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CYLINDRICAL OPTIMAL REARRANGEMENT PROBLEM LEADING

TO A NEW TYPE OBSTACLE PROBLEM ∗

Hayk Mikayelyan1

Abstract. An optimal rearrangement problem in a cylindrical domain Ω = D × (0, 1) is considered,
under the constraint that the force function does not depend on the xn variable of the cylindrical axis.
This leads to a new type of obstacle problem in the cylindrical domain

∆u(x′, xn) = χ{v>0}(x
′) + χ{v=0}(x

′)
[
∂νu(x

′, 0) + ∂νu(x
′, 1)

]
arising from minimization of the functional∫

Ω

1

2
|∇u(x)|2 + χ{v>0}(x

′)u(x) dx,

where v(x′) =
∫ 1

0
u(x′, t)dt, and ∂νu is the exterior normal derivative of u at the boundary. Several

existence and regularity results are proven and it is shown that the comparison principle does not hold
for minimizers.
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1. Introduction

1.1. Background

One of the classical problems in rearrangement theory is the minimization of the functional

Φ(f) =

∫
Ω

|∇uf |2dx, (1.1)

where uf is the unique solution of the Dirichlet boundary value problem{
−∆uf (x) = f(x) in Ω,

uf = 0 on ∂Ω,
(1.2)
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and f belongs to the rearrangement class

R(f0) =
{
f ∈ L2(Ω) | Ln({f > α}) = Ln({f0 > α}) for all α ∈ R

}
.

Here Ω is a bounded domain in Rn with piece-wise smooth boundary ∂Ω, Ln denotes the Lebesgue measure,
and f0 ∈ L2(Ω) is the so-called generator function of the rearrangement class. In this paper we will always
assume that f0 = χΩ0

for some sub-domain Ω0 ⊂ Ω.
This minimization problem is related to stationary heat equation

∂tu︸︷︷︸
=0

−∆u(x) = f(x)

in the domain Ω, which is under the action of the external heat source modeled by the force function f . The
boundary condition u(x) = 0 for x ∈ ∂Ω models the constant boundary temperature on the boundary of Ω.
Different force functions f result different heat distributions uf . The minimizer f̂ of the functional (1.1) is the
force function from a certain rearrangement class R, which is resulting the most uniformly distributed heat uf̂ .

The problem and its variations, such as the p−harmonic case, has been studied by various authors
(see [2–4,8, 10]), and the results, for this particular setting, can be formulated in the following theorem.

Theorem 1.1. There exists a unique solution f̂ ∈ R(χΩ0
) of the minimization problem (1.1). For the function

û = uf̂ there exists a constant α > 0 such that

• 0 < û ≤ α in Ω,

• f̂ = χ{û<α},

• û = α in {f̂ = 0}.

Moreover, the function U = α− û is the minimizer of the functional

J(w) =

∫
Ω

|∇w|2 + 2 max(w, 0)dx,

among functions w ∈W 1,2(Ω) with boundary values α on ∂Ω, and solves the obstacle problem equation

∆U = χ{U>0}.

We refrain from presenting here details about the obstacle problem, which is one of the classical free boundary
problems (see [6]).

1.2. The problem in the cylindrical domain

In many applications heating is implemented by heating elements which are straight rods. Those are usually
placed parallel to each other in a cylindrical container, which is very natural, since in 3D it is highly problematic
and expensive to place point-wise acting heating elements all over the domain.

Motivated by this we will consider a barrel-like domain

Ω = D × (0, 1) ⊂ Rn−1
x′ × Rxn .

and will restrict ourselves on force functions f(x) = f(x′), which do not depend on the xn variable.

Definition 1.2. Let L2
D(Ω) be the subspace of L2(Ω) which consists of functions constant w.r.t. xn variable

L2
D(Ω) = {g ∈ L2(Ω) | ∃h ∈ L2(D) such that g(x′, xn) = h(x′) a.e. in Ω}.

