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ON THE STRUCTURE OF MULTIFACTOR OPTIMAL PORTFOLIO

STRATEGIES

Nikolai Dokuchaev1,∗

Abstract. The paper studies problem of optimal portfolio selection. It is shown that, under some mild
conditions, near optimal strategies for investors with different performance criteria can be constructed
using a limited number of fixed processes (mutual funds), for a market with a larger number of available
risky stocks. This implies dimension reduction for the optimal portfolio selection problem: all rational
investors may achieve optimality using the same mutual funds plus a saving account. This result is
obtained under mild restrictions for the utility functions without any assumptions on regularity of
the value function. The proof is based on the method of dynamic programming applied indirectly to
some convenient approximations of the original problem that ensure certain regularity of the value
functions. To overcome technical difficulties, we use special time dependent and random constraints for
admissible strategies such that the corresponding HJB (Hamilton−Jacobi−Bellman) equation admits
“almost explicit” solutions generating near optimal admissible strategies featuring sufficient regularity
and integrability.
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1. Introduction

We study an optimal portfolio selection problem. These dynamic portfolio selection problems are usually
studied in the framework of optimal stochastic control; see, e.g., books of Krylov [16] and Fleming and Rishel [12].
There are many works devoted to different modifications of the portfolio problem (see, e.g., Merton [24] and
review in Karatzas and Shreve [14]). To suggest a strategy, one needs to forecast future market scenarios (or the
probability distributions). Unfortunately, the nature of financial markets is such that the choice of a hypothesis
about the future distributions is not easy to justify.

To overcome limited predictability of the market parameters, some special methods were developed for the
financial models. One of these tools is the so-called Mutual Fund Theorem which, in the classical version, says
that the distribution of the risky assets in the optimal portfolio does not depend on the investor’s risk preferences
(or performance criteria). This implies dimension reduction for the optimal portfolio selection problem: all
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rational investors may achieve optimality using the same mutual fund plus a saving account. Clearly, calculation
of the optimal portfolio is easier in this case. So far, this property has no analog in classical stochastic control.

The Mutual Fund Theorem was established first for the discrete time single period mean variance portfo-
lio selection problem, i.e., for the problem with quadratic criteria (see e.g. [13], Chap. 4). This result was a
cornerstone of the modern portfolio theory; in particular, the Capital Assets Pricing Model (CAPM) is based
on it. For the multi-period discrete time setting, some versions of the Mutual Fund Theorem were obtained so
far for problems with quadratic criteria only (Li and Ng [18], Dokuchaev [7]). For the continuous time setting,
the Mutual Fund Theorem was obtained for portfolio selection problems for more general utilities. The Mutual
Fund Theorem holds for utility functions U(x) = δ−1xδ and U(x) = log(x) for the case of random totally
unhedgeable coefficients, i.e., for the case of random coefficients independent on the driving Brownian motion
(Karatzas and Shreve [14]). It is also known that the Mutual Fund Theorem does not hold for power utilities if
the coefficients depend on the driving Wiener process (see, e.g., Brennan [2]). Khanna and Kulldorff [15] proved
that the Mutual Fund Theorem theorem holds for a general utility function U(x) in the case of non-random
coefficients, and for a setting with consumption. Dokuchaev [9] extended this result on the case of random to-
tally unhedgeable coefficients. Lim and Zhou [20] found some cases where the Mutual Fund Theorem holds for
problems with quadratic criteria. Dokuchaev and Haussmann [3] found that the Mutual Fund Theorem holds

if the scalar value
∫ T
0
|θ(t)|2dt is non-random, where θ(t) is the market price of the risk process. In maximin

setting, the Mutual Fund Theorem was established in Dokuchaev ([6], 2013). Schachermayer et al. [24] found
sufficient conditions for the Mutual Fund Theorem expressed via replicability of the European type claims
F (Z(T )), where F (·) is a deterministic function and Z(t) is the discounted wealth generated by the log-optimal
discounted wealth process. The required replicability has to be achieved by trading of the log-optimal mutual
fund with discounted wealth Z(t). It can be summarized that the Mutual Fund Theorem was established so far
only for several special optimal portfolio selection problems and special market models.

It appears that there are market models where the classical Mutual Fund Theorem does not hold but the
following relaxed version of this theorem holds: the optimal portfolios with different risk preferences can be
constructed using µ mutual funds only for a market with n > µ risky stocks. This µ can be regarded as a
dimension of the market; in this sense, a market is one dimensional if the classical Mutual Fund Theorem holds.
So far, this feature was studied for few special settings only. In particular, single period CAPM models models
were studied in a setting where a number of mutual funds were used to compensate skewness and consumption
(so-called three-moment CAPM, multi-beta models, or multifactor CAPM); see, e.g., Merton [21], Poncet [23],
Fama [10], Nguyen et al. [22]. A diffusion model where optimality can be achieved for strategies using two
mutual funds was discussed in Ingersoll [13], Chapter 13. In this book, the optimal strategy was expressed via
solution of the Hamilton−Jacobi−Bellman (HJB) equation (the Bellman equation) for the value function as a
quotient of partial derivatives of the value function. However, the existence and regularity of these derivatives
is difficult to ensure, since the underlying HJB equation is degenerate . . . In addition, it is difficult to ensure
that the resulting stochastic process representing the strategy satisfies reasonable conditions on the growths
such as integrability. Moreover, it may happen that the quotient found from the HJB equation is not smooth
enough to ensure solvability of the closed loop Itô equations for the wealth process. By these reasons, existence,
admissibility, and regularity of the two mutual funds strategy was not yet established. In theory, this could be
overcome by an alternative martingale approach mentioned briefly in Remark 3.7 in Schachermayer et al. [24];
however, this approach requires replicability of certain claims and does not cover a model with non-hedgeable
Wiener processes.

In this paper, we consider a diffusion market model with non-hedgeable Wiener processes and non-hedgeable
factors such that the classical Mutual Fund Theorem does not hold. We consider a market with n stocks, with
n + N independent driving Wiener processes, including N non-hedgeable Wiener processes, and with a large
number of non-hedgeable factor processes defining the evolution of the market prices. We found that, for a wide
class of utilities, a near optimal (i.e., ε-optimal) portfolio can be constructed using µ < n mutual funds only
(Thm. 3.2 below). The number µ is defined by the number of the non-hedgeable factors correlated with the stock
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prices, or by the complexity of correlations in the model, rather than by the number of stocks or by the total
number of random factors.

