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SEMICLASSICAL GROUND STATE SOLUTIONS FOR A CHOQUARD TYPE
EQUATION IN R2 WITH CRITICAL EXPONENTIAL GROWTH ∗

Minbo Yang1

Abstract. In this paper we study a nonlocal singularly perturbed Choquard type equation

−ε2Δu + V (x)u = εµ−2

[
1

|x|µ ∗ (P (x)G(u)
)]

P (x)g(u)

in R2, where ε is a positive parameter, 1
|x|μ with 0 < μ < 2 is the Riesz potential, ∗ is the convolution

operator, V (x), P (x) are two continuous real functions and G(s) is the primitive function of g(s).
Suppose that the nonlinearity g is of critical exponential growth in R2 in the sense of the Trudinger-
Moser inequality, we establish some existence and concentration results of the semiclassical solutions
of the Choquard type equation in the whole plane. As a particular case, the concentration appears at
the maximum point set of P (x) if V (x) is a constant.
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1. Introduction and main results

We are interested in a singularly perturbed nonlocal Choquard type equation⎧⎪⎨
⎪⎩

− ε2Δu+ V (x)u = εμ−N
[

1
|x|μ ∗ (P (x)G(u)

)]
P (x)g(u) in RN ,

u ∈ H1(RN ),
(1.1)

where ε > 0, N ≥ 2, 0 < μ < N , V and Q are two positive continuous functions, G(s) is the primitive
function of g(s). This nonlocal equation arises in many interesting physical situations in quantum theory and
plays an important role in describing the finite-range many-body interactions. For example, equation (1.1) was
investigated by Pekar in [30] in the quantum theory of a polaron at rest and it was also used by P. Choquard
in [21] as an approximation to Hartree-Fock theory of one-component plasma. Mathematically, if N = 3, μ = 1,
ε = 1, V (x) = 1 and G(s) = |s|2, Lieb [21] and Lions [22] considered

−Δu+ u =
[

1
|x|μ ∗ |u|2

]
u in RN . (1.2)
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and investigated the existence and uniqueness of positive solutions by variational methods. [27,28] investigated
the qualitative properties of solutions and showed the regularity, positivity and radial symmetry decay behavior
at infinity.

For a classical nonlinear Schrödinger equation

−ε2Δu+ V (x)u = g(u) in RN , (1.3)

an interesting issue is the existence of the semiclassical states, i.e. existence of solutions for equation (1.3) with
small positive parameter ε. From the point of view of physics, semiclassical states are used to describe the
transition between Quantum Mechanics and classical Mechanics. The first result in this direction goes back
to the pioneering work [18] by Floer and Weinstein. Since then, it has been studied extensively under various
hypotheses on the potential and the nonlinearity, see for example [9, 13, 15, 18, 19, 31, 32, 34] and the references
therein.

For equation (1.1), the question of the existence of semiclassical solutions for the nonlocal Choquard type
equation has been posed more recently ([8], p. 29). It can be observed that if u is a solution, for x0 ∈ RN , then
the function v = u(x0 + εx) satisfies

−Δv + V (x0 + εx)v =
[

1
|x|μ ∗ (P (x0 + εx)G(v)

)]
P (x0 + εx)g(v) in RN .

This suggests some convergence, as ε→ 0, of the family of solutions to a solution u0 of the limit problem

−Δv + V (x0)v = P 2(x0)
[

1
|x|μ ∗G(v)

]
g(v) in RN . (1.4)

One of the interesting problems is to apply the Lyapunov-Schmidt type reduction arguments to study (1.1).
However, to the best of our knowledge, little is known about the uniqueness and non-degeneracy of the ground
states of the limit problem

−Δu+ u =
[

1
|x|μ ∗G(u)

]
g(u), in RN .

Only for N = 3, μ = 1 and G(s) = |s|2, the uniqueness and non-degeneracy of the ground states were
proved by Lenzmann, Wei and Winter in [25, 33]. By assuming that inf V > 0 and Q(x) = 1, Wei and Winter
also constructed families of solutions by Lyapunov-Schmidt reduction arguments. To study the existence of
semiclassical states by pure variational techniques, Cingolani et al. in [14] applied the penalization arguments
due to Byeon and Jeanjean [10] to show the existence of a family of multipeak solutions located around the
minimum points of the potential V (x). Recently, the author of the present paper and his colleagues also applied
the penalization arguments in [36] to construct multi-peak solutions for the nonlinear Choquard equation with
general assumptions on the nonlinearities g. For N ≥ 3 and G(u) = up with 2N−μ

N ≤ p < 2N−μ
N−2 , under

some additional assumptions at infinity on the potential V (x), Moroz and Van Schaftingen [29] used variational
methods and developed a novel nonlocal penalization technique to show that the equation (1.1) has a family
of solutions concentrating around the local minimum of the function V . In [5, 6], Alves and Yang proved the
existence, multiplicity and concentration of solutions for the subcritical Choquard equation by penalization
method and Lusternik−Schnirelmann theory.

From the existing results mentioned above, most of the works are set in RN with N ≥ 3 and subcritical growth
nonlinearities (N = 2 with polynomial growth). For the case N ≥ 3, by Sobolev imbedding, the subcritical and
critical growth mean that the nonlinearity can not exceed the polynomial of degree 2∗ = 2N

N−2 . However, the
case N = 2 is special, since the corresponding Sobolev embedding says that H1

0 (Ω) ⊂ Lq(Ω) for all q ≥ 1, but
H1

0 (Ω) � L∞(Ω), where Ω is a bounded domain. Once that we intend to work with nonlinearity with critical
growth in the plane, we need to recall the Trudinger-Moser inequality. A version on a bounded domain Ω in R2



CHOQUARD TYPE EQUATION IN R
2 179

says that, for all α > 0 and u ∈ H1
0 (Ω), eαu

2 ∈ L1(Ω). Moreover, there exists a positive constant C such that

sup
u∈H1

0 (Ω) : ‖∇u‖2≤1

∫
Ω

eαu
2 ≤ C|Ω| if α ≤ 4π,

where |Ω| denotes the Lebesgue measure of Ω. This inequality is optimal in the sense that for any growth eαu
2

with α > 4π the correspondent supremum is infinite. Thus we say that function g(s) has critical exponential
growth when it behaves like eαs

2
as |s| → +∞. More exactly,

lim
|s|→+∞

|g(s)|
eαs2

= 0, ∀α > 4π, and lim
|s|→+∞

|g(s)|
eαs2

= +∞, ∀α < 4π. (1.5)

The nonlinearity is said to be of subcritical growth if for any α > 0,

lim
|s|→+∞

|g(s)|
eαs2

= 0.

The above notion of criticality was introduced by Adimurthi and Yadava [1], see also de Figueiredo, Miyagaki and
Ruf [16]. To study the elliptic problem in R2 with critical exponential growth, the Trudinger-Moser inequality
on the whole space plays an important role, we refer the readers to [2,23,24] for recent progress in the literature
of existence of solutions. However, it seems that there are not so many papers discussing the semiclassical
problems for equation with critical exponential growth nonlinearities. For the N -Laplacian equation set in RN ,
Alves and Figueiredo [3] studied the multiplicity of semiclassical solutions with Rabinowitz type assumption on
the potential. do Ó and Severo [17] also studied a class of quasilinear Schrödinger equations in R2 with critical
exponential growth. The nonlocal Schrödinger equation in the plane was firstly considered in [4], there the
authors first established the existence of ground states for a periodic problem with critical exponential growth
and then studied the concentration around the global minimum set of the potential V (x).

The purpose of the present paper is to study the existence of semiclassical ground state solutions for a
Choquard type equation in R2 with critical exponential nonlinearities. In fact, we are going to study the
equation of the form ⎧⎪⎨

⎪⎩
− ε2Δu+ V (x)u = εμ−2

[
1

|x|μ ∗ (P (x)G(u)
)]
P (x)g(u),

u ∈ H1(R2),
(1.6)

where g(u) = h(u) + f(u), h is of subcritical exponential growth at infinity and f is of critical exponential
growth. We want to establish some existence results of the semiclassical solutions for equation (1.6) and to
describe certain concentration phenomena of these solutions at particular sets characterized by the potentials
V (x) and P (x). As a particular case we can observe that the concentration phenomena appears at the maximum
point set of P (x).

Since we are going to study the nonlocal type problems with Riesz potential, we would like to recall the
famous Hardy−Littlewood−Sobolev inequality.

Proposition 1.1 ([20], Hardy−Littlewood−Sobolev inequality).
Let s, r > 1 and 0 < μ < N with 1/s + μ/N + 1/r = 2. Let f ∈ Ls(RN ) and h ∈ Lr(RN ). There exists a

sharp constant C(s,N, μ, r), independent of f, h, such that∫
RN

[
1

|x|μ ∗ f(x)
]
h(x) ≤ C(s,N, μ, r)|f |s|h|r.

Remark 1.2. By Hardy−Littlewood−Sobolev inequality,∫
R2

[
1

|x|μ ∗G(u)
]
G(u)
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is well defined if G(u) ∈ Ls(R2) for s > 1 defined by

2
s

+
μ

2
= 2.

That means, we must require
G(u) ∈ L

4
4−μ (R2).

Let E be the Sobolev space H1(R2) equipped with the standard norm

‖u‖ :=
(∫

R2

(|∇u|2 + |u|2))1/2

and Ls(R2), 1 ≤ s <∞, to denote the Lebesgue space with the norms

|u|s :=
(∫

R2
|u|s
)1/s

, 1 ≤ s <∞.

We will use the following Trundiger-Moser type inequality in H1(R2) by Cao [12] in our variational arguments
frequently and we may also refer the readers to [1,2,23] for recent progress of the topic of Trundiger-Moser type
inequality.

Lemma 1.3. If α > 0 and u ∈ H1(R2), then∫
R2

[
eα|u|

2 − 1
]
<∞. (1.7)

Moreover, if |∇u|22 ≤ 1, |u|2 ≤ M < ∞, and α < α0 = 4π, then there exists a constant C, which depends only
on M and α, such that ∫

R2

[
eα|u|

2 − 1
] ≤ C(M,α). (1.8)

In order to state our main results, we need to introduce the following notations

κmin := min
x∈R2

V (x), V := {x ∈ R2 : V (x) = κmin},
κmax = |V |∞, κ∞ = lim inf

|x|→∞
V (x) <∞.

τmax := max
x∈R2

P (x), P := {x ∈ R2 : P (x) = τmax},
τmin = inf

x∈R2
P (x), τ∞ = lim sup

|x|→∞
P (x) <∞.

We suppose that V, P : R2 → R are two positive continuous and bounded functions with κmin > 0, τmin > 0.
For the first case we assume that the potential V (x) and P (x) satisfy

τmax > τ∞ and there exist R > 0, x∗ ∈ P such that
V (x∗) ≤ V (x) for all |x| ≥ R.

