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OPTIMIZATION IN STRUCTURE POPULATION MODELS

THROUGH THE ESCALATOR BOXCAR TRAIN ∗, ∗∗, ∗∗∗

Rinaldo M. Colombo1,a, Piotr Gwiazda1,2 and Magdalena Rosińska1,2

Abstract. The Escalator Boxcar Train (EBT) is a tool widely used in the study of balance laws
motivated by structure population dynamics. This paper proves that the approximate solutions defined
through the EBT converge to exact solutions. Moreover, this method is rigorously shown to be effective
also in computing optimal controls. As preliminary results, the well posedness of classes of PDEs and
of ODEs comprising various biological models is also obtained. A specific application to welfare policies
illustrates the whole procedure.
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1. Introduction

This paper is devoted to the well posedness, to the numerical approximation and to the optimal control of
renewal equations motivated by physiologically structured population models and whose solutions attain values
in spaces of measures.

The dynamics of populations which are heterogeneous with respect to some individual property can be de-
scribed through initial – boundary value problems for a class of nonlinear first order partial differential equations
(PDE), called renewal equations. Within this class, one of the first PDE models devoted to population biology
is the renewal equation introduced by Kermack and McKendrick with reference to epidemiology, see [23,24].
There, the time since infection, i.e., the age, plays the role of a structure parameter, due to its essential role
in the spreading of the epidemic. Equations of the same class are later proposed by von Förster in [33] to
describe the process of cell division. The recent monograph [10] provides an extensive theoretical and empirical
treatment of the ecology of ontogenetic growth and development of organisms, emphasizing the importance
of an individual–based perspective in understanding the dynamics of populations and communities. Classical
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analytic studies on these equations are settled in L1 and go back, for instance, to the monographs of Webb [34],
Iannelli [22] or Thieme [31].

The space of positive Radon measures is introduced in biological applications in [27]. Indeed, whenever the
distribution of individuals is concentrated on discrete values of structure parameters, for instance at the initial
time, the resulting population density may well lack absolute continuity with respect to the Lebesgue measure.
One is thus lead to consider the problem

∂tµ+ ∂x
(
b(t)(µ, x) µ

)
+ c(t)(µ, x) µ = 0

b(t)(µ(t), 0) Dλµ(t)(0+) =

∫ +∞

0

β(t)(µ(t), x) dµ(t)(x)

µ(0) = µo

(1.1)

where t ∈ R+ is time and x ∈ R+ is a biological parameter, typically age or size. The unknown µ is a time
dependent, non-negative and finite Radon measure. The growth function b and the mortality rate c are strictly
positive, while the birth function β is non-negative. By Dλµ(0+) we denote the Radon–Nikodym derivative of µ
with respect to the Lebesgue measure λ computed at 0. The initial datum µo is a non-negative Radon measure.

Clearly, as soon as the initial datum in (1.1) is regular, solutions to (1.1) can be found in spaces of regular
functions, such as C1. Nevertheless, we choose a measure theoretic setting for the reasons stated here below
and in Remark 1.2.

Remark 1.1. A priori, the present approach overcomes a key inconsistency between the L1 norm and empirical
data. Even if we assume that the distribution of a real population is absolutely continuous with respect to the
Lebesgue measure, so that an L1 distribution density exists, typical experimental data provide information on
percentiles, i.e., on the number of individuals in some range of the structural variable (age, size, etc.). In the
case of epidemiology or demography, for instance, birth cohorts are typically used (e.g., individuals born in a
given year). A detailed discussion of this topic can be found for instance in ([20], Sect. 5).

The analysis of solutions to (1.1) in spaces of positive Radon measures was initiated in [11], where the authors
show the weak∗ continuity of solutions with respect to time and initial data. They also point out the key relevance
of the dependence of solutions on the various model parameters, which was obtained in [6, 18,20,32].

The Lipschitz continuous dependence of solutions in measure spaces on time and initial datum is a preliminary
step towards the convergence of the so called particle methods. These are numerical algorithms whose starting
idea is the representation of a heterogeneous population as a sum of Dirac masses evolving in time. This
representation is consistent with the usual experimental attitude of concentrating real data in discrete cohorts
evolving in time. On these grounds, the numerical algorithm usually referred to as the Escalator Boxcar Train
(EBT) is introduced back in [9]. Remarkably, in spite of the wide success of this method, a convergence proof
of the EBT appears only rather recently in [3]. A key role in this result is played by the bounded Lipschitz
distance introduced in [18]. Detailed estimates on the order of convergence are then provided in [17].

Another numerical method effective in the computation of solutions to structured population models is
proposed in [7]. Here, a key role is played by the operator splitting method. According to it, the measure
valued semigroup generated by renewal equations can be approximated through the iterated application of
simpler semigroups. More precisely, a problem involving both transport terms and nonlocal growth terms is
approximated through two problems, each involving only one of the two processes. The analytic framework
established in [6] allows a detailed control of the convergence rate of the algorithm.

Remark 1.2. A posteriori, even if the solution to (3.1) can be regular, the EBT approximation necessarily
requires to be set in the spaceM(R+) of Radon measures. The main result of the present paper is the convergence
of the optimal solution to the approximated problem (defined in the space of measures) to the optimal solution
to the exact problem. Therefore, the use of measure theoretic tools is unavoidable and the choice of which metric
to adopt on M(R+) is crucial.
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From the measure theoretic point of view, the above mentioned results rely on the use of Wasserstein
(or Monge−Kantorovich) type metrics, adapted to the nonconservative character of (1.1). This methodology
was proposed in [18] for a flat metric (bounded Lipschitz distance) and in [20] for a Wasserstein metric, suitably
modified to deal with nonnegative Radon measures with integrable first moment. A relevant advantage of this
approach is in providing a structure of a space appropriate both to compare solutions and to study their stabil-
ity. Remark that precise estimates on the continuous dependence of solutions on the modeling parameters plays
a key role in the numerical approximations and in calibrating the model on the basis of experimental data. We
refer to [29] for the definition and properties of a similar metric structure.

Similar techniques based on particle methods are usual tools in simulating kinetic models for more than three
decades in physics, see for instance [30] and the references therein. Recent applications include for instance the
porous medium equation [28, 35] and the isentropic Euler equations in fluid mechanics [16, 35]. Other particle
methods are found also in the study of problems related to crowd dynamics and pedestrians flow, see [13,14,29],
as well as in the description of the collective motion of large groups of agents, see [5]. Differently from the case
of structured population models, the original particle methods are mainly designed for problems where the total
mass, or number of individuals, is conserved.

Aiming at the optimal control of the solution to (1.1), we introduce therein a control parameter u, possibly
time and/or state dependent, attaining values in a given set U . Therefore, we obtain:

∂tµ+ ∂x
(
b(t, u)(µ, x) µ

)
+ c(t, u)(µ, x) µ = 0

b(t, u)(µ(t), 0) Dλµ(t)(0+) =

∫ +∞

0

β(t, u)(µ(t), x) dµ(t)(x)

µ(0) = µo

(1.2)

Together with (1.2), we are given a cost functional

J (u) =

∫ +∞

0

j
(
t, u(t), µ(t)

)
dt

and we provide below a constructive algorithm to find, within a suitable function space, a control function u∗
optimal in the sense that

J (u∗) = min
u(t)∈U

J (u).

As is well known, solutions to conservation or balance laws typically depend in a Lipschitz continuous way on
the initial datum as well as from the functions defining the equation. This does not allow the use of differential
tools in the search for the optimal control.

Here, constructive should be understood in the following sense: on the basis of the control problem for (1.2),
we define a sequence of control problems for a system of ordinary differential equations and prove that the
corresponding sequence of optimal controls converges to an optimal control for the original problem. More
precisely, we approximate the solution to (1.2) by means of the EBT algorithm as defined in ([17], Sect. III).
The functional J computed along approximate solutions is proved to be a smooth, namely C1, function of the
control parameter u and this allows to exhibit the existence of an optimal control for each approximate problem.
A limiting procedure constructively ensures the existence of the optimal control for the original problem (1.2).

The next section presents results on the well posedness of (1.1) and the results on the escalator boxcar train
algorithm that allow to obtain our main result, namely the construction of a sequence of controls that converge
to an optimal control for (1.2). Section 3 is devoted to a possible application of the theory here developed.
The technical proofs are deferred to Section 4, with a final Appendix that gathers necessary results concerning
ordinary differential equations.