The main result (Thm. 3.2) is obtained under very mild restrictions for the utility functions without any
assumptions on regularity of the value function. The proof is based on the method of dynamic programming
applied indirectly to some convenient approximations of the original problem that ensure certain regularity of
the value functions; the range for the strategies is approximated by bounded sets, and the utility function is
approximated by smooth and bounded functions. This approach has some obstacles: the HJB equations with
bounded admissible controls does not allow explicit solutions. To overcome these difficulties, we use special
time dependent and random constraints for admissible strategies such that the corresponding HJB equation
admits “almost explicit” solutions generating near optimal admissible strategies featuring sufficient regularity
and integrability.

The results of this paper were presented in Quantitative Methods in Finance conference in Sydney, Australia,
2010.

2. Model setting

We are given a standard probability space (Ω,F ,P), where Ω = {ω} is a set of elementary events, F is a
complete σ-algebra of events, and P is a probability measure that describes a prior probability distribution.

We assume that the market evolution is driven by a pair of standard independent Wiener processes w(·) =
(w1(·), . . . , wn(·)) and ŵ(·) = (ŵ1(·), . . . , ŵN (·)) with the values in Rn and RN respectively. Let Ft be the
filtration generated by (w(t), ŵ(t)).

We consider the market model similar to the model used in Dokuchaev ([6], 2013). We assume that the
market consists of a risk free asset or bank account with price B(t), t ≥ 0, and n risky stocks with prices Si(t),
t ≥ 0, i = 1, 2, . . . , n, where n < +∞ is given.

We assume that

B(t) = B(0) exp

(∫ t

0

r(s)ds

)
, (2.1)

where r(t) is a Ft-adapted random process of the risk-free interest rate (or the short rate). We assume that
B(0) = 1. The process B(t) will be used as numeraire.

The prices of the stocks evolve according to

dSi(t) = Si(t)

ai(t)dt+

n∑
j=1

σij(t)dwj(t)

, t > 0, (2.2)

where ai(t) are the appreciation rates, σij(t) are the volatility coefficients. The initial price Si(0) > 0 is a given
non-random constant.

We assume that r(t), ai(t), and σij(t) are uniformly bounded Ft-adapted measurable random processes.

We denote by S(t)
∆
= (S1(t), . . . , Sn(t))> and a(t) = (a1(t), . . . , an(t))> the corresponding vector valued

processes with the values in Rn, and a matrix process σ(t)
∆
= {σij(t)}ni,j=1 with the values in Rn×n.

Let S̃(t) = (S̃1(t), . . . , S̃n(t))>
∆
= B(t)−1S(t) be the vector of discounted prices. Let ã(t) = a(t)−r(t)1, where

1
∆
= (1, 1, . . .)> ∈ Rn.
We assume that the inverse matrix σ(t)−1 is defined and bounded and r(t) ≥ 0.

Wealth and strategies

Let X0 > 0 be the initial wealth at time t = 0, and let X(t) be the wealth at time t > 0, X(0) = X0. Let

X̃(t)
∆
= B(t)−1X(t) be the discounted wealth.

Let the process P0(t) be the wealth invested in the bond, and let Pi(t) be the wealth invested in the ith
stock, i = 1, . . . , n. The values of Pi can be negative, in the case of a short position in ith asset.
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Let πi(t) = B(t)−1Pi(t). In this case, the process π0(t) represents the quantity of the bonds, or the discounted
wealth invested in the bond, πi(t), i ≥ 1, is the discounted wealth invested in the ith stock.

We assume that

π0(t) +

n∑
i=1

πi(t) = X̃(t). (2.3)

We denote by π the vector process π(t) = (π1(t), . . . , πn(t))
>

, t ≥ 0.
The portfolio is said to be self-financing, if

dX(t) =

n∑
i=1

Pi(t)

Si(t)
dSi(t) +

P0(t)

B(t)
dB(t).

It can be rewritten as

dX(t) =

n∑
i=1

πi(t)
>S̃i(t)

−1dSi(t) + π0(t)dB(t).

It follows that for such portfolios

dX̃(t) =

n∑
i=1

πi(t)S̃i(t)
−1dS̃i(t) = π(t)>(ã(t)dt+ σ(t)dw(t)), (2.4)

so π alone suffices to specify the portfolio; see, e.g., Dokuchaev [5], p. 78.

Let D be the range of the process X̃(t). We will consider two settings: with D = (0,+∞) and with D = R.
We consider a class Σ of admissible strategies consisting of all Ft-adapted processes π(·) = (π1(·), . . . , πn(·)) :

[0, T ]×Ω → Rn such that the following holds:

• If D = R then supt,ω |π(t, ω)| < +∞;

• If D = (0,+∞) then supt,ω |π(t, ω)|X̃(t)−1 < +∞.

By these definitions, if D = (0,+∞), then X(t) > 0 for any π ∈ Σ.

3. The main result

Let T > 0 and X0 > 0 be given.
Let U be the set of all continuous functions U(·) : D → R such that if D = R then there exists c1 > 0 and

c > 0 such that |U(x)| ≤ c1(1 + |x|)c for all x. If D = (0,+∞), then we assume that |U(x)| ≤ c1(|x|−c + |x|c)
for some c1 > 0 and c > 0.

The case where D = (0,+∞) is included with the purpose to allow important utility functions with singularity
at x = 0 such as U(x) = lnx or U(x) = −1/x.

For the sake of generality, we do not exclude non-differentiable or non-concave U . However, discontinuous
functions are not allowed. In particular, step functions used in Dokuchaev and Zhou [4] for the so-called goal
achieving problems are not allowed. In addition, our setting does not cover utilities with the exponential growth
such as U(x) = −e−cx for D = R, c > 0.

For U(·) ∈ U , set

V (π)
∆
= EU(X̃(T )).