(V P1)

If (V P1) holds, then we may assume that V (x∗) = minx∈P V (x) and set

AP := {x ∈ P : V (x) = V (x∗)} ∪ {x /∈ P : V (x) < V (x∗)}.
Assumptions (V P1) was firstly introduced by Ding and Liu in [15]. Obviously, AP is bounded. Moreover,
AP = V ∩ P if V ∩ P �= ∅. In particular, AP = P if V (x) is a constant function.
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Since g(u) = h(u) + f(u) and we are going to study the existence of positive solutions, we may assume that

h(s) = 0, f(s) = 0 ∀s ≤ 0.

We suppose that the nonlinearity h : R+ → R is of C1 verifies the following hypotheses:
There holds

h(0) = 0, lim
s→0

h′(s) = 0. (h1)

The nonlinearity h is of subcritical growth at infinity. Moreover, for any α > 0, there exists C0 > 0 such that

|h′(s)| ≤ C0eαs
2 ∀s ≥ 0. (h2)

There exists θ1 > 2 such that
0 < θ1H(s) ≤ 2h(s)s, ∀s > 0, (h3)

where H(t) =
∫ t
0
h(s)ds. This is the Ambrosetti−Rabinowitz condition for nonlocal problem.

We also assume that
s→ h(s) is strictly increasing on (0,+∞). (h4)

To obtain the existence and concentration of the semiclassical solutions for the critical exponential case, we
need to introduce some additional assumptions on the subcritical term h. Since the imbeddingH1(R2) ↪→ Lp(R2)
is continuous for any p ∈ (2,+∞), by the Hardy−Littlewood−Sobolev inequality, we know there is a best
constant Sp such that

Sp = inf
u∈E,u
=0

(∫
R2

(|∇u|2 + κmax|u|2
))1/2

(∫
R2

[
1

|x|μ ∗ |u|p
]
|u|p
) 1

2p

,

moreover, a standard minimizing argument shows that there exists a positive radial function up ∈ E such that
Sp is achieved by up, see [28, 29].

We suppose there exists p > 4−μ
2 , such that

H(s) ≥ Cps
p, ∀s ≥ 0 (h5)

where

Cp >

[
4θ(p−1)

(2−μ)(θ−2)

] p−1
2
Spp

τminp
p
2

·

For the nonlinearity f : R+ → R, we Suppose that it is of C1 and verifies the following hypotheses:
There holds

f(0) = 0, lim
s→0

f ′(s) = 0. (f1)

The nonlinearity f is of critical growth at infinity. Moreover, there exists C0 such that

|f ′(s)| ≤ C0e4πs2 , ∀s ≥ 0. (f2)

There exists θ2 > 2 such that
0 < θ2F (s) ≤ 2f(s)s, ∀s > 0, (f3)

where F (t) =
∫ t
0 f(s)ds.

We also assume that
s→ f(s) is strictly increasing on (0,+∞). (f4)
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Remark 1.4. It was observed in [4] that the assumption (h5) is not optimal in fact, since little is know about
the embedding constant Sp. However we would not focus too much on this kind of conditions, since here we
are mainly concerned with the existence and the concentration behavior of semiclassical ground states for the
Choquard type equation.

We have the following existence and concentration results.

Theorem 1.5. Suppose that h satisfies (h1)−(h5) and f satisfies (f1)−(f4). If the potential functions V and
P satisfy the condition (V P1), then for any ε > 0 small, problem (1.6) has at least one positive ground state
solution uε. Moreover,

(a) There exists a maximum point xε ∈ R2 of uε, such that limε→0 dist(xε,AP ) = 0 and for some c, C > 0,

|uε(x)| ≤ Cexp
(
− c
ε
|x− xε|

)
·

(b) Setting vε(x) := uε(εx+xε), for any sequence xε → x0, ε→ 0, vε converges in E to a ground state solution
v of

−Δv + V (x0)v = P 2(x0)
[

1
|x|μ ∗G(v)

]
g(v).

In particular if V ∩ P �= ∅, then limε→0 dist(xε,V ∩ P) = 0 and up to subsequences, vε converges in E to a
ground state solution v of

−Δv + κminv = τ2
max

[
1

|x|μ ∗G(v)
]
g(v).

We have a dual theorem for the results obtained in Theorem 1.5. Suppose that

κmin < κ∞ and there exist R > 0, x∗ ∈ V such that
P (x∗) ≥ P (x) for all |x| ≥ R.

(V P2)

If (V P2) holds, we may assume that P (x∗) = maxx∈V P (x) and set

AV := {x ∈ V : P (x) = P (x∗)} ∪ {x /∈ V : P (x) > P (x∗)}.

Obviously, AV is bounded. Moreover, AV = V ∩ P if V ∩ P �= ∅. In particular, AV = V if P (x) is a constant
function. For this dual case, we have the following theorem.

Theorem 1.6. Suppose that g satisfies (h1)−(h5) and f satisfies (f1)−(f4). If the potential functions V and
P satisfy the condition (V P2), then all the statements in Theorem 1.5 remain true with AP replaced by AV .

Remark 1.7. The proof of Theorem 1.6 is similar but easier than the one of Theorem 1.5, for this theorem,
we do not need to truncate partially the potential to introduce the second auxiliary equation and so the proof
will be omitted here. Furthermore one can also adapt the arguments by Rabinowitz [32] and Alves and Yang [5]
to establish the existence and concentration results.

We would like to write some more words about the semiclassical problem for the Schrödinger equation. One
interesting problem is to consider the case that there is a competition between the external potential and the
nonlinear potential. On this topic Wang and Zeng considered in [34] the equation

−ε2Δu+ V (x)u = K(x)ur−1 +Q(x)ut−1 in RN , (1.9)

there the authors proved that the concentration points are located on the middle ground of the competing
potential functions and in some cases are given explicitly in terms of these functions. Cingolani and Lazzo [13]
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obtained a multiplicity result involving the set of global minima of a function which provides some kind of
global median value between the minimum of V and the maximum of K and Q. We finally mention the paper
of Ambrosetti, Malchiodi and Secchi [9] consider the case Q = 0. Among other results, they proved that the
number of solutions of (1.9) is related with the set of minima of a function given explicitly in terms of V,K, r,
and the dimension N . Ding and Liu [15] considered

(−iε∇ +A(z))2 u+ V (x)u = Q(x)
(
g(|u|) + |u|2∗−2

)
u, in RN

for u ∈ H1(RN ,C), where the function A : RN → RN denotes a continuous magnetic potential associated with
a magnetic field B (i.e. curlA = B), g(|u|)u is a superlinear and subcritical. Under suitable assumptions on the
potentials, the authors obtained existence and new concentration phenomena of the semiclassical ground states.
However, it is hard to study the competition between the external potential V (x) and the nonlinear potential
P (x) of the Choquard equation

−ε2Δu+ V (x)u = εμ−N
[

1
|x|μ ∗ (P (x)G(u)

)]
P (x)g(u), in RN ,

The difficulty is that the nonlinear potentials P in the equation, in some sense, is convoluted by the Riesz
potential 1

|x|μ , and so it seems impossible to construct an auxiliary function characterized by V and P . Moreover,
to the best knowledge of the author, there seems no existence results for semiclassical problems of the nonlocal
Choquard type equation with critical exponential growth in the plane or the upper critical growth due to
the Hardy−Littlewood−Sobolev inequality. So one of the motivations of the present paper is to study the
interaction between the linear potential V and the nonlinear potential P , and to investigate how the behavior
of these potentials will affect the existence and concentration of these solutions.

We will use the following notations:
• C, Ci denote positive constants.
• BR denote the open ball centered at the origin with radius R > 0.
• C∞

0 (R2) denotes the space of the functions infinitely differentiable with compact support in R2.
• For a mensurable function u, we denote by u+ and u− its positive and negative parts respectively, given by

u+(x) = max{u(x), 0} and u−(x) = min{u(x), 0}.

• Let E be a real Hilbert space and I : E → R be a functional of class C1. We say that (un) ⊂ E is a
Palais-Smale ((PS) for short) sequence at c for I if (un) satisfies

I(un) → c and I ′(un) → 0, as n→ ∞.

Moreover, I satisfies the (PS) condition at c, if any (PS) sequence at c possesses a convergent subsequence.
The paper is organized as follows. In Section 2 we will establish the variational framework and prove some

basic lemmas for special bounded (PS) sequences. In Section 3 we study the properties of the ground state
solutions of the critical nonlocal problem in R2 and establish a comparison lemma for the minimax values. In
Section 4 we use truncating arguments for the potentials to establish some estimates for the critical values.
In the last section, we prove the existence and concentration results for the Choquard equation with critical
exponential growth.
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2. Variational setting

In this section, we are going to study equation (1.6) via variational arguments. Changing variables by u(x) =
v(εx), it is possible to see that (1.6) is equivalent to⎧⎪⎪⎨

⎪⎪⎩
−Δu+ V (εx)u =

[
1

|x|μ ∗ (P (εx)G(u)
)]
P (εx)g(u),

u ∈ H1(R2).

(2.1)

Instead of (h1) and (f1), we introduce the following weaker condition:

g(0) = 0, lim
s→0

h(s)

s
2−μ

2

= 0 (h′1)

and
f(0) = 0, lim

s→0

f(s)

s
2−μ

2

= 0. (f ′
1).

The regularity conditions (h1) and (f1) of f, h are used to prove a splitting Lemma for nonlocal nonlinearity
see Lemma 2.8 and the decay property.

The energy functional associated to equation (2.1) then can be expressed by

Iε(u) =
1
2
‖u‖2

ε − GP (u),

where

GP (u) =
1
2

∫
R2

[
1

|x|μ ∗ (P (εx)G(u)
)]
P (εx)G(u)

and

‖u‖ε :=
(∫

R2

(|∇u|2 + V (εx)|u|2))1/2

is an equivalent norm on E. From the growth assumptions on g, f and Remark 1.2, using Lemma 1.3 and the
Hölder inequality, we know that G(u) ∈ L

4
4−μ (R2) for any u ∈ H1(R2). Thus the Hardy−Littlewood−Sobolev

inequality implies that Iε is well defined on E and belongs to C1 with its derivative given by

〈I ′ε(u), ϕ〉 =
∫

R2
(∇u∇ϕ+ V (εx)uϕ) − G′

P (u)[ϕ] ∀u, ϕ ∈ E,

where

G′
P (u)[ϕ] :=

∫
R2

[
1

|x|μ ∗ (P (εx)G(u)
)]
P (εx)g(u)ϕ.

The Nehari manifold associated to Iε will be denote by Nε, that is,

Nε =
{
u ∈ E : u �= 0, 〈I ′ε(u), u〉 = 0

}
.

In the next two lemmas we check that the Nehari manifold is bounded away from 0 and the functional Iε
satisfies the geometric conditions of the Mountain-Pass Theorem.