2. Main results

Throughout, we denote R+ = [0,+∞[. Let (M,dM ) be a metric space and (V, ‖ ‖V ) be a normed space. Then,
C0(M ;V ), respectively C0,1(M ;V ) is the space of continuous, respectively Lipschitz continuous, functions
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defined on M and attaining values in V , equipped with the norm

‖ϕ‖C0(M,V ) = sup
x∈M

∥∥ϕ(x)
∥∥
V
, respectively (2.1)

‖ϕ‖C0,1(M,V ) = max

{
sup
x∈M

∥∥ϕ(x)
∥∥
V
, sup
x1,x2∈M, x1 6=x2

∥∥ϕ(x2)− ϕ(x1)
∥∥
V

dM (x1, x2)

}
· (2.2)

Given T > 0 and a function f : [0, T ]→ V , we set

TVV (f) = sup


n∑
i=1

∥∥f(ti)− f(ti−1)
∥∥
V

: n ∈ N and
ti ∈ [0, T ] for i = 0, . . . , n
ti−1 < ti for i = 1, . . . , n

 . (2.3)

The space M+(R+) of positive Radon measure on R+ is equipped with the flat distance

d(µ′, µ′′) = sup

{∫
R+

ϕ d(µ′ − µ′′) : ϕ ∈ C1(R+; [−1, 1]) with Lip(ϕ) ≤ 1

}
, (2.4)

see ([6], Sect. 2). Below, for positive T,L and C, we use the space F of functions

f : [0, T ]→ C0,1(M+(R+)× R+;R+) (F)

with the properties:

(F1) f is bounded:
∥∥f(t)

∥∥
C0,1(M+(R+)×R+;R) ≤ L for all t ∈ [0, T ].

(F2) f has bounded total variation in time: TVC0(M+(R+)×R+;R+)(f) ≤ C.
Throughout, the constants T,L and C are kept fixed and the dependence of F on them is omitted. InM+(R+)×
R+ we use the distance

dM+(R+)×R+

(
(µ1, x1), (µ2, x2)

)
= d(µ1, µ2) + |x2 − x1|,

where d is as in (2.4). Therefore, (F1) also implies that f is Lipschitz continuous in µ and a uniformly in t, in
the sense that for all t ∈ [0, T ], µ1, µ2 ∈M+(R+) and x1, x2 ∈ R+,∣∣f(t)(µ1, x1)− f(t)(µ2, x2)

∣∣ ≤ L (d(µ1, µ2) + |x1 − x2|
)
.

2.1. PDE – Well posedness

As a first step, we need to extend the well posedness of (1.1) obtained in ([6], Thm. 2.11) to the case
of functions b and c being only of bounded variation in time. First, recall the definition of solution to (1.1)
attaining as values Radon measures.

Definition 2.1 ([19], Def. 3.1). Fix T > 0 and let µo ∈M+(R+) and b, c, β ∈ F . By solution to (1.1) we mean
a function µ : [0, T ]→M+(R+) with the following properties:

(1) µ is Lipschitz continuous with respect to the flat distance (2.4);
(2) for all ϕ ∈ (C1 ∩C0,1)([0, T ]× R+;R)∫

R+

ϕ(T, x) dµ(T )(x)−
∫
R+

ϕ(0, x) dµo(x) =

∫ T

0

∫
R+

∂tϕ(t, x) dµ(t)(x) dt

+

∫ T

0

∫
R+

(
∂xϕ(t, x) b(t)(µ(t), x)

−ϕ(t, x) c(t)(µ(t), x)
)

dµ(t)(x) dt

+

∫ T

0

∫
R+

ϕ(t, 0) β(t)(µ(t), x) dµ(t)(x) dt .

We now weaken the assumptions on the regularity in time used in ([6], Thm. 2.11).
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Theorem 2.2. Fix T > 0. Let b, c, β ∈ F . Then, for any µo ∈M+(R+), problem (1.1) admits a unique solution
in the sense of Definition 2.1. Moreover, there exists a constant C dependent only on C,L and T such that if
for i = 1, 2, µi is the solution to (1.1) with initial data µio and b, c, β replaced by bi, ci, βi, then,

d
(
µ1(t), µ2(t)

)
≤ d(µ1

o, µ
2
o) eC t + C t eC t

(
sup
t∈[0,T ]

∥∥b1(t)− b2(t)
∥∥
C0(M+(R+)×R+;R)

+ sup
t∈[0,T ]

∥∥c1(t)− c2(t)
∥∥
C0(M+(R+)×R+;R)

+ sup
t∈[0,T ]

∥∥β1(t)− β2(t)
∥∥
C0(M+(R+)×R+;R)

)
.

(2.5)

The proof is deferred to Section 4.

Aiming at the study of (1.2), we extend the definition of F as follows. Fix T > 0 and a compact subset U of
RN , for fixed positive T,L, C and a positive integer N , we introduce the space Fu of functions

f : [0, T ]× U → C0,1(M+(R+)× R+;R) (Fu)

with the properties:

(Fu1 ) f is bounded:
∥∥f(t, u)

∥∥
C0,1(M+(R+)×R+;R) ≤ L for all t ∈ [0, T ] and all u ∈ U .

(Fu2 ) f has bounded total variation in t uniformly in u: TVC0(M+(R+)×R+;R+)

(
f(·, u)

)
≤ C for all u ∈ U .

(Fu3 ) f is Lipschitz continuous in the control uniformly in time: for all t ∈ [0, T ] and for all u1, u2 ∈ U ,∥∥f(t, u1)− f(t, u2)
∥∥
C0(M+(R+)×R+;R) ≤ L‖u1 − u2‖.

As above, we remark that (Fu1 ) ensures that f(t;u) is Lipschitz continuous in µ and a uniformly in t and u: for
all t ∈ [0, T ], u ∈ U , µ1, µ2 ∈M+(R+) and x1, x2 ∈ R+,∣∣f(t, u)(µ1, x1)− f(t, u)(µ2, x2)

∣∣ ≤ L (d(µ1, µ2) + |x1 − x2|
)
.

In (Fu2 ), the total variation is computed as in (2.3), keeping u fixed. Throughout, the constants T,L and C are
kept fixed and the dependence of Fu on them is omitted.

The extension of Definition 2.1 from the case of (1.1) to that of (1.2) is immediate.

Corollary 2.3. Fix T > 0 and a compact subset U of RN . Let b, c, β ∈ Fu. Then, for any µo ∈ M+(R+) and
any u ∈ BV([0, T ];U), problem (1.2) admits a unique solution. Moreover, there exists a constant C dependent
only on L, C and T such that if for i = 1, 2, µi is the solution to (1.1) with initial data µio, and b, c, β, u replaced
by bi, ci, βi, ui, then,

d
(
µ1(t), µ2(t)

)
≤ d(µ1

o, µ
2
o) eC t + C t eC t

(
sup
t∈[0,T ]

∥∥b1(t)− b2(t)
∥∥
C0(M+(R+)×U×R+;R)

+ sup
t∈[0,T ]

∥∥c1(t)− c2(t)
∥∥
C0(M+(R+)×U×R+;R)

+ sup
t∈[0,T ]

∥∥β1(t)− β2(t)
∥∥
C0(M+(R+)×U×R+;R)

+ sup
t∈[0,T ]

∥∥u1(t)− u2(t)
∥∥).

(2.6)

The proof is in Section 4.
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2.2. ODE – Well posedness

We first present the approximation algorithm introduced in [9], see [3, 17] for the present simplified version.
Fix a positive time T . For any n ∈ N \ {0} and for the time step ∆t, approximate the initial datum µo in (1.2)
by means of a linear combination µn0 of Dirac deltas centered at x00, x

1
0, . . . , x

n
0 with masses m0

0, . . . ,m
n
0 and

approximate the initial datum with the measure 3

µn0 =

n∑
i=0

mi
0 δxi

0
.

