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UNILATERAL PROBLEMS FOR THE p-LAPLACE OPERATOR

IN PERFORATED MEDIA INVOLVING LARGE PARAMETERS ∗

Delfina Gómez1, Miguel Lobo1, Eugenia Pérez2,a, Alexander V. Podolskii3

and Tatiana A. Shaposhnikova3

Abstract. We address homogenization problems for variational inequalities issue from unilateral con-
straints for the p-Laplacian posed in perforated domains of Rn, with n ≥ 3 and p ∈ [2, n]. ε is a
small parameter which measures the periodicity of the structure while aε � ε measures the size of the
perforations. We impose constraints for solutions and their fluxes (associated with the p-Laplacian) on
the boundary of the perforations. These constraints imply that the solution is positive and that the
flux is bounded from above by a negative, nonlinear monotonic function of the solution multiplied by
a parameter βε which may be very large, namely, βε → ∞ as ε → 0. We first consider the case where
p < n and the domains periodically perforated by tiny balls and we obtain homogenized problems
depending on the relations between the different parameters of the problem: p, n, ε, aε and βε. Critical
relations for parameters are obtained which mark important changes in the behavior of the solutions.
Correctors which provide improved convergence are also computed. Then, we extend the results for
p = n and the case of non periodically distributed isoperimetric perforations. We make it clear that in
the averaged constants of the problem, the perimeter of the perforations appears for any shape.

Mathematics Subject Classification. 35B27, 35J60, 35J87, 35B25.

Received May 31, 2016. Revised February 7, 2017. Accepted March 17, 2017.

1. Introduction

Homogenization problems in perforated media for the p-Laplace operator have been considered in the liter-
ature over the last decades. We mention [8, 28, 32] for Dirichlet boundary conditions, [14] for Neumann con-
ditions, [36] for Signorini conditions, [38–40] for some generalized Robin type boundary conditions, [15] for
perforations along a manifold, [26, 41] for obstacles in perforated domains, and [3, 4, 12] for different abstract
frameworks involving perforated media: see also references therein. Different assumptions on the geometry
and the distribution of the perforations are made in the above-mentioned papers; also different assumptions
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on p are considered. See [13,29,43] and references therein in connection with models related to p-Laplacian, for
different values of p, arising e.g. in glaciology, torsional creep and flows through porous media.

The problems under consideration in this paper are different from those in previous papers. We consider
the p-Laplace operator in a perforated domain by “tiny cavities”, with constraints for the solution in a general
framework (cf., e.g., [42]), and further specifying, constraints for the solution and its normal derivative (associ-
ated with the p-Laplacian) on the boundary of the perforations, involving a nonlinear function of the solution,
σ, and a parameter. This parameter may depend on the period and it can be either a very large parameter or a
very small parameter; also σ can be a quite general monotonic increasing function (cf. (2.1)–(2.3) and Sect. 8).

We focus on obtaining critical sizes of perforations and critical relations between parameters which give rise to
a strange term in the homogenized problem, at the same time as we describe all the possible homogenized media
depending on the parameters of the problem. In addition, we construct correcting terms which provide strong
convergence in the corresponding Sobolev spaces and obtain precise bounds for convergence rates. Strange terms
issue simultaneously from the constraint for the solution and the constraint for the normal derivative on the
boundary of the cavities, and correctors for solutions are obtained for the first time in homogenization theory of
the p-Laplace operator. These strange terms can appear in a boundary value problem or in an obstacle problem;
their nonlinear character being very different. As one might expect, considering all the possible relations between
parameters and the improved convergence provided by the correctors may restrict the geometrical configuration
of the problem as well as the properties of the nonlinear function σ which however seems to be optimal to obtain
all the results (cf. Sect. 8).

More precisely, we consider the domain Ωε which is obtained by removing small domains Gε, the cavi-
ties/perforations, of diameter 2aε � ε, from a fixed domain Ω of Rn (see Fig. 1). The cavities are distributed
over the whole domain at a distance O(ε) between them, ε being a small parameter that we shall make to go
to 0. We denote by Sε the boundary of the cavities, namely, Sε ≡ ∂Gε. For n ≥ 3 and p ∈ [2, n], we study the
asymptotic behavior of the solution uε, as ε→ 0, of the following problem:


−∆puε = f in Ωε,

uε = 0 on ∂Ω,

uε ≥ 0, ∂νpuε ≥ −βεσ(x, uε), uε(∂νpuε + βεσ(x, uε)) = 0 for x ∈ Sε,
(1.1)

where f ∈ Lq(Ω) with q = p/(p − 1), ∆pu ≡ div(|∇u|p−2∇u), ∂νpu ≡ |∇u|p−2(∇u, ν), ν denotes the unit
outward normal to Ωε on Sε, βε > 0 is a ε-dependent constant, σ = σ(x, u) is a continuously differentiable
function defined in Ω × R, strongly monotone with respect to u (cf. (2.1)–(2.3)). Note that βε is referred to as
the adsorption parameter, and the variational formulation of (1.1) is (2.5).

We distinguish two ranges of p: p ∈ [2, n) and p = n. For 2 ≤ p < n we assume that the adsorption parameter
takes the value ε−γ , with γ ∈ R, and that the cavities Gε are balls of radius aε = C0ε

α (with α > 1 and
C0 > 0), which are periodically distributed over Ω. It should be emphasized that this geometrical configuration
is essential over all for the relations α = n/(n − p) and γ = n(p − 1)/(n − p) = α(p − 1) (see the intersection
point in Figs. 2 and 3) since the solution of the local problem obtained from the microstructure of the model is
somewhat related with the fundamental solution of the p-Laplace operator. The solution of the local problem
can be computed via a nonlinear equation that recalls the functional equation (1.3) (cf. Sect. 8). We relax the
above geometrical configuration for the case where p = n, a case where a certain non periodically distribution
of the cavities is allowed while they can have arbitrary shapes with a fixed perimeter (see the different cells in
Fig. 1 and the functional equations (1.10)–(1.11)): a comparison result makes it difficult to extend the result to
p ∈ [2, n).

Below, cf. Section 1.1, we relate all the homogenized problems and the main results that we obtain as well
as the structure of the paper.
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Figure 1. The geometrical configuration of Ωε and the periodicity cell.

1.1. The homogenized problems

For p ∈ [2, n), we obtain the homogenized problem, as ε → 0, for different relations between α and γ (see a
sketch of all the possible situations in Fig. 2). Among these relations, two of them provide asymptotic relations
between adsorption, size and periodicity parameters which are related to as critical size and critical relation for
the adsorption. Let us explain this in further detail. By comparison with the p-Laplace operator in perforated
media, the classical critical size for the perforations with the p-Laplacian and Dirichlet boundary conditions on
Sε (see [28]) is given by α = n/(n − p). For α > n/(n − p) the cavities are very small and they, as well as the
constraints with any adsorption parameter, do not influence the average process (cf. the region α > n/(n−p) in
Figure 2, problem (1.8), Thms. 6.4, and 6.5 for improved convergence). A strange term appears for α = n/(n−p).

It should be mentioned that the terminology of strange term here used appears in [9] for linear problems
with Dirichlet boundary conditions on the perforations; see the reference to the original work introducing this
terminology and further references in [9]; see also [31] in connection with the above-mentioned term in these linear
problems; see [28] for Dirichlet conditions with the p-Laplacian, and [21, 24] for the Laplacian with nonlinear
Robin boundary conditions on the perforations. In our problem, it happens that this strange term also depends
on the adsorption parameter and it ranges from a classical reaction term associated with the p-Laplacian, namely
of the type |u|p−2u or |u−|p−2u−, to the reaction term σ(x, u) by multiplicative constants of the problem or
a reaction term given by a function implicitly defined in a functional equation of the type (2.19). Also the
character of the homogenized problem can change including boundary value problems (cf. (1.2), (1.4), (1.5)
and (1.8)) and obstacle problems (cf. (1.6) and (1.7)). In fact, for each value of α, 1 < α ≤ n/(n − p), the
relation γ = α(n−1)−n provides the so-called critical relation for the adsorption parameter which implies that
the total area of the perforations multiplied by the adsorption parameter is of order O(1).

In order to make more comprehensible the entire results for p ∈ [2, n), which we summarize in Figures 2
and 3, we introduce here a table with all the possible limit situations:

I. When α = n/(n− p) and γ = n(p− 1)/(n− p), the homogenized problem is:

{
−∆pu+An,p

(
|H(x, u+)|p−2H(x, u+) + |u−|p−2u−

)
= f in Ω,

u = 0 on ∂Ω,
(1.2)
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where An,p =
(
n−p
p−1

)p−1

Cn−p0 ωn and, for every (x, τ) ∈ Ω × R, H(x, τ) is the solution of the functional

equation
Bn,p|H|p−2H = σ(x, τ −H), (1.3)

with Bn,p =
(
n−p
p−1

)p−1

C1−p
0 .

II. When α = n/(n− p) and γ < n(p− 1)/(n− p), the homogenized problem is{
−∆pu+An,p|u−|p−2u− = f in Ω,
u = 0 on ∂Ω,

(1.4)

where An,p =
(
n−p
p−1

)p−1

Cn−p0 ωn.

III. When α = n/(n− p) and γ > n(p− 1)/(n− p), the homogenized problem is{
−∆pu+An,p|u|p−2u = f in Ω,
u = 0 on ∂Ω,

(1.5)

where An,p =
(
n−p
p−1

)p−1

Cn−p0 ωn.

IV. When α ∈ (1, n/(n− p)) and γ = α(n− 1)− n, the homogenized problem is{
−∆pu+Dnσ(x, u)− f ≥ 0, u ≥ 0, (−∆pu+Dnσ(x, u)− f)u = 0 in Ω,
u = 0 on ∂Ω,

(1.6)

where Dn = Cn−1
0 ωn.

V. When α ∈ (1, n/(n− p)) and γ < α(n− 1)− n, the homogenized problem is{
−∆pu− f ≥ 0, u ≥ 0, (−∆pu− f)u = 0 in Ω,
u = 0 on ∂Ω.

(1.7)

VI. When α ∈ (1, n/(n − p)) and γ > α(n − 1) − n, u ≡ 0, that is, as ε → 0, the solution uε vanishes
asymptotically in the whole Ω.

VII. When α > n/(n− p) and γ ∈ R, the homogenized problem is

−∆pu = f in Ω, u = 0 on ∂Ω. (1.8)

Above, and throughout the paper ωn denotes the area of the unit sphere in Rn, and u+ and u− denote u+ =
sup(u(x), 0) and u− = u− u+. The existence and uniqueness of the solution for all the homogenized problems
holds as does that for the ε-dependent problem (1.1) (cf. Thm. 2.1).

Point I is referred to as the most critical case, where we have the critical size of perforations and the critical
relation for the adsorption parameter. Points II and III deal with the the classical critical size of perforations.
Case IV fits into the case of the critical relation for the adsorption. This case is of great interest, since for each
size of the holes (namely, for each α) we have a critical relation for the adsorption (namely, of γ) giving rise to
the strange term. Of course the role of α and γ inverts (see the discontinuous line with small dashes in Fig. 2).
In points V-VII some extreme relations for parameters hold.

Hence, the most critical relation between parameters is provided by the intersection, in the plane αγ, cf. Fig-
ure 2, of the lines α = n/(n − p) and γ = α(n − 1) − n. The intersection point (the big point in Fig. 2) has
coordinates α = n/(n − p) and γ = n(p − 1)/(n − p) = α(p − 1). In this case, the ε-dependent problem,
which is a variational inequality (cf. (2.8)), asymptotically transforms into a boundary value problem (cf. (1.2))
with a strange term defined implicitly from a functional equation (cf. (1.3)) issued from the microstructure
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Figure 2. Sketch of homogenized problems depending on the relations between α and γ
(n and p fixed).

of the problem. The function defining this new term satisfies the same properties of monotonicity as σ and it is
in good agreement with the existing results in the literature for p = 2 (cf. [23]). As a matter of fact, the strange
term is the sum of two terms related to the contribution both of the constraints uε ≥ 0 and ∂νpuε ≥ −ε−γσ(x, uε)
on the boundary of the perforations. The first term is given by a somewhat classical reaction term |u−|p−2u−

multiplied by averaged constants; the other one involves a nonlinear function of u, H(x, u) implicitly defined
from (1.3): see [28, 40, 41] to compare with strange terms when we have a Dirichlet condition or a generalized
Robin boundary condition with a more restrictive datum σ. See (8.1) for some explicit computation of H.

We also note that the above mentioned fact (on the double contribution for the strange term) has already
been detected in [17,23] for variational inequalities for the Laplacian (p = 2) in perforated media depending on
whether the perforations are placed over the whole domain or along a manifold. We mention [17] for an extensive
bibliography on variational inequalities in homogenization problems. Also, [21] should be mentioned as the first
work in the literature where a nonlinear strange term appears defined implicitly via a functional equation,
and [24, 25] as works which consider for the first time homogenization problems for the Laplace operator and
semilinear boundary conditions leaving as an open question the most critical case (namely, the one homologous
to the big point in Figure 2 when p = 2), problem which remained unsolved for a long time even for the Laplace
operator (cf. Sect. 8 in this connection).

For α = n/(n − p) and γ = α(p − 1) (see the intersection point in Figs. 2 and 3), we show the convergence
result for the solution uε of (1.1) with βε = ε−γ (cf. Thm. 3.1) towards that of (1.2), where the nonlinear
function H is defined via the functional equation (1.3). The existence and uniqueness of solution of (1.3) is a
consequence of a general result (cf. Prop. 2.2). Also, we obtain the corrector term Wε(H(x, u+) + u−) which
provides improved convergence (cf. Thm. 3.2 and Def. (2.15)).

For the same value of α and different values of γ, namely, α = n/(n − p) and γ 6= α(p − 1), the nonlinear
strange term arising in the homogenized problem (cf. problems (1.4) and (1.5)) is provided by the reaction term
|u|p−2u (for γ > α(p − 1)) or |u−|p−2u− (for γ < α(p − 1)) multiplied by constants of the problem obtained
in the average process (cf. capacity constant and scaling constants from sizes of the cavities). Convergence and
correctors are in Theorems 4.1–4.4: see line α = n/(n − p) in Figures 2 and 3. In both cases the homogenized
problem seem to ignore the function σ of the ε-dependent problem.
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Figure 3. Sketch of correctors and improved convergences.

In the case of the critical relation for the adsorption parameter γ = α(n− 1)− n and α smaller than for the
critical size, the nonlinear strange term is σ(x, u) multiplied by some averaged constants. It accompanies the
p-Laplacian in Ω and the homogenized problem is now an obstacle problem; namely, it is an obstacle problem
associated to the corresponding homogenized medium (cf. (1.6) and the discontinuous line with small dashes in
Fig. 2). The convergence and bounds for convergence rates are in Theorems 5.1 and 5.2.

Finally, for the extreme relations, that is, the very large size of perforations and very large adsorption
parameters, the solution of the ε-dependent problem is approached by 0 (cf. Thm. 6.3, and the region above
the discontinuous line with small dashes in Fig. 2) as if the adsorption parameter becomes a small parameter
accompanying the normal derivative, and therefore, as if Dirichlet conditions are imposed on very big perforations
(see [28]). This is quite in contrast with the case of large size of perforations and small adsorption where we
obtain an obstacle problem for the p-Laplace operator in Ω which ignores both the nonlinear term σ and the
adsorption parameter: see problem (1.7), Theorems 6.1 and 6.2 and the region below the discontinuous line with
small dashes in Figures 2 and 3.

In the case where p = n (cf. Sect. 7), we consider the most critical situation which is somewhat homologous
to that of the big point in Figure 2. More specifically, for the geometry of the cavities described by (7.1) and the
relations between sizes of cavities aε and adsorption parameter βε described by (7.2), the homogenized problem
reads: {

−∆nu+ Ãn
(
|H(x, u+)|n−2H(x, u+) + |u−|n−2u−

)
= f in Ω,

u = 0 on ∂Ω,
(1.9)

where Ãn = ωnα̃
−2(n−1), and for every (x, τ) ∈ Ω × R, H(x, τ) is the solution of the functional equation

B̃n|H|n−2H = σ(x, u−H), (1.10)

with
B̃n = ωnα̃

−2(n−1)C̃
−2(n−1)
0 l−1 and |∂Dm| = l; (1.11)

l, α̃2 and C̃2
0 are positive constants (see their precise definitions in (7.1) and (7.2) and (1.12)), l the perimeter

of the cavities (cf. the different cells in Fig. 1).
For brevity, in order to outline the extra difficulties when dealing with cavities which are not balls, in Section 7

we consider only the above homogenized problem (1.9) when p = n, leaving the whole map of possible limit



UNILATERAL PROBLEMS FOR THE P -LAPLACE OPERATOR IN PERFORATED MEDIA 927

situations and proofs to be published in a forthcoming publication by the authors. However, it should be noted
that for p = n, due to the fact that logarithmic scale appears (cf. (7.2)), a graphic of the type of Figure 2
summarizing all the possible homogenized problem becomes more complicated (even unthinkable), and, as
occurs in [18] for the Laplacian and perforation by tubes, the graphics should be performed for well defined
dependence of aε and βε in terms of ε. In this respect, as a sample, we outline that (1.9)–(1.11) provide the
homogenized problem of (1.1) when we have the following relations:

aε = C̃2
0ε
ke−α̃

2/ει , βε = εn−(n−1)jeα̃
2(n−1)/ει , (1.12)

with k = j ≥ 0, C̃2
0 > 0, α̃2 > 0, and ι = n/(n − 1). However, other choices of order functions for aε and βε

could lead to the same homogenized problem.
As happens for p ∈ [2, n), in the most critical case, the homogenized problem (1.9) is a boundary value

problem in Ω containing the strange term in the partial differential equation which is the sum of two terms
as a consequence of a double contribution (cf. [28, 39, 41] to compare with other boundary conditions). The
contribution due to the constraint for the flux leads to the nonlinear function |H|n−2H in the strange term, H
being implicitly defined by (1.10), where the perimeter l of the cavities arises now in the averaged constant (1.11),
due exclusively to the influence of the adsorption parameter independently of the shape.