Lemma 2.1. Suppose that conditions (h′1)−(h3) and (f ′
1)−(f3) are satisfied. There exists α > 0, independent

of ε, such that
‖u‖ε ≥ α, ∀u ∈ Nε. (2.2)
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Proof. Without loss of generality, we may assume that θ := θ1 = θ2 > 2. For any δ > 0, p > 1 and β > 1, there
exists C(δ, p, β) > 0 such that

G(s) <
2
θ
g(s)s ≤ δs

4−μ
2 + C(δ, p, β)sp

[
eβ4πs2 − 1

]
, ∀s ∈ R,

then it follows that

|G(u)| 4
4−μ

≤ C|g(u)u| 4
4−μ

≤ εC|u|
4−μ

2
2 + C(ε, p, β)

∣∣up[eβ4πu2 − 1
]∣∣

4
4−μ

. (2.3)

Since the imbedding E ↪→ Lp(R2) is continuous for any p ∈ (2,+∞), we know that there exists a constant C1

such that ∫
R2

|u| 4p
4−μ
[
eβ4πu2 − 1

] 4
4−μ ≤

(∫
R2

|u| 8p
4−μ

) 1
2
(∫

R2

[
eβ4πu2 − 1

] 4
4−μ

) 1
2

≤ C1‖u‖
4p

4−μ
ε

(∫
R2

[
e(

4β
4−μ 4πu2) − 1

]) 1
2

.

Notice that ∫
R2

[
e( 4β

4−μ 4πu2) − 1
]

=
∫

R2

[
e
( 4β
4−μ ‖u‖2

ε4π u2

‖u‖2
ε
) − 1

]
,

then if ‖u‖ε is small enough, Lemma 1.3 implies that there exists a constant C2 such that

∫
R2

[
e

(
4β

4−μ‖u‖2
ε4π u2

‖u‖2
ε

)
− 1

]
≤ C2.

Thus, by (2.3), there exists C3 such that

|G(u)| 4
4−μ

≤ δ‖u‖
4−μ
2

ε + C3‖u‖pε.

Recall that P (x) is bounded, by the Hardy−Littlewood−Sobolev inequality, we know

G′
P (u)[u] ≤ δ2C4‖u‖4−μ

ε + C4‖u‖2p
ε .

Now, since u ∈ Nε, we have
‖u‖2

ε = G′
P (u)[u],

thus
‖u‖2

ε ≤ δ2C5‖u‖4−μ
ε + C5‖u‖2p

ε .

The conclusion then follows immediately. �

We are ready to check that the functional Iε satisfies the Mountain Pass Geometry.

Lemma 2.2. Suppose that conditions (h′1)−(h3) and (f ′
1)−(f3) are satisfied.

(1). There exist ρ, δ0 > 0 such that Iε|S ≥ δ0 > 0 for all u ∈ S = {u ∈ E : ‖u‖ε = ρ};
(2). There is e ∈ E with ‖e‖ε > ρ such that Iε(e) < 0.

Proof. The proof of (1) is similar to the one of Lemma 2.1, we only prove (2) here. Fix u0 ∈ E with u+
0 (x) =

max{u0(x), 0}, we set

w(t) = GP

(
tu0

‖u0‖ε

)
> 0 for t > 0.
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By the Ambrosetti−Rabinowitz condition (f3), we know

w′(t)
w(t)

≥ θ

t
for t > 0.

Integrating this over [1, s‖u0‖ε] with s > 1
‖u0‖ε

, we get

GP (su0) ≥ GP

(
u0

‖u0‖ε

)
‖u0‖θεsθ.

Therefore
Iε(su0) ≤ C1s

2 − C2s
θ for s >

1
‖u0‖ε ·

Since θ > 2, the conclusion (2) follows easily by taking e = su0 with s large enough. �

Applying the Mountain Pass theorem without (PS) condition, we know there is a (PS)cε sequence (un) ⊂ E,
i.e.

I ′ε(un) → 0, Iε(un) → cε,

where cε defined by
0 < cε := inf

u∈E\{0}
max
t≥0

Iε(tu) (2.4)

and moreover there is a constant c > 0 independent of ε such that cε > c > 0. Using assumptions (h4) and (f4),
for each u ∈ E\{0}, there is a unique t = t(u) such that

Iε(t(u)u) = max
s≥0

Iε(su) and t(u)u ∈ Nε.

Then it is standard to see that the Minimax value cε can be characterized by

cε = inf
u∈Nε

Iε(u). (2.5)

Lemma 2.3. Suppose that conditions (h′1)−(h5) and (f ′
1)−(f4) are satisfied. Let cε be the minimax value defined

in (2.4), then there holds

cε <
(2 − μ)(θ − 2)

8θ
·

Furthermore, the (PS)cε sequence (un) also satisfies

lim sup
n→∞

‖un‖2
ε <

2 − μ

4
·

Proof. Let up ∈ E be the positive radial function such that Sp is achieved. By assumption (h5), it is easy to see
that

cε = inf
u∈E\{0}

max
t≥0

Iε(tu)

≤ max
t≥0

Iε(tup)

≤ max
t≥0

{
t2

2

∫
R2

(|∇up|2 + κmax|up|2) −
t2pτ2

minC
2
p

2

∫
R2

[
1

|x|μ ∗ |up|p
]
|up|p

}

=
(p− 1)S

2p
p−1
p

2p
p

p−1 (τminCp)
2

p−1

<
(2 − μ)(θ − 2)

8θ
·
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From assumptions (h3) and (f3), there holds

cε = lim
n→∞

(
Iε(un) − 1

θ
〈I ′ε(un), un〉

)
≥
(

1
2
− 1
θ

)
lim sup
n→∞

‖un‖2
κ,

consequently, we know

lim sup
n→∞

‖un‖2
ε <

2 − μ

4
· �

Next, we are ready to prove some boundedness Lemmas.

Lemma 2.4. Suppose that conditions (h′1), (h2) (f ′
1) and (f2) are satisfied. Let (un) be a bounded sequence such

that lim sup
n→∞

‖un‖2
ε <

(2 − μ)
4

. Then there exists C such that

∣∣∣∣ 1
|x|μ ∗G(un)

∣∣∣∣
L∞(R2)

< C, ∀n ∈ N.

Proof. For β > 1, there exists C0 > 0 such that

G(s) ≤ C0

(
|s| 4−μ

2 + |s|[eβ4πs2 − 1
])
, ∀s ∈ R,

and so ∣∣∣∣ 1
|x|μ ∗G(un)

∣∣∣∣ =
∣∣∣∣
∫

R2

G(un)
|x− y|μ

∣∣∣∣
=

∣∣∣∣∣
∫
|x−y|≤1

G(un)
|x− y|μ

∣∣∣∣∣+ C

∣∣∣∣∣
∫
|x−y|≥1

G(un)
|x− y|μ

∣∣∣∣∣
≤
∫
|x−y|≤1

|un| 4−μ
2 + |un|

[
eβ4π|un|2 − 1

]
|x− y|μ

+ C

∫
|x−y|≥1

(
|un|

4−μ
2 + |un|

[
eβ4π|un|2 − 1

])
.

Since
1

|y|μ ∈ L
2+δ

μ (Bc1(0)) ∀ δ > 0,

take δ ≈ 0+ such that
q1,δ =

4 − μ

2
2 + δ

(2 + δ) − μ
> 2.

Using the Hölder inequality, we get

∫
|x−y|≥1

|un| 4−μ
2

|x− y|μ ≤ C0

(∫
|x−y|≥1

|un|q1,δ

) (2+δ)−μ
2+δ

= C1.

Since
lim sup
n→∞

‖un‖2
ε <

2 − μ

4
,

by the Trudinger-Moser inequality, fixing β > 1 close to 1, there exists C2 such that

∫
|x−y|≥1

|un|
[
eβ4πu2

n − 1
] ≤ |un|2

∫
R2

([
e
2βm4π

u2
n

‖un‖2
ε − 1

]) 1
2

≤ C2.
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Choosing t ∈ ( 2
2−μ ,+∞), since (4−μ)t

2 > 2 and 1 − tμ
t−1 > −1, it follows from the Hölder inequality that

∫
|x−y|≤1

|un| 4−μ
2

|x− y|μ ≤
(∫

|x−y|≤1

|un|
(4−μ)t

2

) 1
t
(∫

|x−y|≤1

1

|x− y| tμ
t−1

) t−1
t

≤ C2

(∫
|r|≤1

|r|1− tμ
t−1 dr

) t−1
t

≤ C3

for some C3. For t > 2
2−μ and close to 2

2−μ , using again the Trudinger-Moser inequality, we know there is C4

such that∫
|x−y|≤1

|un|
[
eβ4πu2

n − 1
]

|x− y|μ ≤
(∫

|x−y|≤1

|un
[
eβ4πu2

n − 1
]|t
) 1

t
(∫

|x−y|≤1

1

|x− y| tμ
t−1

) t−1
t

≤
(∫

|x−y|≤1

|un|2t
) 1

2t
(∫

|x−y|≤1

[
e
2βt‖un‖2

ε4π
u2

n
‖un‖2

ε − 1

]) 1
2t
(∫

|r|≤1

|r|1− tμ
t−1 dr

) t−1
t

≤ C4.

Thus the conclusion is proved. �
Lemma 2.5. Suppose that conditions (h′1), (h2), (f ′

1) and (f2) are satisfied. Let (un) be a bounded sequence

with lim sup
n→∞

‖un‖2
ε <

(2 − μ)
4

, then there exists C such that

|g(un)| 4
2−μ

≤ C, |G(un)| 4
4−μ

≤ C, ∀n ∈ N.

Proof. Since conditions (h′1), (h2), (f ′
1) and (f2) are satisfied, for any δ > 0 and β > 1, there exist C(δ, β) > 0

such that
|g(s)| ≤ δ|s| 2−μ

2 + C(δ, β)
[
eβ4πs2 − 1

]
, ∀s ∈ R,

and
|G(s)| ≤ δ|s| 4−μ

2 + C(δ, β)|s|[eβ4πs2 − 1
]
, ∀s ∈ R.

Then
|g(un)| 4

2−μ
≤ δ|un|

2−μ
2

2 + C(δ, β)|eβ4πu2
n − 1| 4r

4−μ

≤ C1‖un‖
2−μ
2

ε + C1

(∫
R2

[
e

(
4β

2−μ‖un‖2
ε4π

u2
n

‖un‖2
ε

)
− 1

]) 2−μ
4

.

Since lim sup ‖un‖2
ε <

(2−μ)
4 , taking β > 1 sufficiently close to 1, by the Trudinger-Moser inequality, we know

there exist C2 such that
|g(un)| 4

2−μ
≤ C2.

Similarly,

|G(un)| 4
4−μ

≤ δ|un|
4−μ

2
2 + C(δ, β)

∣∣∣uneβ4πu2
n − 1

∣∣∣
4

4−μ

≤ δ‖un‖
4−μ

2
ε + C(δ, β)|un|2

(∫
R2

[e
4β

2−μ‖un‖2
ε4π

u2
n

‖un‖2
ε − 1]

) 2−μ
4

≤ C3‖un‖
4−μ

2
ε + C3‖un‖ε

(∫
R2

[e
( 4βm
2−μ 4π

u2
n

‖un‖2
ε
) − 1]

) 2−μ
4

,
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by using again the Trudinger-Moser inequality, there exists C5 > 0 such that

|G(un)| 4
4−μ

≤ C5. �

Lemma 2.6. Suppose that conditions (h′1), (h2), (f ′
1) and (f2) are satisfied. Let (un) ⊂ E be the bounded (PS)cε

sequence with weak limit uε in E, then uε satisfies I ′ε(uε) = 0.