On the time interval [0, ∆t[, we approximate the solution to (1.2) with the measure

µn(t) =

n∑
i=0

mi(t) δxi(t)

where 

ẋi = b
(
t, u(t)

)(
µn(t), xi(t)

)
i = 0, . . . , n

ṁ0 = −c
(
t, u(t)

)(
µn(t), x0(t)

)
m0 +

n∑
i=1

β
(
t, u(t)

)(
µn(t), xi(t)

)
mi

ṁi = −c
(
t, u(t)

)(
µn(t), xi(t)

)
mi i = 1, . . . , n

xi(0) = xi0 i = 0, . . . , n
m0(0) = 0
mi(0) = mi

0 i = 1, . . . , n

(2.7)

Define xi1 = limt→∆t− x
i(t) and mi

1 = limt→∆t−m
i(t) for i = 0, . . . , n. Iteratively, for k ≥ 1, we prolong µn,

x−k+1, . . . , xn and m−k+1, . . . ,mn on the interval
[
k∆t, (k + 1)∆t

[
solving

ẋi = b
(
t, u(t)

)(
µn(t), xi(t)

)
i = −k, . . . , n

ṁ−k = −c
(
t, u(t)

)(
µn(t), x−k(t)

)
m−k +

n∑
i=−k+1

b
(
t, u(t)

)(
µn(t), xi(t)

)
mi

ṁi = −c
(
t, u(t)

)(
µn(t), xi(t)

)
mi i = −k + 1, . . . , n

xi(k∆t) = xik i = −k + 1, . . . , n
mi(k∆t) = mi

k i = −k + 1, . . . , n
x−k(k∆t) = 0
m−k(k∆t) = 0

(2.8)

where xik = limt→k∆t− x
i(t), mi

k = limt→k∆t−m
i(t) for i = 0, . . . , n and

µn(t) =

n∑
i=−k+1

mi(t) δxi(t).

To describe the hypotheses on b, c, β ensuring the well posedness of (2.7)–(2.8) it is of use to introduce, for

positive T and L, the set F̃u of functions

f : [0, T ]× U → C0,1(M+(R+)× R+;R+) (F̃u)

such that

f(t;u)(µ, a) = f̃

(
t,

∫
R+

f̄(α) dµ(α) , a;u

)

3We note that since linear combinations of Dirac deltas are dense in the space of bounded Radon measures equipped with
bounded Lipschitz distance [21], we can approximate every initial datum with a linear combination of Dirac deltas. However,
constructing an optimal approximation is not easy, some suboptimal algorithms are given in ([7], Sect. 2.3).
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where:

(F̃u1 ) The map f̄ ∈ C1(R+;R+) is bounded.

(F̃u2 ) The map (A, x;u)→ f̃(t, A, x;u) is in C1(R+ × R+ × U ;R+) for a.e. t ∈ [0, T ].

(F̃u3 ) The map t→ f̃(t, A, x;u) is in L∞([0, T ];R+) for all A ∈ R+, x ∈ R+ and u ∈ U .

(F̃u4 ) f̃ is Lipschitz continuous in A, x, u uniformly in t:∣∣∣f̃(t, A1, x1;u1)− f̃(t, A2, x2;u2)
∣∣∣ ≤ L (|A1 −A2|+ |x1 − x2|+ ‖u1 − u2‖

)
.

The next result ensures the well posedness of the Cauchy Problem for the system of ordinary differential
equations (4.2)–(4.3).

Theorem 2.4. Fix n,N ∈ N \ {0}, T, L > 0 and a compact subset U of RN . Let b, c, β ∈ F̃u. Then, for any
control u ∈ BV([0, T ];U) and any initial datum (x10, . . . , x

n
0 ) ∈ Rn+1

+ , (m1
0, . . . ,m

n
0 ) ∈ Rn, problem (2.7)–(2.8)

admits a unique solution t → (x,m)u(t) defined for all t ∈ [0, T ]. Moreover, the map u → (x,m)u is in
C1(BV([0, T ];U); C0([0, T ];Rn+1

+ × Rn)).

The proof directly follows from Lemma 4.2, which shows that Lemma A.1 can be applied, and from the usual
properties of the Nemitsky operator.

Theorem 2.5. Consider an arbitrary n ∈ N\{0} and fix T > 0 and a compact subset U of RN . Let b, c, β ∈ Fu
and u ∈ BV([0, T ];U). Fix µo ∈M+(R+), (x1o, . . . , x

n
o ) ∈ Rn+, (m1

o, . . . ,m
n
o ) ∈ Rn+. Let µ solve problem (1.2) in

the sense of Definition 2.1 and (m,x) solve problem (2.7)–(2.8) with time step ∆t. Then, there exists a positive
C independent of n, u, ∆t such that for all t ∈ [0, T ],

d

µt, n∑
i=−n

mi(t) δxi(t)

 ≤ C ·
∆t+ d

µo, n∑
i=0

mi
0 δxi

0


 .

In specific numerical implementations of the present method, the quantity d(µo,
∑n
i=0m

i
0 δxi

0
) is typically of the

same order of the size of the space mesh ∆x.

2.3. Optimal control

A general cost functional defined on the controls in BV([0, T ];U) is

J̃ : BV([0, T ];U)→ R

u →
∫ T

0

j

(
t, u(t),

∫
R+

γ(ξ) dµu(t)(ξ)

)
dt

(2.9)

where γ ∈ C0,1(R+;R+), µu is the solution to (1.2) corresponding to the control u with b, β, c and µo satisfying
the assumptions of Theorem 2.2, and j : [0, T ]× U × R+ → R+ being such that:

(J1) j ≥ 0;
(J2) the map t→ j(t, x;u) is measurable for all x ∈ R+, u ∈ U and there exists a û ∈ BV([0, T ];U) such that

J (û) < +∞;
(J3) there exist L ∈ L1([0, T ];R+) and a nondecreasing ω ∈ C0(R+;R+), with ω(0) = 0, such that∣∣j(t, x1, u1)− j(t, x2, u2)

∣∣ ≤ L(t) ω
(
|x1 − x2|+ |u1 − u2|

)
for a.e. t ∈ [0, T ], for all x1, x2 ∈ R+ and all u1, u2 ∈ U .
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Having to consider also costs related to the adjustments in the values of the control, it is natural to seek the
minimization of

J : BV([0, T ];U) → R
u → J̃ (u) + TVRN (u).

(2.10)

As a first result, we prove the existence of an optimal control.

Theorem 2.6. Fix T > 0 and a compact subset U of RN . For all b, c, β ∈ Fu, u ∈ BV([0, T ];U) and µo ∈
M+(R+), let µu be the solution to problem (1.2). With reference to the cost functional (2.9), γ ∈ C0,1(R+;R+)
and j satisfies (J1), (J2), (J3). Then, there exists a control minimizing J as defined in (2.10):

∃u∗ ∈ BV([0, T ];U) : J (u∗) = inf
u∈BV([0,T ];U)

J (u).

We now pass to the discrete counterpart of Theorem 2.6, substituting the evolution described by (1.2) with
the approximation provided by the Escalator Boxcar Train (2.7)–(2.8). At the same time, also the function-
als (2.7)–(2.8) have to be computed on linear combination of Dirac deltas.

Theorem 2.7. Fix T > 0 and a compact subset U of RN . Let b, c, β ∈ Fu and u ∈ BV([0, T ];U). For any
n ∈ N \ {0} and ∆tn > 0, fix an initial datum (x1o, . . . , x

n
o ) ∈ Rn+1

+ , (m1
o, . . . ,m

n
o ) ∈ Rn in (2.7)–(2.8) and call

(x−n, . . . , xn), (m−n, . . . ,mn) the corresponding solution. Further, define the cost functionals

J̃n : BV([0, T ];U)→ R

u →
∫ T

0

j

(
t, u(t),

∫
R+

γ(ξ) dµnu(t)(ξ)

)
dt

(2.11)

Jn : BV([0, T ];U)→ R
u → J̃n(u) + TVRN (u).

(2.12)

where µnu(t) =
∑n
i=−nm

i(t) δxi(t), γ ∈ (C1 ∩ C0,1)(R+;R+), j satisfies (J1), (J2), (J3) and there exists a
û ∈ BV([0, T ];U) such that J (û) < +∞. Then, there exists a control minimizing Jn:

∃u∗n ∈ BV([0, T ];U) : Jn(u∗n) = inf
u∈BV([0,T ];U)

Jn(u).

The above theorems yield the following corollary, which is the main result of the present work. It ensures
that the Escalator Boxcar Train algorithm can also be used to solve optimal control problems.

Corollary 2.8. With the same assumptions and notation as in Theorem 2.6 and in Theorem 2.7, if

lim
n→+∞

∆tn = 0 and lim
n→+∞

d

µo, n∑
i=−n

mi
o(t)δxi

o(t)

 = 0

then,

lim
n→+∞

Jn(u∗n) = inf
u∈BV([0,T ];U)

J (u) (2.13)

and, up to a subsequence,

lim
n→+∞

∥∥u∗n − u∗∥∥L∞([0,T ];R) = 0 where J (u∗) = inf
u∈BV([0,T ];U)

J (u). (2.14)
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3. The McKendrick – Von Förster model in welfare policies

The McKendric – Von Förster model for population growth, equipped with an integral functional to be
maximized, provides a first example of a system fitting within (1.2), where the results in the Sections 2.1
and 2.2 can be applied.

