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SUMMABILITY ESTIMATES ON TRANSPORT DENSITIES

WITH DIRICHLET REGIONS ON THE BOUNDARY

VIA SYMMETRIZATION TECHNIQUES

Samer Dweik1,a and Filippo Santambrogio1

Abstract. In this paper we consider the mass transportation problem in a bounded domain Ω where
a positive mass f+ in the interior is sent to the boundary ∂Ω. This problems appears, for instance in
some shape optimization issues. We prove summability estimates on the associated transport density σ,
which is the transport density from a diffuse measure to a measure on the boundary f− = P#f

+ (P
being the projection on the boundary), hence singular. Via a symmetrization trick, as soon as Ω is
convex or satisfies a uniform exterior ball condition, we prove Lp estimates (if f+ ∈ Lp, then σ ∈ Lp).
Finally, by a counter-example we prove that if f+ ∈ L∞(Ω) and f− has bounded density w.r.t. the
surface measure on ∂Ω, the transport density σ between f+ and f− is not necessarily in L∞(Ω), which
means that the fact that f− = P#f

+ is crucial.
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1. Introduction

In optimal transport, the so-called transport density is an important notion specific to the case of the Monge
cost c(x, y) = |x− y|, which played different roles in the development of the theory. For instance, in [17] it was
a key object for one of the first proofs of existence of an optimal transport map for such a linear cost. More
precisely, such a map was constructed by following integral curves of a vector field v minimizing

∫
|v(x)|dx under

a divergence constraint∇·v = f+−f−, where f± are the two measures to be transported one onto the other, and
the transport density σ is nothing but |v|. More precisely, σ and v are intimately connected with the Kantorovich
potential u: we have v = −σ∇u and (σ, u) solves a particular PDE systems, called Monge−Kantorovich system

−∇ · (σ∇u) = f = f+ − f− in Ω

σ∇u · n = 0 on ∂Ω

|∇u| ≤ 1 in Ω,

|∇u| = 1 σ − a.e.

(1.1)

The transport density σ and the optimal vector field v appear in many applications. The role of σ has been
clarified for its applications to shape optimization problems in [5]. In [11, 13, 16, 26], the same pair (σ, u) also
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models (in a statical or dynamical framework) the configuration of stable or growing sandpiles, where u gives
the pile shape and σ stands for sliding layer. The minimal flow problem min{

∫
|v(x)|dx : ∇ · v = f}, first

introduced in [3], has many strictly convex variants, dating back to [3] itself and later studied in [6], modeling
traffic congestion. The minimization of the L1 norm under divergence constraints also has applications in image
processing, as in [7,20], in particular because the L1 norm (and not its strictly convex variants) induces sparsity.

In the framework of both traffic congestion and membrane reinforcement, in [9] the authors use a variant of
this problem, already present in [5, 8], where the density f has not zero average, but the Monge−Kantorovich
system is complemented with Dirichlet boundary condition. In optimal transport terms, this corresponds to the
possibility of sending some mass to the boundary. The easiest version of the system becomes

−∇ · (σ∇u) = f+ ≥ 0 in Ω

u = 0 on ∂Ω,

|∇u| ≤ 1 in Ω,

|∇u| = 1 σ − a.e.

(1.2)

and corresponds to an optimal transport problem between f+ and an unknown measure f−, supported on ∂Ω.
By optimality, f− can be proven to be equal to the image of f+ through the projection onto the boundary ∂Ω.

In this paper we are mainly concerned with summability estimates of σ in terms of the corresponding summa-
bility properties of f+. It is well known, from the works of Feldman-McCann, that σ is unique and L1 (i.e.,
absolutely continuous) as soon as one of the two measures f+ or f− is absolutely continuous. Then, [14,15,27]
analyzed Lp summability: for p < d/(d − 1) (d being the dimension of the ambient space) σ is Lp as soon as
one of the two measures f+ or f− is Lp, while for p ≥ d′ := d/(d − 1) (including p = ∞) this requires that
both are Lp. In general, it is not difficult to see that σ is never more regular than f , and the higher regularity
question (i.e. continuity, C0,α, W 1,p. . . ) is an open question, matter of current research.

Yet, the summability question in the Dirichlet case is an interesting one, required in some estimates in [9],
and it is non-trivial for p ≥ d′ because f− is singular. In this paper, thanks to a symmetrization argument, we
give positive answer under some geometric conditions on ∂Ω. Note that [12] already contained a similar, but
weaker, result: indeed, the methods used in [12] allows to get the Lp estimate we look for, for p < ∞, on a
convex domain, since a boundary term in an integration by parts happens to have a sign. As far as results are
concerned (since, anyway, the strategy is completely different), the novelty in the present paper are the case
p =∞ and the case where Ω only satisfies an exterior ball condition, instead of being convex.