Note that in the case where the nonlinear function σ is the classical one arising in the Robin boundary
condition, namely σ = b(x)|u|p−2u with p ∈ [2, n], H can be defined explicitly in terms of b(x) and u and we
observe that H depends on b(x) in a quite unusual way (see (8.1)).

As regards the technique, we mainly use the energy method to show the convergence of the solutions. Never-
theless, since we are dealing with homogenization of variational inequalities, and constraints involving nonlinear
functions on the boundary of the perforations, proofs rely on monotonic operator theory, on extension oper-
ators, on suitable transformations of certain surface integrals on Sε into volume integrals, on convergence of
measures, and on the appropriate choice of test functions which allows us to pass to the limit in the weak formu-
lations. These choices imply introducing auxiliary problems in the periodicity cell (cf. (2.13), (5.8), (7.6), (7.8)
and (7.26)). As a matter of fact, somehow five auxiliary functions are used in the process depending on the range
of p and on the relations between the parameters βε and aε. Functions wjε and wjε deal with the classical test func-
tions used in the literature when the perforations are balls; both functions can be explicitly constructed. qjε deal
with the test functions for more general geometries; also, the sets of functions {M j

ε } and {mj
ε} (j ∈ Zn), which

are solutions of the non-homogeneous Neumann problems for the p-Laplacian, (5.8) and (7.26) respectively,
become crucial in the identification of certain homogenized problems.

For the most critical case, we construct the test functions (cf. (3.2) and (7.15)) using wjε and qjε and the
function H arising in the strange term (see (1.3) and (1.10) depending on p). To show the improved convergence
for solutions, we construct correctors using the auxiliary functions, the implicitly defined function H, and
some intermediate singularly perturbed problem (cf. (5.16)): under the assumption of W 1,∞-smoothness of the
solution of the homogenized problems, allows us to obtain precise bounds for convergence rates in the W 1,p-norm
(see a map of the different situations in Fig. 3).

As regards the structure of the paper: Sections 2–6 are devoted to the case where p ∈ [2, n) and Section 7
contains the case p = n. Figure 2 summarizes the cluster of possible homogenized problems for different relations
between the parameters α and γ, once we set p and n for p ∈ [2, n). Figure 3 provides a sketch of the corrector
terms and improved convergence for p ∈ [2, n). The proofs are distributed in the paper as follows. Section 3
contains results for the most critical case (cf. the big point in Figs. 2 and 3, and case I of the table). Section 4
contains results for the critical size of the perforations (cf. the vertical half-lines α = n/(n − p) in Figs. 2
and 3, and cases II and III in the table). Section 5 addresses the critical relation for the adsorption parameter
(cf. discontinuous line with small dashes in Figs. 2 and 3, and case IV of the table). Section 6 addresses the
rest of extreme relations (see the regions in different colors in Figs. 2 and 3; cases V-VII of the table). Section 2
deals with the setting of the problem and some preliminary results useful for proofs throughout Sections 3–6;
some technical proofs of these results are in the Appendix. Section 8 contains some final remarks on our results
and on possible extensions to this paper.
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Finally, in short, we emphasize that this paper provides a very general framework for variational inequalities
with the p-Laplacian and constraints on the boundary of the perforations. The entire results imply improving
and extending results in former papers in the literature (cf. Rem. 8.1): only the results in Theorems 3.1 and 7.4
have been stated in [16, 19] under stronger restrictions on σ, we provide here their complete proofs. Also, we
extend the results in [23] for the Laplace operator; namely, in [23] only items I and IV of the table for p = 2 have
been addressed. We consider a more general σ at the same time that cover the rest of the cases for p = 2 and
the rest of p. In all the cases we provide correctors or improved convergence with precise bounds for convergence
rates. We also note that depending on the situation in the general map of Figures 2 and 3, the result obtained
can be extended to more general geometries of the cavities and other nonlinear data arising in the constraints
(see Sect. 8 in this connection).

2. The homogenization problem and preliminaries

In this section we introduce the variational inequality for the p-Laplace operator associated with (1.1), and the
precise geometry and notations used throughout Sections 3–6 for p ∈ [2, n). Each section or subsection contains
different relations between parameters. We extend notations and the geometry of the problem in Section 7 for
p = n.

Let Ω be a bounded domain in Rn, n ≥ 3, with a smooth boundary ∂Ω and Y = (−1/2, 1/2)n. Let ε be

a small positive parameter that we shall make converge towards zero. We set Ω̃ε = {x ∈ Ω | ρ(x, ∂Ω) > 2ε }
where ρ denotes the distance.

We denote by G0 the ball of radius 1 centered at the origin of coordinates. Let ωn be the area of the unit
sphere in Rn, that is, ωn = |∂G0|. For a domain B and for δ > 0, we define the sets δB = {x | δ−1x ∈ B }. We
set

Gε =
⋃
j∈Υε

(aεG0 + εj) =
⋃
j∈Υε

Gjε,

where aε � ε, and Υε = {j ∈ Zn : (aεG0 + εj) ∩ Ω̃ε 6= ∅}; Zn is the set of vectors z with integer coordinates
(see Fig. 1). Note that |Υε| ∼= dε−n with d > 0. We define Y jε = εY + εj where j ∈ Υε.

In what follows, we set
Ωε = Ω \Gε, Sε = ∂Gε, ∂Ωε = ∂Ω ∪ Sε.

Also we consider the spaceW 1,p(Ωε, ∂Ω) (W 1,p(Ω, ∂Ω), respect.) to be the completion with respect toW 1,p(Ωε)-
norm (W 1,p(Ω)-norm, respect.) of the set of infinitely differentiable functions in Ωε (Ω, respect.), vanishing in
a neighborhood of ∂Ω. For a function u in W 1,p(Ω), u+ and u− denote u+ = sup(u(x), 0) and u− = u − u+

respectively.
Let us consider σ(x, u) a continuously differentiable function of variables (x, u) ∈ Ω × R satisfying:

σ(x, 0) = 0, (2.1)

(σ(x, u)− σ(x, v))(u− v) ≥ k1|u− v|p (2.2)

and
|σ(x, u)| ≤ k2[|u|p−1 + |u|δ] (2.3)

for all x ∈ Ω, u, v ∈ R, and certain constants k1 > 0, k2 > 0 and δ ∈ [p− 1, (p− 1)n/(n− p)] if p ∈ [2, n), and
δ ∈ [p− 1,∞) if p = n. Note that (2.1)–(2.2) imply

σ(x, u) ≥ 0 if u ≥ 0 and σ(x, u) ≤ 0 if u ≤ 0, ∀x ∈ Ω. (2.4)

The variational formulation of problem (1.1) is: find uε ∈ Kε satisfying∫
Ωε

|∇uε|p−2∇uε∇(ψ − uε) dx+ βε

∫
Sε

σ(x, uε)(ψ − uε) ds ≥
∫
Ωε

f(ψ − uε) dx, ∀ψ ∈ Kε, (2.5)
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where the set Kε is defined by

Kε = {g ∈W 1,p(Ωε, ∂Ω) : g ≥ 0 a.e. on Sε}. (2.6)

For p ∈ [2, n) we set the values

aε = C0ε
α, with α > 1 and C0 > 0, and βε = ε−γ , with γ ∈ R. (2.7)

We have the following result:

Theorem 2.1. Let ε > 0, f ∈ Lq(Ω) with q = p/(p− 1), p ∈ [2, n), and aε and βε given by (2.7). For fixed ε,
problem (2.5)−(2.6) has a unique solution uε ∈ Kε which also satisfies the inequality∫

Ωε

|∇ψ|p−2∇ψ∇(ψ − uε) dx+ ε−γ
∫
Sε

σ(x, ψ)(ψ − uε) ds ≥
∫
Ωε

f(ψ − uε) dx, ∀ψ ∈ Kε. (2.8)

In addition, for uε the solution of (2.5)−(2.6), there exists Pεuε an extension of uε to Ω, Pεuε ∈W 1,p(Ω, ∂Ω)
with the following properties

‖Pεuε‖W 1,p(Ω) ≤ K‖uε‖W 1,p(Ωε), ‖∇Pεuε‖Lp(Ω) ≤ K‖∇uε‖Lp(Ωε), (2.9)

and
‖Pεuε‖pW 1,p(Ω) + ε−γ‖uε‖pLp(Sε)

≤ K‖f‖qLq(Ωε). (2.10)

In all the estimates above, K > 0 denotes a constant independent of ε.

Proof. First, we show that the integral on the boundary
∫
Sε
σ(x, uε)(ψ − uε) ds is well defined for ψ ∈

W 1,p(Ωε, ∂Ω). To do this, we take into account (2.3), the Hölder inequality and the continuous embedding
of W 1,p(Ωε, ∂Ω) into Lr(Sε) for p ≤ r ≤ p(n− 1)/(n− p), and we can write∣∣∣∣∣∣

∫
Sε

σ(x, uε)(ψ − uε) ds

∣∣∣∣∣∣ ≤Cε[‖uε‖p−1
Lp(Sε)

‖ψ − uε‖Lp(Sε) + ‖uε‖δLδr′ (Sε)‖ψ − uε‖Lr(Sε)]

≤Cε[‖uε‖p−1
W 1,p(Ωε)

+ ‖uε‖δW 1,p(Ωε)
]‖ψ − uε‖W 1,p(Ωε) (2.11)

where r = p(n− 1)/(n− p) and r′ = p(n− 1)/n(p− 1).
The existence and uniqueness of the solution uε ∈ Kε of problem (2.5)–(2.6) follows from the monotonicity of

the function |λ|p−2λ (cf. (2.18)) and from the monotonicity of the function σ(x, u) with respect to u (cf. (2.2)):
see, e.g., Section II.8.2 in [30] and Section III.1 in [27]. Moreover, applying Minty Lemma (see, e.g., Thm. 8.4
in Section II.8.2 of [30]), the integral inequality (2.5) for uε amounts to (2.8).

The existence of a function Pεuε ∈ W 1,p(Ω, ∂Ω) which extends uε to Ω and satisfies properties (2.9) is a
consequence of Lemma 2.7 (see below).

Let us show estimate (2.10). Setting ψ ≡ 0 in (2.5) and v ≡ 0 in (2.2), we have

‖∇uε‖pLp(Ωε)
+ ε−γ‖uε‖pLp(Sε)

≤ ‖f‖Lq(Ωε)‖uε‖Lp(Ωε).

Then, from the Poincaré inequality for the elements W 1,p(Ω, ∂Ω) and (2.9), we obtain the estimates

‖∇uε‖pLp(Ωε)
≤ K‖f‖qLq(Ωε), ε

−γ‖uε‖pLp(Sε)
≤ K‖f‖qLq(Ωε),

‖uε‖pW 1,p(Ωε)
≤ K‖f‖qLq(Ωε), ‖Pεuε‖

p
W 1,p(Ω) ≤ K‖f‖

q
Lq(Ω).

Therefore, (2.10) follows and the estimates above conclude the proof of the theorem. �
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Considering (2.10), there is a subsequence (still denoted by ε) such that, as ε→ 0,

Pεuε ⇀ u in W 1,p(Ω, ∂Ω)− weak and Pεuε → u in Lp(Ω), (2.12)

for a certain function u which, once identified, provides the convergences (2.12) for the whole sequence of ε.
Note that such an extension provides a bound of the Poincaré constant independent of ε.

Throughout Sections 3–6, we show that this homogenized function u is the unique solution of a homogenized
problem which depends on the relation between the parameters α, γ, p and n. That is, depending on the
dimension of the space, the value of p, and the different relations between the ε-dependent parameters (the
radius of the cavities O(εα) and the adsorption parameter O(ε−γ)), we have very different limit behaviors for
the solution of problem (1.1). For fixed n ≥ 3 and p ∈ [2, n), Figure 2 shows a graph of γ versus α in such a way
that for each α ∈ (1, n/(n−p)], the values of γ above, below or equal to α(n−1)−n provide different homogenized
problems. In the case where α > n/(n − p), the size of the cavities is very small and the solution uε ignores
asymptotically their influence. In addition, depending on the relations between the parameters α, γ, p and n,
we also construct different correctors which provide estimates for convergence rates of solutions (cf. Fig. 3).

2.1. Preliminary results

In this section, we introduce results which we shall use throughout Sections 3–6. We provide either precise
references for their proof or a detailed proof in the Appendix. First, we introduce a function, related to the
solution of the microscopic problem, which allows us to construct the test functions to pass to the limit in (2.8),
as ε→ 0. Also, we obtain certain estimates that we need for proofs in Sections 3–6. Here and in what follows,
K denotes a constant independent of ε.

Let us denote by P jε the center of the ball Gjε, j ∈ Υε. We denote by T jε/4 the ball of radius ε/4 with center

P jε . Let wjε be the solution of the following problem
∆pw

j
ε = 0 in T jε/4 \G

j
ε,

wjε = 1 on ∂Gjε,

wjε = 0 on ∂T jε/4.

(2.13)

It can be easily verified that for p ∈ [2, n) we have

wjε(x) =
|x− P jε |(p−n)/(p−1) −

(
ε
4

)(p−n)/(p−1)

a
(p−n)/(p−1)
ε −

(
ε
4

)(p−n)/(p−1)
. (2.14)

We define the function Wε ∈W 1,p(Ω, ∂Ω) by setting

Wε(x) = wjε(x), x ∈ T jε/4 \G
j
ε, j ∈ Υε, (2.15)

extended by 1 inside Gjε, j ∈ Υε, and by 0 in Rn \
⋃
j∈Υε

T jε/4. Thus, we compute

‖∇Wε‖pLp(Ω) ≤ Kε
α(n−p)−n (2.16)

and, consequently, as ε→ 0, we conclude that

Wε ⇀ 0 in W 1,p(Ω)− weak if α = n/(n− p),
Wε → 0 in W 1,p(Ω) if α > n/(n− p). (2.17)

Next, it will prove useful to introduce a well-known result on the monotonicity of the function |λ|p−2λ with
respect to λ ∈ Rn for p ≥ 2: there exists a constant k3 > 0 such that

(|λ1|p−2λ1 − |λ2|p−2λ2 )(λ1 − λ2 ) ≥ k3 |λ1 − λ2|p, ∀λ1, λ2 ∈ Rn, (2.18)

(cf., e.g., [6]). Note that here and throughout the paper we write λ1λ2 as the scalar product in Rn.
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Using this result, we introduce a proposition which provides existence and uniqueness of solution of the
functional equation arising in the homogenized problem (1.2): see the Appendix for its proof. Also, see for
example [20] and references therein for different functional equations when p = 2.

Proposition 2.2. Let p be p ≥ 2. Let % be a strictly positive constant and let σ be the function σ(x, u) defined
from Ω×R into R which is assumed to be a continuously differentiable function in Ω×R satisfying (2.1)−(2.2).
Then, the equation

|H|p−2H = % σ(x, τ −H) (2.19)

has a unique solution H(x, τ) which is a continuously differentiable function in Ω × (R \ {0}) and continuous
in Ω × R, and satisfies H(x, 0) = 0 and

(|H(x, u)|p−2H(x, u)− |H(x, v)|p−2H(x, v))(u− v) ≥ k̃1|u− v|p, (2.20)

|H(x, u)| ≤ |u|, (2.21)

for all x ∈ Ω, u, v ∈ R and a certain constant k̃1 > 0. Consequently,

H(x, u) ≥ 0 if u ≥ 0, H(x, u) ≤ 0 if u ≤ 0, ∀x ∈ Ω. (2.22)

The following result simplifies the computations throughout the paper: see the Appendix for its proof.

Proposition 2.3. Let p > 2. Let v ∈W 1,∞(Ω), ϕ ∈W 1,p(Ω, ∂Ω) and ηε ∈W 1,p(Ω, ∂Ω) such that ‖∇ηε‖Lm(Ω)

tends to 0, as ε→ 0, for m ∈ [1, p). Then,∫
Ωε

(
|∇(v + ηε)|p−2∇(v + ηε)− |∇v|p−2∇v

)
∇ϕdx =

∫
Ωε

|∇ηε|p−2∇ηε∇ϕdx+Rε, (2.23)

where |Rε| → 0 as ε→ 0 and

|Rε| ≤ K[‖∇ηε‖p−2
L(p−2)p/(p−1)(Ω)

+ ‖∇ηε‖Lp/(p−1)(Ω)]‖∇ϕ‖Lp(Ω) . (2.24)

Moreover, if ‖∇ηε‖Lp(Ω) → 0, as ε→ 0, then

lim
ε→0

∫
Ωε

(
|∇(v + ηε)|p−2∇(v + ηε)− |∇v|p−2∇v

)
∇ϕdx = 0. (2.25)

In addition, (2.23)−(2.25) also hold in the case where ϕ depends on ε, namely ϕ ≡ ϕε, with ‖∇ϕε‖Lp(Ω)

bounded independently of ε.