We will study the problem

Maximize V (π) over π(·) ∈ Σ. (3.1)
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Starting from now, we assume that the coefficients (ã, σ) are such that there exist integers m ≥ 0,M ≥
0, N ≥ 0 and continuous functions

a : Rm ×RM × [0, T ]→ Rn, v : Rm ×RM × [0, T ]→ Rn×n

and functions

fη : Rm ×RM × [0, T ]→ Rm, βη : Rm ×RM × [0, T ]→ Rm×n,

β̂η : Rm ×RM × [0, T ]→ Rm×N ,

fζ : Rm ×RM × [0, T ]→ RM , β̂ζ : Rm ×RM × [0, T ]→ RM×N

such that

ã(t) = a(η(t), ζ(t), t), σ(t) = v(η(t), ζ(t), t),

where η(t) and ζ(t) are stochastic processes that take values in Rm and RM respectively and such that they
satisfy Itô equations

dη(t) = fη(η(t), ζ(t), t)dt+ βη(η(t), ζ(t), t)dw(t) + β̂η(η(t), ζ(t), t)dŵ(t),

dζ(t) = fζ(η(t), ζ(t), t)dt+ β̂ζ(η(t), ζ(t), t)dŵ(t).

Here ŵ(·) is a Wiener process with values in RN that is independent of w(·).
The cases where m = 0, M = 0, or N = 0, are not excluded; they represent models where the corresponding

vector processes are absent.
We denote by | · | the Euclidean norm for vectors, the Frobenius norm for matrices, and the similar norm for

elements of the spaces formed as Cartesian products of spaces of matrices or vectors such as Rn ×Rn×n, etc.
We assume that the following conditions are satisfied:

• There exists a constant C > 0 such that

|F (y1, z1, t)− F (y2, z2, t)| ≤ C(|y1 − y2|+ |z1 − z2|),
|F (y, z, t)| ≤ C(1 + |y|+ |z|) ∀y1, y2, z1, z2, y, z, t,

where F = (a,v, fη, βη, β̂η, fζ , β̂ζ).
• We assume that there exists a constant c̄ > 0 such that A(y, z, t)A(y, z, t)> ≥ c̄Im+M , where Im+M is the

unit matrix in R(m+M)×(m+M), and where the matrix A ∈ R(m+M)×(n+N) is formed as

A =

(
βη β̂η

0M×n β̂
ζ

)
.

Definition 3.1. Let L ≥ 1 be an integer. Consider a set of Ft-adapted processes M1(t), . . . ,ML(t) with the
values in Rn. Let ΣM1,...,ML

be the class of all processes π(·) ∈ Σ such that there exist Ft-adapted one-
dimensional processes {νk(t), k = 1, . . . , L} such that

π(t) =

L∑
k=1

νk(t)Mk(t). (3.2)

Let Q = (σσ>)−1, let βηk be the kth column of the matrix βη, and let µ = min(m+ 1, n).
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Theorem 3.2. Consider a set {M1(t), . . . ,Mµ(t)} of Ft-adapted processes with values in Rn defined as

Mk(t) = (σ(t)>)−1βηk(η(t), ζ(t), t), k ≤ µ− 1,

Mµ(t) = Q(t)ã(t).

For this set, for any U(·) ∈ U ,

sup
π∈Σ

V (π) = sup
π∈ΣM1,...,Mµ

V (π). (3.3)

For the special case of µ = 1, m = 0, N = 0 (i.e., where the corresponding vector processes are absent),
Theorem 3.2 represents the relaxed version of the classical Mutual Fund Theorem obtained in Khanna and
Kulldorf [15] in a setting with consumption and with less general utility functions. For the case where µ = 1,
m = 0, N > 0, Theorem 3.2 represents a version of the Mutual Fund Theorem from Dokuchaev [9]. A special
case where N = 0 and M = 0 corresponds to the model mentioned in Remark 3.7 in Schachermayer et al. [24].
A special case where m = 1 and M = 0 and where the value function is regular enough corresponds to the
model from Ingersoll [13], Chapter 13.

4. The implications of Theorem 3.2

Let us discuss the implications and economic interpretation of Theorem 3.2. Representation (3.2) can be
interpreted as a distribution of the stock portfolio among µ mutual funds; each vectorMk(t) can be interpreted
as a distribution of the stock portfolio for a mutual fund. Since the selection of {Mk(t)} is independent on U(·),
Theorem 3.2 represents a relaxed version of the Mutual Fund Theorem.

The statement of Theorem 3.2 can be reformulated as follows: there exist near optimal (ε-optimal, suboptimal)
strategies in the class ΣM1,...,Mµ , meaning that, for any U(·) ∈ U and any ε > 0, there exists a strategy
πU,ε ∈ ΣM1,...,Mµ

represented as (3.2) such that

V (πU,ε) ≥ sup
π∈Σ

V (π)− ε.

This has a clear economic interpretation: all investors with different utilities can construct near optimal strategies
by investing in µ mutual funds only, even if n� µ, M � µ, and N � µ.

In Theorem 3.2, the vector Mµ(t) represents the so-called log-optimal portfolio; sometimes, it is called the
mean-variance portfolio. For k < µ, the vectors Mk(t) represent some hedging portfolios used to compensate
correlations in the market.

The processes νk(t) = νU,ε,k(t) for the near optimal strategies presented in (3.2) depends on U(·). These
processes are expressed in the proof of Theorem 3.2 below via derivatives of the smooth approximations of the
value functions that are solutions of some auxiliary HJB equations. These equations selected such that their
solutions have the required regularity. We emphasize that the statement of Theorem 3.2 itself does not require
solvability and regularity of the HJB equations.

Under very mild conditions on the utility functions, Theorem 3.2 allows to reduce the original investment
problem for a market with n tradable risky assets to an equivalent problem for a market with µ tradable assets.
Let us show this. Consider a matrix processM(t) = (M1(t), . . . ,Mµ(t)) with the values in Rµ×n formed from
the rowsMk(t)>. Let ãξ(t) =M(t)ã(t) and σξ(t) =M(t)σ(t). Let us consider a process ξ(t) = {ξk(t)}µk=1 with
the values in Rµ defined by the equation

dξ(t) = Ξ(t)(ãξ(t)dt+ σξ(t)dw(t)), ξk(0) = 1 k = 1, . . . , µ.