The paper is organized as follows. In Section 2 we recall some well known facts, terminology and notations
concerning the usual Monge−Kantorovich problem, its dual formulation, the role of the transport density, and
the variant where a Dirichlet region is inserted. In Section 3, we will show our main results, namely that the
transport density σ between f+ and (P∂Ω)#f

+ is in Lp(Ω) provided f+ ∈ Lp(Ω), under the assumption that
Ω satisfies an exterior ball condition. This is done via a symmetrization technique which is quite easy to explain
in the case where Ω is a polyhedron: in this case, σ is equal to the restriction to Ω of the transport density from
f+ to a new density f− obtained by symmetrizing f+ across the faces composing the boundary ∂Ω. A similar
argument can be performed for domains with “round” faces (called round polyhedra) and, by an approximation
argument, for arbitrary domains satisfying an exterior ball condition. The presentation, for completeness and
pedagogical purposes, goes step-by-step from the convex case to the case of domains with an exterior ball
condition, by aproximations, and is done for every p. At the end of the section we will explain how this could
be shortened by directly considering general domains, and how to deduce the result for any p from the case
p =∞. Finally, Section 4 gives an example where f+ ∈ L∞(Ω) and f− ≤ CHd−1 ∂Ω but the transport density
between f+ and f− is not in L∞(Ω). This answer (negatively) to a natural question which could arise reading
our results: the uniform ball condition guarantees that f+ ∈ L∞(Ω) implies that (P∂Ω)#f

+ has bounded density
w.r.t. the Hausdorff measure on ∂Ω and one could wonder whether this last condition is the good assumption
to prove σ ∈ L∞. But, the answer is negative.
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2. Preliminaries

2.1. About the Monge problem, the Beckmann problem, and transport densities

Given two finite positive Borel measures f+ and f− on a compact convex domain Ω ⊂ Rd, satisfying the
mass balance condition f+(Ω) = f−(Ω), we consider

Π(f+, f−) :=
{
γ ∈M+(Ω ×Ω) : (Πx)#γ = f+ , (Πy)#γ = f−

}
where Πx and Πy are the two projections of Ω ×Ω onto Ω. We then consider the minimization problem

min

{∫
Ω×Ω

|x− y|dγ : γ ∈ Π(f+, f−)

}
(KP).

The minimal value of this problem is called W1(f+, f−) and it can be proven to be a distance on the space of
fixed-mass measures (usually we use probability measures; if Ω is unbounded the distance is restricted to the
set of measures with finite first-order moment).

The above problem is the Kantorovich version of the so-called Monge’s Problem, which reads

min

{∫
Ω

|x− T (x)|df+ : T#f
+ = f−

}
(MP).

For the details about Optimal Transport theory, its history, and the main results, we refer to [29] or [28].
Even if some of the present considerations are more general than that, for simplicity of the exposition we
will assume that f+ is absolutely continuous w.r.t. the Lebesgue measure. Then, the two problems (KP) and
(MP) are equivalent, in the sense that every transport map T such that T#f

+ = f− induces a transport plan
γ := (id, T )#f

+ and that, among the optimal γ in (KP), there exists one which has this form (on the contrary,
there is no uniqueness, and other optimal transport plans could be of different form). The existence of an optimal
map T in this problem (or the fact that an optimal γ is of the form (id, T )#f

+) has been a matter of active
study between the end of the ’90s and the beginning of this century, and we cite in particular [1, 2, 10,17,30].

In the analysis of the optimal transport problem (KP) above, a key tool consists in convex duality. Indeed,
it is possible to prove that the maximization problem below

max

{∫
Ω

ud(f+ − f−) : u ∈ Lip1(Ω)

}
(DP)

is the dual of (KP): it can be obtained from (KP) by a suitable inf-sup exchange procedure, its value equals
min(KP), and for every admissible γ in (KP) and every admissible u in (DP) we have∫

Ω×Ω
|x− y|dγ ≥

∫
Ω×Ω

(u(x)− u(y))dγ =

∫
Ω

u(x)df+(x)−
∫
Ω

u(y)df−(y) =

∫
Ω

ud(f+ − f−).

