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PRESCRIBED CONDITIONS AT INFINITY
FOR FRACTIONAL PARABOLIC AND ELLIPTIC EQUATIONS

WITH UNBOUNDED COEFFICIENTS

Fabio Punzo1 and Enrico Valdinoci2

Abstract. We investigate existence and uniqueness of solutions to a class of fractional parabolic equa-
tions satisfying prescribed point-wise conditions at infinity (in space), which can be time-dependent.
Moreover, we study the asymptotic behavior of such solutions. We also consider solutions of elliptic
equations satisfying appropriate conditions at infinity.
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1. Introduction

We are concerned with existence and uniqueness of solutions to the following linear nonlocal parabolic Cauchy
problem: ⎧⎨

⎩
∂tu = −a (−Δ)su+ cu+ f in IRN × (0, T ] =: ST

u = u0 in IRN × {0},
(1.1)

where the coefficient a is a positive function only depending on the space variable x, which becomes unbounded
as |x| → ∞; (−Δ)s denotes the fractional Laplace operator of order s ∈ (0, 1), N > 2s, while c, f, u0 ∈ L∞(IRN ).
Moreover, we investigate existence and uniqueness of solutions to the linear nonlocal elliptic equation

a(−Δ)su− cu = f in IRN ; (1.2)

in this case we also suppose that c < 0 (see the comments after Rem. 2.5).

(a) Parabolic problems. The well-posedness of problem (1.1) has been largely studied in the literature in the
local case s = 1 (see, e.g., [2, 8, 11–15, 18, 24]). As a matter of fact, if N = 1, 2 and s = 1, then there exists a
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unique bounded solution of problem (1.1). If N ≥ 3, a special role is played by the behaviour at infinity of the
coefficient a. In particular, if

a(x) ≤ C(1 + |x|2)α
2 for all x ∈ IRN , for some C > 0, α ≤ 2,

then problem (1.1) admits only one bounded solution (see [2, 12]). Instead, if

a(x) ≥ C(1 + |x|2)α
2 for all x ∈ IRN , for some C > 0, α > 2,

then problem (1.1) admits infinitely many bounded solutions. More precisely, for any given g ∈ C([0, T ]), if

lim
|x|→∞

u0(x) = g(0), (1.3)

then there exists a unique bounded solution of problem (1.1) such that

lim
|x|→∞

u(x, t) = g(t) uniformly with respect to t ∈ [0, T ] (1.4)

(see [11, 15]). Observe that condition (1.4) can be regarded as a Dirichlet condition at infinity.
More recently, existence and uniqueness results concerning nonlocal Cauchy parabolic problems have been

established. In this respect, in [1,16], [17] quite general integro-differential equations have been treated, requiring
that there exist two constants C1 > 0, C2 > 0 such that

C1 ≤ a(x) ≤ C2 for all x ∈ IRN . (1.5)

Moreover, in [20] the uniqueness of solutions of problem (1.1) with c ≡ 0 in suitable weighted Lebesgue spaces
is stated, under suitable assumptions on a.

In the present paper we always assume that

(H0) there exist C0 > 0, α > 2s such that a(x) ≥ C0(1 + |x|2)α
2 for all x ∈ IRN .

Clearly, this case is not covered by [1, 16, 17], since (1.5) is not satisfied. Moreover, hypothesis (H0) excludes
that the assumptions on a made in [20] hold.

It is worth mentioning that the unbounded diffusion coefficient a(x) is very important for the applications,
see for instance, for the local case, [2,8,10,18,19]. Clearly, the same models with the unbounded diffusion coeffi-
cient a(x) occurs when considering nonlocal diffusion, for instance, in association with non-Gaussian stochastic
processes, that, starting from any point in IRN , can reach infinity (see, e.g., [5]).