Consider a population described by the amount n = n(t, x) of people that at time t have the age x. Call −d,
with d = d(x), the population mortality rate. We thus obtain:

∂tn+ ∂xn = −d(x)n

n(t, 0) =

∫ +∞

0

β̃(x) n(t, x) dx

n(0, x) = no(x).

Here, β̃ describes the natality rate of the population of age a at time t.

Introduce a policy to sustain birth rate. It is then natural to assume that a control parameter, say u, enters
the birth functions. The parameter u, possibly vector valued, reflects a government policy to foster natality,
helping through ad hoc acts the families with children.

∂tnu + ∂xnu = −d(x)nu

nu(t, 0) =

∫ +∞

0

β̃(x, u) nu(t, x) dx

nu(0, x) = no(x).

(3.1)

From the governmental point of view, the income of the state welfare can be described by the functional

J (u) =

∫ +∞

0

e−λ t

(∫ +∞

0

w(x) nu(t, x) dx− u(t)nu(t, 0)

)
dt . (3.2)

The weight w = w(x) is positive all through the active age interval, i.e., all during the period where individuals,
paying taxes, sustain the state. On the contrary, w is negative when individuals receive services from the state,
e.g., during childhood and retirement. The term eλt is motivated by the need of describing an interest rate, as
typically used in economical models, see for instance [2].

Lemma 3.1. Fix a compact U in RN and α ∈ ]0, 1[. System (3.1) fits into (1.2) setting

b(t, u)(µ, x) = 1, c(t, u)(µ, x) = d(x), β(t, u)(µ, x) = β̃(x, u).

Moreover, if

d ∈ C0,1(R+,R), β̃ ∈ C0,1(U × R+;R)

then, for all u ∈ C1,α
b ([0, T ];U), Theorem 2.4 applies.

In the present case, equations (2.7)–(2.8) take the form, for t ∈ [0, ∆t]

ẋi = 1 i = 0, . . . , n

ṁ0 = −d(x0)m0 +
n∑
i=0

β̃
(
xi, u(t)

)
mi

ṁi = −d(xi)mi i = 1, . . . , n
xi(0) = xio i = 0, . . . , n
mi(0) = mi

o i = 0, . . . , n
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while for t ∈ [k∆t, (k + 1)∆t] the solution to the above system is extended as follows

ẋi = 1 i = −k, . . . , n

ṁ−k = −d(x−k)m−k +

n∑
i=−k

β̃
(
xi, u(t)

)
mi

ṁi = −d(xi)mi i = −k + 1, . . . , n
x−k(k∆t) = 0
m−k(k∆t) = 0.

Note that the variables xi decouple and it is immediate to obtain

xi(t) = t− i∆t for t ≥ min{−i∆t, 0} and i = −k, . . . , n.

The discretized version of the cost functional (3.2) is

J n(u) =

+∞∑
k=0

∫ (k+1)∆t

k∆t

e−λ t

 n∑
i=−k+1

w(t− i∆t)mi
u(t)− u(t)m−ku (t)

dt

4. Technical details

4.1. Proofs related to Section 2.1

Lemma 4.1. Fix T > 0 and a normed space X. Let x ∈ BV([0, T ];X). Then, for any ε > 0, there exists
n ∈ N, {t1, t2, . . . , tn} ⊂ [0, T ] and {x1, x2, . . . , xn} ∈ X such that, setting xε(t) =

∑n
i=1 xi χ[ti−1,ti[

(t),

sup
t∈[0,T ]

∥∥x(t)− xε(t)
∥∥
X
≤ ε, xε([0, T ]) ⊆ x([0, T ]) and TVX(xε) ≤ TVX(x).

Proof. The construction of the function xε follows, for instance, from ([1], Thm. 1.2, Chap. 1). The inclusion
and the bound on the total variation are immediate, since the xi are chosen among the values attained by x. �

Proof of Theorem 2.2. On the space X = C0(M+(R+) × R+;R), define the norm ‖ · ‖X as in (2.1) and apply
Lemma 4.1 to the maps b, c, β : [0, T ] → X. For every ε > 0, there exists n ∈ N, {t1, t2, . . . , tn} ⊂ [0, T ] and
piecewise constant functions bε, cε, βε : [0, T ]→ X such that

supt∈[0,T ]

∥∥b(t)− bε(t)∥∥X ≤ ε, TVX(bε) ≤ TVX(b),

supt∈[0,T ]

∥∥c(t)− cε(t)∥∥X ≤ ε, TVX(cε) ≤ TVX(c),

supt∈[0,T ]

∥∥β(t)− βε(t)
∥∥
X
≤ ε, TVX(βε) ≤ TVX(β).

Moreover, the inclusion proved in Lemma 4.1 ensures that

sup
t∈[0,T ]

∥∥bε(t)∥∥C0,1(M+(R+)×R+;R) ≤ L+ ε,

sup
t∈[0,T ]

∥∥cε(t)∥∥C0,1(M+(R+)×R+;R) ≤ L+ ε,

sup
t∈[0,T ]

∥∥βε(t)∥∥C0,1(M+(R+)×R+;R) ≤ L+ ε.

By construction, the sequences bε, cε and βε converge to b, c and β uniformly on [0, T ]. Hence, they are all
Cauchy sequences.
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Fix ε > 0. For all i = 1, . . . , n, ([6], Thm. 2.11), or ([19], Thm. 4.6), ([20], Thm. 1.3), can be recursively
applied on the interval [ti−1, ti] to the problem

∂tµi + ∂x
(
bε(t)(µi, x) µi

)
+ cε(t)(µi, x) µi = 0

bε(t)(µi(t), 0) Dλµi(t)(0+) =

∫ +∞

0

βε(t)(µi, α) dµi(t)(α)

µi(ti−1) = µoi−1

where µo0 = µo and µoi = limt→ti− µi−1(t) for i = 1, . . . , n−1. Define µε(t) by µε(t) = µi(t) whenever t ∈ [ti−1, ti[.

By ([6], (iv) in Thm. 2.8), for any ε, ε′ > 0 sufficiently small,

d
(
µε(t), µε

′
(t)
)
≤ C t eC t

(
sup
t∈[0,T ]

∥∥bε(t)− bε′(t)∥∥C0(M+(R+)×R+;R)

+ sup
t∈[0,T ]

∥∥cε(t)− cε′(t)∥∥C0(M+(R+)×R+;R)

+ sup
t∈[0,T ]

∥∥βε(t)− βε′(t)∥∥C0(M+(R+)×R+;R)

)
.

Therefore, by the completeness of the space C0
(
[0, T ];M+(R+)

)
, there exists a measure valued map µ ∈

C0
(
[0, T ];M+(R+)

)
such that limε→0 supt∈[0,T ] d

(
µε(t), µt

)
= 0.

To prove that µ solves (1.1) in the sense of Definition 2.1, observe that by construction∫
R+

ϕ(T, x) dµε(T )(x)−
∫
R+

ϕ(0, x) dµεo(x)

=

∫ T

0

∫
R+

∂tϕ(t, x) dµε(t)(x) dt

+

∫ T

0

∫
R+

(
∂xϕ(t, x) bε(t)(µ

ε(t), x)− ϕ(t, x) cε(t)(µ
ε(t), x)

)
dµε(t)(x) dt

+

∫ T

0

∫
R+

ϕ(t, 0) βε(t)(µ
ε(t), x) dµε(t)(x) dt .

and the limit ε→ 0 can pass inside the integral sign thanks to the uniform convergences µε → µ, bε → b, cε → c
and βε → β on the time interval [0, T ].

A further application of ([6], (iv) in Thm. 2.1) proves the stability estimate (2.5). �

Proof of Corollary 2.3. Note first that if b, c, β ∈ Fu and u ∈ BV([0, T ];U), then the maps bu, cu, βu defined by
bu(t) = b

(
t, u(t)

)
, cu(t) = c

(
t, u(t)

)
and βu(t) = β

(
t, u(t)

)
all satisfy bu, cu, βu ∈ F . Therefore, Theorem 2.2

applies, ensuring the existence of a solution to (1.2).