Here Ξ(t) is a diagonal matrix in Rµ×µ with the diagonal elements Ξkk(t) = ξk(t), k = 1, . . . , µ.
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Let ν(t) = {νk(t)}µk=1 be an Ft-adapted process with the values in Rµ. Let π(t) =
∑µ
k=1 νk(t)ξk(t) =

M(t)>ν(t), and let X̃(t) be the corresponding discounted wealth. It follows from the definitions that

dX̃(t) = ν(t)>[ãξ(t) + σξ(t)dw(t)] = ν(t)>Ξ(t)−1dξ(t).

Comparing this with (2.4), we obtain that ν(t) can be considered as a portfolio self-financing strategy for a
market with the discounted prices {ξk(t)}. Therefore, Theorem 3.2 allows to replace the original investment
problem for a market with n stocks by an equivalent problem for a market with µ stocks. This could be useful
if µ� n.

Remark 4.1. It can be shown that Theorem 3.2 implies that |θ(t)| = |θξ(t)|, where θ(t) = σ(t)−1ã(t) is
the market price of risk of the original market, and where θξ(t) is the market price of risk for the reduced
market defined as θξ(t) = σ̂ξ(t)

−1ãξ(t), where σ̂ξ(t) is a µ × µ-dimensional matrix such that σ̂ξ(t)σ̂ξ(t)
> =

M(t)σ(t)σ(t)>M(t)>. Clearly, if n = µ then the equality |θ(t)| = |θξ(t)| holds for any non-degenerate matrix
M(t). However, it is interesting to note that, for n > µ, this equality requires that M(t) contains a row
proportional to (Q−1â(t))> (i.e., such as described in Thm. 3.2); otherwise, simple counterexamples can be
found easily. This illustrates again a special role of the log-optimal portfolio Mµ.

Some examples.

It can be noted that our model covers the case where (ã(t), σ(t)) = F (S̃(t), η(t), ζ(t), t), for some deterministic

function F : Rn×Rm×RM×[0, T ]→ Rn×Rn×n. It suffices to include the vector S̃(t) or some of its components
as a part of the vector η(t).

Example 4.2. Consider a market model where the volatility and the appreciation rate for stock prices depend
on a market index or indicator defined by all prices presented in this market. Let m = 1 and let the market
index be η(t) = F (S(t)), for some deterministic function F : Rn → R, n > 1; For instance, one can consider
η(t) =

∑n
i=1 Si(t). Then µ = 2. By Theorem 3.2, a suboptimal strategy can be achieved by investing in two

mutual funds for all risk preferences.

Example 4.3. Consider a market model such that the volatilities and the appreciation rates for stock prices
depend on a set of major market indices such as Dow Jones, FTSE, Hang Seng, etc. Further, assume that the
movement of the stocks S1, . . . , Sn has some impact on one particular index, say, on Hang Seng index. For
instance, assume that these stocks are included in this index. This model can be described as follows: the vector
(η(t), ζ(t)) represents the set of market indexes, m = 1, and the one dimensional process η represents the Hang
Seng index. In this case, µ = 2. By Theorem 3.2, a near optimal strategy can be achieved by investing in two
mutual funds for all risk preferences.

Example 4.4. In the previous example, assume that the dynamics of the stocks S1, . . . , Sn affects m market
indexes, say, Dow Jones, Hang Seng, and some other indexes. In this case, we can use the model with this m
and with µ = min(m+ 1, n). By Theorem 3.2, a near optimal strategy can be achieved by investing in µ mutual
funds for all risk preferences.

5. Proofs

5.1. Reformulation with constrained strategies

Definition 5.1. Let K > 0. Let Σ(K) be the class of all strategies π(·) ∈ Σ such that

• If D = R then supt,ω π(t, ω)>σ(t, ω)σ(t, ω)>π(t, ω) ≤ K; and

• If D = (0,+∞) then supt,ω π(t, ω)>σ(t, ω)σ(t, ω)>π(t, ω)X̃(t)−1 ≤ K.

In addition, let ΣM1,...,ML
(K) = ΣM1,...,ML

∩Σ(K), for a setM1, . . . ,ML of Ft-adapted processes with values
in Rn.
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Clearly, Σ = ∪K>0Σ(K) and ΣM1,...,ML
= ∪K>0ΣM1,...,ML

(K). Therefore, it suffices to prove that

sup
π∈Σ(K)

V (π) = sup
π∈ΣM1,...,Mµ (K)

V (π) ∀K > 0. (5.1)

In this case, (5.1) implies (3.3).

Further, Theorem 3.2 holds ifm+1 > n. In this case, it suffices to take processesMk(t) = (0, . . . , 0, 1, 0, . . . , 0),
with kth component equal to one, k ≤ n. Obviously, any π(t) can be represented as a linear combination of
these vectors. Therefore, it suffices to assume that µ = m+ 1 < n.

Let us prove (5.1). Starting from now, we assume that K > 0 is given and µ = m+ 1 < n.

5.2. Some auxiliary lemmas

Let ∆(y, z, t)
∆
= {u ∈ Rn : u>v(y, z, t)v(y, z, t)>u ≤ K}.

Let a matrix Â(u, y, z, t) that takes values in R(1+m+M)×(n+N) be defined as

Â(u, y, z, t) =

 u>v 01×N
βη β̂η

0M×n β̂ζ

. (5.2)

Lemma 5.2. Let Γ = {ξ ∈ R1+m+M : |ξ| = 1}. For any (y, z, t),

inf
ξ∈Γ

sup
u∈∆(y,z,t)

ξ>Â(u, y, z, t)Â(u, y, z, t)>ξ > 0.

Proof of Lemma 5.2. It suffices to replace the supremum over u by the supremum over u = û such that û is on
the boundary of ∆ and βηv>û = 0. Clearly, this û exists since n > 1 and m < n− 1. In this case,

Â(û, y, z, t)Â(û, y, z, t)> =

(
û>vv>û 01×(m+M)

0(m+M)×1 AA>

)
=

(
K 01×(m+M)

0(m+M)×1 AA>

)
.