We prove (see Thm. 2.7) that there exists a unique solution of problem (1.1) such that (1.4) is satisfied,
provided (1.3) holds; furthermore,

|u| ≤ CeβT in IRN × [0, T ], (1.6)

for some C > 0 and β > 0. This result generalizes to the case of nonlocal operator the results in [11] and in [15].
In proving this result, at first for any j ∈ IN , we consider viscosity solutions of approximating problems

in a large cylinder Bj × (0, T ]; here and hereafter for each R > 0, BR :=
{
x ∈ IRN : |x| < R

}
. For such

problems existence, uniqueness and regularity results have been given in [3, 4]. Then using suitable super-
and subsolutions and standard compactness arguments we obtain the existence of a solution of problem (1.1),
satifying the estimate (1.6), which depends on T . Then, in order to show that condition (1.4) holds, proper
sub- and supersolutions are introduced (see (4.24) and (4.37) below). In doing this, a special role is played by
a supersolution V = V (x) of equation

−a(−Δ)sV = −1 in IRN \BR0 , (1.7)
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for some R0 > 0, such that

V (x) > 0 for all x ∈ IRN , lim
|x|→∞

V (x) = 0, (1.8)

which has been appropriately constructed (see Prop. 3.1). Moreover, we show that similar results hold for
problem ⎧⎨

⎩
∂tu = −a (−Δ)su+ cu+ f in IRN × (0,∞)

u = u0 in IRN × {0},
(1.9)

provided c ≤ 0 (see Thm. 2.8). Clearly, in this case, condition (1.4) is replaced by

lim
|x|→∞

u(x, t) = g(t) uniformly with respect to t ∈ [0,∞). (1.10)

In order to impose condition (1.10), we need to show preliminarily that the solution satisfies the bound

|u| ≤ C in IRN × (0,∞), (1.11)

which is global in time. In order to obtain this estimate, we use a positive supersolution h = h(x) of equation

−a(−Δ)sh = −1 in IRN . (1.12)

Note that the proof of the existence of such a supersolution h is rather technical (see Prop. 3.2); indeed, we also
show that

h(x) > 0 for all x ∈ IRN , lim
|x|→∞

h(x) = 0. (1.13)

Let us describe in general terms the deep relation between our results and stochastic calculus for jump
processes. In fact, equation (1.12) completed with condition (1.13) can be regarded as the counterpart on IRN

for the operator a(−Δ)s of the first exit-time problem in a bounded domain. Note that the first exit-time
problem in BR, in the case a ≡ 1, has been studied in [6,9]. In fact, in [6] and in [9] it is outlined the connection
between the so-called first exit time problem⎧⎨

⎩
−(−Δ)su = −1 in BR

u = 0 in
(
IRN \BR

)
,

(1.14)

and the first exit-time from BR of the jump process associated to (−Δ)s, starting from any point in BR. Now,
since equation (1.12), completed with condition (1.13), corresponds to problem (1.14) in the limit case R = ∞, it
is somehow related to reachability of infinity by the jump process associated to the operator a(−Δ)s (see [5,10]).
In particular, from the existence of the supersolution h it follows that infinity can actually be attained by the
jump process starting from any point x0 ∈ IRN . This property is usually expressed saying that the process is
transient.

Moreover, it is well-known that if any point of the boundary of a bounded domain of IRN can be reached
by the jump process associated to a nonlocal diffusion operator starting from points inside the domain, then
the Dirichlet problem admits a unique solution. Now, since in our case the jump process is transient in whole
of IRN , one can expect that there exists a unique solution of problem (1.1) which satisfies conditions of Dirichlet
type at infinity. Indeed, we prove this.

We should mention that, to the best of our knowledge, in the literature no results concerning the prescription
of general Dirichlet conditions at infinity for solutions of nonlocal parabolic (or elliptic) equations have been
obtained before the present paper.
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Finally, we prove that the solution u(x, t) of problem (1.9) satisfying (1.10) admits a limit as t→ ∞. In fact,
the function

W (x) := lim
t→∞u(x, t) (x ∈ IRN )

is the unique solution of equation (1.2) such that

lim
|x|→∞

W (x) = γ,

provided
γ = lim

t→∞ g(t) (1.15)

(see Thm. 2.11). Such result is shown by adapting to the present situation the method of sub- and supersolutions
used in [21] in the case of bounded domains of IRN for ”local” parabolic equations. Indeed, some important
changes are in order, in view of the nonlocal character of the problem and since we prescribe conditions as
|x| → ∞.