The equality of the two optimal values implies that optimal γ and u satisfy u(x)−u(y) = |x−y| on the support
of γ, but also that, whenever we find some admissible γ and u satisfying

∫
Ω×Ω |x − y|dγ =

∫
Ω
ud(f+ − f−),

they are both optimal. The maximizers in (DP) are called Kantorovich potentials.
In such a theory it is classical to associate with any optimal transport plan γ a positive measure σ on Ω, called

transport density, which represents the amount of transport taking place in each region of Ω. This measure σ
is defined by

〈σ, ϕ〉 =

∫
Ω×Ω

dγ(x, y)

∫ 1

0

ϕ(ωx,y(t))|ω̇x,y(t)|dt for all ϕ ∈ C(Ω)

where ωx,y is a curve parametrizing the straight line segment connecting x to y. Notice in particular that one
can write

σ(A) =

∫
Ω×Ω

H1(A ∩ [x, y])dγ(x, y) for every Borel set A (2.1)
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where H1 stands for the 1-dimensional Hausdorff measure. This means that σ(A) stands for “how much” the
transport takes place in A, if particles move from their origin x to their destination y on straight lines. We recall
some properties of σ

Proposition 2.1. Suppose f+ � Ld. Then, the transport density σ is unique (i.e. does not depend on the
choice of the optimal transport plan γ) and σ � Ld. Moreover, if both f+, f− ∈ Lp(Ω), then σ also belongs to
Lp(Ω).

These properties are well-known in the literature, and we refer to [12,14,15,18,27], or Chapter 4 in [28]. The
transport density σ also arises in the following minimization problem:

min

{∫
Ω

|v(x)|dx : v ∈ L1(Ω,Rd), ∇ · v = f+ − f−, v · n = 0 on ∂Ω

}
(BP).

This is the so-called continuous transportation model proposed by Beckmann in [3]. Indeed, it is easy to check
that the vector field v given by v = −σ∇u is a solution of the above minimization problem. Also, it is possible to
prove (see, for instance, Thm. 4.13 in [28]) that all minimizers are of this form, and that the minimizer is unique
as soon as f+ � Ld. Beware that (BP) should be stated in the space of vector measures, and the divergence
condition (with its no-flux boundary condition) should be written in weak form, i.e.

min

{
||v||M : v ∈M(Ω,Rd),

∫
∇φ · dv +

∫
φd(f+ − f−) = 0 for all φ ∈ C1(Ω)

}
. (2.2)

In the above problem, ||v||M is the norm in the space of measures, but it is possible to prove that the optimizer
v is absolutely continuous as soon as f+ � Ld.

The connection between Beckmann’s problem and the optimal transport problem with cost |x−y| can also be
seen as a consequence of convex duality. Indeed, if one uses the dual (weak) version of the divergence constraint,
we can obtain a dual problem by interchanging inf and sup:

sup

{∫
ud(f+ − f−) + inf

v

∫
(v · ∇u+ |v(x)|)dx

}
which becomes

sup

{∫
ud(f+ − f−) : |∇u| ≤ 1

}
.

It is then enough to observe that the condition |∇u| ≤ 1 is equivalent to u ∈ Lip1 (here is where we use the
convexity of Ω) to get back to (MP) and (KP).

The primal-dual optimality conditions in the above problems can also be written in a PDE form: σ solves,
together with the Kantorovich potential u, the Monge−Kantorovich system (1.1). We finish this section with a
stability result that we will need in the sequel, and that we express in terms of the minimal flow problem (BP):

Proposition 2.2. Suppose f+ � Ld is fixed, f−n ⇀ f− and suppose that spt(f+), spt(f−n ) are all contained
in a same compact set. Let σn be the transport density from f+ to f−n and vn the corresponding minimizer of
(BP). Then σn ⇀ σ and vn ⇀ v, where σ is the transport density from f+ to f− and v is the corresponding
minimizer in (BP).

Proof. From
∫
|vn| = W1(f+, f−n ) we have a bound on the L1 norm of vn. Hence, up to subsequences, we can

assume vn ⇀ ṽ in the sense of measures. The condition ∇ · vn = f+ − f−n passes to the limit, thus giving
∇ · ṽ = f+ − f−. Moreover, from the semicontinuity of the mass we get ||ṽ||M ≤ W1(f+, f−), which means
that ṽ is optimal in (2.2) and ||ṽ||M = W1(f+, f−). Hence ṽ = v by uniqueness, and we have full convergence
of the sequence since the limit does not depend on the subsequence. Concerning σn, we can assume σn ⇀ σ̃ (in
the sense of measures), and we get σ̃ ≥ |v|. But the mass passes to the limit, hence

∫
dσ̃ = W1(f+, f−) =

∫
|v|.

This proves σ̃ = |v|, which means σ̃ = σ and, again, the limit does not depend on the subsequence. �
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2.2. About optimal transport with Dirichlet regions

In [5] and in [8] a transport problem between measures with different mass is proposed, in the presence of a
so-called Dirichlet Region. A Dirichlet region Σ ⊂ Ω is a closed set where transportation is free, and one can
study the following problem

min

{∫
Ω×Ω

|x− y|dγ, γ ∈ ΠΣ(f+, f−)

}
,

where

ΠΣ(f+, f−) :=
{
γ ∈M+(Ω ×Ω) : ((Πx)#γ) (Ω \Σ) = f+, ((Πy)#γ) (Ω \Σ) = f−

}
.