Concerning the stability estimates, with obvious notations, by (2.5) we have:

d
(
µ1(t), µ2(t)

)
≤ d(µ1

o, µ
2
o) eC t + C t eC t

(
sup
t∈[0,T ]

∥∥bu1
1 (t)− bu2

2 (t)
∥∥
C0(M+(R+)×R+;R)

+ sup
t∈[0,T ]

∥∥cu1
1 (t)− cu2

2 (t)
∥∥
C0(M+(R+)×R+;R)

+ sup
t∈[0,T ]

∥∥βu1
1 (t)− βu2

2 (t)
∥∥
C0(M+(R+)×R+;R)

)
.
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Observe now that∥∥bu1
1 (t)− bu2

2 (t)
∥∥
C0(M+(R+)×R+;R) ≤

∥∥bu1
1 (t)− bu2

1 (t)
∥∥
C0(M+(R+)×R+;R) +

∥∥bu2
1 (t)− bu2

2 (t)
∥∥
C0(M+(R+)×R+;R)

≤ Lu
∥∥u1(t)− u2(t)

∥∥+
∥∥b1(t)− b2(t)

∥∥
C0(U×M+(R+)×R+;R).

Entirely analogous estimates can be proved for the term
∥∥cu1

1 (t)− cu2
2 (t)

∥∥
C0(M+(R+)×R+;R) as well as for the

term
∥∥βu1

1 (t)− βu2
2 (t)

∥∥
C0(M+(R+)×R+;R), allowing to obtain (2.6). �

4.2. Proofs related to Section 2.2

Aiming at the well posedness of (2.7)–(2.8) we rewrite it as

ẋ = f(t, x,m, u)

ṁ = g(t, x,m, u)

x(0) = xo

m(0) = mo

(4.1)

where

x = (x−n, . . . , xn) m = (m−n, . . . ,mn)

xio =

{
i∆t i= 0, . . . , n

0 i=−n, . . . ,−1
mi
o =

µo

([
i∆t, (i+ 1)∆t

[)
i= 0, . . . , n

0 i=−n, . . . ,−1

f : [0, T ]× R2n+1
+ × R2n+1

+ × U → R2n+1 g : [0, T ]× R2n+1
+ × R2n+1

+ × U → R2n+1

the functions fi, gi being defined, for i = −n, . . . , n, by

fi(t, x,m;u) =

 b(t, u)

 n∑
j=−n

mjδxj , xi

 t≥max{−i∆t, 0}

0 t<max{−i∆t, 0}

(4.2)

and

gi(t, x,m;u) =



−c(t, u)

 n∑
j=−n

mjδxj , xi

 mi t>max{(1− i)∆t, 0}

−c(t, u)

 n∑
j=−n

mjδxj , xi

 mi

+

n∑
`=−n

β(t, u)

 n∑
j=−n

mjδxj , x`

 m`

t ∈ [max{−i∆t, 0},max{(1− i)∆t, 0}]

0 t<max{−i∆t, 0}

(4.3)

Lemma 4.2. Fix positive T, L and let b, c, β ∈ F̃u. Then, the map f and g defined in (4.2) and (4.3) satisfy
the following conditions:

(f1) t→ (f, g)(t, x,m;u) is measurable for all x ∈ R+, m ∈ R+ and u ∈ U ;
(f2) (x,m;u)→ (f, g)(t, x,m;u) is in C1 for a.e. t ∈ [0, T ];
(f3) (t, x,m)→ (f, g)(t, x,m;u) is sublinear in (x,m), uniformly in t and for all u.
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Proof. We detail the proof that f satisfies the above properties, the case of g being entirely similar.

The measurability of t→ f(t, x, y;u) is immediate. To verify the differentiability, introduce the standard base
(e−n, e−n+1 . . . , en−1, en) of R2n+1 and compute for i = −n, . . . , n, t > max{−i∆t; 0} and for a (small) h ∈ R

fi(t, x+ hei,m;u)− fi(t, x,m;u)

= b(t, u)

 n∑
j=−n

mjδxj+δijhej , x
i + hei

− b(t, u)

 n∑
j=−n

mjδxj , xi


= b̃

t, n∑
j=−n

mj b̄(xj + δijhei), x
i + hei;u

− b̃
t, n∑

j=−n
mj b̄(xj), xi;u


= ∂y b̃

t, n∑
j=−n

mj b̄(xj), xi;u

mib̄′(xi)h+ ∂xb̃

t, n∑
j=−n

mj b̄(xj), xi;u

h+ o(h)

as h→ 0, while for ` 6= i and for t > max{−i∆t;−`∆t, 0}

fi(t, x+ he`,m;u)− fi(t, x,m;u)

= b(t, u)

 n∑
j=−n

mjδxj+δ`jhe` , x
i

− b(t, u)

 n∑
j=−n

mjδxj , xi


= b̃

t, n∑
j=−n

mj b̄(xj + δ`jhe`), x
i;u

− b̃
t, n∑

j=−n
mj b̄(xj), xi;u


= ∂y b̃

t, n∑
j=−n

mj b̄(xj), xi;u

m`b̄′(x`)h+ o(h) as h→ 0,

proving the differentiability of fi with respect to x. Let now i, ` = −n, . . . , n:

fi(t, x,m+ he`;u)− fi(t, x,m;u)

= b(t, u)

 n∑
j=−n

(mj + δ`jhe`)δxj , xi

− b(t, u)

 n∑
j=−n

mjδxj , xi


= b̃

t, n∑
j=−n

(mj + δ`jhe`) b̄(x
j), xi;u

− b̃
t, n∑

j=−n
mj b̄(xj), xi;u


= ∂y b̃

t, n∑
j=−n

mj b̄(xi), xi;u

 b̄(x`)h+ o(h) as h→ 0,

so that fi is differentiable also with respect to m. The differentiability with respect to u is immediate.
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Finally, we prove that (t, x,m)→ (f, g)(t, x,m;u) is sublinear in (x,m), uniformly in t and for all u:∣∣fi(t, x,m;u)
∣∣ ≤ ∣∣fi(t, 0, 0;u)

∣∣+
∣∣fi(t, x,m;u)− fi(t, 0, 0;u)

∣∣
=
∣∣∣(b(t, u)(0, 0)

)∣∣∣+

∣∣∣∣∣∣∣b(t, u)

 n∑
j=−n

mjδxj , xi

− b(t, u)(0, 0)

∣∣∣∣∣∣∣
=
∣∣∣b̃(t, 0, 0;u)

∣∣∣+

∣∣∣∣∣∣∣b̃
t, n∑

j=−n
mj b̄(xj), xi;u

− b̃(t, 0, 0;u)

∣∣∣∣∣∣∣
≤
∣∣∣b̃ (t, 0, 0;u)

∣∣∣+ L


∣∣∣∣∣∣

n∑
j=−n

mj b̄(xj)

∣∣∣∣∣∣+ xi


≤
∥∥∥b̃ (·, 0, 0;u)

∥∥∥
L∞([0,T ];R+)

+ L
√

2n+ 1
(
‖m‖R2n+1 + ‖x‖R2n+1

)
and the first summand above is bounded by (F̃u3 ), completing the proof. �

Below, we call semiflow (or process) on the set M a map S : M × [0, δ]× [0, T ]→M such that S(0, t) = Id
for all t ∈ [0, T ], and S(t3, t1 + t2) ◦ S(t2, t1) = S(t2 + t3, t1) for all t1, t2, t3 such that t1, t1 + t2 ∈ [0, T ],
t2, t3, t2 + t3 ∈ [0, δ]. The semiflow is Lipschitz continuous if the map µ → S(t, to)µ is Lipschitz continuous,
uniformly in to ∈ [0, T ] and in t ∈ [0, δ].

Lemma 4.3. Let (M,dM ) be a metric space and S : M × [0, δ]× [0, T ]→M a Lipschitz semiflow with Lipschitz
constant L. For every Lipschitz continuous map µ : [0, T ]→M , the following estimate holds:

dM
(
µ(t), S(t, 0, µ0)

)
≤ L

∫ t

0

lim inf
h→0+

dM
(
µ(τ + h), S(h, τ, µ(τ)

)
h

dτ (4.4)

For a proof, see ([4], Thm. 2.9) or, in the present non autonomous case, ([17], Prop. 4.1 or [8], Proof of Thm. 3.15).

Lemma 4.4 ([17], Lem. 7.3).