(b) Ellipitc equations. In the local case, some existence and uniqueness results for equations (1.2) with s = 1
can be deduced from general results in [19]. Moreover, the case 0 < s < 1 has been treated in [20]; in particular,
it is shown that uniqueness results hold in Lpψ(IRN ), for ψ ∈ C(S̄T ), ψ > 0, p ≥ 1, under suitable assumptions
on a.

From the result concerning the asymptotic behaviour of solutions of problem (1.1) recalled in (a) above, we
can infer that there exists a unique solution of equation (1.2), which satisfies (1.15). However, we also prove
this existence and uniqueness result also independently, without using results for parabolic problems. In fact,
we solve approximating problems in a large ball Bj for any j ∈ IN . In order to obtain a uniform bound for
the solutions of such problems we use in crucial way the supersolution h of equation (1.12). Then, by standard
compactness tools, we get a solution of equation (1.2). Using again the supersolution h, and in particular the
fact that (1.13) holds, we impose that

lim
|x|→∞

u(x) = γ (γ ∈ IR). (1.16)

We devote the forthcoming Section 2 to the precise statement of the main results obtained in this paper (see
in particular Sect. 2.1).

2. Mathematical framework and results

The fractional Laplacian (−Δ)s can be defined by the Fourier transform F for any function in the Schwartz
class S (see e.g. [22]). Moreover,

(−Δ)su = F−1
(|ξ|2sFu), ξ ∈ IRN , u ∈ S. (2.1)

Suppose that for some γ > 0, u ∈ Ls(IRN )∩C2s+γ(IRN ) if s < 1
2 , or u ∈ Ls(IRN )∩C1,2s+γ−1

loc (IRN ) if s ≥ 1
2 .

Then we have

(−Δ)su(x) = CN,s P.V.
∫
IRN

u(x) − u(y)
|x− y|N+2s

dy (x ∈ IRN ), (2.2)

where (see [7])

CN,s =
4ssΓ ((N + 2s)/2)
πN/2Γ (1 − s)

=
(∫

IRN

1 − cos(ξ1)
|ξ|N+2s

dξ
)−1

,

Γ being the Gamma function. In the sequel, for simplicity, we shall write∫
IRN

u(x) − u(y)
|x− y|N+2s

dy ≡ P.V.
∫
IRN

u(x) − u(y)
|x− y|N+2s

dy (x ∈ IRN ).

Moreover, (−Δ)su ∈ C(IRN ).
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Concerning the coefficients a and c, and the function f we always make the following assumption:

(H1)

{
(i) a ∈ C0,σ

loc (IRN )
(
σ ∈ (0, 1)

)
, a(x) > 0 for all x ∈ IRN ;

(ii) c, f ∈ C0,σ
loc (IRN ) ∩ L∞(IRN ).

Now we can give the definition of solution. Let Ω ⊆ IRN be an open subset.

Definition 2.1. We say that a function u is a subsolution to equation

∂tu = − a (−Δ)su + cu+ f in QT := Ω × (0, T ], (2.3)

if

(i) u is upper semicontinuous in ST ;
(ii) for any open bounded subset U ⊂ QT , for any (x0, t0) ∈ U , for any test function ϕ ∈ C2(ST ) such that

u(x0, t0) − ϕ(x0, t0) ≥ u(x, t) − ϕ(x, t) for all (x, t) ∈ U , one has

∂tψ(x0, t0) ≤ −a(x0)(−Δ)sψ(x0, t0) + c(x0)u(x0, t0) + f(x0),

where

ψ :=

⎧⎨
⎩
ϕ in U

u in ST \ U.
(2.4)

Furthermore, we say that a function u is a supersolution to equation (2.3) if

(i) u is lower semicontinuous in ST ;
(ii) for any open bounded subset U ⊂ QT , for any (x0, t0) ∈ U , for any test function ϕ ∈ C2(ST ) such that

u(x0, t0) − ϕ(x0, t0) ≤ u(x, t) − ϕ(x, t) for all (x, t) ∈ U , one has

∂tψ(x0, t0) ≥ −a(x0)(−Δ)sψ(x0, t0) + c(x0)u(x0, t0) + f(x0),

where ψ is defined by (2.4). Finally, we say that u is a solution to equation (1.2) if it is both a subsolution and
a supersolution to equation (1.2).