By the assumptions on A, it follows that there exists a constant c1 > 0 such that

Â(û, y, z, t)Â(û, y, z, t)> ≥ c1I1+m+M ∀y, z, t,

where I1+m+M is the unit matrix in R(1+m+M)×(1+m+M). Hence

sup
u∈∆(y,z,t)

Â(u, y, z, t)Â(u, y, z, t)> ≥ c1I1+m+M ∀y, z, t.

This completes the proof of Lemma 5.2. �

Lemma 5.3. Let α ∈ R, b ∈ Rn, c > 0 be given. Consider the problem:

Maximize − α|p|2 + p>b over p ∈ Rn subject to |p|2 ≤ c. (5.3)

Then an optimal solution p exists and the following holds:

(1) If α < 0,b = 0, then any p such that |p|2 = c is optimal.

(2) If either α ≥ 0 or α < 0,b 6= 0, then the optimal solution can be selected such that there exists k =
k(α,b, c) ∈ R such that p = kb.
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Proof. Existence of optimal p follows from the fact that the domain {p : |p| ≤ c} is compact. Statement (i) is
obvious. Let us prove statement (ii). If α = 0 and b 6= 0 then p =

√
cb/|b| is optimal.

If α = 0 and b = 0 then p = b = 0 is optimal along with all other admissible p.

Let α > 0. It suffices to consider the case α = 1/2 only.

Clearly, the maximum of the function g(p) = −|p|2/2 + p>b is achieved for p = b. It follows that if |b|2 ≤ c
then p = b is an optimal solution.

If |b|2 > c then p =
√
cb/|b| is an optimal solution. It can be seen from the following:

max
p:|p|2≤c

g(p) = max
s∈[0,

√
c]

max
p:|p|=s

g(p).

Obviously, maxp:|p|=s g(p) = −s2/2 + |b|s and it is achieved for p(s) = sb/|b|. The maximum of −s2/2 + |b|s
over s ∈ [0,

√
c] is achieved for s =

√
c. Hence p =

√
cb/|b| is an optimal solution for this case.

Finally, let α < 0 and b 6= 0. Clearly, p =
√
cb/|b| is optimal again in this case. This completes the proof of

the Lemma 5.3. �

5.3. Near optimality of constrained Markov strategies

Portfolio selection problem (3.1) can be rewritten as

Maximize EU(X̃(T )) over π(·) ∈ Σ subject to

dX̃(t) = π(t)>[a(η(t), ζ(t), t)dt+ v(η(t), ζ(t), t)dw(t)],

dη(t) = fη(η(t), ζ(t), t)dt+ βη(η(t), ζ(t), t)dw(t) + β̂η(η(t), ζ(t), t)dŵ(t),

dζ(t) = fζ(η(t), ζ(t), t)dt+ β̂ζ(η(t), ζ(t), t)dŵ(t), (5.4)

given X(0), η(0), ζ(0).

It can be seen that, to Markovianize the problem, it suffices to use the state variables X̃(t), η(t), and ζ(t).

The following is an adaptation of Definition 3.1.3 from Krylov [16], p. 131.

Definition 5.4. Let ΣM be the class of all Ft-adapted processes π(·) ∈ Σ such that there exists a measurable
function u : R×Rm ×RM × [0, T ]→ Rn such that

π(t) = u(X̃(t), η(t), ζ(t), t) if D = R,

π(t) = u(X̃(t), η(t), ζ(t), t)X̃(t) if D = (0,+∞).

A process π(·) ∈ ΣM is said to be a Markov strategy.

Remark 5.5. Note that, by the definition of a Markov strategy, the function u(·) is such that the closed-loop

solution (X̃(t), η(t), ζ(t)) of Ito equation exists in the class of Ft-adapted process. Therefore, it may happen
that a measurable and bounded function u(·) does not define a Markov strategy.

Let ΣM (K) = ΣM ∩Σ(K). Clearly, ΣM = ∪K>0ΣM (K).

5.4. The proof of Theorem 3.2

Note that the matrix A defined by (5.2) represents the diffusion coefficient for the system of Ito equations
in (5.4) for Markov strategies.

Let us first prove the theorem for some special cases.
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Proof for bounded U , U ′(x), U ′′(x) and for D = R

Let us assume that D = R and the function U is bounded in D together with the derivatives U ′(x) and
U ′′(x). Set

J(x, y, z, t)
∆
= sup
π(·)∈Σ(K)

E
{
U(X̃(T ))

∣∣∣(X̃(t), η(t), ζ(t)) = (x, y, z)
}
. (5.5)

It follows from Lemma 5.2 and Theorem 5.2.5 from Krylov [16], p. 225, that

J(x, y, z, t)
∆
= sup
π(·)∈ΣM (K)

E
{
U(X̃(T ))

∣∣∣(X̃(t), η(t), ζ(t)) = (x, y, z)
}
. (5.6)

The Bellman equation formally satisfied by the value function J = J(x, y, z, t) is

G(t, x, y, z, J ′t, J
′
ξ, J
′′
ξξ) = 0, J(x, y, z, T ) = U(x). (5.7)

Here J ′ξ is the gradient of J with respect to the vector ξ = (x, y, z), J ′′ξξ is the matrix second order derivative with

respect to the vector ξ = (x, y, z). The function G : [0, T ]×R×Rm×RM×R1+m+M×R(1+m+M)×(1+m+M) → R
is defined as

G(t, x, y, z, J ′t, J
′
ξ, J
′′
ξξ) = sup

u∈∆
G0(t, u, x, y, z, J ′t, J

′
ξ, J
′′
ξξ) +G1(t, x, y, z, J ′t, J

′
ξ, J
′′
ξξ),

where

G0(t, u, x, y, z, Jt, J
′
ξ, J
′′
ξξ) = J ′xu

>a +
1

2
J ′′xxu

>vv>u+ tr
[
J ′′xyu

>vβη>
]

and

G1(t, x, y, z, J ′t, J
′
ξ, J
′′
ξξ) = J ′t+J ′yf

η+J ′zf
ζ +

1

2
tr
[
J ′′yy

(
βηβη> + β̂ηβ̂η

>)]
+tr

[
J ′′yzβ̂

ηβ̂ζ
>]

+
1

2
tr
[
J ′′zzβ̂

ζ β̂ζ
>]
.