It is not difficult to see that this problem corresponds to a transport problem where it is possible to add
arbitrary mass to f± on Σ, but the transport cost between points on Σ is set to 0. A simple variant, that
we will not develop here, concerns the case where the mass we add on Σ “pays” something, i.e. adding a cost∫
g+(x)d((Πx)#γ) Σ +

∫
g−(y)d((Πy)#γ) Σ. This is what is done, for instance, in [23] in the case Σ = ∂Ω,

where g± represent import/export costs.
Anyway, here we consider the easiest case, which is f− = 0. In this case the transport plan γ can only

transport mass from the density f+ on Ω to Σ. Since its marginal (Πy)#γ on Σ is completely arbitrary, then
it is clear that the optimal choice is to take it equal to (PΣ)#f

+, where

PΣ(x) = argmin {|x− y|, y ∈ Σ} for all x.

By this definition, PΣ is a priori multivalued, but the argmin is a singleton on all the points where the function
x 7→ d(x,Σ) is differentiable, which means a.e. (here as well, the assumption f+ � Ld is crucial).

In this paper we will concentrate on the case where Σ is a negligible (lower-dimensional) subset of Ω. More
precisely, for a “nice” domain Ω, we will consider Σ = ∂Ω (as in [5, 9, 23]). This means that we will consider
the following problem

min

{∫
Ω×Ω

|x− y|dγ, γ ∈ Π(f+, (P∂Ω)#f
+)

}
.

This is also the same as

min

{∫
Ω×Ω

|x− y|dγ, (Πx)#γ = f+, spt((Πy)#γ) ⊂ ∂Ω
}
.

In the Beckmann’s formulation, this also amounts to solve

min

{∫
Ω

|v(x)|dx : v ∈ L1(Ω,Rd), spt(∇ · v − f+) ⊂ ∂Ω
}

(BP). (2.3)

If we write the condition spt(∇ · v − f+) ⊂ ∂Ω as ∇ · v = f+ inside
◦
Ω, we can express this condition in a weak

sense by testing agains functions u ∈ C1
c (Ω) (or C1 functions, vanishing on ∂Ω), and the dual of this problem

becomes

sup

{∫
ud(f+ − f−) : u ∈ C1(Ω), |∇u| ≤ 1, u = 0 on ∂Ω

}
.

This relaxes on the set of Lip1 functions vanishing on the boundary ∂Ω. In this way, the Dirichlet region Σ
really hosts a Dirichlet boundary condition!

Remark 2.3. Note that a W2 version of this same problem (i.e. the problem

min

{∫
Ω×Ω

|x− y|2dγ, γ ∈ ΠΣ(f+, f−)

}
,

used to define a distance on M(Ω)) has been used in [19] in order to study gradient flows with Dirichlet
boundary conditions.
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Ωi

R(Ωi)

Fi

Figure 1. Symmetrization in a polyhedron.

Remark 2.4. We also observe that in this framework the convexity of Ω is no longer needed to guarantee the
equivalence between (BP) and (KP). Indeed, C1 functions vanishing on ∂Ω are Lip1, whatever the shape of
Ω! Equivalently, we can think that the transport rays [x, T (x)] will never exit Ω, from the fact that the target
measure is on ∂Ω and is arbitrary: in case of multiple intersections of the segment [x, T (x)] with the boundary,
then P∂Ω(x) would coincide with the first one.

The question that we consider now is whether the transport density σ from f+ to (P∂Ω)#f
+ (or, equivalently,

the optimal vector field v in (2.3)) is in Lp(Ω) when f+ ∈ Lp(Ω). We cannot use Proposition 2.1, since in this
case the target measure (P∂Ω)#f

+ is concentrated on the boundary of Ω and hence is not Lp itself. However,
we will see that the same Lp result will be true as well, via a technique which will be described in the next
section.

3. Lp estimates via symmetrization

In this section we will first develop some tools, based on a symmetrization argument, to show that the
transport density σ from f+ to (P∂Ω)#f

+ is also the restriction of a transport density σ̃, which is associated
with the transport from f+ to another suitable density f−, supported outside Ω. Then, we will apply this fact
so as to produce the desired Lp estimates on σ.

We will start by supposing that Ω is a convex polyhedron with n faces Fi (i = 1, ..., n), and denote by Ωi
the set of points whose projection onto ∂Ω lies in Fi:

Ωi = {x ∈ Ω : d(x, ∂Ω) = d(x, Fi)} .