Let g ∈ C([0, T ]), u0 ∈ C(IRN ) with

u0(x, 0) = g(0) for all x ∈ IRN \Ω. (2.5)

Consider the problem ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu = −a (−Δ)su+ cu+ f in QT

u = g in
(
IRN \Ω) × (0, T ]

u = u0 in IRN × {0}.

(2.6)

Definition 2.2. We say that a function u is a subsolution to problem (2.6) if

(i) u is upper semicontinuous in ST ;
(ii) u is a subsolution to equation (2.3);
(iii) u(x, t) ≤ g(t) for all x ∈ IRN \Ω, t ∈ (0, T ] and u(x, 0) ≤ u0(x) for all x ∈ IRN .

Similarly, supersolutions are defined. Finally, we say that u is a solution to problem (2.6) if it is both a subsolution
and a supersolution to problem (2.6).
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Observe that according to our definition, any solution of problem (2.6) takes continuously the initial datum
u0 and the boundary datum g.

Definition 2.3. We say that a function u is a subsolution to equation

a (−Δ)su − cu = f in Ω, (2.7)

if

(i) u is upper semicontinuous in IRN ;
(ii) for any open bounded subset U ⊂ Ω, for any x0 ∈ U , for any test function ϕ ∈ C2(IRN ) such that

u(x0) − ϕ(x0) ≥ u(x) − ϕ(x) for all x ∈ U , one has

a(x0)(−Δ)sψ(x0) − c(x0)u(x0) ≤ f(x0),

where ψ is defined by

ψ :=

⎧⎨
⎩
ϕ in U

u in IRN \ U.
(2.8)

Furthermore, we say that a function u is a supersolution to equation (2.7) if

(i) u is lower semicontinuous in IRN ;
(ii) for any open subset U ∈ Ω, for any x0 ∈ U , for any test function ϕ ∈ C2(Ω) such that u(x0) − ϕ(x0) ≤

u(x) − ϕ(x) for all x ∈ U , one has one has

a(x0)(−Δ)sψ(x0) − c(x0)u(x0) ≥ f(x0).

Finally, we say that u is a solution to equation (2.7) if it is both a subsolution and a supersolution to
equation (2.7).

⎧⎨
⎩
a (−Δ)su− cu = f in Ω

u = γ in
(
IRN \Ω)

,
(2.9)

where γ ∈ IR.

Definition 2.4. We say that a function u is a subsolution to problem (2.9) if

(i) u is upper semicontinuous in IRN ;
(ii) u is a subsolution to equation (2.7);
(iii) u(x) ≤ γ for all x ∈ IRN \Ω.
Similarly, supersolutions and solutions are defined.

In the next two Remarks we summarize existence, uniqueness and regularity results shown in [3, 4], for
problems (2.6) and (2.9), that will be used in the sequel.

Remark 2.5. Let Ω ⊂ IRN an open bounded subset with ∂Ω of class C1; let γ ∈ IR. Let assumption (H1) be
satisfied. Assume that supΩ c < 0. We have that

(i) there exists a unique solution to problem (2.9);
(ii) if u is a subsolution of problem (2.9) and v is a supersolution of problem (2.9), then u ≤ v in IRN ;
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(iii) if u is a solution of equation (2.7), then, for some μ ∈ (0, 1), for any open subset Ω′ ⊂⊂ Ω,

‖u‖C0,μ(Ω′) ≤ C,

for some constant C > 0, which only depends on ‖u‖∞, N, a, c, f .

Note that (i), (ii) follow from [3], (Thm. 2 and [4], Thm. 1), whereas from Theorem 2 and the comments at the
end of page 2 in [4], it follows (iii).

Note that in order to apply the results from [3, 4] we need to observe that equation (2.7) is equivalent to
equation

(−Δ)su =
c

a
u+

f

a
in Ω,

for which those results can be used.
Furthermore, observe that when dealing with elliptic equations, we assume that c < 0 in IRN . This guarantees,

together the continuity of c, that supΩ c < 0, which is required by Remark 2.5. If one can prove the results in
Remark 2.5 under the more general hypothesis that c ≤ 0 in Ω, all the results in the following remain true, only
supposing c ≤ 0 in IRN .