Proof. We need only to prove that, for any ϕ ∈ E, there holds

G′
Q(un)[ϕ] → G′

Q(uε)[ϕ]. (2.6)

In fact, for any ϕ ∈ E,

|G′
Q(un)[ϕ]−G′

Q(uε)[ϕ]| =
∣∣∣∣
∫

R2

{[
1

|x|μ ∗ (Q(εx)G(un)
)]
Q(εx)g(un) −

[
1

|x|μ ∗(Q(εx)G(uε)
)]
Q(εx)g(uε)

}
ϕ

∣∣∣∣
≤ C

∣∣∣∣
∫

R2

[
1

|x|μ ∗G(un)
] (
g(un) − g(uε)

)
ϕ

∣∣∣∣+ C

∣∣∣∣
∫

R2

[
1

|x|μ ∗(G(un) −G(uε)
)]
g(uε)ϕ

∣∣∣∣ .
(2.7)

For the first term, since Q(x) is bounded, it follows from Lemma 2.4 that∣∣∣∣ 1
|x|μ ∗G(un)

∣∣∣∣
L∞(R2)

< C, ∀n ∈ N.

Then, ∣∣∣∣
∫

R2

[
1

|x|μ ∗G(un)
] (
g(un) − g(uε)

)
ϕ

∣∣∣∣ ≤ C

∣∣∣∣
∫

R2

(
g(un) − g(uε)

)
ϕ

∣∣∣∣ .
Since un(x) → uε(x) a.e. in R2, the continuity of g implies that g(un(x)) → g(uε(x)) a.e. in R2. Moreover, by
Lemma 2.5, (g(un)) is bounded in L

4
2−μ (R2), from which it follows that

g(un) ⇀ g(uε) in L
4

2−μ (R2).

Consequently, ∣∣∣∣
∫

R2

[
1

|x|μ ∗G(un)
] (
g(un) − g(uε)

)
ϕ

∣∣∣∣→ 0 (2.8)

for any ϕ ∈ E.
For the second term,∣∣∣∣

∫
R2

[
1

|x|μ ∗ (G(un) −G(uε)
)]
g(uε)ϕ

∣∣∣∣ =
∣∣∣∣
∫

R2

(
G(un) −G(uε)

) [ 1
|x|μ ∗ (g(uε)ϕ)

]∣∣∣∣ .
Since un(x) → uε(x) a.e. in R2, the continuity of G implies that G(un(x)) → G(uε(x)) a.e. in R2. Moreover, by
Lemma 2.5 that (G(un)) is bounded in L

4
4−μ (R2), we get

G(un) ⇀ G(uε) in L
4

4−μ (R2).

Since
1

|x|μ ∗ (g(uε)ϕ) ∈ L
4
μ (R2),

we obtain, ∣∣∣∣
∫

R2

[
1

|x|μ ∗ (G(un) −G(uε)
)]
g(uε)ϕ

∣∣∣∣→ 0, (2.9)
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for any ϕ ∈ E. From (2.8) and (2.9), we know (2.6) holds. Thus, we immediately obtain that

〈I ′ε(uε), ϕ〉 = 0,

for any ϕ ∈ E. This means that the weak limit uε is a critical point of Iε. �

Remark 2.7. From Lemma 2.6, we know that uε is a critical point of Iε. However, it is still not clear whether
it is nontrivial and cε is achieved, in order to prove that cε is attained by a nontrivial function, we will use a
cutting-off arguments for the potentials in Section 4.

In the following we prove a nonlocal version of the Brezis−Lieb Lemma for nonlinearities of critical exponential
growth.

Lemma 2.8. Suppose that conditions (h1), (h2), (f1) and (f2) are satisfied and let (un) be a bounded sequence
in E satisfying un ⇀ u and

lim sup
n→∞

‖un‖2
ε <

2 − μ

4
·

Then
GP (un) −GP (un − u) −GP (u) = on(1) (2.10)

and
G′
P (un)[ϕ] −G′

P (un − u)[ϕ] −G′
P (u)[ϕ] = on(1) (2.11)

uniformly for ϕ ∈ E, ‖ϕ‖ε ≤ 1.

Proof. We only prove the conclusion (2.10) for GQ under assumption (h′1) and (f ′
1) as an example, the stronger

assumption (h1) and (f1) are only used to prove the conclusion (2.11) for G′
P . Set vn = un − u, we know

G(un) −G(vn) = G(vn + u) −G(vn) = g(vn + tnu)u,

0 < tn < 1. Set wn = vn + tnu, from a result due to Brezis and Lieb [11], we get

‖un‖2
ε = ‖vn‖2

ε + ‖u‖2
ε + on(1),

therefore
‖wn‖2

ε ≤ 2‖un‖2
ε,

and consequently,

lim sup
n→∞

‖wn‖2
ε ≤

2 − μ

2
· (2.12)

Given δ > 0, q > 1, and β > 1, we get

G(vn + u) −G(vn) ≤ δ|vn + tnu|
2−μ

2 |u| + Cδ|vn + tnu|q|u|Hn,

where Hn = eβ4πw2
n − 1. Since 0 < tn < 1 and for a, b > 0 and 0 < s < 1 there holds (a+ b)s < as+ bs, we know

G(vn + u) −G(vn) ≤ δ|vn|
2−μ

2 |u| + δ|u| 4−μ
2 + C|vn|q|u|Hn + C|u|q+1Hn,

and then

|G(vn + u) −G(vn) −G(u)| 4
4−μ ≤ (δC|vn|2 + C1|u|2 + C1|vn|

4q
4−μ |u| 4

4−μ H̃n + C1|u|q+1H̃n + C1|u|
4q

4−μH
)
,
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where H̃n = e
4β

4−μ 4πw2
n − 1 and H = e

4β
4−μ 4πu2 − 1. Using Young’s inequality, we have

|G(vn + u) −G(vn) −G(u)| 4
4−μ

≤ (δC|vn|2 + C1|u|2 + δC1|vn|
4qr1
4−μ H̃r1

n + C2|u|
4r′1
4−μ + δH̃r2

n + C3|u|(q+1)r′2 + C1|u|
4q

4−μH
)
,

(2.13)

where r1, r′1, r2, r
′
2 > 1 satisfies

1
r1

+
1
r′1

= 1 and
1
r2

+
1
r′2

= 1. From (2.12), taking β, r > 1 and close to 1, by

the Trudinger-Moser inequality, we get

∫
R2

[
e
( 4βr
4−μ ‖wn‖2

ε4π
w2

n
‖wn‖2

ε
) − 1

]
< C. (2.14)

Define
Ψδ,n = max

{
|G(vn + u) −G(vn) −G(u)| 4

4−μ −
(
δ|vn|2 + δC1|vn|

4qr1
4−μ H̃r1

n + δH̃r2
n

)
, 0
}
,

from (2.13), it is easy to see

Ψδ,n → 0, a.e. in R2 and Ψδ,n ≤ (C1|u|2 + C3|u|(q+1)r′2 + C1|u|
4q

4−μH
) ∈ L1(R2).

Then the Lebesgue’s theorem implies that∫
R2
Ψδ,n → 0, as n→ ∞. (2.15)

Using (2.14) we know

|G(vn + u) −G(vn) −G(u)| 4
4−μ ≤

(
δ|vn|2 + δC1|vn|

4qr1
4−μ H̃r1

n + δH̃r2
n

)
+ Ψδ,n,

we can obtain
lim sup
n→∞

∫
R2

|G(vn + u) −G(vn) −G(u)| 4
4−μ ≤ Cδ,

by the arbitrariness of δ, we know

lim
n→+∞ sup

∫
R2

|G(vn + u) −G(vn) −G(u)| 4
4−μ = 0 (2.16)

which means
G(un) −G(un − u) → G(u) in L

4
4−μ (R2).

Using an equivalent form of the Hardy−Littlewood−Sobolev inequality, which says if w ∈ L
4

4−μ (R2) there holds∣∣∣∣ 1
|x|μ ∗ w

∣∣∣∣
μ
4

≤ Cμ|w| 4
4−μ

.

Consequently,
1

|x|μ ∗
(
P (εx)

(
G(un) −G(un − u)

))→ 1
|x|μ ∗ (P (εx)

(
G(u)

)
in L

4
μ (R2),

therefore

1
2

∫
R2

[
1

|x|μ ∗
(
P (εx)

(
G(un) −G(un − u)

))]
P (εx)

(
G(un) −G(un − u)

)→ GP (u) (2.17)



192 M. YANG

and ∫
R2

[
1

|x|μ ∗
(
P (εx)(G(un) −G(un − u))

)]
P (εx)G(un − u) → 0, (2.18)

since G(un − u) ⇀ 0 in L
4

4−μ (R2). Notice that

GP (un) − GP (un − u) −
∫

R2

[
1

|x|μ ∗
(
P (εx)(G(un) −G(un − u))

)]
P (εx)G(un − u)

=
1
2

∫
R2

[
1

|x|μ ∗
(
P (εx)

(
G(un) −G(un − u)

))]
P (εx)

(
G(un) −G(un − u)

)
,

(2.19)

we obtain from (2.17)-(2.19) the conclusion (1) for GP . �

3. An autonomous problem

To study the existence and concentration of solutions of equation (1.6), we need to establish some comparison
lemmas for the Mountain-Pass levels of the critical equation with different coefficients. The existence of ground
state solution for the nonlocal Hartree equation in R2 with critical exponential growth was obtained in a recent
paper by Alves and Yang in [4, 6], there the authors studied the existence of ground state solutions for the
following equation with periodic nonlinearity

−Δu+ V (x)u =
[

1
|x|μ ∗ F (x, u)

]
f(x, u) in R2. (3.1)

In the present paper we will consider the autonomous equation of the form⎧⎨
⎩−Δu+ κu =

[
1

|x|μ ∗ [τH(u) + νF (u)]
]

[τh(u) + νf(u)], in R2,

u ∈ H1(R2),
(3.2)

where κ ∈ [κmin, κmax], τ ∈ [τmin, τmax] and ν ∈ [τmin, τmax] are three positive constants.
The energy functional associated to equation (3.2) is defined by

Φκ,τ,ν(u) =
1
2
‖u‖2

κ − Gτν(u),

where

Gτν(u) =
1
2

∫
R2

[
1

|x|μ ∗ [τH(u) + νF (u)]
]

[τH(u) + νF (u)]

and

‖u‖κ :=
(∫

R2

(|∇u|2 + κ|u|2))1/2

is an equivalent norm on E. The Mountain Pass value mκ,τ,ν of Φκ,τ,ν on E is defined by

mκ,τ,ν := inf
u∈E\{0}

max
t≥0

Φκ,τ,ν(tu). (3.3)

Denote by Nκ,τ,ν the Nehari manifold of Φκ,τ,ν , then mκ,τ,ν can also be characterized by

mκ,τ,ν = inf
u∈Nκ,τ,ν

Φκ,τ,ν(u). (3.4)

The same arguments in Lemma 2.3 implies that the bounded (PS) sequence satisfies

lim sup
n→∞

‖un‖2
κ ≤ 2θ

θ − 2
mκ,τ,ν <

2 − μ

4
· (3.5)

Following [6], we give a sketch proof of the existence of ground states for the completeness.
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Theorem 3.1. Suppose that conditions (f1)−(f5) are satisfied. Then, for any κ ∈ [κmin, κmax], τ ∈ [τmin, τmax],
ν ∈ [τmin, τmax], the equation (3.2) has a ground state solution uκ,τ,ν with Φκ,τ,ν(uκ,τ,ν) = mκ,τ,ν.