Let now
RD(f0) = {f ∈ L2

D(Ω) | Ln({f > α}) = Ln({f0 > α}) for all α ∈ R} ⊂ R(f0)

be the subclass of the rearrangement class consisting only of functions, which do not depend on xn variable.
Further let R̄D(f0) be the w∗-closure of RD(f0) in L2(Ω) (see Lems. 3.6 and 3.7).
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Remark 1.3. Without introducing new notations, in the sequel we will interpret functions h ∈ L2(D) to be
also defined as functions in L2(Ω) simply as

h(x′, xn) := h(x′).

In this paper we will consider the minimization problem

min
f∈R̄D

Φ(f)

where R̄D = R̄D(χD0), D0 ⊂ D, is the sub-class of the force functions f , which do not depend on xn-variable.
There is also a mathematical novelty in this setting. First, there exits no minimizer in the rearrangement

class RD, which on practice means that the optimal heating cannot be achieved by a 0/1 distribution of external
heating source (heating elements), as it was the case in the problem without constraint. This means that the
minimizer will belong to the weak-∗ closure R̄D of RD (see Lems. 3.6 and 3.7).

Second, the corresponding function û = uf̂ will be a solution of a new-type obstacle problem, where the
obstacle is not acting point-wise and the Neumann derivative of the function is present on the right hand side
of the equation (see Eq. (2.5)). In addition we prove that the solutions to equation (2.5) do not satisfy the
comparison principle (see Sect. 5.3).

In Section 2 we will formulate the main results of the paper, in Section 3 we will introduce some known
results and prove technical lemmas. The results related to the optimal rearrangement problem are presented in
Section 4, while the properties of the minimizer to the new type obstacle problem can be found in Section 5. The
proofs mainly combine two approaches. In Section 4 we adapt the methods developed by Burton and co-authors
in our setting, while in Section 5 we use techniques known from the theory of non-linear partial differential
equations to show the regularity of solutions.

2. Main results

From now on we will assume that the generator function of the rearrangement class is a characteristic function
f0(x′) = χD0(x′), where D0 ⊂ D. The functions uf and vf are defined in (1.2) and (2.3). We will also mostly
skip writing χD0

in R̄D = R̄D(χD0
) and RD = RD(χD0

)

Theorem 2.1. The relaxed minimization problem

min
f∈R̄D

Φ(f)

has a unique solution f̂ ∈ R̄D \ RD, f̂ > 0 in D, and there exists a constant α > 0 such that

v̂(x′) := vf̂ (x′) =

∫ 1

0

uf̂ (x′, t)dt ≤ α,

{f̂ < 1} ⊂ {v̂ = α}

{v̂ < α} ⊂ {f̂ = 1}.

Moreover, the function Û(x) = α− uf̂ is the minimizer of the convex functional

J(U) =

∫
Ω

|∇U |2dx+ 2

∫
D

V +dx′ (2.1)

among functions U ∈W 1,2(Ω) such that U − α ∈W 1,2
0 (Ω), where

V (x′) =

∫ 1

0

U(x′, xn)dxn.
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Theorem 2.2. Consider the minimization of the following convex functional

J(u) =

∫
Ω

|∇u|2dx+ 2

∫
D

v+dx′ (2.2)

among functions with prescribed boundary values u ∈ g +W 1,2
0 (Ω), in a domain Ω = D × (0, 1), where

v(x′) =

∫ 1

0

u(x′, xn)dxn. (2.3)

We further assume that g is constant on D × {0} and D × {1} and that

0 ≤ g(x′, xn) ≤ (1− xn)g(x′, 0) + xng(x′, 1) (2.4)

for all x′ ∈ ∂D.
Then the functional J has a unique minimizer u, which satisfies the inequality

v(x′) =

∫ 1

0

u(x′, xn)dxn ≥ 0

and the equation
∆u(x) = χ{v>0}(x

′) + χ{v=0}(x
′)[∂νu(x′, 0) + ∂νu(x′, 1)] in Ω. (2.5)

We also prove the existence of weak second derivatives (Cor. 5.4) and show that the comparison principle
holds for the functions v(x′), but fails to hold for the functions u(x) (Thm. 5.5 and Rem. 5.6). The regularity
of the free boundary is briefly discussed in Section 5.4.

3. Preliminaries

In this section we would like to present several mainly classical results.