Finally, we introduce Lemmas 2.4–2.8 which we need for the proofs throughout Sections 3–6. Applying the
technique in Lemmas 1 and 2 in [33], and Lemma 3 in [34] for p = 2 we obtain Lemmas 2.4, 2.5 and 2.6
respectively (see also [40] in this connection). See Theorem 1 of [39] and references therein for the proof of
Lemma 2.7 (cf. also in this connection [1, 10, 33, 38] when p = 2). We refer to Lemma 1 in [44] for the proof of
Lemma 2.8. In these lemmas, the constant K does not depend on ε nor on the functions ϕ appearing in their
statements.

Lemma 2.4. Let Ỹε = ε(−1/2, 1/2)n\aεG0 where G0 is the ball of radius 1 with center the origin of coordinates

and aε is a positive constant such that aεG0 ⊂ ε(−1/2, 1/2)n. If ϕ ∈ W 1,p(Ỹε) and
∫
Ỹε
w dx = 0, 2 ≤ p < n,

then

‖ϕ‖Lp(Ỹε)
≤ Kε‖∇ϕ‖Lp(Ỹε)

.
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Lemma 2.5. Let Ỹε be the domain defined in Lemma 2.4. Let ϕ ∈W 1,p(Ỹε), 2 ≤ p < n. Then,

‖ϕ‖pLp(aε∂G0) ≤ K
[
an−1
ε ε−n‖ϕ‖p

Lp(Ỹε)
+ ap−1

ε ‖∇ϕ‖p
Lp(Ỹε)

]
.

Lemma 2.6. Let Ỹε be the domain defined in Lemma 2.4 and let
˜̃
Y ε denote the domain 2ε(−1/2, 1/2)n \aεG0.

Let ϕ ∈W 1,p(Ỹε), 2 ≤ p < n. Then,

‖ϕ‖p
Lp(Ỹε)

≤ K
[
a1−n
ε εn‖ϕ‖pLp(aε∂G0) + ap−nε εn‖∇ϕ‖p

Lp(
˜̃
Y ε)

]
.

Lemma 2.7. Let p > 1. There exists an operator Pε from W 1,p(Ωε, ∂Ω) into W 1,p(Ω, ∂Ω), such that for any
ϕ ∈W 1,p(Ωε, ∂Ω),

‖Pεϕ‖W 1,p(Ω) ≤ K‖ϕ‖W 1,p(Ωε) and ‖∇Pεϕ‖Lp(Ω) ≤ K‖∇ϕ‖Lp(Ωε). (2.26)

Lemma 2.8. Let hε ∈ H1
0 (Ω) and hε ⇀ h0 in H1(Ω)-weak as ε → 0. Let T jε/4 be the ball of radius ε/4 with

center P jε . Then, as ε→ 0, ∑
j∈Υε

22n−2ε

∫
∂T j

ε/4

hε ds→ ωn

∫
Ω

h0 dx,

where ωn is the area of the unit sphere in Rn.

3. The most critical case for p ∈ [2, n): α = n
n−p

and γ = n(p−1)
n−p

In this case, the homogenized problem is the boundary value problem (1.2). We show that the nonlinear
function arising in the strange term is defined through a functional equation (cf. the reaction term in (1.2)
and (1.3)). The properties of this function allow us to obtain a corrector: see (3.2) for u = v, and the point
intersection of all the lines in Figures 2 and 3. The convergence and the corrector results are in Theorem 3.1
and 3.2 respectively.

Theorem 3.1. Let α = n/(n− p), γ = n(p− 1)/(n− p) for p ∈ [2, n), and let uε be the weak solution of (1.1).
Then, the limit function u of the extension of uε, defined by (2.12), is the weak solution of problem (1.2).

Proof. First, let us note that on account of Proposition 2.2, equation (1.3) has a unique solution and therefore,
the function H(x, u) arising in (1.2) is a well defined function satisfying H(x, 0) = 0, (2.20), (2.21) and (2.22)

for all x ∈ Ω, u, v ∈ R and a certain constant k̃1 > 0. The variational formulation of (1.2) reads: find u ∈
W 1,p(Ω, ∂Ω) such that∫
Ω

|∇u|p−2∇u∇φdx+An,p
∫
Ω

(
|H(x, u+)|p−2H(x, u+) + |u−|p−2u−

)
φdx =

∫
Ω

fφdx, ∀φ ∈W 1,p(Ω, ∂Ω).

(3.1)
From the monotonicity of the function |λ|p−2λ (see (2.18)) and of the function |H(x, z)|p−2H(x, z) with respect
to z (see (2.20) and (2.22)), p ≥ 2, the existence and uniqueness of solution of (3.1) holds: see, e.g., Section II.8.2
in [30] (cf. also [17,23,40], for related problems).

Let us consider the function

ψ = v −Wε(H(x, v+) + v−), (3.2)

where v ∈ C∞0 (Ω), Wε is the function defined by (2.15) and H(x, τ) is the solution of the functional equa-
tion (1.3). Let us prove that ψ ≥ 0 on Sε, and thus it belongs to Kε. Suppose that for some point x0 ∈ Sε
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we have ψ(x0) < 0. Then, we get v+(x0)−H(x0, v
+(x0)) < 0 and σ(x0, v

+(x0)−H(x0, v
+(x0))) < 0. However,

0 ≤ Bn,p|H(x0, v
+(x0))|p−2H(x0, v

+(x0)) = σ(x0, v
+(x0)−H(x0, v

+(x0))). Thus, we obtain a contradiction.
We now take ψ defined by (3.2) as a test function in (2.8); since Wε = 1 in Gε we obtain∫
Ωε

|∇(v −Wε(H(x, v+) + v−))|p−2∇(v −Wε(H(x, v+) + v−))∇(v −Wε(H(x, v+) + v−)− uε) dx

+ ε−γ
∫
Sε

σ(x, v+ −H(x, v+))(v+ −H(x, v+)− uε) ds ≥
∫
Ωε

f(v −Wε(H(x, v+) + v−)− uε) dx (3.3)

and we pass to the limit when ε→ 0.
We denote by Lε the left hand side of (3.3). Let us show that

lim
ε→0

Lε ≤
∫
Ω

|∇v|p−2∇v∇(v − u) dx+ An,p
∫
Ω

(
|H(x, v+)|p−2H(x, v+) + |v−|p−2v−

)
(v − u) dx. (3.4)

In order to do that, we take into account that∫
Ωε

|∇Wε|mdx ≤ Kεn(p−m)/(n−p), for m ∈ [1, p], (3.5)

which is obtained from formula (2.14). Then, we apply Proposition 2.3 with

ηε ≡ −Wε(H(x, v+) + v−) and ϕ = ϕε ≡ v −Wε(H(x, v+) + v−)− Pεuε,

where Pεuε is the extension defined in Theorem 2.1. This is possible since on account of (2.10), (3.5), (2.12)
and (2.17), we can check that ‖∇ϕε‖Lp(Ω) is bounded independent of ε and

ϕε ≡ v −Wε(H(x, v+) + v−)− Pεuε ⇀ v − u in W 1,p(Ω)− weak as ε→ 0. (3.6)

Thus, we obtain
lim
ε→0

Lε = lim
ε→0

(L1
ε + L2

ε + L3
ε) (3.7)

where

L1
ε ≡

∫
Ωε

|∇v|p−2∇v∇(v −Wε(H(x, v+) + v−)− uε) dx,

L2
ε ≡ −

∫
Ωε

|∇(Wε(H(x, v+) + v−))|p−2∇(Wε(H(x, v+) + v−))∇(v −Wε(H(x, v+) + v−)− uε) dx

and

L3
ε ≡ ε−γ

∫
Sε

σ(x, v+ −H(x, v+))(v+ −H(x, v+)− uε) ds.

On account of (3.6) and the fact that |Gε| → 0, we have

lim
ε→0

L1
ε =

∫
Ω

|∇v|p−2∇v∇(v − u) dx. (3.8)

We study the limit of L2
ε + L3

ε when ε→ 0.
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From (3.5), (3.6) and (2.10), it follows

− lim
ε→0

L2
ε = lim

ε→0

∫
Ωε

|H(x, v+) + v−|p−2|∇Wε|p−2∇(Wε(H(x, v+) + v−))∇ϕεdx

= lim
ε→0

∫
Ωε

|∇Wε|p−2∇Wε∇
(
|H(x, v+) + v−|p−2(H(x, v+) + v−)ϕε

)
dx. (3.9)

Moreover, by the properties of H(x, z), we have H(x, v+)v− = 0 and, hence,

− lim
ε→0

L2
ε = lim

ε→0

∫
Ωε

|∇Wε|p−2∇Wε∇
(
(|H(x, v+)|p−2H(x, v+) + |v−|p−2v−)ϕε

)
dx.

Thus, using the definition of Wε and the Green formula, we get

− lim
ε→0

L2
ε = lim

ε→0

∑
j∈Υε

∫
∂T j

ε/4
∪∂Gjε

|∇wjε|p−2∂νw
j
ε (|H(x, v+)|p−2H(x, v+) + |v−|p−2v−)ϕε ds. (3.10)

In order to compute (3.10), we use the explicit form of the normal derivatives of the auxiliary functions wjε
given by

|∇wjε|p−2∂νw
j
ε

∣∣∣
∂Gjε

= ε−
n·(p−1)
n−p

(n− p
p− 1

)p−1 1

Cp−1
0 (1− αε)p−1

, (3.11)

|∇wjε|p−2∂νw
j
ε

∣∣∣
∂T j

ε/4

= −ε
(
n− p
p− 1

)p−1

Cn−p0

22n−2

(1− αε)p−1
· (3.12)

where αε = a
n−p
p−1
ε ε

p−n
p−1 2

2n−2p
p−1 = ε(α−1)n−pp−1 2

2n−2p
p−1 → 0 as ε→ 0.

By the definition of ϕε and Wε and the fact that v−(v+ − H(x, v+)) = 0, uε ≥ 0 on ∂Gjε and (3.11), we
obtain

− lim
ε→0

L2
ε ≥ lim

ε→0

∑
j∈Υε

∫
∂Gjε

|∇wjε|p−2∂νw
j
ε |H(x, v+)|p−2H(x, v+)(v+ −H(x, v+)− uε) ds

+ lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4

|∇wjε|p−2∂νw
j
ε (|H(x, v+)|p−2H(x, v+) + |v−|p−2v−)(v − uε) ds.

In addition, from (3.11)–(3.12), it follows

− lim
ε→0

L2
ε ≥ lim

ε→0

ε−γBn,p
(1− αε)p−1

∫
Sε

|H(x, v+)|p−2H(x, v+)(v+−H(x, v+)−uε) ds

− lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4

ε 22n−2An,p
ωn(1− αε)p−1

(
|H(x, v+)|p−2H(x, v+) + |v−|p−2v−

)
(v−uε) ds. (3.13)

Now, taking into account that H is the solution of the equation (1.3) and using the Hölder inequality, (2.10)
and the size of Sε we get∣∣∣∣∣∣L3

ε −
ε−γBn,p

(1− αε)p−1

∫
Sε

|H(x, v+)|p−2H(x, v+)(v+−H(x, v+)−uε) ds

∣∣∣∣∣∣
≤Kαεε−γ

∫
Sε

|v+−H(x, v+)−uε|ds ≤ Kαεε−γ [|Sε|+ |Sε|(p−1)/p‖uε‖Lp(Sε)]→ 0 as ε→ 0.
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Moreover, on account of (3.6), we apply Lemma 2.8 and have

lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4

ε 22n−2An,p
ωn(1− αε)p−1

(
|H(x, v+)|p−2H(x, v+) + |v−|p−2v−

)
(v−uε)ds

=An,p
∫
Ω

(
|H(x, v+)|p−2H(x, v+) + |v−|p−2v−

)
(v − u) dx,

and, consequently,

lim
ε→0

(L2
ε + L3

ε) ≤ An,p
∫
Ω

(
|H(x, v+)|p−2H(x, v+) + |v−|p−2v−

)
(v − u) dx. (3.14)

Now, gathering (3.7), (3.8) and (3.14) yields (3.4).
Finally, we use (3.4) and (3.6) to pass to the limit in (3.3), as ε → 0, and obtain that the limit function u

satisfies the following inequality∫
Ω

|∇v|p−2∇v∇(v − u) dx+ An,p
∫
Ω

(
|H(x, v+)|p−2H(x, v+) + |v−|p−2v−

)
(v − u) dx ≥

∫
Ω

f(v − u) dx, (3.15)

for all v ∈W 1,p(Ω, ∂Ω). As usual, taking v = u± λφ in (3.15) where φ ∈W 1,p(Ω, ∂Ω) and passing to the limit
as λ→ +0, we obtain that u satisfies the integral identity (3.1), which concludes the proof. �

Theorem 3.2. Let α = n/(n−p), γ = n(p−1)/(n−p) and p ∈ [2, n). Let uε be the weak solution of (1.1), u ∈
W 1,p(Ω, ∂Ω) the weak solution of the boundary value problem (1.2) with the additional regularity u ∈W 1,∞(Ω),
and Wε defined by (2.15). Then, as ε→ 0, we have

‖uε − u+Wε(H(x, u+) + u−)‖pW 1,p(Ωε)
+ ε−γ‖uε − u+ +H(x, u+)‖pLp(Sε)

→ 0. (3.16)

Proof. Let us consider problems (2.5) and (3.1) and take as test functions ψ = u −Wε(H(x, u+) + u−) and
φ = u −Wε(H(x, u+) + u−) − Pεuε, respectively, for Pεuε arising in (2.12). Subtracting both expressions and
taking into account the definition of Wε on Gε, we obtain∫
Ωε

(|∇u|p−2∇u− |∇uε|p−2∇uε)∇(u−Wε(H(x, u+) + u−)− uε) dx− ε−γ
∫
Sε

σ(x, uε)(u
+ −H(x, u+)− uε) ds

≤ −An,p
∫
Ω

(|H(x, u+)|p−2H(x, u+) + |u−|p−2u−)(u−Wε(H(x, u+) + u−)−Pεuε)dx

+

∫
Gε

f(u+ −H(x, u+)− Pεuε) dx−
∫
Gε

|∇u|p−2∇u∇(u−Wε(H(x, u+) + u−)− Pεuε) dx. (3.17)

Let us denote by A1
ε the first integral on the left hand side of (3.17) and by Ĥ the function H(x, u+) + u−.

Then, we can rewrite it in the following way

A1
ε =

∫
Ωε

(
|∇(u−WεĤ)|p−2∇(u−WεĤ)− |∇uε|p−2∇uε

)
∇(u−WεĤ − uε) dx

+

∫
Ωε

(
|∇u|p−2∇u− |∇(u−WεĤ)|p−2∇(u−WεĤ)

)
∇(u−WεĤ − uε) dx. (3.18)
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Using the monotonicity of the functions σ(x, u) and |λ|p−2λ (see (2.2) and (2.18)), from (3.18) and (3.17),
we deduce

K
(
‖∇(u−Wε(H(x, u+) + u−)− uε)‖pLp(Ωε)

+ ε−γ‖u+−H(x, u+)−uε‖pLp(Sε)

)
≤
∫
Ωε

(
|∇(u−WεĤ)|p−2∇(u−WεĤ)− |∇uε|p−2∇uε

)
∇(u−WεĤ − uε) dx

+ ε−γ
∫
Sε

(σ(x, u+ −H(x, u+))− σ(x, uε))(u
+−H(x, u+)−uε) ds ≤ I1

ε + I2
ε + I3

ε (3.19)

where

I1
ε ≡

∫
Ωε

(
|∇(u−WεĤ)|p−2∇(u−WεĤ)− |∇u|p−2∇u

)
∇(u−WεĤ − uε) dx,

I2
ε ≡−An,p

∫
Ω

(|H(x, u+)|p−2H(x, u+) + |u−|p−2u−)(u−WεĤ − Pεuε) dx

+ ε−γ
∫
Sε

σ(x, u+ −H(x, u+))(u+ −H(x, u+)− uε) ds,

and

I3
ε ≡

∫
Gε

f(u+ −H(x, u+)− Pεuε) dx−
∫
Gε

|∇u|p−2∇u∇(u−WεĤ − Pεuε) dx.

We study the limit of I1
ε + I2

ε + I3
ε when ε→ 0.

From (2.10) and (3.5), we apply Proposition 2.3 with ηε ≡ −WεĤ and ϕ = ϕε ≡ u−WεĤ −Pεuε, and have
that

lim
ε→0

I1
ε = − lim

ε→0

∫
Ωε

|∇(WεĤ)|p−2∇(WεĤ)∇(u−WεĤ − uε) dx.

Moreover, rewriting the computations (3.9)–(3.13) with minor modifications, we have

lim
ε→0

I1
ε ≤− lim

ε→0

ε−γBn,p
(1− αε)p−1

∫
Sε

|H(x, u+)|p−2H(x, u+)(u+−H(x, u+)−uε)ds

+ lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4

ε 22n−2An,p
ωn(1− αε)p−1

{
|H(x, u+)|p−2H(x, u+) + |u−|p−2u−

}
(u−uε)ds.

