frac{b^2}{(n-1)(1-b)^2} \times (n-1)\frac{(R-r)^2}{r^2}h(r)^2,$$
 (3.47)

whence:

$$\int_{0}^{bR} h(r)^{2} \tilde{P}_{r}(dr) \leq (n-1) \int_{0}^{R} (n-1) \frac{(R-r)^{2}}{r^{2}} h(r)^{2} \tilde{P}_{r}(dr).$$
(3.48)

Combining (3.45), (3.46) and (3.48), we finally get the wanted bound (3.36).

Remark 3.9. At the time I wrote that proof I was not aware of the already existing results on improved Poincaré inequalities, in particular ([6], Thm. 1.3), which equation (3.25) is actually a particular case of; nor were the people whom I had asked about such inequalities. Compared to the result of [6] however, my equation (3.25) states an explicit value for the constant in the inequality, which moreover is within a constant factor of being optimal, uniformly in the dimension n; also, it uses a quite different proof, which may be interesting \odot

Acknowledgements. I warmly thank Franck BARTHE for his much precious help in providing me with the technical tools for the proof of Lemma 3.5. I am also much grateful to the anonymous COCV referee for their very relevant remarks on my initial manuscript.

References

- [1] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer. Sur les inégalités de Sobolev logarithmiques, vol. 10 of Panoramas et Synthèses [Panoramas and Syntheses]. With a preface by Dominique Bakry and Michel Ledoux. Société Mathématique de France, Paris (2000).
- [2] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375-393.
- [3] H.P. Boas and E.J. Straube, Integral inequalities of Hardy and Poincaré type. Proc. Amer. Math. Soc. 103 (1988) 172–176.
- [4] S.G. Bobkov, Spectral gap and concentration for some spherically symmetric probability measures. In Geometric aspects of functional analysis. In Vol. 1807 of Lect. Notes Math., Springer, Berlin (2003) 37-43.
- [5] D. Cordero-Erausquin, R.J. McCann and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146 (2001) 219–257.
- [6] R. Hurri-Syrjänen, An improved Poincaré inequality. Proc. Amer. Math. Soc. 120 (1994) 213-222.
- [7] G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 86 (2006)
- [8] R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128 (1997) 153-179.
- [9] F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000) 361-400.
- [10] A. Pratelli, Equivalence between some definitions for the optimal mass transport problem and for the transport density on manifolds. Ann. Mat. Pura Appl. 184 (2005) 215–238.
- [11] R.T. Seeley, Spherical harmonics. Amer. Math. Monthly 73 (1966) 115–121.
- [12] X. Tolsa, Mass transport and uniform rectifiability. Geom. Funct. Anal. 22 (2012) 478-527.
- [13] C. Villani, Topics in optimal transportation. In Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society (2003).
- [14] C. Villani, Optimal Transport: Old and New. In Vol. 338 of Grundlehren der Mathematischen Wissenschaften. Springer (2009).