Lemma 3.1. For the solutions of (1.2) the following is true

Φ(f) =

∫
Ω

fufdx =

∫
Ω

|∇uf |2dx = sup
u∈W 1,2

0 (Ω)

∫
Ω

2fu− |∇u|2dx. (3.1)

Proof. Proof follows from partial integration and basic calculus of variations. �

Lemma 3.2. Let
−∆u = h(x) in Ω

and |h(x)| ≤M is an integrable function in Ω. Further assume supΩ |u| ≤ N . Then

‖u‖C1,α(Ω′) ≤ C(n, d)(M +N)

where Ω′ b Ω and d = dist(Ω′, Ωc).

Proof. See Theorems 8.32, 8.34 in [9]. �

Lemma 3.3. Let Ω be a domain with C1,α boundary and the functions u and h be as in Lemma 3.2. Further
assume u = 0 on ∂Ω. Then

‖u‖C1,α(Ω) ≤ C(n, ∂Ω)(M +N).

Proof. See Theorems 8.33, 8.34 in [9]. �
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Lemma 3.4. Let Ω = D × (0, 1) and{
−∆u(x) = h(x) in Ω,

u = 0 on ∂Ω,
(3.2)

and |h(x)| ≤M is an integrable function in Ω. Further assume supΩ |u| ≤ N . Then

‖u‖C1,α(D′×(0,1)) ≤ C(n, d)(M +N),

where d = dist(D′, Dc).
Moreover, if D has C1,α boundary then

‖u‖C1,α(Ω) ≤ C(n, ∂D)(M +N).

Proof. Let us extend the function u by the odd reflection into Ω̃ = D × (−1, 1)

ũ(x′, xn) =

{
u(x′, xn) if xn ≥ 0,

−u(x′,−xn) if xn < 0.
(3.3)

Let us check that −∆ũ(x) = h̃(x) weakly in D × (−1, 1) where

h̃(x′, xn) =

{
h(x′, xn) if xn > 0,

−h(x′,−xn) if xn < 0
(3.4)

is a bounded function.∫
Ω̃

∇ũ(x)∇φ(x)dx =

∫
Ω̃

∇ũ(x)∇(φ(x)ϕδ(xn))dx+

∫
Ω̃

∇ũ(x)∇(φ(x)(1− ϕδ(xn)))dx = I1 + I2 (3.5)

where

ϕδ(t) =

{
1 if |t| < δ/2,

0 if |t| > δ

is an even function from C∞0 (R) with values in [0, 1], such that |ϕ′(t)| ≤ 4/δ. Let us now estimate the integrals
on the right hand side of (3.5).

I1 =

∫
Ω

∇u∇[(φ(x′, xn)− φ(x′,−xn))ϕδ(xn)]dx

=

∫
Ω

h(x)[(φ(x′, xn)− φ(x′,−xn))ϕδ(xn)]dx

+

∫
∂Ω

u(x)∂ν [(φ(x′, xn)− φ(x′,−xn))ϕδ(xn)]dσ︸ ︷︷ ︸
=0

→δ→0 0, (3.6)

where we have used the continuity of φ ∈ C∞0 (Ω̃). On the other hand

I2 =

∫
Ω̃

h(x)φ(x′, xn)(1− ϕδ(xn))dx→δ→0

∫
Ω̃

h(x)φ(x′, xn)dx. (3.7)

The proof follows now from Lemmas 3.2 and 3.3. �
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Lemma 3.5. Let {
−∆u(x) = f(x′) in Ω,

u = 0 on ∂Ω,
(3.8)

then
u(x′, xn) = u(x′, 1− xn). (3.9)

and the function vf (x′) =
∫ 1

0
uf (x′, xn)dxn satisfies the following equation{
−∆x′v = f(x′) + 2∂νu(x′, 0) in D,

v = 0 on ∂D.
(3.10)

Proof. (3.9) follows from the uniqueness of the solution.
Let us take φδ(x) = ψ(x′)ϕδ(xn), where ψ ∈ C∞0 (D) and

ϕδ(xn) =



1

δ(1− δ)
xn if xn ∈ (0, δ)

1

1− δ
if xn ∈ (δ, 1− δ)

1

δ(1− δ)
− 1

δ(1−δ)xn if xn ∈ (1− δ, 1).