Thus, using the definition of H, (2.10), Lemmas 2.8, (2.12) and (2.17), we obtain

lim
ε→0

(I1
ε + I2

ε ) ≤ 0 (3.20)

(see the reasoning for the proof of (3.14)). Besides, since u−WεĤ −Pεuε is bounded in W 1,p(Ω) and |Gε| → 0
as ε→ 0, we derive

lim
ε→0

I3
ε = 0 and lim

ε→0
(I1
ε + I2

ε + I3
ε ) ≤ 0. (3.21)

Finally, gathering (3.19), (3.20) and (3.21), we obtain, as ε→ 0,

‖∇(u−Wε(H(x, u+) + u−)− uε)‖pLp(Ωε)
+ ε−γ‖u+−H(x, u+)−uε‖pLp(Sε)

→ 0. (3.22)
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To get (3.16) from (3.22), we consider the Poincaré inequality for the W 1,p–extension of u −Wε(H(x, u+) +
u−)− uε in Lemma 2.7, namely for Pε(u−Wε(H(x, u+) + u−)− uε) ∈W 1,p(Ω, ∂Ω), which satisfies

‖∇(Pε(u−Wε(H(x, u+) + u−)− uε))‖pLp(Ω) ≤ K‖∇(u−Wε(H(x, u+) + u−)− uε)‖pLp(Ωε)
,

and consequently, we have

‖u−Wε(H(x, u+) + u−)− uε‖pLp(Ωε)
≤ K‖∇(u−Wε(H(x, u+) + u−)− uε)‖pLp(Ωε)

and (3.16) also holds. Thus, Theorem 3.2 is proved. �

4. Critical size for perforations when p ∈ [2, n) and γ 6= n(p−1)
n−p

When α = n/(n − p) and γ 6= n(p − 1)/(n − p), we show that the homogenized problem does not depend
on σ although its properties are somewhat present in the homogenization process. For a very small (large,
respectively) adsorption the asymptotic behavior of the solution of (1.1) is the same as if Signorini (Dirichlet,
respectively) conditions had been imposed on the boundary of the cavities (cf. [11] when p = 2, and [28],
respectively). Correctors are given by Wεu

− and Wεu depending on whether we have small or large adsorption
(see line α = n/(n− p) in Figs. 2 and 3). The results for small adsorption are in Section 4.1 whereas those for
large adsorption are in Section 4.2.

4.1. The case α = n
n−p

and γ < n(p−1)
n−p

Theorem 4.1. Let α = n/(n − p), γ < n(p − 1)/(n − p), p ∈ [2, n), and let uε be the weak solution of (1.1).
Then, the limit function u of the extension of uε, defined by (2.12), is the weak solution of problem (1.4).

Proof. The variational formulation of (1.4) reads: find u ∈W 1,p(Ω, ∂Ω) such that∫
Ω

|∇u|p−2∇u∇φ dx+An,p
∫
Ω

|u−|p−2u−φ dx =

∫
Ω

fφdx, ∀φ ∈W 1,p(Ω, ∂Ω). (4.1)

From the monotonicity of the function |λ|p−2λ, the existence and uniqueness of solution of (4.1) holds (cf., e.g.
Sect. II.8.2 in [30]).

Let us take in (2.8) the test function ψ = v −Wεv
− ∈ Kε where v ∈ C∞0 (Ω) and Wε is the function defined

by (2.15). Since Wε = 1 in Gε we obtain∫
Ωε

|∇(v−Wεv
−)|p−2∇(v−Wεv

−)∇(v−Wεv
−−uε) dx+ ε−γ

∫
Sε

σ(x, v+)(v+−uε) ds ≥
∫
Ωε

f(v−Wεv
−−uε) dx

(4.2)
and we pass to the limit when ε→ 0.

Using (2.3) and (2.10) and computing |Sε|, it follows∣∣∣∣∣∣ε−γ
∫
Sε

σ(x, v+)(v+ − uε) ds

∣∣∣∣∣∣ ≤ Kε−γ [|Sε|+ |Sε|(p−1)/p‖uε‖Lp(Sε)] ≤ K[εα(n−1)−n−γ + ε(α(n−1)−n−γ)(p−1)/p],

(4.3)
which converges towards zero as ε→ 0. Moreover, on account of (2.12) and (2.17), we deduce

lim
ε→0

∫
Ωε

f(v −Wεv
− − uε) dx =

∫
Ω

f(v − u) dx. (4.4)
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Let us show that

lim
ε→0

∫
Ωε

|∇(v −Wεv
−)|p−2∇(v −Wεv

−)∇(v −Wεv
− − uε) dx

≤
∫
Ω

|∇v|p−2∇v∇(v − u) dx+An,p
∫
Ω

|v−|p−2v−(v − u) dx. (4.5)

On account of (3.5), we apply Proposition 2.3 with ηε ≡ −Wεv
− and ϕ = ϕε ≡ v −Wεv

− − Pεuε since

ϕε ≡ v −Wεv
− − Pεuε ⇀ v − u in W 1,p(Ω)− weak as ε→ 0 (4.6)

(cf. (3.6) for H ≡ 0). Thus, we obtain

lim
ε→0

∫
Ωε

|∇(v −Wεv
−)|p−2∇(v −Wεv

−)∇(v −Wεv
− − uε) dx = lim

ε→0
(L1

ε + L2
ε) (4.7)

where

L1
ε ≡

∫
Ωε

|∇v|p−2∇v∇(v −Wεv
− − uε) dx and L2

ε ≡ −
∫
Ωε

|∇(Wεv
−)|p−2∇(Wεv

−)∇(v −Wεv
− − uε) dx.

By (4.6) and the fact that |Gε| → 0, we have

lim
ε→0
L1
ε =

∫
Ω

|∇v|p−2∇v∇(v − u) dx. (4.8)

Moreover, using (3.5), (4.6), (2.10), the definition of Wε and the Green formula, we get

− lim
ε→0
L2
ε = lim

ε→0

∫
Ωε

|v−|p−2|∇Wε|p−2∇(Wεv
−)∇(v −Wεv

− − uε) dx

= lim
ε→0

∫
Ωε

|∇Wε|p−2∇Wε∇
(
|v−|p−2v− (v −Wεv

− − uε)
)

dx

= lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4
∪∂Gjε

|∇wjε|p−2∂νw
j
ε |v−|p−2v−(v −Wεv

− − uε) ds. (4.9)

Now, by the definition of Wε and the fact that v−v+ = 0, uε ≥ 0 on ∂Gjε and (3.11), we obtain∑
j∈Υε

∫
∂Gjε

|∇wjε|p−2∂νw
j
ε |v−|p−2v−(v −Wεv

− − uε) ds ≥ 0. (4.10)

Besides, from (3.12), Lemmas 2.8 and (4.6), we have

lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4

|∇wjε|p−2∂νw
j
ε |v−|p−2v−(v −Wεv

− − uε) ds = −An,p
∫
Ω

|v−|p−2v−(v − u) dx. (4.11)

Gathering (4.7)−(4.11) yields (4.5).
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Finally, we use (4.3), (4.4) and (4.5) to pass to the limit in (4.2), as ε→ 0, and obtain that the limit function
u satisfies the following inequality∫

Ω

|∇v|p−2∇v∇(v − u) dx+ An,p
∫
Ω

|v−|p−2v−(v − u) dx ≥
∫
Ω

f(v − u)dx, ∀v ∈W 1,p(Ω, ∂Ω). (4.12)

As usual, taking v = u ± λφ in (4.12) where φ ∈ W 1,p(Ω, ∂Ω) and passing to the limit as λ → +0, we obtain
that u satisfies the integral identity (4.1), which concludes the proof. �

Theorem 4.2. Let α = n/(n−p), γ < n(p−1)/(n−p) and p ∈ [2, n). Let uε be the weak solution of (1.1), u ∈
W 1,p(Ω, ∂Ω) the weak solution of the boundary value problem (1.4) with the additional regularity u ∈W 1,∞(Ω),
and Wε defined by (2.15). Then, as ε→ 0, we have

‖uε − u+Wεu
−‖pW 1,p(Ωε)

+ ε−γ‖uε‖pLp(Sε)
→ 0. (4.13)

Proof. Let us consider problems (2.5) and (4.1) and take as test functions ψ = u−Wεu
− and φ = u−Wεu

− −
Pεuε, respectively, for Pεuε arising in (2.12). Subtracting both expressions and using that Wε = 1 in Gε, we
obtain∫

Ωε

(|∇u|p−2∇u− |∇uε|p−2∇uε)∇(u−Wεu
− − uε) dx− ε−γ

∫
Sε

σ(x, uε)(u
+ − uε) ds

≤−An,p
∫
Ω

|u−|p−2u−(u−Wεu
−−Pεuε) dx+

∫
Gε

f(u+ − Pεuε) dx−
∫
Gε

|∇u|p−2∇u∇(u−Wεu
−−Pεuε) dx.

(4.14)

Besides, from (2.2), (2.18) and (4.14), we deduce

K
(
‖∇(u−Wεu

− − uε)‖pLp(Ωε)
+ ε−γ‖u+ − uε‖pLp(Sε)

)
≤
∫
Ωε

(|∇(u−Wεu
−)|p−2∇(u−Wεu

−)− |∇uε|p−2∇uε)∇(u−Wεu
− − uε)dx

+ ε−γ
∫
Sε

(σ(x, u+)− σ(x, uε))(u
+ − uε) ds ≤ I1

ε + I2
ε + I3

ε (4.15)

where

I1
ε ≡

∫
Ωε

(|∇(u−Wεu
−)|p−2∇(u−Wεu

−)− |∇u|p−2∇u)∇(u−Wεu
− − uε)dx,

I2
ε ≡ −An,p

∫
Ω

|u−|p−2u−(u−Wεu
− − Pεuε) dx+ ε−γ

∫
Sε

σ(x, u+)(u+ − uε) ds,

and

I3
ε ≡

∫
Gε

f(u+ − Pεuε) dx−
∫
Gε

|∇u|p−2∇u∇(u−Wεu
−−Pεuε) dx.

Next, we show that the limit of I1
ε + I2

ε + I3
ε is less than or equal to zero when ε → 0. Indeed, from (2.10)

and (3.5), we apply Proposition 2.3 with ηε ≡ −Wεu
− and ϕ = ϕε ≡ u−Wεu

− − Pεuε, and have that

lim
ε→0
I1
ε = − lim

ε→0

∫
Ωε

|∇(Wεu
−)|p−2∇(Wεu

−)∇(u−Wεu
− − uε) dx.
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Moreover, rewriting the computations (4.9)–(4.10) with minor modifications and using (3.12), we have

lim
ε→0
I1
ε ≤ lim

ε→0

∑
j∈Υε

∫
∂T j

ε/4

ε 22n−2An,p
ωn(1− αε)p−1

|u−|p−2u−(u−Wεu
− −uε) ds.

Thus, using Lemma 2.8, (2.10), (2.17) and (4.3), we obtain

lim
ε→0

(I1
ε + I2

ε ) ≤ lim
ε→0

ε−γ ∫
Sε

σ(x, u+)(u+ − uε) ds

 = 0. (4.16)

Besides, since u−Wεu
− − Pεuε is bounded in W 1,p(Ω) and |Gε| → 0 as ε→ 0, we derive

lim
ε→0
I3
ε = 0 and lim

ε→0
(I1
ε + I2

ε + I3
ε ) ≤ 0. (4.17)

Finally, gathering (4.15), (4.16) and (4.17), we obtain, as ε→ 0,

‖∇(u−Wεu
− − uε)‖pLp(Ωε)

+ ε−γ‖u+ − uε‖pLp(Sε)
→ 0.

Moreover, since |Sε| ≤ Kεα(n−1)−n, we also have

‖∇(u−Wεu
− − uε)‖pLp(Ωε)

+ ε−γ‖uε‖pLp(Sε)
→ 0. (4.18)

To get (4.13) from (4.18), we apply the Poincaré inequality for the extension Pε(u−Wεu
−−uε) ∈W 1,p(Ω, ∂Ω)

as in Theorem 3.2, and the theorem is proved. �

4.2. The case α = n
n−p

and γ > n(p−1)
n−p

Theorem 4.3. Let α = n/(n − p), γ > n(p − 1)/(n − p), p ∈ [2, n), and let uε be the weak solution of (1.1).
Then, the limit function u of the extension of uε, defined by (2.12), is the weak solution of problem (1.5).

Proof. The variational formulation of (1.5) reads: find u ∈W 1,p(Ω, ∂Ω) such that∫
Ω

|∇u|p−2∇u∇φdx+An,p
∫
Ω

|u|p−2uφ dx =

∫
Ω

fφdx, ∀φ ∈W 1,p(Ω, ∂Ω). (4.19)

From the monotonicity of the function |λ|p−2λ, the existence and uniqueness of solution of (4.19) holds (cf.,
e.g., Sect. II.8.2 in [30]).

Let us take in (2.8) the test function ψ = v −Wεv ∈ Kε where v ∈ C∞0 (Ω) and Wε is the function defined
by (2.15); since Wε = 1 in Gε, we obtain∫

Ωε

|∇(v −Wεv)|p−2∇(v −Wεv)∇(v −Wεv − uε)dx ≥
∫
Ωε

f(v −Wεv − uε)dx, (4.20)

and we pass to the limit when ε→ 0. On account of (2.12) and (2.17), we deduce

lim
ε→0

∫
Ωε

f(v −Wεv − uε) dx =

∫
Ω

f(v − u) dx. (4.21)
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Let us show that

lim
ε→0

∫
Ωε

|∇(v −Wεv)|p−2∇(v −Wεv)∇(v −Wεv − uε) dx

=

∫
Ω

|∇v|p−2∇v∇(v − u) dx+An,p
∫
Ω

|v|p−2v(v − u) dx. (4.22)

Using (3.5), we apply Proposition 2.3 with ηε ≡ −Wεv and ϕ = ϕε ≡ v −Wεv − Pεuε since

ϕε ≡ v −Wεv − Pεuε ⇀ v − u in W 1,p(Ω)− weak as ε→ 0, (4.23)

which is obtained rewriting the proof for (3.6). Thus, we obtain

lim
ε→0

∫
Ωε

|∇(v −Wεv)|p−2∇(v −Wεv)∇(v −Wεv − uε)dx = lim
ε→0

(L1
ε + L2

ε) (4.24)

where

L1
ε ≡

∫
Ωε

|∇v|p−2∇v∇(v −Wεv − uε) dx and L2
ε ≡ −

∫
Ωε

|∇(Wεv)|p−2∇(Wεv)∇(v −Wεv − uε) dx.

By (4.23) and the fact that |Gε| → 0, we have

lim
ε→0

L1
ε =

∫
Ω

|∇v|p−2∇v∇(v − u) dx. (4.25)

Moreover, using (3.5), (4.23), (2.10), the definition of Wε and the Green formula, we get

− lim
ε→0

L2
ε = lim

ε→0

∫
Ωε

|v|p−2|∇Wε|p−2∇(Wεv)∇(v −Wεv − uε) dx

= lim
ε→0

∫
Ωε

|∇Wε|p−2∇Wε∇
(
|v|p−2v (v −Wεv − uε)

)
dx

= lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4
∪∂Gjε

|∇wjε|p−2∂νw
j
ε |v|p−2v(v −Wεv − uε) ds. (4.26)

Now, by (2.15), (3.11) and (2.10), and the fact that |Sε| ≤ Kεα(n−1)−n, it follows that∣∣∣∣∣∣∣
∑
j∈Υε

∫
∂Gjε

|∇wjε|p−2∂νw
j
ε |v|p−2v(v −Wεv − uε) ds

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
(
n− p
p− 1

)p−1
ε−α(p−1)

Cp−1
0 (1− αε)p−1

∫
Sε

|v|p−2vuε ds

∣∣∣∣∣∣
≤Kε−α(p−1)|Sε|(p−1)/p‖uε‖Lp(Sε) ≤ Kε

[γ−α(p−1)]/p → 0

as ε→ 0. (4.27)

Besides, from (3.12), Lemma 2.8 and (4.23), we have

lim
ε→0

∑
j∈Υε

∫
∂T j

ε/4

|∇wjε|p−2∂νw
j
ε|v|p−2v(v −Wεv − uε) ds = −An,p

∫
Ω

|v|p−2v(v − u) dx. (4.28)

Gathering (4.24)−(4.28) yields (4.22).
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Finally, we use (4.21) and (4.22) to pass to the limit in (4.20), as ε → 0, and obtain that the limit function
u satisfies the following inequality∫

Ω

|∇v|p−2∇v∇(v − u) dx+ An,p
∫
Ω

|v|p−2v(v − u) dx ≥
∫
Ω

f(v − u)dx, ∀v ∈W 1,p(Ω, ∂Ω). (4.29)

As usual, taking v = u ± λφ in (4.29) where φ ∈ W 1,p(Ω, ∂Ω) and passing to the limit as λ → +0, we obtain
that u satisfies the integral identity (4.19), which concludes the proof. �

Theorem 4.4. Let α = n/(n−p), γ > n(p−1)/(n−p) with p ∈ [2, n). Let uε be the weak solution of (1.1), u ∈
W 1,p(Ω, ∂Ω) the weak solution of the boundary value problem (1.5) with the additional regularity u ∈W 1,∞(Ω),
and Wε defined by (2.15). Then, as ε→ 0, we have

‖uε − u+Wεu‖pW 1,p(Ωε)
+ ε−γ‖uε‖pLp(Sε)

→ 0. (4.30)

Proof. Let us consider problems (2.5) and (4.19) and take as test functions ψ = u−Wεu and φ = u−Wεu−Pεuε,
respectively, for Pεuε arising in (2.12). Subtracting both expressions and using the definition of Wε on Gε, we
obtain ∫

Ωε

(|∇u|p−2∇u− |∇uε|p−2∇uε)∇(u−Wεu− uε) dx+ ε−γ
∫
Sε

σ(x, uε)uε ds

≤−An,p
∫
Ω

|u|p−2u(u−Wεu− Pεuε) dx−
∫
Gε

fPεuε dx−
∫
Gε

|∇u|p−2∇u∇(u−Wεu− Pεuε) dx. (4.31)

Besides, from (2.2), (2.18) and (4.31), we deduce

K
(
‖∇(u−Wεu− uε)‖pLp(Ωε)

+ ε−γ‖uε‖pLp(Sε)

)
≤
∫
Ωε

(|∇(u−Wεu)|p−2∇(u−Wεu)− |∇uε|p−2∇uε)∇(u−Wεu− uε) dx+ ε−γ
∫
Sε

σ(x, uε)uε ds ≤ I1
ε + I2

ε + I3
ε

(4.32)

where

I1
ε ≡

∫
Ωε

(|∇(u−Wεu)|p−2∇(u−Wεu)− |∇u|p−2∇u)∇(u−Wεu− uε) dx,

I2
ε ≡ −An,p

∫
Ω

|u|p−2u(u−Wεu−Pεuε) dx and I3
ε ≡ −

∫
Gε

fPεuε dx−
∫
Gε

|∇u|p−2∇u∇(u−Wεu−Pεuε) dx.