Let n ∈ N, m,m′ ∈ Rn and x, x′ ∈ Rn. Then, with reference to the distance d defined in (2.4),

d

 n∑
i=1

miδxi
,

n∑
i=1

m′iδx′i

 ≤ max

1,

n∑
i=1

|mi|


n∑
i=1

(∣∣mi −m′i
∣∣+
∣∣xi − x′i∣∣) .

Proof of Theorem 2.5. The proof relies on Lemma 4.4. First, we prove that the map

µn : [0, T ]→ M+(R+)

t →
n∑

i=−n
mi(t) δxi(t),

(4.5)
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where t → (xi,mi)(t) solves (4.1)–(4.2)–(4.3), is Lipschitz continuous with respect to the metric d defined
in (2.4). Indeed, by Lemma 4.4

d
(
µn(t), µn(s)

)
≤ max

1,

n∑
i=−n

∣∣∣mi(t)
∣∣∣


n∑
i=−n

(∣∣∣mi(t)−mi(s)
∣∣∣+
∣∣∣xi(t)− xi(s)∣∣∣)

≤ max

1,

n∑
i=−n

∣∣∣mi(t)
∣∣∣


n∑
i=−n

(
Lip(xi) + Lip(mi)

)
(t− s). (4.6)

Moreover,

Lip(xi) ≤ ‖fi‖C0([0,T ]×R+×R+×U ;R) [by (4.1)]

≤ sup(t,u)∈[0,T ]×U
∥∥b(t, u)

∥∥
C0,1(M+(R+)×R+;R) [by (4.2)]

≤ L [by (Fu1 )]∣∣mi(t)
∣∣ ≤ |mo| exp

(
T sup(t,u)∈[0,T ]×U

∥∥c(t, u)
∥∥
C0,1(M+(R+)×R+;R)

)
× exp

(
(2n+ 1)T sup(t,u)∈[0,T ]×U

∥∥β(t, u)
∥∥
C0,1(M+(R+)×R+;R)

)
[by (4.3)]

≤ |mo|e(2(n+1)L)T [by (Fu1 )]

Lip(mi) ≤ ‖gi‖C0([0,T ]×R+×R+×U ;R) [by (4.1)]

≤ sup(t,u)∈[0,T ]×U
∥∥c(t, u)

∥∥
C0,1(M+(R+)×R+;R) supt∈[0,T ]

∣∣mi(t)
∣∣

+(2n+ 1)
∥∥β(t, u)

∥∥
C0,1(M+(R+)×R+;R) supt∈[0,T ]

∣∣mi(t)
∣∣ [by (4.3)]

≤ 2(n+ 1)L|mo|e(2(n+1)L)T [by (Fu1 )]

These estimates, inserted in (4.6), complete the proof of the Lipschitz continuity of µn with respect to the metric
d defined in (2.4).

By the above computations and Corollary 2.3, we can thus use Lemma 4.4, where S is the semiflow generated
by (1.2) and µ is replaced by µn as defined in (4.5), obtaining

d

 n∑
i=−n

mi(t) δxi(t), µu(t)

= d
(
µn(t), S(t, 0)µo

)
≤ d

(
µn(t), S(t, 0)µn(0)

)
+ d

(
S(t, 0)µn(0), S(t, 0)µo

)
≤ max

{
Lip(S), eCt

}[∫ t

0

lim inf
h→0+

d(µnτ+h, S(h, τ)µnτ )

h
dτ + d(µn(0), µo)

]
. (4.7)

The rest of the proof is devoted to estimate the integrand in the latter term above.
Without loss of generality, we may assume that τ ∈ [0, ∆t[ and that h is so small that [τ, τ + h] ⊂ [0, ∆t[.

Define
µτ (t) := S(t, τ)µn(τ).

Then, for t ∈ [τ,∆t[, the map t→ µτ (t) solves problem (1.2) with initial datum µn(τ) =
∑n
i=−nm

i(τ) δxi(τ) =∑n
i=0m

i(τ) δxi(τ) assigned at time τ .
As in ([17], Proof of Thm. 4.3), µτ (t) can be represented as

µτ (t) =

n∑
i=0

M i(τ + h) δyi(τ+h) + π(t, ·) dx
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for suitable maps M0, . . . ,Mn, y0, . . . , yn. Here, the density π(t, ·) is the absolutely continuous part µτ (t) which
arises from the boundary terms due to the non local part in (1.2) and supported inside [x0o, y

0(t)]. Denote the
total mass of π(t, ·) by

Mπ(t) =

∫ y0(t)

x0
o

π(t, x) dx .

Using the implicit representation formula for the solution to the transport equation in spaces of measures [26],
we obtain:

yi(τ + h) = xi(τ) +

∫ τ+h

τ

b(t, u)
(
µτ (t− τ), yi(t)

)
dt

M i(τ + h) = mi(τ) +

∫ τ+h

τ

c(t, u)
(
µτ (t− τ), yi(t)

)
M i(t) dt

Mπ(τ + h) = Mπ(τ) +

∫ τ+h

τ

(∫ y0(t)

x0
o

−c(t, u)(µτ (t− τ), x) dµτ (t− τ)(x)

+

∫ +∞

x0
o

β(t, u)(µτ (t− τ), x) dµτ (t− τ)(x)

)
dt

= Mπ(τ) +

∫ τ+h

τ

∫ y0(t)

x0
o

[(
−c(t, u)(µτ (t− τ), x) + β(t, u)(µτ (t− τ), x)

)
dµτ (t− τ)(x)

]
dt

+

n∑
i=0

∫ τ+h

τ

β(t, u)
(
µτ (t− τ), yi(t)

)
M i(t) dt

≤ Mπ(τ) + 2L
∫ τ+h

τ

∫ y0(t)

x0
o

π(t, x) dx dt+

n∑
i=0

∫ τ+h

τ

β(t, u)
(
µτ (t− τ), yi(t)

)
M i(t) dt

= Mπ(τ) +O(h2) +

n∑
i=0

∫ τ+h

τ

β(t, u)
(
µτ (t− τ), yi(t)

)
M i(t) dt ,

where with O(hk) we denote a quantity that can be bounded by the product of hk with a constant dependent
only on T,L and C.

Above, (Fu1 ) ensures a bound on c and β. We also used the uniform boundedness of π(t, ·) on [0, T ] and the
estimate ∣∣∣y0(t)− x0o

∣∣∣ ≤ sup
t∈[0,T ]

sup
u∈U

∥∥b(t, u)
∥∥
C0(M+(R+)×R+;R) h ≤ Lh

for t ∈ [τ, τ + h). For t ∈ [0, ∆t[ define the time dependent measure

ξ(t) =

n∑
i=0

pi(t) δyi(t) where

{
po(t) = Mo(t) +Mπ(t),
pi(t) = M i(t), for i = 1, . . . , n

(4.8)

in other words, in the measure ξ(t) the mass created due to the boundary condition, described by the den-
sity π(t, ·), is shifted to the closest Dirac delta. We note that:

d
(
µτ (t), µn(t+ τ)

)
≤ d

(
µτ (t), ξ(t+ τ)

)
+ d

(
ξ(t+ τ), µn(t+ τ)

)
. (4.9)

Recalling that t→ yi(t) is Lipschitz continuous with Lipschitz constant

Lip(yi) ≤ sup
t∈[0,T ]

sup
u∈U

∥∥b(t, u)
∥∥
C0(M+(R+)×R+;R) ≤ L
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and that the total mass is uniformly bounded on [0, T ], the first term in the right hand side of (4.9) is estimated
as follows:

d
(
µτ (h), ξ(τ + h)

)
= d

(
π(τ + h, ·),Mπ(τ + h) δy0(τ+h)

)
≤
∣∣∣y0(τ + h)

∣∣∣Mπ(τ + h)

≤ L∆t

 sup
t∈[0,T ],u∈U

∥∥β(t, u)
∥∥
C0(M+(R+)×R+;R)

∫ τ+h

τ

n∑
i=0

M i(t) dt+O(h2)


≤ L∆t

(
LC(T )h+O(h2)

)
= ∆t

(
O(h) +O(h2)

)
.