∫
D

f(x′)ψ(x′)dx′ =

∫
Ω

f(x′)φδ(x)dx

=

∫
Ω

∇u∇φδdx =

∫
Ω

ϕδ(xn)∇′u(x)∇′ψ(x′)dx+

∫
Ω

ψ(x′)∂nu(x)∂nϕδ(xn)dx. (3.11)

Passing to the limit as δ → 0 we obtain∫
Ω

ϕδ(xn)∇′u(x)∇′ψ(x′)dx→δ→0

∫
Ω

∇′u(x)∇′ψ(x′)dx =

∫
D

∇′v(x)∇′ψ(x′)dx′

and using Lemma 3.4∫
Ω

ψ(x′)∂nu(x)∂nϕδ(xn)dx =
1

δ(1− δ)

[∫
D

∫ δ

0

ψ(x′)∂nu(x)dx′dxn −
∫
D

∫ 1

1−δ
ψ(x′)∂nu(x)dx′dxn

]
→δ→0∫

D

ψ(x′)[∂nu(x′, 0)− ∂nu(x′, 1)]dx′. (3.12)

Thus ∫
D

∇′v(x)∇′ψ(x′)dx′ =

∫
D

f(x′)ψ(x′)dx′ −
∫
D

ψ(x′)[∂nu(x′, 0)− ∂nu(x′, 1)]dx′.

From (3.9) we obtain ∂nu(x′, 0) = −∂nu(x′, 1). �

Lemma 3.6. Let D0 ⊂ D and R̄(χD0) be the w∗-closure of R(χD0) in L2(D). Then

R̄(χD0
) =

{
h | 0 ≤ h ≤ 1, and

∫
D

hdx′ = |D0|
}

is convex and weakly compact in L2(D). Moreover, the set of its extreme points is

ext(R̄(χD0
)) = R(χD0

).

Proof. See [2, 3, 5, 8]. �
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Lemma 3.7. Let D0 ⊂ D and R̄D(χD0) be the w∗-closure of RD(χD0) in L2(Ω). Then

R̄(χD0) =

{
h ∈ L2

D(Ω) | 0 ≤ h ≤ 1, and

∫
Ω

hdx′ = |D0|
}

is convex and weakly compact in L2(Ω). Moreover, the set of its extreme points is

ext(R̄D(χD0)) = RD(χD0).

Proof. Follows from Lemma 3.6. �

Lemma 3.8. The functional Φ (see (3.1)) is:

(i) weakly sequentially continuous in L2,
(ii) strictly convex,
(iii) Gâteaux differentiable. Moreover, Φ′(f) can be identified with 2uf if

we consider Φ in L2(Ω) or 2vf if we consider Φ in L2(D).

Proof. The proof can be found in [4]. �

Lemma 3.9. For f, g ∈ L2
+(D) there exists f̃ ∈ R(f) such that functional∫

D

f̃gdx ≤
∫
D

hgdx,

for all h ∈ R̄(f).

Proof. The proof can be found in [2]. �

4. The constrained rearrangement problem

Proof of Theorem 2.1. By Lemmas 3.7 and 3.8

min
f∈R̄D

Φ(f)

has a solution since R̄D is weakly compact and Φ is weakly continuous. Further, the minimizer f̂ ∈ R̄D is
unique, since Φ is strictly convex.

Let us now prove that f̂ /∈ RD. The condition for the minimizer is

0 ∈ ∂Φ(f̂) + ∂ξR̄D (f̂),

where ∂Φ is the sub-differential and

ξR̄D (g) =

{
0 if g ∈ R̄D,
∞ if g /∈ R̄D,

see [7]. This means that −2v̂ ∈ ∂ξR̄D (f̂). Since

∂ξR̄D (f̂) =

{
w ∈ L2(D) : ξR̄D (f)− ξR̄D (f̂) ≥

∫
D

(f − f̂)wdx′
}

we obtain ∫
D

fv̂dx′ ≥
∫
D

f̂ v̂dx′. (4.1)
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for all f ∈ R̄D. By Lemma 3.9 there exists

f̃ = χD̃ ∈ ext(R̄D) = RD,

where D̃ ⊂ D, such that ∫
D

f̃ v̂dx′ =

∫
D

f̂ v̂dx′. (4.2)

Claim 1.
α = sup

D̃

v̂ ≤ inf
D\D̃

v̂. (4.3)

This follows from (4.1) and (4.2). The idea of the proof is based on the bathtub principle (see [11]): if (4.3) fails

to hold, we can rearrange the function f̃ such that the integral
∫
D
f̃ v̂dx′ decreases, by assigning the value 1 to

f̃ where v̂ is small and assigning the value 0 to f̃ where v̂ is large (for details see also [8], Eq. (3.17)).