We can write Ω =
⋃
iΩi, and the union is almost disjoint (we have |Ωi∩Ωj | = 0 for all i 6= j). Let R be the map

obtained by reflecting with respect to the boundary each subdomain Ωi. More precisely, for all x ∈ Ωi \
⋃
j 6=iΩj ,

the point R(x) is the reflexion of x with respect to Fi (see Fig. 1). In this way R is well-defined for a.e. x ∈ Ω.
Suppose that f+ ∈ Lp(Ω) and set f− = R#f

+. It is clear that f− is an absolutely continous measure, with

density given by f−(Ry) := f+(y) for all y ∈ Ω. Let Ω̃ be any large compact convex set containing Ω ∪R(Ω).

We observe that f− ∈ Lp(Ω̃) and ||f−||Lp = ||f+||Lp .
We are now interested in the following fact concerning the corresponding transport density. We will denote

by σ(f+, f−) the transport density from f+ to f− (which is unique and belongs to L1 as soon as f+ � Ld,
which will always be the case in our discussion).
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Proposition 3.1. Suppose that Ω is a polyhedron. Take f+ � Ld Ω and define f− as above through f− =
R#f

+. Then

(σ(f+, f−)) Ω = σ(f+, (P∂Ω)#f
+).

Moreover, if f+ ∈ Lp(Ω), then the transport density between f+ and (P∂Ω)#f
+ is in Lp(Ω).

Proof. First, we will show that R is an optimal transport map from f+ to f−. Set

u(x) =

{
d(x, ∂Ω) if x ∈ Ω
−d(x, ∂Ω) else

From |x−R(x)| = 2|x− P∂Ω(x)|, we have∫
Ω

|x−R(x)|df+(x) = 2

∫
Ω

|x− P∂Ω(x)|df+(x).

On the other hand, u is 1-Lip and∫
Ω

u(x)d(f+ − f−)(x) =

∫
Ω

|x− P∂Ω(x)|f+(x)dx+

∫
Ω

|R(x)− P∂Ω(R(x))|f+(x)dx

= 2

∫
Ω

|x− P∂Ω(x)|df+(x).

Consequently, R is an optimal transport map between f+ and f− and u is a Kantorovich potential.

We observe that the segment [x,R(x)] intersects ∂Ω at the point P∂Ω(x) and that we have

[x,R(x)] ∩Ω = [x, P∂Ω(x)].

But the map x 7→ P∂Ω(x) is of course optimal in the transport from f+ to (P∂Ω)#f
+. Hence, using (2.1) we

immediately get

(σ(f+, f−)) Ω = σ(f+, (P∂Ω)#f
+)

and we conclude by using Proposition 2.1. �

Now, we will give a more general construction, inspired from the previous one, which will allow to deal with
the case of a domain with an exterior ball condition.

Suppose that the boundary of Ω is a union of a finite number of parts of sphere of radius r. We will call
the domains with these property round polyhedra (see Fig. 2). Set again

Ωi := {x ∈ Ω : P∂Ω(x) ∈ Fi}

where Fi ⊂ ∂B(bi, r) is the ith part in the boundary of Ω, contained in a sphere centered at bi. More precisely,
we suppose that B :=

⋃
iB(bi, r) disconnects Rd and that Ω is equal to the union of some among the bounded

connected components of Rd \B.

We define

T (x) := bi +

(
r − |x− bi| − r

L

r

2

)
x− bi
|x− bi|

for all x ∈ Ωi

where L := diam(Ω) and bi is the center of the sphere corresponding to Fi. Again we choose a large domain Ω̃
containing Ω ∪ T (Ω).
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bi

T (Ωi)

Ωi

Fi

Figure 2. Symmetrization in a round polyhedron.

Proposition 3.2. Suppose that f+ ∈ Lp(Ω) and set f− := T#f
+, then f− ∈ Lp(Ω̃) with ||f−||Lp ≤ C||f+||Lp ,

where the constant C only depends on d, r and L.

Proof. Compute the Jacobian of the map T : on Ωi, we have

DT (x) =
r

2L

(
−I +

r + 2L

|x− bi|
(
I − e(x)⊗ e(x)

))
,

where e(x) := (x− bi)/|x− bi|. It is easy to see that DT (x) is a symmetric matrix with one eigenvalue equal to
− r

2L and d− 1 eigenvalues equal to

λ(x) :=
r

2L

r + 2L− |x− bi|
|x− bi|

=
r

2L

(
r + 2L

|x− bi|
− 1

)
·

Using |x− bi| ≤ r + L, we get

λ(x) ≥ r

2(r + L)
·

This provides, for J := |det(DT )|, the lower bound

J(x) ≥ rd

2d(r + L)d−1L

which is, by the way, independent of i and of the number of spherical parts composing ∂Ω.