To bound the second term in (4.9), we want to use Lemma 4.4. Hence, we preliminary obtain the following
estimates on

∣∣xi(τ + h)− yi(τ + h)
∣∣ and

∣∣mi(τ + h)− pi(τ + h)
∣∣:

∣∣∣xi(τ + h)− yi(τ + h)
∣∣∣ ≤ ∫ τ+h

τ

∣∣∣∣b(t, u)
(
µn(t), xi(t)

)
− b(t, u)

(
µτ (t− τ), yi(t)

)∣∣∣∣dt
≤
∫ τ+h

τ

∣∣∣∣b(t, u)
(
µn(t), xi(t)

)
− b(t, u)

(
µτ (t− τ), xi(t)

)∣∣∣∣dt
+

∫ τ+h

τ

∣∣∣∣b(t, u)
(
µτ (t− τ), xi(t)

)
− b(t, u)

(
µτ (t− τ), yi(t)

)∣∣∣∣dt
≤ L

∫ τ+h

τ

d
(
µn(t), µτ (t− τ)

)
dt+ L

∫ τ+h

τ

∣∣∣xi(t)− yi(t)∣∣∣dt
≤ L

∫ τ+h

τ

(
Lip
τ

(µn)h+ d
(
µn(τ), µτ (0)

)
+ Lip

τ

(
µτ (t)

)
h

)
dt

+

∫ τ+h

τ

(
Lip
τ

(xi)h+
∣∣∣xi(τ)− yi(τ)

∣∣∣+ Lip
τ

(yi)h

)
dt

≤ O(h2),

since µn(τ) = µτ (0) and xi(τ) = yi(τ). Entirely analogous estimates can be used to bound the term∑n
i=0

∣∣mi(τ + h)− pi(τ + h)
∣∣, taking into account (4.8) and the estimate for Mπ(t):

n∑
i=0

∣∣∣mi(τ + h)− pi(τ + h)
∣∣∣

≤
n∑
i=0

∫ τ+h

τ

∣∣∣∣c(t, u)
(
µn(t), xi(t)

)
mi(t)− c(t, u)

(
µτ (t− τ), yi(t)

)
M i(t)

∣∣∣∣dt
+

n∑
i=0

∫ τ+h

τ

∣∣∣∣β(t, u)
(
µn(t), xi(t)

)
mi(t)− β(t, u)

(
µτ (t− τ), yi(t)

)
M i(t)

∣∣∣∣ dt+O(h2)

≤
n∑
i=0

∫ τ+h

τ

(∣∣∣∣c(t, u)
(
µn(t), xi(t)

)∣∣∣∣+

∣∣∣∣β(t, u)
(
µn(t), xi(t)

)∣∣∣∣
) ∣∣∣mi(t)−M i(t)

∣∣∣dt
+

n∑
i=0

∫ τ+h

τ

M i(t)

∣∣∣∣c(t, u)
(
µn(t), xi(t)

)
− c(t, u)

(
µn(t), yi(t)

)∣∣∣∣dt
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+

n∑
i=0

∫ τ+h

τ

M i(t)

∣∣∣∣c(t, u)
(
µn(t), yi(t)

)
− c(t, u)

(
µτ (t− τ), yi(t)

)∣∣∣∣dt
+

n∑
i=0

∫ τ+h

τ

M i(t)

∣∣∣∣β(t, u)
(
µn(t), xi(t)

)
− β(t, u)

(
µn(t), yi(t)

)∣∣∣∣dt
+

n∑
i=0

∫ τ+h

τ

M i(t)

∣∣∣∣β(t, u)
(
µn(t), yi(t)

)
− β(t, u)

(
µτ (t− τ), yi(t)

)∣∣∣∣dt+O(h2)

≤
∥∥(c, β)

∥∥
C0

n∑
i=0

∫ τ+h

τ

∣∣∣mi(t)−M i(t)
∣∣∣ dt+

∥∥(c, β)
∥∥
C0,1

n∑
i=0

∫ τ+h

τ

M i(t)
∣∣∣xi(t)− yi(t)∣∣∣dt

+
∥∥(c, β)

∥∥
C0,1

n∑
i=0

∫ τ+h

τ

M i(t) d
(
µn(t), µτ (t− τ)

)
dt+O(h2)

≤
∥∥(c, β)

∥∥
C0

n∑
i=0

∫ τ+h

τ

(
Lip(mi)h+

∣∣∣mi(τ)−M i(τ)
∣∣∣+ Lip(M i)h

)
dt

+
∥∥(c, β)

∥∥
C0,1

n∑
i=0

∫ τ+h

τ

M i(t)

(
Lip(xi)h+

∣∣∣xi(τ)− yi(τ)
∣∣∣+ Lip(yi)h

)
dt

+
∥∥(c, β)

∥∥
C0,1

n∑
i=0

∫ τ+h

τ

M i(t)
(
Lip(µn)h+ d

(
µn(τ), µτ (0)

)
+ Lip(µτ )h

)
dt+O(h2)

≤
∥∥(c, β)

∥∥
C0 h

2
n∑
i=0

(
Lip(mi) + Lip(M i)

)
+
∥∥(c, β)

∥∥
C0,1h

2
(
2‖b‖C0 + Lip(µn) + Lip(µτ )

) n∑
i=0

M i(t) +O(h2)

= O(h2).

Inserting the obtained estimates in the integrand in (4.7), we get:

lim inf
h→0+

1

h
d
(
µτ (h), µn(τ + h)

)
≤ lim inf

h→0+

1

h

(
∆t
(
O(h) +O(h2)

)
+O(h2)

)
= O(1) ∆t,

completing the proof. �

4.3. Proofs related to Section 2.3

Lemma 4.5. Fix T > 0 and for all u ∈ BV([0, T ];U) call µu the corresponding solution to (1.2). Assume there
exists a constant L such that for all u1, u2 ∈ BV([0, T ];U)

d(µu1 , µu2) ≤ L ‖u1 − u2‖L∞([0,T ];R).

Let γ ∈ C0,1(R+;R+) and j satisfy (J1)–(J3). Then, the functional J defined in (2.9)–(2.10) is lower semi-
continuous with respect to the L∞–norm.

Proof. Let un ∈ BV([0, T ];U) be a sequence converging to u ∈ BV([0, T ];U) in the L∞-norm. First we recall
that by ([12], Thm. 1, Sect. 5.2.1) TVRN (u) ≤ lim infn→∞ TVRN (un).
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Next we show the sequential continuity of the map J̃ defined in (2.9), using (J3) and the fact that ω is a
nondecreasing function by (J3).

∣∣∣J̃ (un)− J̃ (u)
∣∣∣ ≤ ∫ T

0

∣∣∣∣∣∣j
(
t, un(t),

∫
R+

γ(ξ) dµun
(t)(ξ)

)
− j

(
t, u(t),

∫
R+

γ(ξ) dµu(t)(ξ)

)∣∣∣∣∣∣dt
≤
∫ T

0

L(t)ω

∣∣∣∣∣
∫
R+

γ(ξ) dµun
(t)(ξ)−

∫
R+

γ(ξ) dµu(t)(ξ)

∣∣∣∣∣+
∣∣un(t)− u(t)

∣∣ dt

≤ ω

(
‖γ‖L∞(R+;R+) sup

t∈[0,T ]

d
(
µun

(t), µu(t)
)

+ ‖un − u‖L∞([0,T ];RN )

)∫ T

0

L(t) dt

≤ ω
(

(1 + L‖γ‖L∞(R+;R+))‖un − u‖L∞([0,T ];RN )

)∫ T

0

L(t) dt

→ 0 in L∞([0, T ];RN ) as n→ +∞,

completing the proof. �

Proof of Theorem 2.6. Note that if u ∈ BV([0, T ];U) then J (u) < ∞, and therefore infu J (u) < ∞. Let εn
be a strictly decreasing sequence converging to 0. Correspondingly, there exists a sequence uεn ∈ BV([0, T ];U)
such that

J (uεn) ≤ inf
u
J (u) + εn

and, without loss of generality, we may also assume that J (uεn) ≤ infu J (u) + 1 for all n. Moreover, by (J1)
and (2.10)

TV(uεn) ≤ J (uεn) ≤ inf
u
J (u) + 1

So that Helly Theorem e.g., ([4], Chap. 2, Thm. 2.3) can be applied, showing that, up to a subsequence, uεn
converges pointwise and in Lp, for every p <∞, to a function u∗ ∈ BV([0, T ];U). Note that Lemma 4.5 can be
applied, since the Lipschitz continuity of u→ µu is proved in ([20], Thm. 3.1). Therefore,

J (u∗) = J ( lim
n→+∞

uεn) [by the definition of u∗]

≤ lim inf
n→∞

J (uεn) [by Lemma 4.5]