Let us show that I1
ε + I2

ε + I3
ε tends to zero as ε→ 0.

From (2.10) and (3.5), we apply Proposition 2.3 with ηε ≡ −Wεu and ϕ = ϕε ≡ u−Wεu− Pεuε, and have
that

lim
ε→0

I1
ε = − lim

ε→0

∫
Ωε

|∇(Wεu)|p−2∇(Wεu)∇(u−Wεu− uε) dx.

Moreover, rewriting the computations (4.26)–(4.27) with minor modifications and using (3.12), we have

lim
ε→0

I1
ε = lim

ε→0

∑
j∈Υε

∫
∂T j

ε/4

ε 22n−2An,p
ωn(1− αε)p−1

|u|p−2u(u−Wεu−uε) ds.
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Thus, using Lemma 2.8, (2.10) and (2.17), we obtain

lim
ε→0

(I1
ε + I2

ε) = 0. (4.33)

Besides, since Pεuε and u−Wεu− Pεuε are bounded in W 1,p(Ω) and |Gε| → 0 as ε→ 0, we derive

lim
ε→0

I3
ε = 0. (4.34)

Finally, gathering (4.32), (4.33) and (4.34), we obtain, as ε→ 0,

‖∇(u−Wεu− uε)‖pLp(Ωε)
+ ε−γ‖uε‖pLp(Sε)

→ 0. (4.35)

To get (4.30) from (4.35), we apply the Poincaré inequality for the extension Pε(u−Wεu− uε) ∈W 1,p(Ω, ∂Ω)
as in Theorem 3.2, and the theorem is proved. �

5. Critical relation for the adsorption: p ∈ [2, n) and α ∈ (1, n
n−p

)

In this section, we deal with sizes of cavities larger than the critical size. Because of the adsorption parameter,
the constraints on the boundary of the cavities in (1.1) transform asymptotically into an obstacle problem with a
nonlinear strange term Dnσ(x, u) that also contains information on the geometrical configuration of the original
problem, namely, the area of the unit sphere and the scaling factor Cn−1

0 (cf. (1.6)). We show the convergence
of the extension of the solution of (1.1), as ε→ 0, towards that of (1.6) in the W 1,p-norm and compute bounds
for discrepancies in the way stated by Theorem 5.2.

Theorem 5.1. Let α ∈ (1, n/(n−p)), γ = α(n−1)−n with p ∈ [2, n), and let uε be the weak solution of (1.1).
Then, the limit function u of the extension of uε, defined by (2.12), is the weak solution of problem (1.6).

Proof. First, we observe that the variational formulation of problem (1.6) is: find u ∈ K0 such that∫
Ω

|∇u|p−2∇u∇(v − u) dx+Dn
∫
Ω

σ(x, u)(v − u) dx ≥
∫
Ω

f(v − u) dx, ∀v ∈ K0, (5.1)

where K0 is defined by

K0 = {v ∈W 1,p(Ω, ∂Ω) : v ≥ 0 a.e. in Ω}. (5.2)

The existence and uniqueness of solution u of (5.1)–(5.2) follows from (2.2) and (2.18) (see the technique in
Thm. 2.1). Besides, by Minty Lemma, problem (5.1) is equivalent to finding u ∈ K0 such that∫

Ω

|∇v|p−2∇v∇(v − u) dx+Dn
∫
Ω

σ(x, v)(v − u) dx ≥
∫
Ω

f(v − u) dx, ∀v ∈ K0. (5.3)

Let us prove that the negative part of the limit function u, u−, is equal to zero a.e. in Ω and, consequently,
u ∈ K0. Applying Lemma 2.6 and using that u−ε = 0 on Sε and (2.10), we conclude

‖u−ε ‖
p
Lp(Ωε)

≤ Kap−nε εn‖∇u−ε ‖
p
Lp(Ωε)

≤ Kεn−α(n−p) → 0 as ε→ 0. (5.4)

Thus, from (2.12) and the fact that |Gε| → 0, we have

‖u−‖Lp(Ω) = lim
ε→0
‖u−ε ‖Lp(Ωε) = 0. (5.5)
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In order to prove that the limit function u satisfies (5.3), we pass to the limit in (2.8) with ψ = v ∈ K0. On
account of (2.12) and the volume of Gε, it follows that

lim
ε→0

∫
Ωε

|∇v|p−2∇v∇(v − uε) dx =

∫
Ω

|∇v|p−2∇v∇(v − u) dx and lim
ε→0

∫
Ωε

f(v − uε) dx =

∫
Ω

f(v − u) dx.

(5.6)
Let us show that, under the assumptions α ∈ (1, n/(n− p)) and γ = α(n− 1)−n, the following equality holds:

lim
ε→0

ε−γ
∫
Sε

σ(x, v)(v − uε) ds = Dn
∫
Ω

σ(x, v)(v − u) dx. (5.7)

To do this, we introduce the function Mε defined by Mε(x) ≡ M j
ε (x), x ∈ Y jε \ G

j
ε, j ∈ Υε, where M j

ε is a
solution of the problem

∆pM
j
ε = µε in Y jε \G

j
ε, ∂νpM

j
ε = 1 on ∂Gjε, ∂νpM

j
ε = 0 on ∂Y jε \ ∂Gjε, (5.8)

and

µε =
Cn−1

0 εα(n−1)−nωn
1− (aεε−1)nωn

· (5.9)

We assume that
∫

Y jε \Gjε

M j
εdx = 0. Taking as a test function M j

ε in the integral identity for M j
ε and applying

the Hölder inequality, we obtain

‖∇M j
ε ‖
p

Lp(Y jε \Gjε)
≤

∣∣∣∣∣∣∣
∫
∂Gjε

M j
εds

∣∣∣∣∣∣∣ ≤ |∂Gjε|(p−1)/p‖M j
ε ‖Lp(∂Gjε)

.

Besides, using Lemmas 2.5 and 2.4, we get

‖M j
ε ‖
p

Lp(∂Gjε)
≤ K

(
an−1
ε ε−n‖M j

ε ‖
p

Lp(Y jε \Gjε)
+ ap−1

ε ‖∇M j
ε ‖
p

Lp(Y jε \Gjε)

)
≤ K

(
an−1
ε εp−n + ap−1

ε

)
‖∇M j

ε ‖
p

Lp(Y jε \Gjε)
≤ Kap−1

ε ‖∇M j
ε ‖
p

Lp(Y jε \Gjε)
.

Hence, denoting by Ŷε the set Ŷε = ∪j∈Υε(Y jε \G
j
ε),

‖∇M j
ε ‖Lp(Y jε \Gjε)

≤ Kan/pε and ‖∇Mε‖Lp(Ŷε)
≤ K(aεε

−1)n/p. (5.10)

Now, by means of Mε, the integral on Sε in (5.7) can be transformed into a volume integral. Thus, we can
write

ε−γ
∫
Sε

σ(x, v)(v − uε)ds = ε−γ
∑
j∈Υε

∫
Y jε \Gjε

div(|∇M j
ε |p−2∇M j

εσ(x, v)(v − uε))dx

= ε−γ
∑
j∈Υε

∫
Y jε \Gjε

|∇M j
ε |p−2∇M j

ε∇(σ(x, v)(v − uε)) dx+ ε−γ
∑
j∈Υε

∫
Y jε \Gjε

∆pM
j
εσ(x, v)(v − uε) dx

= ε−γ
∑
j∈Υε

∫
Y jε \Gjε

|∇M j
ε |p−2∇M j

ε∇(σ(x, v)(v − uε)) dx+ ε−γ
∑
j∈Υε

µε

∫
Y jε \Gjε

σ(x, v)(v − uε) dx. (5.11)
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From (5.10) and (2.10) we deduce

ε−γ
∫
Ŷε

|∇Mε|p−1|∇(σ(x, v)(v − uε))|dx ≤ Kε−γ

∫
Ŷε

|∇Mε|p dx


(p−1)/p

≤ Kε(n−α(n−p))/p,

and, since α < n/(n− p),

lim
ε→0

ε−γ
∑
j∈Υε

∫
Y jε \Gjε

|∇M j
ε |p−2∇M j

ε∇(σ(x, v)(v − uε)) dx = 0. (5.12)

In addition, by (5.9), (2.12) and the size of Gε, we derive that

lim
ε→0

ε−γµε
∑
j∈Υε

∫
Y jε \Gjε

σ(x, v)(v − uε) dx = Cn−1
0 ωn

∫
Ω

σ(x, v)(v − u) dx. (5.13)

Therefore, gathering (5.11)−(5.13) yields (5.7), which concludes the proof. �

Theorem 5.2. Let α ∈ (1, n/(n − p)), γ = α(n − 1) − n and p ∈ [2, n). Let uε be the weak solution of (1.1)
and u ∈ W 1,p(Ω, ∂Ω) the weak solution of (1.6) with the additional regularity u ∈ W 1,∞(Ω). Then, as ε → 0,
we have

‖uε − u‖pW 1,p(Ωε)
+ ε−γ‖uε − u‖pLp(Sε)

≤ Kεβ , (5.14)

where
β = min{(n− α(n− p))(p− 1)/p2, α− 1, (p− 1)/p}. (5.15)

Proof. Let us introduce the following boundary value problem
−∆pvε = f in Ωε,

∂νpvε + ε−γσ(x, v+
ε ) + ε−α(p−1)σ(x, v−ε ) = 0 for x ∈ Sε,

vε = 0 on ∂Ω.

(5.16)

Its variational formulation is: find vε ∈W 1,p(Ωε, ∂Ω) such that∫
Ωε

|∇vε|p−2∇vε∇ψ dx+ ε−γ
∫
Sε

σ(x, v+
ε )ψ ds+ ε−α(p−1)

∫
Sε

σ(x, v−ε )ψ ds =

∫
Ωε

fψ dx, ∀ψ ∈W 1,p(Ωε, ∂Ω).

(5.17)
The existence and uniqueness of solution vε of (5.17) follows from (2.2) and (2.18). In addition, taking ψ = vε
in (5.17) and considering Pεvε the W 1,p– extension of vε to Ω (cf. Lem. 2.7), we apply the Poincaré inequality
to obtain the estimates

‖vε‖W 1,p(Ωε) ≤ K, ‖v+
ε ‖

p
Lp(Sε)

≤ Kεγ , ‖v−ε ‖
p
Lp(Sε)

≤ Kεα(p−1) (5.18)

(see the proof of Thm. 2.1 for the technique where we have used the fact that σ(x, v±ε )v∓ε = 0).
Now, applying Lemma 2.6 and estimates (5.18), we obtain

‖v−ε ‖
p
Lp(Ωε)

≤ Kεn−α(n−p). (5.19)

Besides, setting ψ = v−ε in (5.17) and taking into account the properties of σ(x, u) and that

|∇vε|p−2∇vε = |∇v+
ε |p−2∇v+

ε + |∇v−ε |p−2∇v−ε , (5.20)
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we have ∫
Ωε

|∇v−ε |p dx+ ε−α(p−1)

∫
Sε

σ(x, v−ε )v−ε ds =

∫
Ωε

fv−ε dx. (5.21)

Hence, gathering (5.21) and (5.19), we conclude

‖∇v−ε ‖
p
Lp(Ωε)

≤ Kε(n−α(n−p))/p. (5.22)

Once we have shown

‖∇(v+
ε − uε)‖

p
Lp(Ωε)

+ ε−γ‖v+
ε − uε‖

p
Lp(Sε)

≤ Kε(n−α(n−p))/p, (5.23)

and
‖∇(v+

ε − u)‖pLp(Ωε)
+ ε−γ‖v+

ε − u‖
p
Lp(Sε)

≤ Kεβ , (5.24)

where β is defined by (5.15), we get

‖∇(uε − u)‖pLp(Ωε)
+ ε−γ‖uε − u‖pLp(Sε)

≤ Kεβ

and, rewriting the proof at the end of Theorem 3.2 with minor modifications, (5.14) holds, which proves the
theorem.

Let us show (5.23) and (5.24). In order to prove (5.23), we consider problems (2.5) and (5.17) and take as
test functions ψ = v+

ε ∈ Kε and ψ = v+
ε − uε ∈ W 1,p(Ωε, ∂Ω), respectively. Subtracting both expressions and

using the properties of σ and the fact that uε ≥ 0 in Sε, we obtain∫
Ωε

(
|∇vε|p−2∇vε − |∇uε|p−2∇uε

)
∇(v+

ε − uε) dx+ ε−γ
∫
Sε

(σ(x, v+
ε )− σ(x, uε))(v

+
ε − uε) ds

≤− ε−α(p−1)

∫
Sε

σ(x, v−ε )(v+
ε − uε) ds = ε−α(p−1)

∫
Sε

σ(x, v−ε )uε ds ≤ 0.

Hence, on account of (5.20),∫
Ωε

(
|∇v+

ε |p−2∇v+
ε − |∇uε|p−2∇uε

)
∇(v+

ε − uε) dx+ ε−γ
∫
Sε

(σ(x, v+
ε )− σ(x, uε))(v

+
ε − uε) ds

≤−
∫
Ωε

|∇v−ε |p−2∇v−ε ∇(v+
ε − uε) dx ≤ ‖∇v−ε ‖

p−1
Lp(Ωε)

‖∇(v+
ε − uε)‖Lp(Ωε). (5.25)

Now, by (2.2), (2.18), (5.25) and (5.22), it follows

K
(
‖∇(v+

ε − uε)‖
p
Lp(Ωε)

+ ε−γ‖v+
ε − uε‖

p
Lp(Sε)

)
≤
∫
Ωε

(
|∇v+

ε |p−2∇v+
ε − |∇uε|p−2∇uε

)
∇(v+

ε − uε) dx+ ε−γ
∫
Sε

(σ(x, v+
ε )− σ(x, uε))(v

+
ε − uε) ds

≤K̃ε(n−α(n−p))(p−1)/p2‖∇(v+
ε − uε)‖Lp(Ωε)

and, consequently, (5.23) holds.
In order to prove (5.24), we consider problems (5.1) and (5.17) and take as test functions v = Pεvε+ ∈ K0

and ψ = v+
ε − u ∈W 1,p(Ωε, ∂Ω), respectively. Subtracting both expressions and using (5.20) and the fact that

σ(x, v−ε )u ≤ 0 and σ(x, v−ε )v+
ε = 0 on Sε, we obtain∫

Ωε

(
|∇v+

ε |p−2∇v+
ε − |∇u|p−2∇u

)
∇(v+

ε − u) dx+ ε−γ
∫
Sε

(σ(x, v+
ε )− σ(x, u))(v+

ε − u) ds ≤ J1
ε + J2

ε + J3
ε (5.26)
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where

J1
ε ≡ −

∫
Ωε

|∇v−ε |p−2∇v−ε ∇(v+
ε − u) dx, J2

ε ≡
∫
Gε

|∇u|p−2∇u∇(Pεvε+ − u) dx−
∫
Gε

f(Pεvε+ − u) dx, (5.27)

and

J3
ε ≡ Dn

∫
Ω

σ(x, u)(Pεvε+ − u) dx− ε−γ
∫
Sε

σ(x, u)(v+
ε − u) ds.

Let us estimate each term J iε for i = 1, 2, 3.
Taking into account (5.22), (5.18), (2.26), u ∈ W 1,∞(Ω) and the embedding of the space W 1,p(Ω, ∂Ω) into

Lnp/(n−p)(Ω) for p < n, we deduce

|J1
ε | ≤ ‖∇v−ε ‖

p−1
Lp(Ωε)

‖∇(v+
ε − u)‖Lp(Ωε) ≤ Kε

(n−α(n−p))(p−1)/p2 (5.28)

and

|J2
ε | ≤ K|Gε|1/q‖∇(Pεvε+ − u)‖Lp(Ω) + ‖f‖Lnp/(np−n+p)(Gε)‖Pεvε

+ − u‖Lnp/(n−p)(Ω)

≤ K|Gε|1/q‖∇(Pεvε+ − u)‖Lp(Ω) + |Gε|1/n‖f‖Lq(Ω)‖Pεvε+ − u‖W 1,p(Ω)

≤ K[ε(α−1)n(p−1)/p + εα−1] ≤ Kεα−1. (5.29)

To estimate J3
ε we use again the function Mε(x) defined by (5.8) to transform the integral on Sε into a volume

integral. Thus, see (5.11), we can write

J3
ε =(Dn − ε−γµε)

∫
Ω

σ(x, u)(Pεvε+ − u) dx+ ε−γµε

∫
Ω\Ŷε

σ(x, u)(Pεvε+ − u) dx

− ε−γ
∫
Ŷε

|∇Mε|p−2∇Mε∇(σ(x, u)(Pεvε+ − u)) dx.