From f−(T (x)) = f+(x)/J(x), we get∫
|f−(y)|pdy =

∫
|f−(y)|p−1df− =

∫
|f−(T (x))|p−1df+ =

∫
f+(x)p

J(x)p−1
dx ≤ C

∫
f+(x)pdx,
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where C := (inf J(x))1−p. By raising to power 1/p, this provides

||f−||Lp ≤ C(r, L, d)1/p−1||f+||Lp

and the constant can be taken independent of p. In particular, the estimate is also valid for p =∞. �

Proposition 3.3. Suppose that Ω is a round polyhedron. Take f+ � Ld Ω and define f− as above through
f− = T#f

+. Then
(σ(f+, f−)) Ω = σ(f+, (P∂Ω)#f

+).

Moreover, if f+ ∈ Lp(Ω), then the transport density between f+ and (P∂Ω)#f
+ is in Lp(Ω).

Proof. The proof will follow the same lines of Proposition 3.1. We will show again the optimality of T for the
transport of f+ to f− by producing a Kantorovich potential. In this case, we set

u(x) = min
i=1,..,n

|x− bi|.

The function u is of course 1-Lip and we have∫
Ω

u(x)d(f+ − f−)(x) =

∫
Ω

u(x)f+(x)dx−
∫
Ω

u(T (x))f+(x)dx

=

n∑
i=1

∫
Ωi

u(x)f+(x)dx−
∫
Ωi

u(T (x))f+(x)dx

=

n∑
i=1

∫
Ωi

(|x− bi| − |T (x)− bi|) f+(x)dx.

By definition of T , the points bi, x and T (x) are aligned (with T (x) ∈ [x, bi]), hence |x−bi|−|T (x)−bi| = |x−T (x)|
and ∫

Ω

u(x)d(f+ − f−)(x) =

∫
Ω

|x− T (x)|f+(x)dx.

Consequently, T is the optimal transport map between f+ and f− and u is the corresponding Kantorovich
potential.

Now we observe in this case as well that the segment [x, T (x)] intersects ∂Ω at the point P∂Ω(x) and that
we have

[x, T (x)] ∩Ω = [x, P∂Ω(x)].

Hence, using (2.1) again we immediately get

(σ(f+, f−)) Ω = σ(f+, (P∂Ω)#f
+)

and we conclude by Proposition 2.1. �

Remark 3.4. The reader can easily see that, both in Propositions 3.1 and 3.3, the restriction property of the
transport density σ also holds for the vector field v.

We will now generalize, via a limit procedure, the previous construction to arbitrary convex domains, or more
generally domains satisfying a uniform ball condition. Before doing that, let us give a suitable definition for this
last condition:

Definition 3.5. We say that a bounded domain Ω ⊂ Rd satisfies an exterior ball condition of radius r > 0 if
for every point x ∈ Rd \Ω and x0 ∈ ∂Ω with d(x,Ω) = |x− x0| > 0 we have d(y,Ω) = r for y := x0 + r x−x0

|x−x0|
(and hence x0 = P∂Ω(x) is also a projection of y onto ∂Ω).
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This definition means that for every x0 ∈ ∂Ω there exists y ∈ Rd\Ω such that |x−y| = r and B(y, r)∩Ω = ∅,
where these balls of radius r can “roll” on the boundary. It could seem more restrictive than the usual definition
which only requires the existence of a ball for every point of the boundary, but actually for compact sets they can
be proven to be equivalent, up to reducing the radius r. However, for simplicity, we just choose the definition
which best fits the use we will make of it. Now, we need an approximation lemma about sets satisfying an
exterior ball condition. More precisely:

Lemma 3.6. For every bounded Ω ⊂ Rd satisfying an exterior ball condition of radius r > 0, there exists a
sequence of round polyhedra Ωk such that

• Ω ⊂ Ωk,
• diam(Ωk) ≤ diam(Ω) + 2r,
• ∂Ωk is made of parts of spheres of radius r,
• ∂Ωk → ∂Ω in the Hausdorff sense, and P∂Ωk

(x)→ P∂Ω(x) for a.e. x ∈ Ω.

Proof. Set A := {x : d(x,Ω) = r} and let Ak ⊂ A be a sequence of finite sets converging in the Hausdorff sense
to A (to produce them, just take a countable dense subset of A, order its points, and put the first k points
in Ak). Set Ωk := {x : d(x,Ω) ≤ r ≤ d(x,Ak)}. For large k, the set Ωk is a round polyhedron with boundary
composed of parts of spheres of radius r centered at points of Ak. Indeed, it is clear that the points on ∂Ωk are
contained either in these spheres, or in A, but as soon as the Hausdorff distance between Ak and A is smaller
than r, we have d(x,Ak) < r for every x ∈ A, hence A∩Ωk = ∅ and the points of A cannot be on the boundary
of Ωk. Moreover, one easily see that we have Ω ⊂ Ωk and that Ωk is contained in a compact set. Up to a
subsequence, we can suppose Ωk → Ω′ in the Hausdorff sense, with Ω ⊂ Ω′. Yet, passing to the limit in the
definition of Ωk, we get Ω′ ⊂ {x : d(x,Ω) ≤ r ≤ d(x,A)}. This is enough to obtain Ω′ = Ω: take a point x with
d(x,Ω) ≤ r ≤ d(x,A) and suppose that it does not belong to Ω; let x0 ∈ ∂Ω be such that |x − x0| = d(x,Ω)
and set y := x0 + r x−x0

|x−x0| . From the Definition 3.5, we have that y ∈ A, which is a contradiction, as d(x, y) < r.