Claim 2.
f̂ = f̃ = χD̃ = 1, in {v̂ < α}. (4.4)

The idea of the proof is the same as above: if (4.4) fails to hold then∫
D\D̃

f̂dx′ =

∫
D̃

(1− f̂)dx′ > 0,

thus we can replace the function f̂ by a function f ∈ R̄D which has larger values in {v̂ < α} ⊂ D̃ and smaller

values in D \ D̃. As a result ∫
D

fv̂dx′ <

∫
D

f̂ v̂dx′,

which contradicts (4.1).

Claim 3.
{v̂ > α} ⊂ D# := {f̂ = 0}.

We know that
∫
D
f̃ v̂dx′ =

∫
D
f̂ v̂dx′, and∫

D

f̃ v̂dx′ =

∫
{v̂≥α}

f̃ v̂dx′ +

∫
{v̂<α}

f̃ v̂dx′ =

∫
{v̂≥α}

f̂ v̂dx′ +

∫
{v̂<α}

f̂ v̂dx′ =

∫
D

f̂ v̂dx′. (4.5)

On the other hand
∫
{v̂<α} f̃ v̂dx′ =

∫
{v̂<α} f̂ v̂dx′ =

∫
{v̂<α} v̂dx′ and f̃ = 0 on {v̂ > α}. This means that

α

∫
{v̂≥α}

f̂dx′ = α

∫
{v̂≥α}

f̃dx′ =

∫
{v̂≥α}

f̃ v̂dx′ =

∫
{v̂≥α}

f̂ v̂dx′ ≥ α
∫
{v̂≥α}

f̂dx′, (4.6)

where the last inequality will be strict if {v̂ > α} ∩ {f̂ > 0} has a positive measure.

Claim 4.
D# has no interior. Thus v̂ ≤ α.

From (3.10) and the Hopf’s lemma it follows that

∆x′ v̂(x′) = −2∂νu(x′, 0) > 0 in int(D#)

and v̂ ≥ α in int(D#). This means that there exists y ∈ ∂(int(D#)) such that v̂(y) = β > α, which contradicts
Claim 3 and continuity of v̂.



CYLINDRICAL OPTIMAL REARRANGEMENT PROBLEM LEADING TO A NEW TYPE OBSTACLE PROBLEM 867

Claim 5.
f̂ > 0.

We need to verify this only in int({v̂ = α}) where

0 = ∆x′ v̂ = −f̂(x′)− 2∂ν û(x′, 0)

and the outer normal derivative of û is not vanishing in D by Hopf lemma.

Claim 6.
f̂ /∈ RD = RD(χD0).

This follows from the positivity of f̂ , since otherwise {f̂ = 0} 6= ∅.

Claim 7. Û = α− û minimizes the functional (2.1).
From (3.1) we can obtain that Û minimizes the functional

I(U) =

∫
Ω

|∇U |2 + 2f̂Udx =

∫
Ω

|∇U |2dx+ 2

∫
D

f̂V dx′

among U ∈W 1,2(Ω) such that U = α on ∂Ω. For any such function U we have

J(U) ≥ I(U) ≥ I(Û) = J(Û). �

5. New type of obstacle problem

In this section we discuss the new type of obstacle problem introduced in Theorem 2.2, where the obstacle is
acting not on the function u, but on the integral of u with respect to xn variable. As a result, the free boundary
is not a level set for the function u.