Now, by (5.9), (5.18), (2.26) and (5.10), it follows that

|J3
ε | ≤K[ε(α−1)n‖Pεvε+ − u‖Lp(Ω) + ε−γµε|Ω \ Ŷε|(p−1)/p‖Pεvε+ − u‖Lp(Ω)

+ ε−γ‖∇Mε‖p−1

Lp(Ŷε)
‖∇(Pεvε+ − u)‖Lp(Ω)]

≤K[ε(α−1)n + ε(p−1)/p + ε(α−1)n(p−1)/p + ε(n−α(n−p))/p]. (5.30)

Finally, gathering (2.2), (2.18), (5.26), (5.28), (5.29) and (5.30), (5.24) holds, which concludes the proof. �

6. Extreme cases for p ∈ [2, n)

We consider the rest of possible relations between the parameters α and γ which have not been considered
in previous sections. Section 6.1 contains the results for the case of big cavities and small adsorption; the
constraints on the boundary of the cavities in (1.1) transform asymptotically into an obstacle problem for the
p-Laplacian in Ω, which ignores the adsorption parameter (which in fact can converge towards ∞); that is,
as if Signorini conditions had been imposed (cf. [11] when p = 2). Section 6.3 contains the results for the
case of small cavities; also the solution ignores asymptotically the adsorption parameter. In both cases, the
convergence of the extension of the solution in the W 1,p-norm is proved along with bounds for discrepancies as
stated in Theorems 6.2 and 6.5 respectively. Section 6.2 contains the case of large sizes of cavities and adsorption
parameters; the solution of (1.1) vanishes asymptotically and we obtain estimates of the W 1,p-norm (cf. (6.8)).
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6.1. The case α ∈ (1, n
n−p

) and γ < α(n− 1)− n

Theorem 6.1. Let α ∈ (1, n/(n−p)), γ < α(n−1)−n with p ∈ [2, n), and let uε be the weak solution of (1.1).
Then, the limit function u of the extension of uε, defined by (2.12), is the weak solution of problem (1.7).

Proof. We rewrite the proof of Theorem 5.1 with minor modifications; we briefly outline the main differences
here.

The variational formulation of problem (1.7) is: find u ∈ K0 such that∫
Ω

|∇u|p−2∇u∇(v − u) dx ≥
∫
Ω

f(v − u) dx, ∀v ∈ K0, (6.1)

where K0 is defined by (5.2). Besides, on account of the monotonicity of the function |λ|p−2λ, problem (6.1)
has a unique solution u ∈ K0, which also satisfies∫

Ω

|∇v|p−2∇v∇(v − u) dx ≥
∫
Ω

f(v − u) dx, ∀v ∈ K0. (6.2)

Let us note that (5.4) and (5.5) also hold in this case and, hence, the limit function u belongs to K0. To
prove that u satisfies (6.2), we pass to the limit in (2.8) with ψ = v ∈ K0. It is easy to check that (5.6) holds.
Moreover, under the assumptions α ∈ (1, n/(n−p)) and γ < α(n−1)−n, using (2.3) and (2.10), and computing
|Sε|, it follows that∣∣∣∣∣∣ε−γ

∫
Sε

σ(x, v)(v − uε)ds

∣∣∣∣∣∣ ≤ ε−γK[|Sε|+ |Sε|(p−1)/p‖uε‖Lp(Sε)] ≤ Kε
(α(n−1)−n−γ)(p−1)/p → 0, as ε→ 0,

which concludes the proof. �

Theorem 6.2. Let α ∈ (1, n/(n − p)), γ < α(n − 1) − n and p ∈ [2, n). Let uε be the weak solution of (1.1)
and u ∈ W 1,p(Ω, ∂Ω) the weak solution of (1.7) with the additional regularity u ∈ W 1,∞(Ω). Then, as ε → 0,
we have

‖uε − u‖pW 1,p(Ωε)
+ ε−γ‖uε − u‖pLp(Sε)

≤ Kεκ, (6.3)

where
κ = min{(n− α(n− p))(p− 1)/p2, α− 1, α(n− 1)− n− γ}. (6.4)

Proof. We use the technique in Theorem 5.2, that is, we consider vε the solution of problem (5.16), which
satisfies estimates (5.18), (5.19) and (5.22). Besides, under the assumption α ∈ (1, n/(n−p)), it is easy to check
that (5.23) holds (see the proof of Thm. 5.2). Now, let us prove that, under the hypotheses of Theorem 6.2,

‖∇(v+
ε − u)‖pLp(Ωε)

+ ε−γ‖v+
ε − u‖

p
Lp(Sε)

≤ Kεκ, (6.5)

where u is the weak solution of (1.7) and κ is given by (6.4). Thus, gathering (5.23) and (6.5), we get

‖∇(uε − u)‖pLp(Ωε)
+ ε−γ‖uε − u‖pLp(Sε)

≤ Kεκ. (6.6)

Moreover, since |Sε| ≤ Kεα(n−1)−n, we also have

‖∇(uε − u)‖pLp(Ωε)
+ ε−γ‖uε‖pLp(Sε)

≤ Kεκ.

To prove (6.5), we consider problems (6.1) and (5.17) and take as test functions v = Pεvε+ ∈ K0 and
ψ = v+

ε − u ∈ W 1,p(Ωε, ∂Ω), respectively, where u is the weak solution of (1.7). Subtracting both expressions
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and using (5.20) and the fact that σ(x, v−ε )u ≤ 0 and σ(x, v−ε )v+
ε = 0 on Sε, we obtain (5.26) where J1

ε and J2
ε

are defined by (5.27) and J3
ε is

J3
ε ≡ −ε−γ

∫
Sε

σ(x, u)(v+
ε − u) ds.

Taking into account (5.22), (5.18), (2.26), u ∈ W 1,∞(Ω) and the embedding of the space W 1,p(Ω, ∂Ω) into
Lnp/(n−p)(Ω) for p < n, we deduce (5.28) and (5.29). Moreover, by Young inequality,∣∣∣∣∣∣
∫
Sε

σ(x, u)(v+
ε − u) ds

∣∣∣∣∣∣ ≤ δ‖v+
ε − u‖

p
Lp(Sε)

+Kδ−1/(p−1)|Sε| ≤ δ‖v+
ε − u‖

p
Lp(Sε)

+Kδ−1/(p−1)εα(n−1)−n, (6.7)

with arbitrary δ > 0. Therefore, from (2.2), (2.18), (5.26), (5.28), (5.29) and (6.7), it follows that

K‖∇(v+
ε − u)‖pLp(Ωε)

+ ε−γ(K − δ)‖v+
ε − u‖

p
Lp(Sε)

≤ K̃(δ−1/(p−1)εα(n−1)−n−γ + ε(n−α(n−p))(p−1)/p2 + εα−1).

Now, choosing δ = K/2 in the above expression yields (6.5).
To obtain (6.3) from (6.6), we apply the Poincaré inequality for the extension Pε(uε − u) ∈ W 1,p(Ω, ∂Ω) as

in Theorem 3.2, and the theorem is proved. �

6.2. The case α ∈ (1, n
n−p

) and γ > α(n− 1)− n

Theorem 6.3. Let α ∈ (1, n/(n− p)), γ > α(n− 1)− n and p ∈ [2, n). Then, the extension Pεuε of the weak
solution of (1.1), defined by Theorem 2.1, verifies

‖Pεuε‖pW 1,p(Ω) ≤ K[εγ−α(n−1)+n + εn−α(n−p)]1/p, (6.8)

and, consequently, Pεuε converges to zero in W 1,p(Ω) when ε→ 0.

Proof. Applying Lemma 2.6 and estimate (2.10) yields

‖uε‖pLp(Ωε)
≤ K[a1−n

ε εn‖uε‖pLp(Sε)
+ ap−nε εn‖∇uε‖pLp(Ωε)

] ≤ K[εγ−α(n−1)+n + εn−α(n−p)].

Besides, setting ψ ≡ 0 in the integral inequality (2.5) and using (2.2), we obtain

‖∇uε‖pLp(Ωε)
+ ε−γ‖uε‖pLp(Sε)

≤ ‖f‖Lq(Ωε)‖uε‖Lp(Ωε).

Thus,
‖uε‖pW 1,p(Ωε)

≤ K[εγ−α(n−1)+n + εn−α(n−p)]1/p,

and, by (2.9), the theorem holds. �

6.3. The case α > n
n−p

and γ ∈ R

Theorem 6.4. Let α > n/(n − p), γ ∈ R with p ∈ [2, n), and let uε be the weak solution of (1.1). Then, the
limit function u of the extension of uε, defined by (2.12), is the weak solution of the Dirichlet problem (1.8).

Proof. Let us take in (2.8) the test function ψ = v −Wεv ∈ Kε where v ∈ C∞0 (Ω) and Wε is the function
defined by (2.15); since Wε = 1 in Gε, we obtain∫

Ωε

|∇(v −Wεv)|p−2∇(v −Wεv)∇(v −Wεv − uε)dx ≥
∫
Ωε

f(v −Wεv − uε)dx
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and we pass to the limit when ε→ 0. On account of (2.12) and (2.17), we deduce

lim
ε→0

∫
Ωε

f(v −Wεv − uε) dx =

∫
Ω

f(v − u) dx.

Besides, using (3.5), (2.12) and (2.17), we apply Proposition 2.3 with ηε ≡ −Wεv and ϕ = ϕε ≡ v−Wεv−Pεuε
where Pεuε is the W 1,p–extension defined in Theorem 2.1, and we obtain

lim
ε→0

∫
Ωε

|∇(v −Wεv)|p−2∇(v −Wεv)∇(v −Wεv − uε) dx =

∫
Ω

|∇v|p−2∇v∇(v − u) dx.

Thus, we get that u satisfies the following inequality∫
Ω

|∇v|p−2∇v∇(v − u) dx ≥
∫
Ω

f(v − u) dx, ∀v ∈W 1,p(Ω, ∂Ω). (6.9)

As usual, taking v = u ± λφ in (6.9) where φ ∈ W 1,p(Ω, ∂Ω) and passing to the limit as λ → +0, we obtain
that u satisfies the integral identity for problem (1.8), which concludes the proof. �

Theorem 6.5. Let α > n/(n − p), γ ∈ R and p ∈ [2, n). Let uε be the weak solution of (1.1) and u ∈
W 1,p(Ω, ∂Ω) the weak solution of (1.8) with the additional regularity u ∈W 1,∞(Ω). Then, as ε→ 0, we have

‖uε − u‖pW 1,p(Ωε)
+ ε−γ‖uε‖pLp(Sε)

≤ Kεmin((α(n−p)−n)(p−1)/p),α−1). (6.10)

Proof. We consider the variational formulation of problem (1.8) and (2.5) and take as test functions φ =
u−Wεu−Pεuε and ψ = u−Wεu, respectively, for Wε the function defined by (2.15) and Pεuε arising in (2.12).
Subtracting both expressions and using that Wε = 1 in Gε, we obtain∫

Ωε

(|∇u|p−2∇u− |∇uε|p−2∇uε)∇(u−Wεu− uε) dx+ ε−γ
∫
Sε

σ(x, uε)uε ds

≤−
∫
Gε

fPεuε dx−
∫
Gε

|∇u|p−2∇u∇(u−Wεu− Pεuε) dx. (6.11)

Besides, from (2.2), (2.18) and (6.11), we deduce

K(‖∇(u−Wεu− uε)‖pLp(Ωε)
+ ε−γ‖uε‖pLp(Sε)

)

≤
∫
Ωε

(|∇(u−Wεu)|p−2∇(u−Wεu)− |∇uε|p−2∇uε)∇(u−Wεu− uε) dx+ ε−γ
∫
Sε

σ(x, uε)uε ds ≤ Z1
ε + Z2

ε

(6.12)

where

Z1
ε ≡

∫
Ωε

(|∇(u−Wεu)|p−2∇(u−Wεu)− |∇u|p−2∇u)∇(u−Wεu− uε) dx,

and

Z2
ε ≡ −

∫
Gε

fPεuε dx−
∫
Gε

|∇u|p−2∇u∇(u−Wεu− Pεuε) dx.

Let us estimate Z1
ε and Z2

ε .
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From (2.23), (2.24), (2.16), (2.10) and the embedding of Lr(Ω) into Ls(Ω) for s < r, we have

|Zε1 | ≤ K‖∇Wε‖p−1
Lp(Ω)‖∇(u−Wεu− Pεuε)‖Lp(Ω) ≤ Kε(α(n−p)−n)(p−1)/p. (6.13)

Moreover, by the embedding of the space W 1,p(Ω, ∂Ω) into Lnp/(n−p)(Ω) for p < n, we deduce

|Z2
ε | ≤‖f‖Lnp/(np−n+p)(Gε)‖Pεuε‖Lnp/(n−p)(Ω) +K|Gε|1/q‖∇(u−Wεu− Pεuε)‖Lp(Ω)

≤|Gε|1/n‖f‖Lq(Ω)‖Pεuε‖W 1,p(Ω) +K|Gε|1/q‖∇(u−Wεu− Pεuε)‖Lp(Ω)

≤K[εα−1 + ε(α−1)n(p−1)/p] ≤ Kεα−1. (6.14)

Finally, gathering (6.12), (6.13) and (6.14), we obtain

‖∇(u−Wεu− uε)‖pLp(Ωε)
+ ε−γ‖uε‖pLp(Sε)

≤ Kεmin((α(n−p)−n)(p−1)/p),α−1). (6.15)

To get (6.10) from (6.15), we apply the Poincaré inequality for the extension Pε(u−Wεu− uε) ∈W 1,p(Ω, ∂Ω)
as in Theorem 3.2, and the theorem is proved. �

7. The most critical relation when p = n

In this section, we consider the case where p = n, n ≥ 3, and a more general geometry than that in Sections 3–6
(see Fig. 1). For the sake of brevity, we only provide the homogenized problem of (1.1) and the corresponding
corrector in the most critical situation, namely, what can be the analogous case to the big point in Figures 2
and 3. Further specifying, among all the possible relations between the parameters βε, ε and aε we consider the
critical size of the perforations provided by the relation εn/(n−1) ln(a−1

ε ) = O(1), and the critical relation for the
adsorption parameter which is obtained when βε multiplied by the total area of the perforations is of order 1.
Conditions (7.2) give the mentioned relations while (1.12) give particular choices or aε and βε satisfying (7.2).

Considering problem (1.1) in perforated domains Ωε, with isoperimetric perforations of arbitrary shape
(cf. (7.1)), in Theorem 7.4, we prove the convergence of the solution towards that of the homogenized problem
in (1.9), which is a boundary value problem in Ω with the strange term in the partial differential equation
containing a double contribution on the boundary of the perforations, namely, the contribution due to the con-
straint uε ≥ 0 and ∂νnuε ≥ −βεσ(x, uε). Due to the last constraint, the function H(x, u) arising in the strange
term is implicitly defined from a functional equation (cf. (1.10)) in which also the perimeter of the perforations l
appears for any shape. We refer to Proposition 2.2 for the existence and uniqueness of the solution H = H(x, u)
of (1.10) and its properties, as well as Section 8 for examples of explicit solutions for certain data σ. The result
on the corrector and improved convergence is in Theorem 7.5. We follow the scheme of proofs in Section 3.

Let us first introduce the geometrical configuration of the problem, the new test functions that we need to
prove convergence and some preliminary results.

Let M be a finite subset of Z which we can identify with {1, 2, . . . ,mM} for mM ∈ Z. Assume that we
have the set M of domains Dm satisfying the following properties: for any m ∈ M , Dm ⊂ T1/4 ⊂ Y , where
Y = (−1/2, 1/2)n, T1/4 = {y ∈ Rn : |y| < 1/4}, Dm is diffeomorphic to a ball m ∈ M , and the area of Dm is
equal to a given number l > 0, i.e.

|∂Dm| = l, ∀m ∈M. (7.1)

We define
Gε =

⋃
j∈Υε

(aεG
j + εj) =

⋃
j∈Υε

Gjε,

where Gj coincides with one of the domains Dm, m ∈M , and Υε = {j ∈ Zn : G
j

ε ⊂ Y jε = εY +εj,Gjε∩ Ω̃ε 6= ∅}
(see Fig. 1). Obviously, we have |Υε| ∼= dε−n, with some d > 0, and

Gjε ⊂ T jaε ⊂ T
j
ε/4 ⊂ Y

j
ε ,
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where T jaε and T jε/4 are balls with radius aε and ε/4, respectively, and center P jε , which coincides with the center

of Y jε . Now we can define
Ωε = Ω \Gε, Sε = ∂Gε, ∂Ωε = ∂Ω ∪ Sε.

Let us consider (1.1) when p = n, and the ε-depending parameters aε and βε satisfy

β1/(n−1)
ε aε ε

−n/(n−1) → C̃2
0 and εn/(n−1) ln(4aε/ε)→ −α̃2, (7.2)

where C̃0 and α̃ are some constants different from zero. Recall that σ arising in (1.1) satisfies (2.1)–(2.3) with
δ ∈ [n− 1,∞). Also, its variational formulation reads (2.5)–(2.6).