Hence, we have Ω ⊂ Ωk and Ωk → Ω in the Hausdorff sense. The last part of the statement (convergence of
the boundaries and of the projections onto the boundaries) is a general consequence of these facts. �

We can now state the following

Proposition 3.7. Suppose that Ω ⊂ Rd is a compact domain satisfying a uniform exterior ball condition of
radius r > 0. Then there exists a larger domain Ω̃ and a constant C only depending on d, r and L := diam(Ω)

such that for every positive measure f+ � Ld there exists f− � Ld, supported on Ω̃ \Ω with

(σ(f+, f−)) Ω = σ(f+, (P∂Ω)#f
+)

and, for every p ∈ [1,+∞],
||f−||Lp(Ω̃) ≤ C||f

+||Lp(Ω)

Proof. It is enough to act by approximation. In the case where Ω is convex, we can write it as an intersection
of half-spaces, and hence we can approximate Ω as the limit of a sequence of polyhedra Ωk, while in the case
where Ω satisfies a uniform ball condition, we will write it as a limit of round polyhedra (see Fig. 3) as we
pointed out in Lemma 3.6.

Then, we just build the reflections maps Rk (or Tk) as in Propositions 3.1 and 3.3, and we get a sequence of

measures f−k supported on Ω̃ \Ωk with ||f−k ||Lp(Ω̃) ≤ C||f
+||Lp(Ωk) = C||f+||Lp(Ω). We also have

(σ(f+, f−k )) Ω = σ(f+, (P∂Ωk
)#f

+) Ω.

Then, it is enough to extract a converging subsequence from the sequence f−k , note that we have (P∂Ωk
)#f

+ ⇀
(P∂Ω)#f

+, and use Proposition 2.2. �
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Ω

∂Ωk

Figure 3. Approximation of a domain having a uniform exterior ball.

As a consequence, we can now obtain

Theorem 3.8. Suppose that Ω satisfies a uniform exterior ball condition of radius r > 0. Then, the transport
density σ between f+ and (P∂Ω)#f

+ is in Lp(Ω) provided f+ is in Lp(Ω), and

||σ||Lp(Ω) ≤ C||f+||Lp(Ω),

where the constant C only depends on d, r and L = diam(Ω).

Proof. We just need to use Proposition 3.7, which guarantees that σ is the restriction to Ω of the transport
density between two Lp measures. �

We finish this section by two remarks on the proof of the above result.

Remark 3.9. In this particular case where the transport has not a fixed target measure on ∂Ω, the transport
density σ linearly depends on f+: in this case, Lp estimates could be obtained via interpolation (via the
celebrated Marcinkiewicz interpolation theorem, [22, 31]) as soon as one has L1 and L∞ estimates. Since L1

(and Lp for p < d′) are well-known, this means that it would be enough to write L∞ estimates. Yet, we did not
see any significant simplification in concentrating on L∞ estimates instead of Lp, which is the reason why we
decided not to evoke general interpolation theorems but we performed explicit estimates. In the same way, one
could get also a Lp,q estimates (see [4, 21] for the definition of the Lp,q spaces).

Remark 3.10. Another observation concerns the fact that we proved Proposition 3.7 by approximation. Apart
from the fact that we first developed the convex case (just for the sake of simplicity), the reader would have
preferred a direct formulation, valid in the case of an arbitrary domain Ω with an exterior ball condition, instead
of passing through round polyhedra. This would be possible, by defining a map T (x) := P∂Ω(x)+c(P∂Ω(x)−x),
for small c > 0. It can be proven, by studying the properties of the Jacobian of P∂Ω , that T is injective and
|det(DT )| is bounded from below as soon as c is small (depending on L and r), but we considered that the
proof in the case of round polyhedra was easier.

4. An L∞ bound on f− with respect to the surface measure on ∂Ω is not
enough

In this section we show that the L∞ estimates for the transport density (again, note by Rem. 3.9 that the case
p =∞ is the most interesting one) fail if we only assume summability (or boundedness) of the densities of f+

w.r.t. the Lebesgue measure on Ω and of f− w.r.t. the Hausdorff measureHd−1 on ∂Ω. Indeed, when we consider
a domain Ω with a uniform exterior ball condition and we take f+ ∈ L∞, we can easily prove that (P∂Ω)#f

+
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x

T (x)

f+

f−

B2r

Figure 4. Counter-example to the summability of the transport density in the case where the
target measure is bounded with respect to the Hausdorff measure on ∂Ω.

has a bounded density w.r.t. Hd−1 ∂Ω. One could wonder whether this is the correct assumption to prove, for
instance, σ ∈ L∞, and the answer is negative.