Proof. Let (un) be a (PS)mκ,τ,ν sequence. Since (un) is bounded with lim sup ‖un‖2
κ <

2−μ
4 , we have either (un)

is vanishing, i.e., there exists r > 0 such that

lim sup
y∈R2

∫
Br(y)

|un|2 = 0

or non-vanishing, i.e., there exist r, δ > 0 and a sequence (yn) ⊂ Z2 such that

lim
n→∞

∫
Br(yn)

|un|2 ≥ δ.

If (un) is vanishing, then by Lions’ result (see for example, Lem. I.21 of [35]), we know

un → 0 in Ls(R2), 2 < s < +∞.

Using the Hardy−Littlewood−Sobolev inequality and the Hölder’s inequality, we know∣∣∣∣
∫

R2

[
1

|x|μ ∗ F (un)
]
f(un)un

∣∣∣∣ ≤ C|F (un)| 4
4−μ

|f(un)un| 4
4−μ

≤ C|f(un)un|2 4
4−μ

.

Since for any δ > 0, p > 1 and β > 1, there exists C(δ, p, β) > 0 such that

f(s) ≤ δs
2−μ

2 + C(δ, p, β)sp−1
[
eβ4πs2 − 1

]
, ∀s ∈ R,

then,

|f(un)un| 4
4−μ

≤ δ|un|
4−μ

2
2 + C(δ, p, β)|un|

4−μ

4t′
4pt′
4−μ

(∫
R2

[
e

(
4βt
4−μ‖un‖2

κ4π
u2

n
‖un‖2

κ

)
− 1

]) 4−μ
4t

where t, t′ > 1 satisfying 1
t + 1

t′ = 1. Taking β, t > 1 sufficiently close to 1, by the Trudinger-Moser inequality,
we know there exist C1 such that

(∫
R2

[
e

(
4βt
4−μ‖un‖24π

u2
n

‖un‖2
κ

)
− 1

]) 4−μ
4t

≤ C1,

thus ∣∣∣∣
∫

R2

[
1

|x|μ ∗ F (un)
]
f(un)un

∣∣∣∣ ≤ ε|un|
4−μ

2
2 + C2|un|

4−μ

4t′
4pt′
4−μ

.

Since t > 1 is close to 1, we know 4pt′

4−μ > 2, then

∣∣∣∣
∫

R2

[
1

|x|μ ∗ F (un)
]
f(un)un

∣∣∣∣→ 0, n→ ∞,

similarly we have ∣∣∣∣
∫

R2

[
1

|x|μ ∗H(un)
]
h(un)un

∣∣∣∣→ 0, n→ ∞

and ∣∣∣∣
∫

R2

[
1

|x|μ ∗H(un)
]
h(un)un

∣∣∣∣→ 0, n→ ∞.
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Consequently, we have
un → 0 in E, n→ ∞,

which yields a contradiction immediately. Thereby, vanishing case does not hold.
Let us now define vn = un(· − yn), then ‖vn‖κ = ‖un‖κ and∫

Br(0)

|vn|2 ≥ δ.

Since Φκ,τ,ν and Φ′
κ,τ,ν are both invariant by Z2-translation, we can deduce that

Φκ,τ,ν(vn) → cV and Φ′
κ,τ,ν(vn) → 0.

Since (vn) is also bounded, we may assume vn ⇀ v. Once that vn → v in L2
loc(R

2), we have v �= 0. To show
that Φ′

κ,τ,ν(v) = 0, we can repeat the same arguments in Lemma 2.6. �

In the following, we will study the property of the ground state solution obtained in Theorem 3.1. For
simplicity, we will denote the solution uκ,τ,ν by u.

Lemma 3.2. Assume that conditions (h1)−(h5) and (f1)−(f4) are satisfied. If u is the ground state solution
obtained in Theorem 3.1 then the positive solution u belongs to C2(R2) and decays to zero as |x| → ∞. Moreover,
there exist C, β > 0 such that the ground state solution satisfies

|u(x)| ≤ Cexp(−β|x|), ∀x ∈ R2.

Proof. Define

K(x) :=
1

|x|μ ∗ [τH(u) + νF (u)],

and following the steps in Lemma 2.4, there exists C > 0 such that

|K(x)| ≤ C. (3.6)

If u is a solution
−Δu+ κu = K(x)[τh(u) + νf(u)], in R2

with K ∈ L∞(R2). By the Trundiger-Moser inequality, h(u), f(u) ∈ Lq(R2) for q large enough, adapting the
Moser iteration arguments found in [3], we can show that there exists C > 0 such that

|u|∞ < C,

and u decays to zero as |x| → ∞. The regularity theory of elliptic equation implies u ∈ C2
loc(R

2). Applying
Harnack’s inequality, we can conclude that u(x) > 0 in R2.

The property of exponential decay at infinity follows from a standard comparison arguments. Notice that
(h1) and (f1) implies that

lim
s→0

h(s)
s

= 0, lim
s→0

f(s)
s

= 0.

The fact that the solution u decay uniformly to zero as |x| → +∞, we can take ρ0 > 0 such that

K(x)
[τh(u) + νf(u)]

u(x)
≤ κ

2

for all |x| ≥ ρ0. Consequently,

−Δu(x) +
κ

2
u(x) = K(x)

[τh(u) + νf(u)]
u(x)

− κ

2
u(x) ≤ 0

for all |x| ≥ ρ0. Let s and T be positive constants such that
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s2 < κ
2 and u(x) ≤ T exp(−sρ0) for all |x| = ρ0.

Hence, the function ψ(x) = T exp(−s|x|) satisfies

−Δψ +
κ

2
ψ ≥

(κ
2
− s2

)
ψ > 0

for all x �= 0. Therefore, taking η = max {u− ψ, 0} ∈ H1
0 (|x| > ρ0) as a test function, we get

0 ≥
∫

R2

(
∇u∇η +

κ

2
uη
)

≥
∫

R2

[
(∇u −∇ψ)∇η +

κ

2
(u− ψ)η

]

≥ κ

2

∫
{x∈R2:u≥ψ}

|u− ψ|2 ≥ 0

for all |x| > ρ0. Consequently, the set Ω := {x ∈ R2 : |x| > ρ0 and u ≥ ψ(x)} is empty, proving the Lemma. �

The following lemma describes a comparison between the Mountain Pass values for different parameters
κ, τ, ν > 0, which will play an important role in proving the existence results in Section 4.

Lemma 3.3. Let κi ∈ [κmin, κmax], τi ∈ [τmin, τmax], νi ∈ [τmin, τmax], i = 1, 2, with min{κ2 − κ1, τ1 − τ2, ν1 −
ν2} ≥ 0. Then mκ1,τ1,ν1 ≤ mκ2,τ2,ν2 . If additionally max{κ2−κ1, τ1−τ2, ν1−ν2} > 0 then mκ1,τ1,ν1 < mκ2,τ2,ν2 .

Proof. We prove mκ1,τ1,ν1 ≤ mκ2,τ2,ν2 for example. From Theorem 3.1, choose u be a solution of problem (3.2)
with coefficients κ2, τ2, ν2 such that Φκ2,τ2,ν2(u) = mκ2,τ2,ν2 . There holds

Φκ2,τ2,ν2(u) = max
t≥0

Φκ2,τ2,ν2(tu)

and there exists t0 > 0 such that Φκ1,τ1,ν1(t0u) = maxt≥0 Φκ1,τ1,ν1(tu). Then

mκ1,τ1,ν1 = inf
w∈E\{0}

max
t≥0

Φκ1,τ1,ν1(tw)

≤ max
t≥0

Φκ1,τ1,ν1(tu)

= Φκ1,τ1,ν1(t0u)
≤ Φκ2,τ2,ν2(t0u)
≤ Φκ2,τ2,ν2(u)
= mκ2,τ2,ν2 . �

4. Cutting-off functionals

In order to prove that cε in (2.4) can be attained by a nontrivial function, we need to introduce some
cutting-off techniques for problem (2.1). For any κmin ≤ a ≤ κ∞, τ∞ ≤ b ≤ τmax, we set

V a(εx) := max{a, V (εx)}, P b(εx) := min{b, P (εx)}

and consider the auxiliary equation

−Δu+ V a(εx)u =
[

1
|x|μ ∗ (P b(εx)G(u)

)]
P b(εx)g(u).
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Using the notations above, let us investigate the functional

Iabε (u) =
1
2

∫
R2

(|∇u|2 + V a(εx)|u|2)− Gb
P (u),

where

Gb
P (u) =

1
2

∫
R2

[
1

|x|μ ∗ (P b(εx)G(u)
)]
P b(εx)G(u).

The associated Nehari manifold will be denoted by

N ab
ε =

{
u ∈ E : u �= 0, 〈Iabε

′
(u), u〉 = 0

}
while the corresponding least energy will denoted by cabε .

Lemma 4.1. Suppose that conditions (h1)−(h5) and (f1)−(f4) are satisfied. Then,

(1) ma,b,b ≤ cabε ;
(2) lim supε→0 c

ab
ε ≤ mV a(0),P b(0),P b(0). If V (0) ≤ a and P (0) ≥ b, then

lim sup
ε→0

cabε = ma,b,b.

Proof.

(1) Observe that

Iabε (u) = Φa,b,b(u) +
1
2

∫
R2

(V a(εx) − a)|u|2 +
1
2

∫
R2

∫
R2

(
b2 − P bε (y)P

b(εx)
)
G(u(y))G(u(x))

|x− y|μ ·

Then, the same arguments explored in Lemma 3.3 lead to

ma,b,b ≤ cabε .

(2) Let u be a solution of equation (3.2) with coefficients κ = V a(0), τ = P b(0), ν = P b(0) such that
ΦV a(0),P b(0),P b(0)(u) = mV a(0),P b(0),P b(0). Then there is an unique tε := tε(u) > 0 such that tεu ∈ N ab

ε .
Thus

0 < cabε ≤ Iabε (tεu) = max
s≥0

Iabε (su).

From the boundedness of V , P and Q, applying the same arguments explored in Lemma 2.2, we know that
there exists C1, C2 > 0 such that

Iabε (su) ≤ C1s
2 − C2s

θ for s >
1

‖u‖ε ·

Thereby, there exists T > 0 independent of ε such that Iabε (su) < 0 for all s ≥ T . Consequently, tε < T and
we may assume that tε → t0.