5.1. Existence of solutions

Proof of Theorem 2.2. Observe that

J(u) =

∫
Ω

|∇u|2dx+ 2

∫
D

v+dx′ =

∫
Ω

|∇u|2 + 2uχ{v>0}dx

and take the variations uε(x) = u(x) + εφ(x), where φ(x) ≥ 0.
For ε > 0 the variation gives

2

∫
Ω

∇u∇φdx+ 2

∫
Ω

χ{v≥0}φdx ≥ 0

and for ε < 0

2

∫
Ω

∇u∇φdx+ 2

∫
Ω

χ{v>0}φdx ≤ 0.

Thus ∫
Ω

χ{v>0}φdx ≤ −
∫
Ω

∇u∇φdx ≤
∫
Ω

χ{v≥0}φdx

and the distribution −
∫
Ω
∇u∇φdx is a positive measure given by a function identified with ∆u(x), such that

−
∫
Ω

∇u∇φdx =

∫
Ω

∆u(x)φ(x)dx

and
χ{v>0} ≤ ∆u ≤ χ{v≥0}. (5.1)
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Claim 1. ∆u does not depend on xn.
Let us consider the variation of the functional J with test function uε(x) = u(x) + εφ(x) where φ(x) =

ϕ(x′, xn) − ϕ(x′, xn − a) such that ϕ(x′, xn), ϕ(x′, xn − a) ∈ C∞0 (Ω). Then
∫ 1

0
φ(x′, xn)dxn = 0 and thus the

second term of the functional does not contribute to the variation. The contribution of the first term is∫
Ω

∇u∇ϕ(x′, xn)dx−
∫
Ω

∇u∇ϕ(x′, xn − a)dx = 0,

which proves that ∆u does not depend on xn.

Claim 2.

∆x′v = ∆u(x′)− [∂νu(x′, 0) + ∂νu(x′, 1)] in D. (5.2)

Follows from Lemma 3.5.

Claim 3.

{v < 0} = ∅.

Assume {v < 0} = D∗ ⊂ D. By continuity D∗ is open, v = 0 on ∂D∗ and ∆u = 0 in D∗ × (0, 1). By (5.2)

∆x′v = −[∂νu(x′, 0) + ∂νu(x′, 1)] in D∗.

Using the fact the boundary data g is constant on D × {0} and D × {1}, the condition (2.4), as well as the
sub-harmonicity of u we obtain by comparison principle that

u(x′, xn) ≤ (1− xn)g(x′, 0) + xng(x′, 1), for x ∈ Ω.

Thus

∆x′v = −[∂νu(x′, 0) + ∂νu(x′, 1)] ≤ 0 in D∗,

a contradiction.
The equation (2.5) follows from (5.1) and (5.2). �

5.2. Existence of weak second derivatives

In this section we apply a difference quotient argument to show the existence of weak second derivatives. As
in the case of the classical obstacle problem the method deals with the regularity of the function and not the
regularity of the free boundary set.

Lemma 5.1. Let u be the minimizer of (2.2) in Ω = D× (0, 1) and u is constant on D×{0} and on D×{1}.
Then for any compact C ⊂ D there exists a constant C depending only on dist(C, Dc) such that∫

C×(0,1)

∣∣∣∣∇(u(x+ eh)− u(x))

h

∣∣∣∣2 dx ≤ C
∫
Ω

∣∣∣∣u(x+ eh)− u(x)

h

∣∣∣∣2 dx (5.3)

for all |h| < dist(C, Dc)/2 and all directions e⊥en.

Proof. Let us take

φ(x) = ψ(x′)2(u(x+ eh)− u(x)),

where ψ ∈ C∞0 (D), 0 ≤ ψ ≤ 1, ψ(x′) = 1 for x′ ∈ C, ψ(x′) = 0 for dist(x′, C) > dist(C, Dc)/2 and ∇ψ ≤
4

dist(C,Dc) . Observe that the boundary values of the function

u(x) + tφ(x) = tψ(x′)2u(x+ eh) + (1− t)ψ(x′)2u(x)
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are the same as of u. Moreover, for t ∈ (0, 1)∫ 1