In this equation, x ∈ D; the set ∆ and the coefficients depend on (y, z, t).
Note that ∆(y, z, t) is a convex set for all K, y, z, t.
By Lemma 5.2 and by Theorem 4.7.4 from Krylov [16], p. 206, there exists a unique solution J that is bounded

in any bounded domain together with the derivatives presented in this equation. By Lemma 5.2 again and by
Theorem 4.7.7 from Krylov [16], p. 209, it follows that the function J defined by (5.5) is the solution of (5.7);
in other words, the Verification Theorem holds. The Bellman equation does not include generalized derivatives
mentioned in Theorem 4.7.7 from Krylov [16] because of the existence of locally bounded derivatives.

Remark 5.6. Technically, Theorems 4.7.4 and 4.7.7 from Krylov [16] do not cover the case of non-constant
∆ = ∆(y, z, t). However, the extension on this case is straightforward for our special setting. For instance, one
can consider the processes p(t) = (σ(t)>)−1π(t) to be the strategies instead of π(t). In this case, the restriction
{π(t) : π(t) ∈ ∆} is replaced by the restriction {p(t) : |p(t)| ≤ K}.

Let v = (v1, . . . ,vn), where vj is the jth column of the matrix v, and let βη = (βη1 , . . . , β
η
n), where βηj is the

jth column of the matrix βη = {βηki}
m,n
k,i=1. We have that

tr
[
J ′′xyu

>vβη>
]

=

n∑
i=1

u>viJ
′′
xyβ

η
i = u>

n∑
i=1

viJ
′′
xyβ

η
i = u>

n∑
i=1

vi

m∑
k=1

J ′′xykβ
η
ki = u>

m∑
k=1

J ′′xyk

n∑
i=1

viβ
η
ki.

It follows that, for a given (u, x, y, z, t),

G0(t, u, x, y, z, Jt, J
′
ξ, J
′′
ξξ) = J ′xu

>a + 1
2J
′′
xxu
>vv>u+ u>

m∑
k=1

J ′′xyk

n∑
i=1

viβ
η
ki.
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The maximum for G0 in u is achieved for û = v−1
>
p, where p = v>u is a solution of the optimization problem

Maximize − ν|p|2 + p>b over p ∈ Rn subject to |p| ≤ K. (5.8)

Here ν = ν(x, y, z, t) and b = b(x, y, z, t) are defined as

ν = −1

2
J ′′xx, b = b(x, y, z, t) = J ′xv

−1a +

m∑
k=1

J ′′xyk

n∑
i=1

v−1viβ
η
ki.

By Lemma 5.3, problem (5.8) has an optimal solution

p(x, y, z, t) = κ(x, y, z, t)b(x, y, z, t),

where κ(·) : R × Rm × RM × [0, T ] → R can be selected to be a measurable function; its selection depends
on K. Hence the maximum of G0 is achieved for

û = û(x, y, z, t) = κv−1
>
b = κ

(
v−1

>
J ′xv

−1a + v−1
>

m∑
k=1

J ′′xyk

n∑
i=1

v−1viβ
η
ki

)
. (5.9)

Let Q(y, z, t) = (v(y, z, t)v(y, z, t)>)−1. Equation (5.9) can be rewritten as

û = κ

(
J ′xQa +

m∑
k=1

J ′′xyk

n∑
i=1

Qviβ
η
ki

)
. (5.10)

Further, let (v>)−1 = (q1, . . . ,qn), where qj is the jth column of the matrix (v>)−1. We have

Qv = (vv>)−1v = (v>)−1v−1v = (v>)−1 = (q1, . . . ,qn).

Hence Qvi = qi,
∑n
i=1Qviβ

η
ki =

∑n
i=1 qiβ

η
ki = (v>)−1βηk , and the maximum of G0 is achieved for

û(x, y, z, t) =

m+1∑
k=1

H̄k(x, y, z, t)ψk(y, z, t), (5.11)

where

ψk(y, z, t) = (v(y, z, t)>)−1βηk(y, z, t), k ≤ m, ψm+1(y, z, t) = Q(y, z, t)a(y, z, t),

and

H̄k(x, y, z, t) =κ(x, y, z, t)J ′′xyk(x, y, z, t), k ≤ m,
H̄m+1(x, y, z, t) =κ(x, y, z, t)J ′x(x, y, z, t). (5.12)

Assume that the function û(x, y, z, t) is regular enough in x to ensure solvability of the closed equation (5.4),

for instance, it is Lipschitz in x uniformly in (y, z, t). In this case, the strategy π̂(t) = û(X̃(t), η(t), ζ(t), t) is
optimal and belongs to the class ΣM (K). Moreover, π(t) =

∑m+1
k=1 νk(t)Mk(t), where

Mk(t) =ψk(η(t), ζ(t), t) = (σ(t)>)−1βηk(η(t), ζ(t), t), k ≤ m,
Mm+1(t) =ψm+1(η(t), ζ(t), t) = Qã(t).

Here qj is the jth column of the matrix (σ(t)>)−1 = (q1, . . . , qn), and

νk(t) = H̄k(X̃(t), η(t), ζ(t), t), k ≤ m, νm+1(t) = H̄m+1(X̃(t), η(t), ζ(t), t).
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Remark 5.7. The selection of {Mk} is independent of K and U(·). The selection of κ(x, y, z, t) and {H̄k}
depends on K and U(·).

Therefore, equality (5.1) for the case where D = R holds for this case of regular enough û. Moreover, the
strategy π̂ ∈ ΣM1,...,Mm+1(K) is optimal in Σ(K) for this case.

In the general case, it cannot be guaranteed that the function û(x, y, z, t) providing the maximum for G0 is
regular enough in x to ensure solvability of the closed loop equation (5.4). In this case, we have to approximate
û by regular enough functions. We will follow Chapter 5 from Krylov [16], with some simplifications that are
possible because of the following features of our special setting: (a) The maximum for G0 is achieved for û that
has the special form (5.11); (b) The regularity of H̄k(x, y, z, t) in x is sufficient.

For R > 0, let CR = SR × [0, T ], where SR is the origin-centered ball with the radius R in R ×Rm ×RM .
We will consider large enough R→ +∞ and small enough ε→ 0, ε > 0.