Observe that

Iabε (tεu) =ΦV a(0),P b(0),P b(0)(tεu) +
1
2

∫
R2

(V a(εx) − V a(0))|tεu|2

+
1
2

∫
R2

∫
R2

(
P b(0)2 − P bε (y)P

b(εx)
)
G(tεu(y))G(tεu(x))

|x− y|μ ·
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Once that P is bounded, G is increasing and tε → t0, Lebesgue’s theorem implies∫
R2

(
V a(εx) − V a(0)

)
|tεu|2 → 0

and ∫
R2

∫
R2

(
P b(0)2 − P bε (y)P

b(εx)
)
G(tεu(y))G(tεu(x))

|x− y|μ → 0,

as ε→ 0. Consequently, there holds

lim sup
ε→0

cabε ≤ lim sup
ε→0

Iabε (tεu)

= lim sup
ε→0

(
ΦV a(0),P b(0),P b(0)(tεu) + oε(1)

)
= ΦV a(0),P b(0),P b(0)(t0u)

≤ ΦV a(0),P b(0),P b(0)(u),

finishing the proof. �

Without loss of generality, in the following we may assume that x∗ = 0 ∈ P in (V P1) or x∗ = 0 ∈ V ∩ P if
V ∩ P �= ∅. Let

e := V (0) = min
x∈P

V (x) ≤ V (x) for all |x| ≥ R. (4.1)

We have an important upper bound for the Mountain Pass level cε defined in (2.4).

Lemma 4.2. There holds
lim sup
ε→0

cε ≤ me,τmax,τmax .

Proof. Since V aε (x) = max{a, V (εx)}, P bε (x) = min{b, P (εx)} , if we choose a = κmin and b = τmax, then
V aε (x) = V (εx) and P bε (x) = P (εx). Consequently, by the definition of Iabε , there holds

cabε = cε.

From Lemmas 4.1, we know
lim sup
ε→0

cε ≤ me,τmax,τmax . �

To consider the existence of semiclassical states concentrating at the nonlinear potential, we need to introduce
the second auxiliary problem. In order to do so, we will partially truncate the nonlinear potential P (x), i.e. we
will cut off the potential in front of the subcritical term only. For d ∈ [τmin, τmax), we still set

P d(εx) := min{d, P (εx)}
and consider

−Δu+ V e(εx)u =
(

1
|x|μ ∗ [P d(εx)H(u) + P (εx)F (u)]

)
[P d(εx)h(u) + P (εx)f(u)].

The associated energy functional is defined by

Ĩedε (u) =
1
2

∫
R2

(|∇u|2 + V e(εx)|u|2)− ∫
R2

(
1

|x|μ ∗ [P d(εx)H(u) + P (εx)F (u)]
)

[P d(εx)H(u) + P (εx)F (u)],

the corresponding Nehari manifold is Ñ ed
ε and the least energy is c̃edε .

We have an important lower bound for the least energy c̃edε .
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Lemma 4.3.
c̃edε ≥ me,τmax,d.

Proof. Since V eε (x) ≥ e, P d(εx) ≤ d and Pε(x) ≤ τmax, from the characterization of the value me,τmax,d, we
know

inf
u∈E

max
t≥0

Ĩedε (tu) ≥ inf
u∈E

max
t≥0

Φe,τmax,d(tu),

i.e.
c̃edε ≥ me,τmax,d. �

5. Proof of the main results

In this part, we will prove the existence and concentration of the ground states in Theorem 1.5.

Lemma 5.1. The minimax value cε is achieved if ε is small enough. Hence, problem (2.1) has a solution of
least energy if ε is small enough.

Proof. Since the least energy cε can be characterized by

cε = inf
u∈Nε

Iε(u),

we can choose a minimizing sequence (un) ⊂ Nε of Iε such that Iε(un) → cε. By Ekeland’s variational princi-
ple [35], we may also assume that it is a bounded (PS) sequence at cε. Once that we are assuming that g(s) = 0
for all s ≤ 0, a simple calculus gives ‖u−n ‖ → 0, then we can assume that un ≥ 0 for all n ∈ N. From Lemma 2.6
it follows that I ′ε(uε) = 0. To complete the proof, we need to show that uε �= 0 if ε is small enough.

Assume, by the contrary, there exists a sequence εj → 0 with uεj = 0. For each fixed j, let (un) ⊂ Nεj be
the (PS) sequence at cεj such that un ⇀ uεj = 0 in E. Select d ∈ (τ∞, τmax) and consider the functional Ĩedεj

with constant e defined in (4.1). Note that for each un there is a unique tn such that tnun ∈ Ñ ed
εj

and a unique
t̃n such that t̃nun ∈ N ed

εj
, i.e.

∫
R2

(|∇un|2+V e(εjx)|un|2)=
∫

R2

∫
R2

[P d(εjy)H(tnun) + P (εjy)F (tnun)][P d(εjx)h(tnun) + P (εjx)f(tnun)]tnun
t2n|x− y|μ

and ∫
R2

(|∇un|2 + V e(εjx)|un|2) =
∫

R2

∫
R2

P d(εjy)[H(t̃nun) + F (t̃nun)]P d(εjx)[h(t̃nun) + f(t̃nun)]t̃nun
t̃2n|x− y|μ ·

Obviously, from P d(εx) := min{d, P (εx)}, we know

tn ≤ t̃n.

We first claim that the sequence t̃n is bounded. Since (un) is bounded with ‖un‖2
εj

≥ α, we claim that there
exist (yn) ⊂ R2 and R, δ > 0 such that ∫

BR(yn)

|un|2 ≥ δ, n ∈ N. (5.1)

Thus, the sequence vn(x) = un(x+ yn) is bounded in E and its weak limit v ∈ E is not zero, i.e., v �= 0. Hence,
there is Ω ⊂ R2 with |Ω| > 0 such that

v(x) > 0 ∀x ∈ Ω.



CHOQUARD TYPE EQUATION IN R
2 199

Since (un) is bounded and infx∈R2 P (x) > 0, there is a positive constant C1 satisfying

C1 ≥
∫

R2

∫
R2

G(t̃nun(y))g(t̃nun(x))un(x)
t̃n|x− y|μ =

∫
R2

∫
R2

G(t̃nvn(y))g(t̃nvn(x))vn(x)
t̃n|x− y|μ ∀n ∈ N,

hence

C1 ≥
∫
Ω

∫
Ω

G(t̃nvn(y))g(t̃nvn(x))t̃nvn(x)
t̃2n|x− y|μ ∀n ∈ N.

If t̃n → ∞ as n→ ∞, by Fatou’s lemma and the fact that

lim
s→+∞

G(s)
s

= lim
s→+∞ g(s) = +∞,

we get

C1 ≥ lim inf
n→+∞

∫
Ω

∫
Ω

G(t̃nvn(y))g(t̃nvn(x))vn(x)
t̃n|x− y|μ = +∞

which is absurd. Thereby, (t̃n) is a bounded sequence.
In order to prove (5.1), we suppose by contradiction that

un → 0 in Ls(R2), 2 < s < +∞.

Since for any δ > 0, p > 1 and β > 1, there exists C(δ, p, β) > 0 such that

g(s) ≤ δs
2−μ

2 + C(δ, p, β)sp−1
[
eβ4πs2 − 1

]
, ∀s ∈ R.

Then,

|g(un)un| 4
4−μ

≤ δ|un|
4−μ

2
2 + C(δ, p, β)|un|

4−μ

4t′
4pt′
4−μ

⎛
⎝∫

R2

⎡
⎣e

(
4βt
4−μ ‖un‖2

εj
4π

u2
n

‖un‖2
εj

)
− 1

⎤
⎦
⎞
⎠

4−μ
4t

where t, t′ > 1 satisfying 1
t + 1

t′ = 1. Taking β, t > 1 sufficiently close to 1, by the Trudinger-Moser inequality,
we know there exist C1 such that

⎛
⎝∫

R2

⎡
⎣e

(
4βt
4−μ ‖un‖2

εj
4π

u2
n

‖un‖2
εj

)
− 1

⎤
⎦
⎞
⎠

4−μ
4t

≤
⎛
⎝∫

R2

⎡
⎣e

(
4β‖un‖2

εj
t

4−μ 4π
u2

n
‖un‖2

εj

)
− 1

⎤
⎦
⎞
⎠

4−μ
4t

≤ C1,

where we used the fact that
lim sup
n→∞

‖un‖2
εj
<

2 − μ

4
·

Then, ∣∣G′
P (un)[un]

∣∣ = ∣∣∣∣
∫

R2

[
1

|x|μ ∗ (P (εx)G(un))
]
P (εx)g(un)un

∣∣∣∣
≤ C|g(un)un|2 4

4−μ

≤ δ|un|4−μ2 + C2|un|
4−μ

2t′
4pt′
4−μ

.

Since t > 1 is close to 1, we know 4pt′

4−μ > 2, consequently

G′
P (un)[un] → 0, n→ ∞.
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However,
α ≤ ‖un‖2

εj
= G′

P (un)[un]

which leads to a contradiction.
Furthermore we can prove that the sequence (t̃n) satisfies

lim sup
n→∞

t̃n ≤ 1.

In fact, suppose by contradiction that there exist δ > 0 and a subsequence of (t̃n), still denoted by itself, such
that

t̃n ≥ 1 + δ for all n ∈ N.

Since (un) ⊂ Nεj and t̃nun ∈ N ed
εj

, we have

∫
R2

(|∇un|2 + V (εjx)|un|2) =
∫

R2

∫
R2

P (εjy)G(un)P (εjx)g(un)un
|x− y|μ (5.2)

and ∫
R2

(|∇un|2 + V e(εjx)|un|2) =
∫

R2

∫
R2

P d(εjy)G(t̃nun)P d(εjx)g(t̃nun)t̃nun
t̃2n|x− y|μ · (5.3)

Notice that un ⇀ uεj = 0 in E and un → 0 in Lqloc(R
2) for all q ≥ 1, un → 0 in Lqloc(R

2) for all q ≥ 1. On one
hand, it is easy to see that∫

R2
(V e(εjx) − V (εjx))|un|2 =

∫
{x:V (εjx)≤e}

(e− V (εjx))|un|2 = on(1), (5.4)

since {x : V (εjx) ≤ e} is bounded. On the other hand, one can see∣∣∣∣
∫

R2

∫
R2

P (εjy)G(un)P (εjx)g(un)un
|x− y|μ −

∫
R2

∫
R2

P d(εjy)G(un)P d(εjx)g(un)un
|x− y|μ

∣∣∣∣
≤
∣∣∣∣
∫

R2

[
1

|x|μ ∗ (P (εjx)G(un)
)] (

P (εjx) − P d(εjx)
)
g(un)un

∣∣∣∣
+
∣∣∣∣
∫

R2

[
1

|x|μ ∗ (P d(εjx)g(un)un
)] (

P (εjx) − P d(εjx)
)
G(un)

∣∣∣∣ .
(5.5)

Since for any δ > 0, α > 0, there exists C(δ, α) > 0 such that

G(s) ≤ δs
4−μ

2 + C(δ, α)s
[
eαs

2 − 1
]
, ∀s ∈ R.