0

u(x) + tφ(x)dxn = tψ(x′)2v(x+ eh) + (1− t)ψ(x′)2v(x) ≥ 0

and we can consider the variations of the functional

I(u) =

∫
Ω

|∇u|2 + 2udx. (5.4)

instead of (2.2). From

J(u+ tφ)− J(u) = I(u+ tφ)− I(u) ≥ 0

we obtain

0 ≤
∫
Ω

∇u∇φ+ φdx

or ∫
Ω

∇u(x)∇
(
ψ(x′)2(u(x+ eh)− u(x))

)
+ (ψ(x′)2(u(x+ eh)− u(x)))dx ≥ 0. (5.5)

Repeating the same argument as above for the function u(x + eh) in a slightly shifted domain and using the
function u(x) for constructing a perturbation we can obtain the inequality∫

Ω

∇u(x+ eh)∇
(
ψ(x′)2(u(x)− u(x+ eh))

)
+ (ψ(x′)2(u(x)− u(x+ eh)))dx ≥ 0. (5.6)

adding (5.5) and (5.6)

0 ≥
∫
Ω

∇ (u(x+ eh)− u(x))∇
(
ψ(x′)2(u(x+ eh)− u(x))

)
dx

=

∫
Ω

ψ(x′)2|∇ (u(x+ eh)− u(x)) |2dx

+

∫
Ω

(u(x+ eh)− u(x)) 2ψ(x′)∇ψ∇ (u(x+ eh)− u(x)) dx (5.7)

we arrive at∫
Ω

ψ(x′)2|∇ (u(x+ eh)− u(x)) |2dx ≤ −
∫
Ω

2 [(u(x+ eh)− u(x))∇ψ]·[ψ(x′)∇ (u(x+ eh)− u(x))] dx. (5.8)

Now we use the inequality 2|x · y| ≤ 2|x|2 + 1
2 |y|

2 to derive

− 2 [(u(x+ eh)− u(x))∇ψ] · [ψ(x′)∇ (u(x+ eh)− u(x))]

≤ 2|∇ψ|2|u(x+ eh)− u(x)|2 +
1

2
ψ(x′)2|∇ (u(x+ eh)− u(x)) |2 (5.9)

and obtain from (5.8)∫
Ω

ψ(x′)2|∇ (u(x+ eh)− u(x)) |2dx ≤ 4

∫
Ω

|∇ψ|2|u(x+ eh)− u(x)|2dx (5.10)

Taking C = 64
(dist(C,Dc))2 and dividing by h2 we obtain (5.3). �
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Lemma 5.2. Let Ω′ b Ω, Ω′δ = {x : dist(x,Ω′) < δ} ⊂ Ω, w ∈ L2(Ω) and∫
Ωδ

∣∣∣∣w(x+ ejh)− w(x)

h

∣∣∣∣2 dx ≤ C

for some constant C and all |h| < δ.
Then the weak derivative ∂w

∂xj
exists in Ω′ and

∫
Ωδ

∣∣∣∣ ∂w∂xj
∣∣∣∣2 dx ≤ C.

Proof. See Lemma 7.24 in [9]. �

Lemma 5.3. Assume Ω′ b Ω and u ∈ W 1,2(Ω). Then there exists a constant C > 0 depending on dimension
only such that ∫

Ω′

∣∣∣∣u(x+ ejh)− u(x)

h

∣∣∣∣2 dx ≤ C
∫
Ω

∣∣∣∣ ∂u∂xj
∣∣∣∣2 dx

for all |h| < dist(Ω′, Ωc).

Proof. See Lemma 7.23 in [9]. �

Corollary 5.4.
u ∈W 2,2(D′ × (0, 1)), for any D′ b D.

Proof. The existence ∂2u
∂xi∂xj

in L2(D′ × (δ, 1 − δ)), where 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n, and integral bounds

follow from Lemmas 5.1−5.3. The existence and integral bounds for ∂2u
∂x2
n

follow from (5.1).

Now let us observe that because of constant boundary data on D × {0} and D × {1} we can extend the
function to D × (−1, 2) similarly as we have done it in Lemma 3.4. This is why we can let δ = 0. �

5.3. The comparison principle

One of the interesting features of the functional J is that the comparison principle fails to hold for the
minimizers u (see Rem. 5.6 below). Here we prove that it holds for the functions v with constant boundary
data.