= inf
u∈BV([0,T ];U)

J (u) [by the definition of uεn ],

completing the proof. �

Proof of Theorem 2.7. The proof follows the same lines as that of Theorem 2.6. �

Proof of Corollary 2.8. We first prove the uniform convergence Jn → J of the costs on BV([0, T ];U), using (J3),
(2.9), (2.10), (2.11), (2.12) and Theorem 2.5, for all n, we have:

sup
u∈BV([0,T ];U)

∣∣Jn(u)− J (u)
∣∣

= sup
u∈BV([0,T ];U)

∣∣∣J̃n(u)− J̃ (u)
∣∣∣

≤ sup
u∈BV([0,T ];U)

∫ T

0

∣∣∣∣∣∣j
(
t, u(t),

∫
R+

γ(ξ) dµnu(t)(ξ)

)
− j

(
t, u(t),

∫
R+

γ(ξ) dµu(t)(ξ)

)∣∣∣∣∣∣dt
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≤ sup
u∈BV([0,T ];U)

∫ T

0

L(t) ω

∣∣∣∣∣
∫
R+

γ(ξ) dµnu(t)(ξ)−
∫
R+

γ(ξ) dµu(t)(ξ)

∣∣∣∣∣
 dt

≤
∫ T

0

L(t) dt sup
u∈BV([0,T ];U)

ω

(
‖γ‖L∞ sup

t∈[0,T ]

d
(
µnu(t), µu(t)

))

≤
∫ T

0

L(t) dt ω

C ‖γ‖L∞
∆tn + d

µo, n∑
i=0

mi
o δxi

o





→ 0 as n→ +∞,

which immediately implies (2.13).
Using (J2), the same procedure used in the proof of Theorem 2.6 ensures that TV(un) is bounded uniformly

in n. By Helly Theorem (e.g., [4], Chap. 2, Thm. 2.3), up to a subsequence, un → ū a.e. on [0, T ], proving (2.14).
Using Lemma 4.5, which can be applied thanks to ([20], Thm. 3.1), and the uniform convergence of Jn to J
proved above, we have:

J (ū) ≤ lim inf
n→∞

J (un)

= lim inf
n→∞

(
J (un) + Jn(un)− Jn(un)

)
≤ lim inf

n→∞
Jn(un) + lim

n→∞

(
sup

u∈BV([0,T ];U)

∣∣Jn(u)− J (u)
∣∣)

≤ lim
n→∞

Jn(un)

= inf
u∈BV([0,T ];U)

J (u),

where (2.13) was used to obtain the last equality. �

Appendix A. ODE Results

For completeness, we collect here a few basic ODE results using exactly the spaces and norms of use above.

Lemma A.1. Fix T > 0 and a compact U ⊂ RM . Let f : [0, T ]× RN × U → RN be such that

(f1) t→ f(t, x;u) is measurable for all x ∈ RN and u ∈ U ;
(f2) (x, u) → f(t, x;u) is in C1 for a.e. t ∈ [0, T ] and for every compact set K ⊂ RN there exists a constant

LK > 0 such that for a.e. t ∈ [0, T ], for all x1, x2 ∈ K and for all u1, u2 ∈ U ,∥∥f(t, x1;u1)− f(t, x2;u2)
∥∥ ≤ LK (‖x1 − x2‖+ ‖u1 − u2‖

)
.

(f3) (t, x)→ f(t, x;u) is sublinear in x ∈ RN , uniformly in t ∈ [0, T ] and for all u ∈ U .

Then, for all xo ∈ RN and all u ∈ L∞([0, T ];U), the problem{
ẋ = f(t, x;u)
x(0) = xo

(A.1)

admits a unique solution X(u) : [0, T ] → RN . The map X : L∞([0, T ];U) → C1([0, T ];RN ) is Gateaux differ-
entiable in any direction v ∈ L∞([0, T ];U) and the directional derivative DvX(u) solves the Cauchy problem

d

dt
DvX(u) = ∂xf

(
t,X(u);u

)
DvX(u) + ∂vf

(
t,X(u);u

)
v(

DvX(u)
)

(0) = 0.

(A.2)
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Proof. The map X is well defined by the standard theory of Caratheodory ODEs, see for instance [15]. Moreover,
there exists a compact Ω ⊂ RN such that for all u ∈ L∞([0, T ];U),

(
X(u)

)
([0, T ]) ⊂ Ω.

To prove the directional differentiability, call g the solution to the linear problem (A.2) and use the integral
form of both Cauchy problems (A.1) and (A.2) to obtain

1

h

(
X(u+ hv)−X(u)

)
(t)− g(t)

=

∫ t

0

f
(
τ,
(
X(u+ hv)

)
(τ), (u+ hv)(τ)

)
− f

(
τ,
(
X(u)

)
(τ), u(τ)

)
h

dτ − g(t)

=

∫ t

0

∫ 1

0

∂xf
(
τ,
(
X(u+ ϑhv)

)
(τ), (u+ ϑhv)(τ)

)
dϑ

(
X(u+ hv)−X(u)

)
(τ)

h
dτ

+

∫ t

0

∫ 1

0

∂vf
(
τ,
(
X(u+ ϑhv)

)
(τ), (u+ ϑhv)(τ)

)
dϑ v(τ) dτ

−
∫ t

0

(
∂xf

(
τ,
(
X(u)

)
(τ);u

)
g(τ) + ∂vf

(
τ,
(
X(u)

)
(τ);u

)
v

)
dτ

=

∫ t

0

∫ 1

0

[
∂xf

(
τ,
(
X(u+ ϑhv)

)
(τ), (u+ ϑhv)(τ)

)
− ∂xf

(
τ,X(u);u

)]
dϑ

(
X(u+ hv)−X(u)

)
(τ)

h
dτ

+

∫ t

0

∂xf
(
τ,X(u);u

)((X(u+ hv)−X(u)
)

(τ)

h
− g(τ)

)
dτ

+

∫ t

0

∫ 1

0

[
∂vf

(
τ,
(
X(u+ ϑhv)

)
(τ), (u+ ϑhv)(τ)

)
− ∂vf

(
τ,X(u);u

)]
dϑ v(τ) dτ

By the sublinearity of f , for every u, v ∈ U , we can find a compact set K such that
(
X(u+ hv)

)
(t),
(
X(u)

)
(t)

and
(
X(u+ ϑhv)

)
(t) ∈ K.

Lusin’s Theorem ([25], Thm. 1), applied to (∂xf, ∂vf) ∈ L∞([0, T ]; C0,1(K×U ;R2N2

)), ensures that for any
ε > 0, there exists a compact set K ⊂ [0, T ] such that the Lebesgue measure of [0, T ] \K is smaller than ε and
both ∂xf and ∂vf are continuous on K ×Ω ×U , hence also uniformly continuous. Therefore, if h is sufficiently
small,

sup
K×Ω×U

sup
ϑ∈[0,1]

∥∥∥∥∂xf (τ, (X(u+ ϑhv)
)

(τ), (u+ ϑhv)(τ)
)
− ∂xf

(
τ,X(u);u

)∥∥∥∥ ≤ ε,

sup
K×Ω×U

sup
ϑ∈[0,1]

∥∥∥∥∂vf (τ, (X(u+ ϑhv)
)

(τ), (u+ ϑhv)(τ)
)
− ∂vf

(
τ,X(u);u

)∥∥∥∥ ≤ ε.

Introduce now the quantity

δh(t) =

∥∥∥∥ 1

h

(
X(u+ hv)−X(u)

)
(t)− g(t)

∥∥∥∥.
Since ‖∂xf‖ ≤ L, ‖∂vf‖ ≤ L, ‖f‖L∞([0,T ]×Ω×U ;RN ) < +∞, the above estimates lead to

δh(t) ≤ (2Lε+ ε t)‖f‖L∞([0,T ]×Ω×U ;RN ) +

∫ t

0

Lδh(τ) dτ + (2Lε+ ε t)‖v‖L∞([0,T ];RM )

= (2L+ t)
(
‖f‖L∞([0,T ]×Ω×U ;RN ) + ‖v‖L∞([0,T ];RM )

)
ε+

∫ t

0

Lδh(τ) dτ .
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An application of Gronwall Lemma yields that for all ε > 0, if h is sufficiently small

δh(t) ≤ (2L+ t)
(
‖f‖L∞([0,T ]×Ω×U ;RN ) + ‖v‖L∞([0,T ];RM )

)
ε eL t

completing the proof. �
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