Recall that (un) is bounded with

lim sup
n→∞

‖un‖2
εj
<

2 − μ

4
,

it follows that there exists C such that

|P (εjx)g(un)un| 4
4−μ

≤ C.

Since un ⇀ uεj = 0 in E and un → 0 in Lqloc(R
2) for all q ≥ 1, we know

|(P (εjx) − P b(εjx))G(tnun)| 4
4−μ

=
∫
{x:P (εjx)≥b}

|P (εjx) − b| 4
4−μ |G(tnun)| 4

4−μ = on(1),
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since {x : P (εjx) ≥ b} is bounded. Therefore we can conclude that∣∣∣∣
∫

R2

[
1

|x|μ ∗ (P d(εjx)g(un)un)
] (
P (εjx) − P d(εjx)

)
G(un)

∣∣∣∣ = on(1), (5.6)

similarly, we know ∣∣∣∣
∫

R2

[
1

|x|μ ∗ (P (εjx)G(un)
)] (

P (εjx) − P d(εjx)
)
g(un)un

∣∣∣∣ = on(1). (5.7)

From (5.6) and (5.7), we know∫
R2

∫
R2

P (εjy)G(un)P (εjx)g(un)un
|x− y|μ =

∫
R2

∫
R2

P d(εjy)G(un)P d(εjx)g(un)un
|x− y|μ + on(1). (5.8)

Thus, from (5.2), (5.3), (5.4) and (5.8), we get∫
R2

∫
R2

P d(εjy)G(t̃nun)P d(εjx)g(t̃nun)t̃nun
t̃2n|x− y|μ −

∫
R2

∫
R2

P d(εjy)G(un)P d(εjx)g(un)un
|x− y|μ = on(1).

Recall that the sequence vn(x) = un(x+ yn) is bounded in E and its weak limit v ∈ E is not zero, i.e., v �= 0.
Hence, there is Ω ⊂ R2 with |Ω| > 0 such that v(x) > 0 ∀x ∈ Ω. Consequently, from (h4) and (f4), we get

0 <
∫
Ω

∫
Ω

|vn(y)||vn(x)|
|x− y|μ

[
G((1 + δ)vn(y))g((1 + δ)vn(x))(1 + δ)vn(x)

(1 + δ)|vn(y)|(1 + δ)|vn(x)| − G(vn(y))g(vn(x))vn(x)
|vn(y)||vn(x)|

]

=
∫
Ω

∫
Ω

[
G((1 + δ)vn(y))g((1 + δ)vn(x))(1 + δ)vn(x)

(1 + δ)2|x− y|μ − G(vn(y))g(vn(x))vn(x)
|x− y|μ

]
≤ on(1).

Let n→ ∞ in the last inequality and apply Fatou’s lemma, we know that

0 <
∫
Ω

∫
Ω

G((1 + δ)v(y))g((1 + δ)v(x))(1 + δ)v(x)
(1 + δ)2|x− y|μ − G(v(y))g(v(x))v(x)

|x− y|μ = 0

which is absurd, thus
lim sup
n→∞

t̃n ≤ 1

and consequently,
lim sup
n→∞

tn ≤ 1.

In what follows, we assume that tn → t0 ≤ 1, as n→ ∞. By (5.4), we have∫
R2

(V eεj
(x) − V (εjx))|tnun|2 =

∫
{x:V (εjx)≤e}

(e− V (εjx))|tnun|2 = on(1).

By using the fact that tn → t0 ≤ 1 and lim sup
n→∞

‖un‖2
εj
<

2 − μ

4
, we know that there exists C such that

|P (εjy)F (tnun(x))| 4
4−μ

≤ C.

Since (
GP (tnun) − Gd

P (tnun)
)

=2
∫

R2

∫
R2

P (εjy)F (tnun(x))[P (εjx) − P d(εjx)]H(tnun(x))
|x− y|μ

+
∫

R2

∫
R2

[P (εjy)P (εjx) − P d(εjy)P d(εjx)]H(tnun(x))H(tnun(y))
|x− y|μ ,
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by repeating the arguments in proving (5.7), we can get

GP (tnun) − Gd
P (tnun) = on(1).

Notice that

c̃edεj
≤ Ĩedεj

(tnun) = Iεj (tnun) +
1
2

∫
R2

(V e(εjx) − V (εjx))|tnun|2 + GP (tnun) − Gd
P (tnun),

we have
c̃edεj

≤ Iεj (tnun) + on(1)

≤ Iεj (un) + on(1),

hence c̃edεj
≤ cεj as n→ ∞. However, from Lemma 4.3, there holds

me,τmax,d ≤ c̃edεj
,

leading to
me,τmax,d ≤ cεj .

Taking limit j → +∞ and using Lemma 4.2, we get

me,τmax,d ≤ me,τmax,τmax ,

this is a contradiction by Lemma 3.3, since d < τmax. �

Lemma 5.2. Let uεn be the solution obtained in Lemma 5.1. Then, there is yn ∈ R2 with εnyn → y0 ∈ AP ,
i.e.,

lim
εn→0

dist(εnyn,AP ) = 0,

such that the sequence vn(x) := uεn(x+ yn) converges strongly in E to a ground state solution v of

−Δv + V (y0)v = P 2(y0)
[

1
|x|μ ∗G(v)

]
g(v).

In particular, if V ∩ P �= ∅, it follows that limε→0 dist(εyε,V ∩ P) = 0, and up to subsequences, vn converges in
E to a ground state solution v of

−Δv + κminv = τ2
max

[
1

|x|μ ∗G(v)
]
g(v).

Proof. Let (uεn), εn → 0, be the sequence of solutions of equation (2.1) obtained in Lemma 5.1, it is easy to
see (uεn) is bounded in E. Moreover, there exist r, δ > 0 and a sequence (yn) ⊂ R2 such that

lim inf
n→∞

∫
Br(yn)

|un|2 ≥ δ. (5.9)

By setting vn(x) := uεn(x+ yn), Ṽn(x) = V (εn(x+ yn)),P̃n(x) = P (εn(x+ yn)), we see that vn solves the below
problem

−Δu+ Ṽn(x)u =
[

1
|x|μ ∗

(
P̃n(x)G(u)

)]
P̃n(x)g(u), (5.10)

with energy functional given by

Ĩεn(vn) =
1
2

∫
R2

(|∇vn|2 + Ṽn(x)|vn|2) − GP̃n
(vn),
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with

GP̃n
(vn) =

1
2

∫
R2

[
1

|x|μ ∗ (P̃n(x)G(vn)
)]
P̃n(x)G(vn).

Since vn(x) = uεn(x+ yn) is also bounded, from (5.9), we may assume that vn ⇀ v in E with v �= 0 and v ≥ 0.

Claim 1. The sequence (εnyn) must be bounded.
Otherwise if εnyn → ∞, as n → ∞, then we may suppose that V (εnyn) → V0 ≥ e , P (εnyn) → P0 < τmax.

Since

〈Ĩ ′εn
(vn), ϕ〉 = 0

for any ϕ ∈ C∞
0 (R2), we must have

0 =
∫

R2
(∇vn∇ϕ+ Ṽn(x)vnϕ) − G′

P̃n
(vn)[ϕ]

=
∫

R2
(∇vn∇ϕ+ V0vnϕ) − P 2

0 G′(vn)[ϕ]

+
∫

R2
(Ṽεn(x) − V0)vnϕ+ P 2

0 G′(vn)[ϕ] − G′
P̃n

(vn)[ϕ].

(5.11)

Since V is a continuous function and ϕ ∈ C∞
0 (R2), it follows that∫

R2
(Ṽn(x) − V0)vnϕ = on(1).

One observes that

G′
P̃n

(vn)[ϕ] − P 2
0 G′(v)[ϕ] =

∫
R2

[
1

|x|μ ∗ (P̃n(x)G(vn)
)] (

P̃n(x)g(vn) − P0g(v)
)
ϕ

+ P0

∫
R2

[
1

|x|μ ∗ (P̃εn(x)G(vn) − P0G(v)
)]
f(v)ϕ. (5.12)

Since
K(vn) :=

∫
R2

(|∇vn|2 + Ṽn(x)|vn|2)

=
2θ
θ − 2

(
Ĩεn(vn) − 1

θ
Ĩ ′n(vn)vn

)

=
2θ
θ − 2

cεn <
2 − μ

4
,

by repeating the arguments in Lemma 2.4, we know∣∣∣∣ 1
|x|μ ∗ (P̃n(x)G(vn)

)∣∣∣∣ < C,

hence, by estimating the first term in (5.12), we have∣∣∣∣
∫

R2

[
1

|x|μ ∗ (P̃n(x)G(vn)
)](

P̃n(x)g(vn) − P0g(v)
)
ϕ

∣∣∣∣ ≤ C

∣∣∣∣
∫

R2

(
P̃n(x)g(vn) − P0g(v)

)
ϕ

∣∣∣∣ .
Since vn(x) → v(x) a.e. in R2, the continuity of g implies that g(vn(x)) → g(v(x)) a.e. in R2 it follows that

g(vn) ⇀ g(v) in L
4

2−μ (R2),
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therefore ∣∣∣∣
∫

R2

(
P̃n(x)g(vn) − P0g(v)

)
ϕ

∣∣∣∣→ 0, ∀ϕ ∈ C∞
0 (R2),

and then ∣∣∣∣
∫

R2

[
1

|x|μ ∗ (P̃n(x)G(vn)
)](

P̃n(x)g(vn) − P0g(v)
)
ϕ

∣∣∣∣→ 0, ∀ϕ ∈ C∞
0 (R2). (5.13)

For the second term, since G is continuous, then for any x, P̃n(x)G(vn(x)) → P0G(v(x)), therefore we have
P̃n(x)G(vn(x)) converges weakly to P0G(v) in L

4
4−μ (R2). Recall that

1
|x|μ ∗ w(x) ∈ L

4
μ (R2)

for all w(x) ∈ L
4

4−μ (R2), we know that the convolution defines a linear bounded operator from L
4

4−μ (R2) to
L

4
μ (R2), thus

1
|x|μ ∗ (P̃n(x)G(vn)

)
⇀ P0

1
|x|μ ∗ (G(vn)

)
in L

4
μ (R2).

Therefore, we have ∫
R2

[
1

|x|μ ∗ (P̃n(x)G(vn) − P0G(v)
)]
g(v)ϕ→ 0, ∀ϕ ∈ C∞

0 (R2). (5.14)

From (5.13) and (5.14), we obtain

G′
P̃n

(vn)[ϕ] − P 2
0 G′(v)[ϕ] → 0, ∀ϕ ∈ C∞

0 (R2).

Then by taking a limit in (5.11), we get∫
R2

(∇v∇ϕ + V0vϕ) − P 2
0 G′(v)[ϕ] = 0

for any ϕ ∈ C∞
0 (R2), which shows that v is nothing but a solution of the equation

−Δv + V0v = P 2
0

[ 1
|x|μ ∗G(v)

]
g(v).