Theorem 5.5. Let u1 and u2 minimize (2.2) among functions with constant boundary data α1 and α2 respec-
tively, and 0 < α1 < α2. Then

v1(x′) ≤ v2(x′)

for x′ ∈ D.

Proof. We prove the theorem in two steps.

Step 1. For δ ≥ 0 let uδ be the minimizer of the convex functional

Jδ(u) =

∫
Ω

|∇u|2 + χ{v>δ}udx

among the functions u ∈W 1,2(Ω) with boundary values u = α2. Let us prove that u2 ≤ uδ.
Assume Ω̃ = {x |u2(x) < uδ(x)} 6= ∅ and set u3 = min(u2, uδ). If

∫
Ω̃
|∇u2|2dx <

∫
Ω̃
|∇uδ|2dx then

Jδ(u3) < Jδ(uδ). (5.11)
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Otherwise if
∫
Ω̃
|∇u2|2dx ≥

∫
Ω̃
|∇uδ|2dx then

J(u3) < J(u2). (5.12)

Equations (5.11) and (5.12) contradict the fact that uδ and u2 are minimizers.

Step 2. For δ = α2 − α1 we have uδ = u1 + δ, where uδ is as in Step 1. From Step 1,

∂νu1 ≤ ∂νu2 on D × {0} and D × {1}

On the other hand by (3.10)

∆x′v1 = χ{v1>0}[1− ∂νu1(x′, 0)− ∂νu1(x′, 1)] in D (5.13)

and
∆x′v2 = χ{v2>0}[1− ∂νu2(x′, 0)− ∂νu2(x′, 1)] in D. (5.14)

Since
[1− ∂νu1(x′, 0)− ∂νu1(x′, 1)] ≥ [1− ∂νu2(x′, 0)− ∂νu2(x′, 1)]

we can use the comparison principle for the classical obstacle problem to obtain v1 ≤ v2. �

Remark 5.6. The comparison principle does not hold for the functions u1 and u2 in Theorem 5.5. Particularly,
in the set {v2 = 0} ⊂ {v1 = 0}, where∫ 1

0

u1(x′, xn)dxn =

∫ 1

0

u2(x′, xn)dxn = 0 (5.15)

but u1 ≡\ u2.

Proof. Assume the comparison principle does hold and u1 ≤ u2. Then from (5.15) it follows that u1 ≡ u2 in
{v2 = 0} × (0, 1). Let us now consider the function w = u2 − u1 ≥ 0. By (2.5)

∆w =

{
0 in ({v1 > 0} ∪ {v2 = 0})× (0, 1),

1− 2∂νu1 in ({v1 = 0} \ {v2 > 0})× (0, 1),
(5.16)

and by (5.1) ∆w ≥ 0. Since the function w is positive at the boundary and vanishes in the set where u1 = u2 is
is not constant and thus, by Hopf lemma, ∂nw > 0 in {v2 = 0} × {0}. This contradicts the fact of u1 ≡ u2 on
{v2 = 0} × (0, 1). �

5.4. Remarks on free boundary regularity

Let u and v be like in Theorem 2.2. From Lemmas 3.5 and (2.5) it follows that the function v is the solution
of the following obstacle problem

∆v = χ{v>0}h(x′), (5.17)

where
h(x′) = 1− ∂νu(x′, 0)− ∂νu(x′, 1) ∈ Cα(D).

In the points of the free boundary x′ ∈ ∂{v > 0} ∩D, where h(x′) > 0 we can apply the Theorem 7.2 in [1]
and obtain that

either

• x′ is a regular point and the free boundary is C1,α smooth,
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or

• x′ is a singular point, i.e. limr→0
|{v=0}∩Br(x′)|
|Br(x′)| = 0, and the free

boundary in the ball Br(x
′) has a minimum diameter less than σ(r),

for some given modulus of continuity σ.
Observe that in general it is possible to have singular points of the free boundary where h(x′) = 0 and the free
boundary is not flat. One can take for example the function u(x1, x2) = χ{x1x2>0}x

2
1x

2
2 and obtain a cross-shaped

free boundary, with its minimal diameter scaling of order r in Br(0).
Whether this kind of non-flat singularities can be excluded for the minimizers of (2.2) is a subject of ongoing

research.
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