Let H̃k,ε(x, y, z, t) = 1
2ε

∫ ε
−ε H̄k(x+ q, y, z, t)dq, and let

uε,R(x, y, z, t) =
∑m+1
k=1 H̃k,ε(x, y, z, t)ψk(y, z, t), (x, y, z, t) ∈ CR,

uε,R(x, y, z, t) = 0, (x, y, z, t) /∈ CR.

It follows from the definitions that uε,R(x, y, z, t) = 1
2ε

∫ ε
−ε û(x + q, y, z, t)dq, for any (x, y, z) from the interior

of SR and for small enough ε. Hence

uε,R(x, y, z, t)→ û(x, y, z, t) as ε→ 0 for a.e. (x, y, z, t) ∈ CR. (5.13)

Since the set ∆(y, z, t) is convex and contains zero vector, we have that uε,R(x, y, z, t) takes the values in
∆(y, z, t).

Consider the set of closed-loop strategies

πε,R(t) = uε,R(X̃ε(t), η(t), ζ(t), t).

Here X̃ε(t) is the corresponding discounted wealth. By the definitions, these strategies belong to
ΣM1,...,Mm+1

(K). Let us show that they are Markov strategies.

Let τε,R be the first exit time of the process (X̃ε(t), η(t), ζ(t)) from CR. Since the functions uε,R(x, y, z, t) are
bounded, they take values in ∆(y, z, t), and, for every ε > 0, there exists c > 0 such that

|uε,R(x1, y, z, t)− uε,R(x2, y, z, t)| ≤ c|x1 − x2| ∀x1, x2, y, z, t, (xi, y, z, t) ∈ CR, i = 1, 2.

Therefore, the existence of an unique strong solution of closed equation (5.4) is ensured for the strategy πε,R(t) =

uε,R(X̃(t), η(t), ζ(t), t) up to the time τε,R. To prove (5.1), it suffices to show that

sup
π∈Σ(K)

V (π) = sup
ε>0,R>0

V (πε,R). (5.14)

Let us prove (5.14).
For a function u(x, y, z, t), set

ρu(x, y, z, t) = G0(t, û(x, y, z, t), x, y, z, Jt, J
′
ξ, J
′′
ξξ)−G0(t, u(x, y, z, t), x, y, z, Jt, J

′
ξ, J
′′
ξξ).

This equation can be rewritten as

ρu(x, y, z, t) = J ′xû
>a+

1

2
J ′′xxû

>vv>û+û>
m∑
k=1

J ′′xyk

n∑
i=1

viβ
η
ki−

{
J ′xu

>a +
1

2
J ′′xxu

>vv>u+ u>
m∑
k=1

J ′′xyk

n∑
i=1

viβ
η
ki

}
.

(5.15)
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Hence

|ρu(x, y, z, t)| ≤ (|û(x, y, z, t)− u(x, y, z, t)|

+
1

2
|J ′′xx||û(x, y, z, t)>vv>û(x, y, z, t)− u(x, y, z, t)>vv>u(x, y, z, t)|)h1(x, y, z, t),

where

h1(x, u, z, t) = |J ′x||a|+
m∑
k=1

|J ′′xyk |
n∑
i=1

|vi||βηki|.

Applying an obvious inequality |û>vv>û− u>vv>u| ≤ |(û− u)>vv>(û+ u)|, we obtain that

|ρu(x, y, z, t)| ≤ |û(x, y, z, t)− u(x, y, z, t)|h(x, y, z, t),

where

h(x, u, z, t) = h1(x, y, z, t) +
1

2
|J ′′xx||vv>|(|û|+ |u|).

As was mentioned already, by Lemma 5.2 and by Theorem 4.7.4 from Krylov [16], p. 206, J is bounded in
any bounded domain together with the derivatives presented in this equation. Hence the function h(x, u, z, t) is
bounded on CR.

Let g(t) = ρuε,R(X̃ε(t), η(t), ζ(t)).
By Itô formula, we have that

EI{τε,R>T}U(X̃(τε,R)) + EI{τε,R≤T}J(X̃(τε,R), η(τε,R), ζ(τε,R), τε,R)) = J(X0, η(0), ζ(0), 0)−E

∫ τε,R

0

g(t)dt.

Hence

J(X0, η(0), ζ(0), 0) = EI{τε,R>T}U(X̃(τε,R)) + r1 + r2,

where

r1 = EI{τε,R≤T}J(X̃(τε,R), η(τε,R), ζ(τε,R), τε,R)), r2 = E

∫ τε,R

0

g(t)dt.

It suffices to show that, for any δ > 0, there exists ε and R such that

J(X0, η(0), ζ(0), 0) ≤ EU(X̃(τε,R)) + δ. (5.16)

Let δ > 0 be given.
Let τ̂R = T ∧ inf{t ≥ 0 : η(t)2 + ζ(t)2 ≥ R2}. Clearly, τε,R ≤ τ̂R. Since we have assumed that the matrix

AA> > 0 is uniformly non-degenerate, we have that P(τ̂R ≤ T )→ 0 as R→ +∞ uniformly in ε > 0.
By Corollary 1 from Zakai [25], it follows that, for any m > 0,

sup
y,z

(E|X̃ε(τε,R)|m + sup
π∈Σ(K)

E|X̃(T, π)− X̃ε(τε,R)|m) < +∞,

where X̃(T, π) is the discounted terminal wealth for the strategy π given that

X̃(τε,R, π) = X̃ε(τε,R), η(τε,R) = y, ζ(τε,R) = z.
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By the assumptions on U , it follows that supε E|J(X̃(τε,R), η(τε,R), ζ(τε,R), τε,R))|2 < +∞. Hence r1 → 0 as

R → +∞ uniformly in ε > 0. By the assumptions on U again, we obtain that EI{τε,R≥T}U(X̃(τε,R)) → 0 as

R→ +∞ uniformly in ε > 0. Hence EI{τε,R>T}U(X̃(τε,R))→ EU(X̃(τε,R)) as R→ +∞ uniformly in ε > 0.

It follows that there exists R = R̂ such that

|r1| ≤ δ/3, EI{τε,R>T}U(X̃(τε,R)) ≥ EU(X̃(τε,R))− δ/3 ∀ε > 0.