Observe that
Iεn(un) = Ĩεn(vn).

By Fatou’s Lemma and Lemma 3.3, we see that

me,τmax,τmax < mV0,P0,P0

≤ ΦV0,P0,P0(v)

=
P 2

0

2

∫
R2

∫
R2

G(v(y))g(v(x))v(x) −G(v(y))G(v(x))
|x− y|μ

≤ lim inf
n→∞ Ĩεn(vn)

= lim inf
n→∞ cεn

which contradicts to Lemma 4.2 which says

lim sup
n→∞

cεn ≤ me,τmax,τmax .
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Thus (εnyn) is bounded, and we may assume εnyn → y0.

Claim 2. y0 ∈ AP := {x ∈ P : V (x) = V (0)} ∪ {x /∈ P : V (x) < V (0)}.

Following the arguments in the proof of Claim 1, we know v is a solution of the equation

−Δv + V (y0)v = P 2(y0)
[

1
|x|μ ∗G(v)

]
g(v), in R2. (5.15)

If y0 /∈ AP , then it is easy to see me,τmax,τmax < mV (y0),P (y0),P (y0). Repeat the arguments of Claim 1 again, we
arrive at a contradiction by Lemma 4.2,

lim sup
n→∞

cεn ≤ me,τmax,τmax < mV (y0),P (y0),P (y0) ≤ lim inf
n→∞ cεn .

Therefore y0 ∈ AP , which means limn→∞ dist(εnyn,AP ) = 0 . In particular, if V ∩ P �= ∅, then
limn→∞ dist(εnyn,V ∩ P) = 0.

Repeat the arguments in Lemma 4.1, we get

lim
n→∞ Ĩεn(vn) ≤ mV (y0),P (y0),P (y0),

consequently,
ΦV (y0),P (y0),P (y0)(v) = mV (y0),P (y0),P (y0),

and so and up to subsequences, (vn) converges weakly in H1(R2) to a ground state solution v of

−Δv + κminv = τ2
max

[
1

|x|μ ∗G(v)
]
g(v).

Claim 3. (vn) converges strongly to v in E.

On one hand, since V , P are continuous functions, we know∫
R2
Ṽn(x)|v|2 =

∫
R2
V (y0)|v|2 + on(1),

∫
R2

[
1

|x|μ ∗ P̃n(x)G(v)
]
P̃n(x)G(v) = P (y0)2

∫
R2

[
1

|x|μ ∗G(v)
]
G(v) + on(1).

On the other hand, using the nonlocal Brezis−Lieb type results in Lemma 2.8, we have

GP̃n
(vn) − GP̃n

(vn − v) − GP̃n
(v) = on(1),

G′
P̃n

(vn)[ϕ] − G′
P̃n

(vn − v)[ϕ] − G′
P̃n

(v)[ϕ] = on(1)

uniformly for ϕ ∈ E, ‖ϕ‖ ≤ 1. Thus we can derive

Ĩεn(vn − v) = Ĩεn(vn) − ΦV (y0),P (y0),P (y0)(v) + on(1).

Since
lim
n→∞ Ĩεn(vn) = ΦV (y0),P (y0),P (y0)(v),

it follows that
lim
n→∞ Ĩεn(vn − v) = 0.
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Similarly, we drive that
Ĩ ′εn

(vn − v) → 0,

which implies
lim
n→∞〈Ĩ ′εn

(vn − v), (vn − v)〉 = 0.

Hence,

‖vn − v‖2 ≤ C lim
n→∞

(
Ĩεn(vn − v) − 1

θ
〈Ĩ ′εn

(vn − v), (vn − v)〉) = 0,

showing that vn → v in E. �

Lemma 5.3. There exists C > 0 such that |vn|∞ ≤ C for all n ∈ N. Furthermore

lim
|x|→∞

vn(x) = 0 uniformly in n ∈ N

and there exist C, β > 0 such that

|vn(x)| ≤ Cexp(−β|x|), ∀x ∈ R2.

Proof. From Lemma 5.2, we know εnyεn → y0 ∈ AP , as n→ ∞ and vεn(x) := uεn(x + yεn) converges strongly
in E to a ground state solution v of

−Δv + V0v = P 2
0

[ 1
|x|μ ∗G(v)

]
g(v).

Define
W 1
n(x) :=

1
|x|μ ∗ P̃n(x)G(v).

Notice that ∫
R2

(|∇vn|2 + Ṽn(x)|vn|2) < 2 − μ

4
,

we know there is C > 0 such that
|W 1

n(x)| ≤ C, ∀n ∈ N. (5.16)

For any R > 0, 0 < r ≤ R
2 , let η ∈ C∞(R2), 0 ≤ η ≤ 1 with η(x) = 1 if |x| ≥ R and η(x) = 0 if |x| ≤ R − r

and |∇η| ≤ 2
r . For L > 0, let

vL,n =

{
vn(x), v(x) ≤ L

L, vn(x) ≥ L,

and
zL,n = η2v

2(γ−1)
L,n vn and wL,n = ηvnv

γ−1
L,n

with γ > 1 to be determined later. Taking zL,n as a test function, we obtain∫
R2
η2v

2(γ−1)
L,n |∇vn|2 = −2(γ − 1)

∫
R2
vnv

2γ−3
L,n η2∇vn∇vL,n +

∫
R2
W 1
n(x)P̃n(x)g(vn)η2vnv

2(γ−1)
L,n

−
∫

R2
Ṽεn(x)|vn|2η2v

2(γ−1)
L,n − 2

∫
R2
ηv

2(γ−1)
L,n vn∇vn∇η. (5.17)

Take β, s > 1 such that βsK(vn) < 1, by Trudinger-Moser inequality, there exists C such that∫
R2

[
eβ4πv2n − 1

]s ≤ ∫
R2

[
eβs4πK(vn)

v2
n

K(vn) − 1
]
< C. (5.18)
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Let t =
√
s, p > 2t

t−1 > 2 and γ = p(t−1)
2t , for any δ > 0, there exists C(δ, p, β) > 0 such that

G(u) ≤ δu2 + C(δ, p, β)up−1
[
eβ4π|u|2 − 1

]
, ∀u ∈ R.

Thus for δ sufficiently small, from (5.16), (5.17) and Young’s inequality, we get∫
R2
η2v

2(γ−1)
L,n |∇vn|2 ≤ C

∫
R2
vpnη

2v
2(γ−1)
L,n

[
eβ4πv2n − 1

]
+ C

∫
R2
v2
nv

2(γ−1)
L,n |∇η|2. (5.19)

Using this fact, the estimates in [3] shows that

|wL,n|2p ≤ Cγ2

⎛
⎝C′ +

[∫
|x|≥R−r

vn
(p−2)t

[
eβ4πv2n − 1

]t] 1
t

⎞
⎠
[∫

|x|≥R−r
vn

2γt
t−1

] t−1
t

.

By (5.18) and Hölder’s inequality, we know

|wL,n|2p ≤ Cγ2

[∫
|x|≥R−r

vn
2γt
t−1

] t−1
t

.

Now, following the same iteration arguments explored in [3], we find

|vn|L∞(|x|≥R) ≤ C|vn|p(|x|≥R/2). (5.20)

For x0 ∈ BR, we can use the same argument taking η ∈ C∞
0 (R2, [0, 1]) with η(x) = 1 if |x − x0| ≤ ρ′ and

η(x) = 0 if |x− x0| > 2ρ′ and |∇η| ≤ 2
ρ′ , to prove that

|vn|L∞(|x−x0|≤ρ′) ≤ C|vn|p(|x|≤2ρ′). (5.21)

With (5.20) and (5.21), by a standard covering argument we can show that there exists C > 0 such that

|vn|∞ < C.

Then, by regularity theory, we know vn ∈ C2 are classical solutions. Using again the convergence of (vn) to v
in E in (5.20), for each δ > 0 fixed, there exists R > 0 such that |vn|L∞(|x|≥R) < δ, ∀n ∈ N. Thus,

lim
|x|→∞

vn(x) = 0 uniformly in n ∈ N.

The exponential decay property follows from a standard comparison arguments, we can repeat the arguments
in Lemma 3.2. �

The next lemma is due to [7].

Lemma 5.4. There exists δ0 > 0 such that |vn|∞ ≥ δ0 for all n ∈ N.

Concentration behavior. If uεn is a solution of problem (2.1), then vn(x) = uεn(x + yn) is a solution of
problem ⎧⎪⎨

⎪⎩
−�vn + Ṽn(x)vn =

[
1

|x|μ ∗ P̃n(x)G(vn)
]
P̃n(x)g(vn)

vn ∈ E, vn(x) > 0, ∀x ∈ R2,

with Ṽn(x) = V (εnx + εnyn), P̃n(x) = P (εnx + εnyn) and (yn) ⊂ R2 given in Lemma 5.2. Moreover, up to a
subsequence,

vn → v in E, ỹn → y0 ∈ AP ,
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where ỹn = εnyn. If bn denotes a maximum point of vn, from Lemmas 5.3 and 5.4, we know it is a bounded
sequence in R2. Thus, there is R > 0 such that bn ∈ BR(0). Thereby, the global maximum of uεn is zεn = bn+yn
and

εnzεn = εnbn + εnyn = εnbn + ỹn.

From boundedness of (bn), we get the limit

lim
n→∞ εnzεn = y0,

which together with the continuity of V gives

lim
n→∞ V (εnzεn) = V (y0) and lim

n→∞P (εnzεn) = P (y0).

We also point out that for any ε > 0 the sequence εzε is bounded, where zε is the maximum point of the
solution uε obtained in Lemma 5.1. In fact, if there exists εj → 0 and zεj of uεj such that εjzεj → ∞. However,
from the above arguments, we know

εjzεj = εjbεj + εjyεj ,

where yεj is obtained in (5.9) by non-vanishing argument with εjyεj bounded, and bεj is the maximum point
of of vεj = uεj (x + yεj ). Consequently, εjzεj − εjyεj = εjbεj → ∞. which contradicts with the fact bεj lies in a
ball BR(0).

Proof of Theorem 1.5. From Lemma 5.1, there is a positive solution for equation (2.1) for ε > 0 small enough.
Therefore, the function wε(x) = uε(xε ) is a positive solution of equation (1.6). Thus, the maximum points xε
and zε of wε and uε respectively, satisfy the equality xε = εzε. Setting vε(x) := wε(εx + xε), for any sequence
xε → x0, ε→ 0, it follows Lemma 5.2 that,

lim
ε→0

dist(xε,AP ) = 0

and vε converges in E to a ground state solution v of

−Δv + V (x0)v = P 2(x0)
[

1
|x|μ ∗G(v)

]
g(v).

From Lemma 5.3, for some c, C > 0,

|wε(x)| ≤ Cexp
(
− c
ε
|x− xε|

)
.

In particular if V ∩ P �= ∅, then limε→0 dist(xε,V ∩ P) = 0 and up to subsequences, vε converges in E to a
ground state solution v of

−Δv + κminv = τ2
max

[
1

|x|μ ∗G(v)
]
g(v).
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