Using the monotonicity of the function σ(x, u) with respect to u ∈ R (cf. (2.2)) and of the function |λ|n−2λ
with respect λ ∈ Rn, (2.3) and the continuous embedding of W 1,n(Ωε, ∂Ω) into Lr(Sε) for n ≤ r <∞, we have
the following result for the solution of (1.1) (equivalently of (2.5)–(2.6)).

Theorem 7.1. Let ε > 0, f ∈ Ln/(n−1)(Ω), and aε and βε given by (7.2). Then, problem (2.5)−(2.6) has a
unique solution uε ∈ Kε which also satisfies the inequality∫

Ωε

|∇φ|n−2∇φ∇(φ− uε) dx+ βε

∫
Sε

σ(x, φ)(φ− uε) ds ≥
∫
Ωε

f(φ− uε) dx, ∀φ ∈ Kε. (7.3)

In addition, for uε the solution of (2.5)−(2.6), there exists an extension Pεuε of uε to Ω, Pεuε ∈W 1,n(Ω, ∂Ω)
with the following properties

‖Pεuε‖W 1,n(Ω) ≤ K‖uε‖W 1,n(Ωε), ‖∇Pεuε‖Ln(Ω) ≤ K‖∇uε‖Ln(Ωε)

and
‖Pεuε‖nW 1,n(Ω) + βε‖uε‖nLn(Sε)

≤ K‖f‖n/(n−1)

Ln/(n−1)(Ω)
. (7.4)

The proof of Theorem 7.1 holds by rewriting the proof of Theorem 2.1 with minor modifications. Consider-
ing (7.4), for each sequence of ε we can extract a subsequence (still denoted by ε) such that as ε→ 0

Pεuε ⇀ u in W 1,n(Ω, ∂Ω) and Pεuε → u in Lr(Ω) for any r ∈ [1,∞), (7.5)

for a certain function u which, once identified, provides the convergences (7.5) for the whole sequence of ε. The
aim of the section is to obtain the homogenized problem satisfied by the function u in (7.5) (see Thm. 7.4).

To do this, we introduce the functions Qε and Wε ∈ W 1,n(Ω, ∂Ω) as follows: For j ∈ Υε, let qjε(x) be the
solution of the problem 

∆nq
j
ε = 0 in T jε/4 \G

j
ε,

qjε = 1 on ∂Gjε,

qjε = 0 on ∂T jε/4,

(7.6)

and we introduce the function Qε ∈W 1,n(Ω, ∂Ω) by setting

Qε(x) = qjε(x), x ∈ T jε/4 \G
j
ε, j ∈ Υε, (7.7)

extended by 1 inside Gjε, j ∈ Υε, and by 0 in Rn \
⋃
j∈Υε T

j
ε/4.

Similarly, for j ∈ Υε, let wjε(x) be the solution of the problem
∆nw

j
ε = 0 in T jε/4 \ T

j
aε ,

wjε = 1 on ∂T jaε ,

wjε = 0 on ∂T jε/4.

(7.8)
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It can be easily verified that

wjε =

(
ln

(
4aε
ε

))−1

ln

(
4|x− P jε |

ε

)
(7.9)

We define the function Wε ∈W 1,n(Ω, ∂Ω) by setting

Wε(x) = wjε(x), x ∈ T jε/4 \ T
j
aε , j ∈ Υε, (7.10)

extended by 1 inside T jaε , j ∈ Υε, and by 0 in Rn \
⋃
j∈Υε T

j
ε/4. Thus, we compute

‖∇Wε‖mLm(Ω) ≤ K|ε ln(4aε/ε)|−m if 1 ≤ m < n,

‖∇Wε‖nLn(Ω) ≤ K|ε
n/(n−1) ln(4aε/ε)|1−n

and, since εn/(n−1) ln(4aε/ε)→ −α̃2 as ε→ 0, we have

‖∇Wε‖mLm(Ω) ≤ Kε
m/(n−1) if 1 ≤ m < n, ‖∇Wε‖nLn(Ω) ≤ K, (7.11)

and
Wε ⇀ 0 in W 1,n(Ω) as ε→ 0. (7.12)

It should be noted that because of the geometry of the Gj , in general, the function qjε, defined by (7.6),
cannot be explicitly constructed. Lemma 7.2 provides us some properties for Qε by means of comparison with
Wε in Ω (see Lem. 2 in [39] for the proof).

Lemma 7.2. Let us assume that εn/(n−1) ln(4aε/ε) → −α̃2 as ε → 0. Let Qε and Wε be defined by (7.7)
and (7.10) respectively. Then, we have

‖Wε −Qε‖W 1,n(Ω) ≤ Kε
1

n−1 . (7.13)

Also for the sake of completeness, we introduce the following result.

Lemma 7.3. Let Ỹε = ε(−1/2, 1/2)n \aεG0 where G0 is a domain of Rn diffeomorphic to a ball, and 0 < aε <

ε/4 such that aεG0 ⊂ ε(−1/2, 1/2)n. If ϕ ∈W 1,n(Ỹε), then

‖ϕ‖nLn(aε∂G0) ≤ K
[
an−1
ε ε−n‖ϕ‖n

Ln(Ỹε)
+ an−1

ε | ln(ε/aε)|n−1‖∇ϕ‖n
Ln(Ỹε)

]
.

The proof of Lemma 7.3 holds applying the technique in Lemma 2 in [33] for p = 2 (cf. Lem. 2.5).

Theorem 7.4. Let aε and βε satisfy (7.2) and let uε be the weak solution of problem (1.1) with p = n. Then,
the limit function u of the extension of uε, defined by (7.5), is the weak solution of the problem (1.9)−(1.10).

Proof. First, let us note that on account that Proposition 2.2, equation (1.10) has a unique solution H ≡
H(x, u), which is a continuously differentiable function in Ω × (R \ {0}) and continuous in Ω ×R, and satisfies
H(x, 0) = 0, (2.20) and (2.21) with p = n. Also, we observe that the weak solution of problem (1.9) is the
solution in W 1,n(Ω, ∂Ω) of the integral equation∫
Ω

|∇u|n−2∇u∇φdx+ Ãn
∫
Ω

(
|H(x, v+)|n−2H(x, v+) + |v−|n−2v−

)
φdx =

∫
Ω

fφdx, ∀φ ∈W 1,n(Ω, ∂Ω).

(7.14)
From the monotonicity of the function |λ|n−2λ and (2.20) with p = n, the existence and uniqueness of solution
of (7.14) holds (cf. [30]).
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Let us consider the function
φ = v −Qε(H(x, v+) + v−), (7.15)

where v ∈ C∞0 (Ω), Qε is the function defined by (7.7) and H(x, τ) is the solution of the functional equa-
tion (1.10). Because of (7.7) and (2.21), we can check that φ ≥ 0 on Sε and, hence, it belongs to Kε. We now
take φ as a test function in (7.3); by definition of Qε, we get∫

Ωε

|∇(v −Qε(H(x, v+) + v−))|n−2∇(v −Qε(H(x, v+) + v−))∇(v −Qε(H(x, v+) + v−)− uε) dx

+ βε

∫
Sε

σ(x, v+ −H(x, v+))(v+ −H(x, v+)− uε) ds ≥
∫
Ωε

f(v −Qε(H(x, v+) + v−)− uε) dx (7.16)

and we pass to the limit in (7.16) when ε→ 0.

We denote by Tε the first integral on the left hand side of (7.16) and by H̃ the function H̃ ≡ H(x, v+) + v−.
Thus, we have

Tε =

∫
Ωε

(
|∇(v −WεH̃ + (Wε −Qε)H̃)|n−2 − |∇(v −WεH̃)|n−2

)
∇(v −QεH̃)∇(v −QεH̃ − uε) dx

+

∫
Ωε

|∇(v −WεH̃)|n−2∇(v −QεH̃)∇(v −QεH̃ − uε) dx = T aε + T bε + T cε + T dε ,

where

T aε ≡
∫
Ωε

(
|∇(v −WεH̃ + (Wε −Qε)H̃)|n−2 − |∇(v −WεH̃)|n−2

)
∇(v −QεH̃)∇(v −QεH̃ − uε) dx,

T bε ≡
∫
Ωε

|∇(v −WεH̃)|n−2∇(v −WεH̃)∇(v −WεH̃ − uε) dx,

T cε ≡
∫
Ωε

|∇(v −WεH̃)|n−2∇((Wε −Qε)H̃)∇(v −QεH̃ − uε) dx

and

T dε ≡
∫
Ωε

|∇(v −WεH̃)|n−2∇(v −WεH̃)∇((Wε −Qε)H̃) dx.

Using Hölder inequality, (7.13), (7.11) and (7.4), it follows

|T dε | ≤ ‖∇(v −WεH̃)‖n−1
Ln(Ωε)

‖∇((Wε −Qε)H̃)‖Ln(Ωε)

and
|T cε | ≤‖∇(v −WεH̃)‖n−2

Ln(Ωε)
‖∇((Wε −Qε)H̃)‖Ln(Ωε)‖∇(v −QεH̃ − uε)‖Ln(Ωε),

which converge towards zero as ε → 0. Moreover, taking into account the inequalities (A.3) and (A.4) with
p = n (see, for the technique, the estimate |Raε | for p > 3 in the proof of Prop. 2.3), we have

|T aε | ≤K
∫
Ωε

|∇((Wε −Qε)H̃)|(|∇(v −WεH̃)|+ |∇((Wε −Qε)H̃)|)n−3

× |∇(v −QεH̃)||∇(v −QεH̃ − uε)|dx→ 0 as ε→ 0.
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Hence,

lim
ε→0
Tε = lim

ε→0

∫
Ωε

|∇(v −WεH̃)|n−2∇(v −WεH̃)∇(v −WεH̃ − uε) dx.

Now, we write the last integral, T bε , as∫
Ωε

|∇(v −WεH̃)|n−2∇(v −WεH̃)∇(v −WεH̃ − uε) dx = Zaε + Zbε + Zcε + Zdε ,

where

Zaε ≡
∫
Ωε

(|∇(v −WεH̃)|n−2 − |∇v|n−2)∇v∇(v −WεH̃ − uε) dx, Zbε ≡
∫
Ωε

|∇v|n−2∇v∇(v −WεH̃ − uε) dx,

Zcε ≡ −
∫
Ωε

(|∇(v −WεH̃)|n−2 − |∇(WεH̃)|n−2)∇(WεH̃)∇(v −WεH̃ − uε) dx

and

Zdε ≡ −
∫
Ωε

|∇(WεH̃)|n−2∇(WεH̃)∇(v −WεH̃ − uε) dx.

From Proposition 2.3, (7.11) and (7.4), we obtain |Zaε | → 0 and |Zcε | → 0 as ε → 0. Besides, on account
of (7.12), (7.5) and the size of Gε, we deduce

lim
ε→0
Zbε =

∫
Ω

|∇v|n−2∇v∇(v − u) dx.

Finally, by (7.11), we get

lim
ε→0
Zdε = − lim

ε→0

∫
Ωε

|∇Wε|n−2∇Wε∇(|H̃|n−2H̃(v −WεH̃ − uε)) dx.

Thus, gathering the above convergences, we obtain

lim
ε→0
Tε =

∫
Ω

|∇v|n−2∇v∇(v − u) dx− lim
ε→0

∫
Ωε

|∇Wε|n−2∇Wε∇(|H̃|n−2H̃(v −WεH̃ − uε)) dx. (7.17)

Now, let us consider the second term on the the right hand side of (7.16) and let us prove that

lim
ε→0

βε ∫
Sε

σ(x, v+ −H(x, v+))(v+ −H(x, v+)− uε) ds −
∫
Ωε

|∇Wε|n−2∇Wε∇(|H̃|n−2H̃(v −WεH̃ − uε)) dx


≤Ãn

∫
Ω

(
|H(x, v+)|n−2H(x, v+) + |v−|n−2v−

)
(v − u) dx.

(7.18)
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By the definition of Wε and the Green formula, we have∫
Ωε

|∇Wε|n−2∇Wε∇(|H̃|n−2H̃(v −WεH̃ − uε)) dx =
∑
j∈Υε

∫
∂T j

ε/4

|∇wjε|n−2∂νnw
j
ε|H̃|n−2H̃(v − uε) ds

+
∑
j∈Υε

∫
∂T jaε

|∇wjε|n−2∂νnw
j
ε|H̃|n−2H̃(v − H̃ − uε) ds.

(7.19)

Moreover, using the properties of H(x, u), we get H(x, v+)v− = 0 and, hence,

|H̃|n−2H̃ = |H(x, v+)|n−2H(x, v+) + |v−|n−2v−. (7.20)

Thus, combining (7.19), (7.20) and (7.9) yields∫
Ωε

|∇Wε|n−2∇Wε∇(|H̃|n−2H̃(v −WεH̃ − uε)) dx = Haε +Hbε (7.21)

where

Haε ≡

∣∣∣∣∣ 4

ε ln( 4aε
ε )

∣∣∣∣∣
n−2

4

ε ln( 4aε
ε )

∑
j∈Υε

∫
∂T j

ε/4

(|H(x, v+)|n−2H(x, v+) + |v−|n−2v−)(v − uε) ds

and

Hbε ≡ −

∣∣∣∣∣ 1

aε ln( 4aε
ε )

∣∣∣∣∣
n−2

1

aε ln( 4aε
ε )

∑
j∈Υε

∫
∂T jaε

(|H(x, v+)|n−2H(x, v+)+|v−|n−2v−)(v+−H(x, v+)−uε) ds.

On account of (7.5) and (7.2), we apply Lemma 2.8 and have

− lim
ε→0
Haε = Ãn

∫
Ω

(
|H(x, v+)|n−2H(x, v+) + |v−|n−2v−

)
(v − u) dx. (7.22)

Therefore, the proof of (7.18) is completed by showing

lim
ε→0

βε ∫
Sε

σ(x, v+ −H(x, v+))(v+ −H(x, v+)− uε) ds−Hbε

 ≤ 0. (7.23)

To prove (7.23), we have to introduce a set of functions {mj
ε}j∈Υε : for each j ∈ Υε, we consider the problem

∆nm
j = 0 in T1 \Gj , ∂νnm

j =
l

ωn
on ∂T1, ∂νnm

j = −1 on ∂Gj , (7.24)

which has a unique solution defined up to an additive constant. We note that because for j ∈ Υε, Gj ∈ M, we
are dealing with a finite number of different functions (7.24). For j ∈ Υε, we set

mj
ε(x) = ε

n
n−1mj

(
x− P jε
aε

)
for x ∈ T jaε \G

j
ε. (7.25)
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It is easy to see that mj
ε(x) is a solution of the following problem

∆nm
j
ε = 0 in T jaε \G

j
ε, ∂νnm

j
ε = a1−n

ε εn
l

ωn
on ∂T jaε , ∂νnm

j
ε = −a1−n

ε εn on ∂Gjε. (7.26)

We take hε ≡ (|H(x, v+)|n−2H(x, v+) + |v−|n−2v−)(v+ − H(x, v+) − uε) as a test function in the integral
identity for problem (7.26) and we get∣∣∣∣∣∣∣∣

∑
j∈Υε

∫
T jaε\G

j
ε

|∇mj
ε|n−2∇mj

ε∇hε dx

∣∣∣∣∣∣∣∣ = εna1−n
ε

∣∣∣∣∣∣∣
∫
Sε

hεds−
l

ωn

∑
j∈Υε

∫
∂T jaε

hε ds

∣∣∣∣∣∣∣ (7.27)

Now, by (7.25), it follows∫
T jaε\G

j
ε

|∇xmj
ε|ndx = a−nε anε ε

n2/(n−1)

∫
T1\Gj

|∇ymj |n dy ≤ Kεn
2/(n−1)

and, hence, ∑
j∈Υε

∫
T jaε\G

j
ε

|∇mj
ε|n dx ≤ Kεn

2/(n−1)ε−n = Kεn/(n−1). (7.28)

Thus, from (7.27), (7.28) and (7.4), we derive

εna1−n
ε

∣∣∣∣∣∣∣
∫
Sε

hε ds− l

ωn

∑
j∈Υε

∫
∂T jaε

hεds

∣∣∣∣∣∣∣ ≤ Kε. (7.29)

Let us prove (7.23). To do it, we write

βε

∫
Sε

σ(x, v+ −H(x, v+))(v+ −H(x, v+)− uε) ds−Hbε = X aε + X bε + X cε + X dε (7.30)

where

X aε ≡

(∣∣∣∣ 1

aε ln(4aε/ε)

∣∣∣∣n−2
1

aε ln(4aε/ε)
+
εna1−n

ε

α̃2(n−1)

)∑
j∈Υε

∫
∂T jaε

hε ds,

X bε ≡
εna1−n

ε

α̃2(n−1)

ωn
l

∫
Sε

hε ds−
∑
j∈Υε

∫
∂T jaε

hεds

, X cε ≡
ωnε

na1−n
ε (βεε

−nan−1
ε − C̃2(n−1)

0 )

lα̃2(n−1)C̃
2(n−1)
0

∫
Sε

hε ds

and

X dε ≡ βε

∫
Sε

σ(x, v+ −H(x, v+))(v+ −H(x, v+)− uε) ds− ωn

lα̃2(n−1)C̃
2(n−1)
0

∫
Sε

hε ds

.
From (7.29), it is clear that

lim
ε→0
X bε = 0. (7.31)
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Besides, applying Lemma 7.3, we obtain

‖w‖nLn(Sε)
≤ K

(
an−1
ε ε−n‖w‖nLn(Ωε)

+ an−1
ε | ln(ε/aε)|n−1‖∇w‖nLn(Ωε)

)
for all w ∈W 1,n(Ωε) and, thus,∣∣∣∣∣∣

∫
Sε

hε ds

∣∣∣∣∣∣ ≤ Ka(n−1)2/n
ε ε1−n(an−1

ε ε−n + an−1
ε | ln(ε/aε)|n−1)1/n‖hε‖W 1,n(Ωε).