By the Lebesgue’s Dominated Convergence Theorem, it follows that r2 → 0 as ε → 0 for the given R = R̂.
Let ε = ε̂ be selected such that |r2| ≤ δ/3. It follows that (5.16) holds. Hence (5.14) holds. This completes the
proof of equality (5.1) for the case where D = R and where the functions U , U ′(x), and U ′′(x) are bounded
in D.

5.4.1. The proof for bounded U , U ′(x), U ′′(x) and for D = (0,+∞)

Let us assume that D = (0,+∞) and the function U is bounded in D together with the derivatives U ′(x) and

U ′′(x). We consider the change of variables q(t) = ln X̃(t). Using the Ito formula, we obtain that this change of
variables transfers the corresponding control problem as

Maximize EU(eq(T )) over π̃(·) subject to

dq(t) = π̃(t)>a(η(t), ζ(t), t)dt− 1

2
π̃(t)>v(η(t), ζ(t), t)v(η(t), ζ(t), t)>π̃(t) + π̃(t)v(η(t), ζ(t), t)dw(t)],

dη(t) = fη(η(t), ζ(t), t)dt+ βη(η(t), ζ(t), t)dw(t) + β̂η(η(t), ζ(t), t)dŵ(t),

dζ(t) = fζ(η(t), ζ(t), t)dt+ β̂ζ(η(t), ζ(t), t)dŵ(t), (5.17)

given X(0), η(0), ζ(0). We consider here maximization over the strategies π̃ from the class Σ(K) defined for
D = R, i.e., such that supt,ω |π̃(t, ω)| < +∞.

The proof of equality (5.1) repeats the proof given above for D = R with few modifications. Instead of (5.5),
we use

J(x, y, z, t)
∆
= sup
π(·)∈ΣM (K)

E
{
U(eq(T ))

∣∣∣q(t) = x, η(t) = y, ζ(t) = z
}
.

Here x ∈ R and q(t) = ln(X̃(t)); the maximization is over the class Σ(K) defined for D = R. The Bellman
equation for J is defined similarly to the Bellman equation for D = Rn, with G0 replaced by G0− 1

2J
′
xu
>vv>u.

Respectively, ν in (5.8) has to be defined as ν = − 1
2 (−J ′x+J ′′xx). This gives the proof of (5.1) where D = (0,+∞)

and the functions U , U ′(x), and U ′′(x) are bounded in D.

Proof for the general case.

Consider now the case where either D = R or D = (0,+∞) and where the functions U , U ′(x), and U ′′(x)
are not necessarily bounded in D.

Let δ > 0, K > 0, and π̄ ∈ Σ(K) be given.
For L > 0, let ŪL(x) = max(−L,min(U(x), L)), and let V̄L(π) be defined similarly to V (π) with U replaced

by ŪL. Let us select L > 0 such that |V̄L(π) − V (π)| ≤ δ/5 for all π ∈ Σ(K); by the assumptions on Σ(K),

this L exists. Further, for L1 > 0, ρ > 0, let a function Ũ = ŨL,L1,ρ : D → R be such that |Ũ(x)| ≤ L + 1

for all x ∈ D, |Ũ(x) − ŪL(x)| ≤ ρ if |x| < L1, and such the derivatives Ũ ′(x) and Ũ ′′(x) are bounded in D.
This function can be obtained via convolution of ŪL with a smoothing averaging kernel, for instance, such as
described in Krylov [16], Section II.1. Let Ṽ (π) be defined similarly to V (π) with U replaced by Ũ . By the

assumptions on Σ(K), there exists L1 > 0, ρ > 0 and Ũ(x) such that |Ṽ (π)− V̄L(π)| ≤ δ/5 for all π ∈ Σ(K).

By the theorem proved above for the utilities with the properties featured by Ũ , there exists π̂ ∈
ΣM1,...,Mµ(K) such that Ṽ (π̂) ≥ Ṽ (π̄)− δ/5. In addition, we have that

V (π̂) ≥ V̄L(π̂)− δ

5
≥ Ṽ (π̂)− 2δ

5
≥ Ṽ (π̄)− 3δ

5
≥ V̄L(π̄)− 4δ

5
≥ V (π̄)− δ.
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Since π̄ and δ were selected arbitrary, the proof of (5.1) follows for the general case.
Finally, the proof of Theorem 3.2 follows from (5.1).

Remark 5.8. For a typical case, we have that κ(X̃(t), η(t), ζ(t), t) = −J ′′x,x(X̃(t), η(t), ζ(t), t)−1 if D = R, or

κ(q(t), η(t), ζ(t), t) = (J ′x(X̃(t), η(t), ζ(t), t) − J ′′x,x(X̃(t), η(t), ζ(t), t))−1 if D = (0,+∞). It happens when the

strategy π(t) = û(X̃(t), η(t), ζ(t), t) belongs to the class ΣM (K) and such that π(t)>σ(t)σ(t)>π < K. We use
the constraints π(t)>σ(t)σ(t)>π(t) ≤ K as an auxiliary class of near optimal (suboptimal) admissible strategies;
the final result does not require these constraints.

Remark 5.9. To calculate the processes νk(t), one have to find J from a HJB equation. Analytical solutions
of these equations are rarely feasible; however, numerical methods for them are well developed; see, e.g. Barles
and Jakobsen [1] and the review in Kushner [17].

6. Conclusion

The Mutual Fund Theorem defines the distribution of risky assets for the optimal strategy. If this theorem
holds, then the distribution is the same for all risk preferences, and the strategy selection can be reduced to the
selection of a one dimensional process of the total investment in risky assets. This interesting feature is presented
in portfolio theory only and does not have an analog for the general theory of stochastic optimal control. The
efforts in the existing literature are mostly concentrated on the extension of the list of models where the Mutual
Fund Theorem holds. The current paper suggests a relaxed version of this theorem to cover models where the
classical Mutual Fund Theorem does not hold. We found conditions that ensure that the optimal strategy can be
represented as a linear combination of µ fixed processes (or µ Mutual Funds), for a wide class of risk preferences,
for a model with n� µ stocks. The number µ is defined by the number of correlations in the model rather than
by the number of stocks.
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