We will construct an example of f±, where f+ has a bounded density w.r.t. Ld in Ω and f− w.r.t. Hd−1 ∂Ω
(for instance Ω is a big square containing the support of f+ and its boundary contains the support of f−), but
σ /∈ L∞ (we will also investigate the summability of σ). Set

f+ := L2 A, f− := H1 ([2, 3]× {0})

where A is a trapeze with vertices (0, 0), (1, 0), (1, 45 ) and (0, 65 ) (see Fig. 4).
For every ε ∈ [0, 1], let lε be the segment joining the two points (0, w(ε)) and (2 + ε, 0), where

w(ε) :=
2ε(2 + ε)

3 + 2ε
·

First, it is easy to see that f+(∆ε) = f−(∆ε) for every ε ∈ [0, 1] where ∆ε is the triangle limited
by (0, 0), (2 + ε, 0) and (0, w(ε)). Then by [25], we can construct an optimal mapping T , which pushes f+ to
f−, with {lε} as its transfer rays.

Let σ be the transport density between f+ and f−. For simplicity of notation, we denote the ball of center
(2, 0) and radius r by Br, and in this case we have

σ(B2r) =

∫
H1(B2r ∩ [x, y])dγ(x, y) ≥ rγ ({(x, y) : Br ∩ [x, y] 6= ∅}) ,

where we used the fact that for every (x, y) s.t. Br ∩ [x, y] 6= ∅, we have H1(B2r ∩ [x, y]) ≥ r.
Then, note that there exists a value εr ∈ (0, 1) such that {x : Br ∩ [x, T (x)] 6= ∅} = ∆εr and lεr is tangent to

the ball Br. Then
σ(B2r) ≥ rf+({x : Br ∩ [x, T (x)] 6= ∅}) = rf+(∆εr ) ' rεr.

If we denote by θ the angle between the two segments [(0, 0), (2 + εr, 0)] and lεr , then we have

sin(θ) =
r

εr

and tan(θ) ' εr for r small enough.
But for r small enough, θ ' 0 and we get εr ' r

1
2 . Thus, for r small enough

σ(B2r) ≥ Cr
3
2 , (4.1)
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which implies that σ cannot be bounded in a neighborhood of (2, 0), otherwise we would have

cr2 = ||σ||L∞(∆1)|B2r| ≥ σ(B2r) ≥ Cr
3
2

which is a contradiction for small r. In addition, it is possible to see σ /∈ L4(∆1), otherwise, by Hölder inequality,
we would get

σ(B2r)

r3/2
≤
|B2r|3/4

(∫
B2r

σ4
)1/4

r3/2
→ 0,

which is a contradiction with (4.1).
Actually, a finer analysis even proves σ ∈ Lp(∆1) if and only if p < 3. To prove this we need to use heavier

computations. Fix ε0 small enough and take x ∈ ∆ε0 : there exist ε ∈ [0, ε0] and s ∈ [0, 1] such that

x = (1− s)(2 + ε, 0) + s(0, w(ε)).

For all ϕ ∈ C(∆ε0) we have

< σ,ϕ >:=

∫ 1

0

∫
∆ε0

|x− T (x)|ϕ((1− t)x+ tT (x))f+(x)dxdt

and by a change of variable, we get, in the variable (ε, s),

σ(ε, s) =

√
(2 + ε)2 + w(ε)2

∫ 1

s
f+((1− t)(2 + ε), tw(ε))|J(t, ε)|dt
|J(s, ε)|

=

√
(2 + ε)2 + w(ε)2

∫ 1

1− 1
2+ε
|J(ε, t)|dt

|J(ε, s)|
'

∫ 1

1− 1
2+ε
|J(ε, t)|dt

|J(ε, s)|
,

where |J | := |D(ε,s)(x1, x2)|. Using |J(ε, s)| ' s+ ε we get

σ(ε, s) ' 1

s+ ε

and

||σ||pLp(∆1)
'
∫ ε0

0

∫ ε0

0

1

(s+ ε)p−1
dsdε '

∫ ε0

0

1

εp−2
dε.

Notice that as d = 2 and f+ ∈ L∞(∆1), by [27] we know that automatically σ ∈ Lp(∆1) for all p < 2. The fact
that here we get σ ∈ Lp(∆1) for all p < 3 depends on the fact that we send a mass f+ to a mass f− which is
distributed on a segment, and not to a Dirac mass. In some sense, we are not in the worst possible case!
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