Then, using (7.2) and (7.4), we deduce
lim
ε→0
X cε = 0. (7.32)

In a similar way, we have
lim
ε→0
X aε = 0. (7.33)

Now, taking into account that H is the solution of the functional equation (1.10) and that v−(v+−H(x, v+)) = 0
and uε ≥ 0 on Sε, we conclude that

X dε = −βεB̃n
∫
Sε

|v−|n−2v−(v+ −H(x, v+)− uε) ds ≤ 0. (7.34)

Then, gathering (7.30), (7.33), (7.31), (7.32) and (7.34) yields (7.23), and, from (7.21), (7.22) and (7.23), (7.18)
holds.

Using (7.17) and (7.18), we obtain that the limit of the left hand side of (7.16) is bounded from above by the
following expression∫

Ω

|∇v|n−2∇v∇(v − u) dx+ Ãn
∫
Ω

(
|H(x, v+)|n−2H(x, v+) + |v−|n−2v−

)
(v − u) dx.

In addition, (7.5), (7.12), (7.13) and the fact that |Gε| → 0, as ε→ 0, give

lim
ε→0

∫
Ωε

f(v −QεH̃ − uε)dx =

∫
Ω

f(v − u) dx.

Therefore, taking limits in (7.16), we obtain that u satisfies the following inequality∫
Ω

|∇v|n−2∇v∇(v − u) dx+ Ãn
∫
Ω

(
|H(x, v+)|n−2H(x, v+) + |v−|n−2v−

)
(v − u) dx ≥

∫
Ω

f(v − u) dx, (7.35)

for all v ∈W 1,n(Ω, ∂Ω). As usual, taking v = u±λφ in (7.35) where φ ∈W 1,n(Ω, ∂Ω) and passing to the limit
as λ→ +0, we get (7.14), which concludes the proof. �

Finally we state the corrector result whose proof is performed by re-writing the proof of Theorem 3.2 with
the suitable modifications introduced by the value of p, the definition (7.7) and the Theorem 7.4.

Theorem 7.5. Let aε and βε satisfy (7.2) and let uε be the weak solution of problem (1.1) with p = n. Let u ∈
W 1,n(Ω, ∂Ω) the weak solution of the boundary value problem (1.9) with the additional regularity u ∈W 1,∞(Ω),
and Qε defined by (7.7). Then, as ε→ 0, we have

‖uε − u+Qε(H(x, u+) + u−)‖nW 1,n(Ωε)
+ βε‖uε − u+ +H(x, u+)‖nLn(Sε)

→ 0.
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8. Final comments

Here, we gather some comments and remarks about the extensions of the results throughout the paper.
As regards the most critical situation (point I in the table of Sect. 1), let us note that in the case where

σ(x, u) = b(x)|u|p−2u, with b(x) a strictly positive continuously differentiable function in Ω, we can solve
explicitly the functional equation (2.19) for p ∈ [2, n]; namely, we can define the solution H of (2.19) explicitly
in terms of b(x) and u. As a matter of fact, we obtain

H(x, u) =
(%b(x))1/(p−1)

1 + (%b(x))1/(p−1)
u, (8.1)

where % contains information on the averaged constant of the problem (cf. also (2.21) and (2.22)).
Since all the results of the paper apply to this case, σ(x, u) = b(x)|u|p−2u, we observe that the dependence of

the nonlinear strange term on b(x) ranges from linear to nonlinear or no dependence (cf. the table in Sect. 1);
the nonlinear dependence appearing for the most critical case (cf. Sects. 3 and 7).

Also, an important point to underline is that in the case where b(x) ≡ b is a positive constant, even for the
most critical situation, arbitrary shapes of the cavities (periodically placed) can be considered and some kind
of capacity constant will likely appear in the homogenized problem. The latter can be easily shown for p = 2
suitably modifying proofs in Section 3, although, to our knowledge, the result for variational inequalities is not
found in the literature.

As regards the geometrical configuration of the problem, we observe that, for p ∈ [2, n), the limit behavior
of the solution of (1.1) remains to be obtained in the cases where the cavities Gε are not balls or there is not
periodicity of the structure. For the case where p = 2, different shapes of the domains have been considered
in [24, 25] for boundary value problems outside the most critical situation (namely, outside the big point in
Figs. 2 and 3). As a matter of fact, the local problem obtained from the microstructure of the original problem,
strongly depends on the center of the cavities and makes it difficult to guess the homogenized problem. This fact
has been observed in very different homogenization problems in perforated media, with linear partial differential
equations and with different boundary conditions or constraints on the boundary condition, and always related
with critical sizes of the cavities. Sometimes the difficulty can be overcome by considering periodicity of the
coefficients arising in the partial differential equations or more restrictive parameters and functions arising on
the Robin boundary conditions (cf., e.g., [11,35] and references therein). Also let us note that other techniques
avoiding local problems could allow less restrictive geometrical configuration to be considered: see [7,35] for two
second order elliptic operators with oscillating coefficients and two types of cavities, in each periodicity cell,
with Signorini condition or nonlinear Robin condition on the boundary of one of these cavities. However, we
highlight that, in the existing literature, the most critical case (cf. Point I on the table of Sect. 1.1) for arbitrary
shapes of perforations has not been considered even when p = 2: cf. [24] for arbitrary shapes when σ = bu and
p = 2; see the above paragraph in this connection.

For nonlinear Robin boundary conditions, even for the Laplace operator, in the most critical situation,
the problem has been unsolved for a long time. [24] considers perforations that are not necessarily balls but
the problem for the most critical relation remained as an open problem for any geometry of the perforations
until [21]. [21] appears as the first paper in the literature where an implicitly defined homogenized problem
is outlined, the perforations being for balls. In fact [21, 24, 25, 44] consider the Laplace operator in perforated
media over the whole domain and their results complement each other. However [21,44] consider only spherical
cavities while the cavities can be of different shapes in [24,25] but for relations between parameters outside the
big point. See [18,20] for a long list of references on related problems.

In the most critical situation, for nonlinear Robin boundary conditions, the Laplacian and n = 2, namely,
p = n = 2, we refer to [37] for general geometries of the cavities and to [18] when p = 2, n = 3 and the domain is
perforated by tubes. An extension to p = n ≥ 3 can be found in [39]. Here, in Section 7, we consider a different
problem (cf. (1.1)), with unilateral constraints. Also, a more restrictive σ is considered in [18,37,39]. However,
it should be emphasized that, in any case, the perimeter of the perforations arises in the strange term instead
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of the shape of the perforations as one might expect for n ≥ 3. In these cases, the difference to broach the
problem for the different values of p, namely 2 ≤ p < n and p = n, recalls the difference when n ≥ 3 and n = 2
for the Laplacian in [9], or the Stokes equations in [2], both with Dirichlet conditions on the boundary of the
perforations. When considering the adsorption, the perimeter of the perforations also arises in the homogenized
problem (cf. [37] for further details on the differences when p = n = 2).

Related with the nonlinear data of our problem, we note that the hypotheses (2.1)–(2.3) on the function
σ(x, u) in this paper seem to be optimal and allow us to provide a general framework for results and proofs.
However, many of the results hold true under weaker hypotheses for σ. Actually, the strong monotonicity outlined
in (2.2) can be changed by the weaker hypothesis of strict monotonicity or only monotonicity depending on
the relations for parameters or the appropriate improved convergence. This can be seen in a simple way when
verifying proofs.

However, as noticed in [22], the adsorption isotherms used mostly in the literature are of the form σ(x, u) =
g(u) with g a positive strictly increasing function in [0,∞). In this connection, we also note that certain proofs
can be adapted for functions σ both with less smoothness or increasing requirements. We refer to [5] for explicit
definitions of σ arising in models from ecology, hydrogeology or chemical reactions, for comments on possible
extensions when u ≤ 0, and for further references.

Remark 8.1. Note that, in this paper, we give results for the p-Laplacian on perforated domains, by tiny
cavities, with constraints for solutions and their normal derivatives on the boundary of the cavities, which are
completly new in the literature. Dealing with unilateral constraints for the p-Laplacian and the homogenization
of perforated media, we mention very different problems and results in [36] for Signorini conditions (when
α = 1) and [26, 41] for obstacle problems. For different constraints and sizes of perforations, we provide a
map of all possible homogenized problems and construct the corresponding correctors (see Figs. 2 and 3). In
particular, we obtain seven different limits when p ∈ [2, n), most than ever found for the p-Laplace operator
in perforated media (see [28, 40] to compare). In this connection, [40] considers a ε-dependent boundary value
problem with generalized Robin condition (no constraints for solutions), without any corrector result and with
a more restrictive σ. Except one, the strange terms in [40] are different since they cannot get the double
influence coming from the constraints on the solutions and on their normal derivatives (cf. Sect. 1); among all
the homogenized problems here obtained, only (1.5) and (1.8) coincide with some homogenized problems in [40]
for some σ. In addition, to improve the weak convergence obtained in [40], it suffices to re-write the proofs for
correctors in Sections 2–6 with the suitable modifications. Similar comments apply to the results in [37,39] when
p = n = 2 and p = n ≥ 3, respectively, and to our new strange term in (1.9) and corrector in Theorem 7.5.
Dealing with the results in [16,19,23], see the end of Section 1.

Appendix A.

To avoid introducing technical details in Section 2.1, we provide here the proof of Propositions 2.2 and 2.3
that we have not found in the literature.

Proof of Proposition 2.2. Let us consider z = τ−H and rewrite the equation as |z−τ |p−2(z−τ)+% σ(x, z) = 0.
Considering the continuously differentiable function F (x, τ, z) = |z − τ |p−2(z − τ) + % σ(x, z) defined from a
domain of Rn+2 into R and taking into account that only the points of the form (x, τ, z) = (x, 0, 0), x ∈ Ω, can
verify F (x, τ, z) = 0 and ∂zF (x, τ, z) = 0, the implicit function theorem provides the continuously differentiable
function in Ω × (R \ {0}), z = U(x, τ) such that

|U(x, τ)− τ |p−2(U(x, τ)− τ) + % σ(x, U(x, τ)) = 0.

Then, writing H(x, τ) = τ − U(x, τ) for (x, τ) ∈ Ω × (R \ {0}) and H(x, 0) = 0 for x ∈ Ω (cf. (2.4)), we verify
that H is the unique continuous function in Ω × R which satisfies (2.19).
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Moreover, on account of (2.19) and the monotonicity of the functions |λ|p−2λ and σ(x, z) (cf. (2.18) and (2.2),
respectively), we have

(|H(x, u)|p−2H(x, u)− |H(x, v)|p−2H(x, v))(u− v)

= (|H(x, u)|p−2H(x, u)− |H(x, v)|p−2H(x, v))(H(x, u)−H(x, v))

+ % (σ(x, u−H(x, u))− σ(x, v −H(x, v)))(u−H(x, u)− v +H(x, v))

≥ k3|H(x, u)−H(x, v)|p + % k1|u−H(x, u)− v +H(x, v)|p ≥ k̃1|u− v|p,

for all x ∈ Ω, u, v ∈ R, and certain constant k̃1 > 0, and (2.20) holds. Condition (2.20) and the fact that
H(x, 0) = 0 imply (2.22). Finally, using (2.19), (2.22) and (2.4) we can prove (2.21), which concludes the proof
of the proposition. �

Proof of Proposition 2.3. First, we write the term on the left hand side of (2.23) as∫
Ωε

(
|∇(v + ηε)|p−2∇(v + ηε)− |∇v|p−2∇v

)
∇ϕdx = Raε +Rbε +Rcε (A.1)

where

Raε ≡
∫
Ωε

(
|∇(v + ηε)|p−2 − |∇v|p−2

)
∇v∇ϕdx, Rbε ≡

∫
Ωε

(
|∇(v + ηε)|p−2 − |∇ηε|p−2

)
∇ηε∇ϕdx

and

Rcε ≡
∫
Ωε

|∇ηε|p−2∇ηε∇ϕdx.

Then, we apply the inequality

||a + b|p−2 − |b|p−2| ≤ |a|p−2, ∀a, b ∈ Rn, (A.2)

for p ∈ (2, 3], obtained from the Minkowskii and the triangle inequalities, and the inequalities

(a+ b)p−2 − bp−2 ≤ a(p− 2)(a+ b)p−3, ∀a, b ≥ 0, (A.3)

and
(a+ b)p−3 ≤ K(ap−3 + bp−3), ∀a, b ≥ 0, (A.4)

for p > 3, to estimate the term Rε ≡ Raε +Rbε arising in (2.23).
Let us assume p ∈ (2, 3]. Using (A.2) and the Hölder inequality we obtain

|Raε | ≤
∫
Ωε

||∇(v + ηε)|p−2 − |∇v|p−2||∇v||∇ϕ|dx

≤
∫
Ωε

|∇ηε|p−2|∇v||∇ϕ|dx

≤ K‖∇ηε‖p−2
L(p−2)p/(p−1)(Ω)

‖∇ϕ‖Lp(Ω)

and

|Rbε| ≤
∫
Ωε

||∇(v + ηε)
p−2 − |∇ηε|p−2||∇ηε||∇ϕ|dx

≤
∫
Ωε

|∇v|p−2|∇ηε||∇ϕ|dx

≤ K‖∇ηε‖Lp/(p−1)(Ω)‖∇ϕ‖Lp(Ω),

and, hence, (2.24) holds for p ∈ (2, 3].
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Let us assume p > 3. We can write

|Raε | ≤
∫
Ωε

||∇(v + ηε)|p−2 − |∇v|p−2||∇v||∇ϕ|dx

=

∫
Ωε∩D+

ε

(|∇(v + ηε)|p−2 − |∇v|p−2)|∇v||∇ϕ|dx

+

∫
Ωε∩D−ε

(|∇v|p−2 − |∇(v + ηε)|p−2)|∇v||∇ϕ|dx,

where D+
ε = {x : |∇(v + ηε)(x)|p−2 − |∇v(x)|p−2 > 0} and D−ε = {x : |∇(v + ηε)(x)|p−2 − |∇v(x)|p−2 < 0}.

Now, using (A.3), (A.4) and the Hölder inequality we obtain∫
Ωε∩D+

ε

(|∇(v + ηε)|p−2 − |∇v|p−2)|∇v||∇ϕ|dx ≤
∫
Ωε∩D+

ε

((|∇v|+ |∇ηε|)p−2 − |∇v|p−2)|∇v||∇ϕ|dx

≤ (p− 2)

∫
Ωε

|∇ηε|(|∇v|+ |∇ηε|)p−3|∇v||∇ϕ|dx ≤ K
∫
Ωε

(|∇ηε||∇v|p−2 + |∇ηε|p−2|∇v|)|∇ϕ|dx

≤K(‖∇ηε‖Lp/(p−1)(Ω) + ‖∇ηε‖p−2
L(p−2)p/(p−1)(Ω)

)‖∇ϕ‖Lp(Ω).

Similarly, we can estimate∫
Ωε∩D−ε

(|∇v|p−2 − |∇(v + ηε)|p−2)|∇v||∇ϕ|dx

≤
∫
Ωε∩D−ε

((|∇(v + ηε)|+ |∇ηε|)p−2 − |∇(v + ηε)|p−2)|∇v||∇ϕ|dx

≤ (p− 2)

∫
Ωε

|∇ηε|(|∇(v + ηε)|+ |∇ηε|)p−3|∇v||∇ϕ|dx ≤ K
∫
Ωε

(|∇ηε||∇v|p−2 + |∇ηε|p−2|∇v|)|∇ϕ|dx

≤K(‖∇ηε‖Lp/(p−1)(Ω) + ‖∇ηε‖p−2
L(p−2)p/(p−1)(Ω)

)‖∇ϕ‖Lp(Ω).

Consequently,
|Raε | ≤ K[‖∇ηε‖Lp/(p−1)(Ω) + ‖∇ηε‖p−2

L(p−2)p/(p−1)(Ω)
]‖∇ϕ‖Lp(Ω).

Similar arguments allow us to obtain the same estimate for |Rbε| and, thus, (2.24) also holds for p > 3.
Now, (2.25) follows from (A.1) and the fact that Rcε also converges to zero as ε → 0 under the assumption

‖∇ηε‖Lp(Ω) → 0, which concludes the proof. �
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[5] A. Brillard, D. Gómez, M. Lobo, E. Pérez and T.A. Shaposhnikova, Boundary homogenization in perforated domains for
adsorption problems with an advection term. Appl. Anal. 95 (2016) 1517–1533.



UNILATERAL PROBLEMS FOR THE P -LAPLACE OPERATOR IN PERFORATED MEDIA 963

[6] J. Byström, Sharp constants for some inequalities connected to the p-Laplace operator. JIPAM. J. Inequal. Pure Appl. Math.
6 (2005) 56.

[7] A. Capatina, H. Ene and C. Timofte, Homogenization results for elliptic problems in periodically perforated domains with
mixed-type boundary conditions. Asymptot. Anal. 80 (2012) 45–56.

[8] J. Casado-Diaz, Existence of a sequence satisfying Cioranescu-Murat conditions in homogenization of Dirichlet problems in
perforated domains. Rend. Mat. Appl. 16 (1996) 387–413.

[9] D. Cioranescu and F. Murat, A strange term coming from nowhere, in Topics in the Mathematical Modelling of Composite
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