Analogously, noting that equation (2.3) is equivalent to equation

1
a
∂tu+ (−Δ)su =

c

a
u+

f

a
u in QT ,

from the results in ([3], Sect. 4.3) and in [4] (see also the comments at the end of page 2 in [4]) we get the next
result.

Remark 2.6. Let Ω ⊂ IRN be an open bounded subset with ∂Ω of class C1. Let assumption (H1) be satisfied.
Let g ∈ C([0, T ]), u0 ∈ C(IRN ) ∩ L∞(IRN ); suppose that condition (2.5) is satisfied. We have that:

(i) there exists a unique solution to problem (2.6);
(ii) if u is a subsolution of problem (2.6) and v is a supersolution of problem (2.6), then u ≤ v in QT ;
(iii) if u is a solution of equation (2.3), then, for some 0 < μ < 1, for any open subset Ω′ ⊂⊂ Ω, τ ∈ (0, T ] we

have
|u(x, t1) − u(y, t2)| ≤ C

(|x− y|μ + |t1 − t2|
μ
2s

)
for all x, y ∈ Ω′, t1, t2 ∈ [τ, T ],

for some constant C > 0, which only depends on ‖u‖∞, N, a, c, f .

Note that the estimates in Remark 2.5(iii) and in Remark 2.6(iii), which require assumption (H1), will have a
crucial role in proving existence of solutions. In fact, they permit to use compactnees arguments for solutions
of problems in suitable approximating domains.

2.1. Main results: Existence, uniqueness and asymptotic behaviour of solutions

In the following, we always assume that

0 < s < 1, N > 2s.

Concerning existence and uniqueness of solutions of problem (1.1) we have the next result.

Theorem 2.7. Let assumptions (H0), (H1) be satisfied. Let T > 0. Let g ∈ C([0, T ]), u0 ∈ C(IRN ) ∩ L∞(IRN );
suppose that condition (1.3) is satisfied. Then there exists a unique solution u to problem (1.1) such that
condition (1.4) is satisfied. Furthermore, (1.6) holds.

Under the extra hypothesis that c < 0, we have the next existence and uniqueness result for problem (1.9).
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Theorem 2.8. Let assumptions (H0), (H1) be satisfied. Let g ∈ C([0,∞)) ∩ L∞((0,∞)), u0 ∈ C(IRN ) ∩
L∞(IRN ), c < 0; suppose that condition (1.3) is satisfied. Then there exists a unique solution to problem (1.9)
such that condition (1.10) is satisfied. Furthermore, for some C > 0, (1.11) holds.

Remark 2.9. Observe that the estimate in (1.6) depends on T > 0, while that in (1.11) is independent of T .
In order to get (1.11) we use the further hypothesis c < 0.

Concerning the elliptic equation (1.2) we show the next result.

Theorem 2.10. Let assumptions (H0), (H1) be satisfied. Let γ ∈ IR; suppose that c < 0 in IRN . Then there
exists a unique solution to equation (1.2) such that condition (1.16) is satisfied.

The next theorem is concerned with the asymptotic behaviour as t→ ∞ of solutions of problem (1.9).

Theorem 2.11. Let assumptions of Theorem 2.8 be satisfied. Let γ := limt→∞ g(t). Let u be the unique solution
to problem (1.1) such that (1.4) is satisfied. Suppose that condition (1.15) holds. Then

lim
t→∞u(x, t) = W (x) for all x ∈ IRN ,

where W is the unique solution of equation (1.2) satisfying condition (1.16).

Remark 2.12. Note that the existence result in Theorem 2.10 can be regarded as a consequence of Theo-
rem 2.11. In fact, from Theorem 2.11 in particular we obtain the existence of a solution W (x) := limt→∞ u(x, t)
of problem (1.2), where u(x, t) is the solution of problem (1.1) with g(t) ≡ γ and u0 satisfying (1.3). However,
in Section 4 we give an independent proof of Theorem 2.11, without using results concerning the parabolic
problem. Finally, observe that the supersolution h(x) of equation (1.12) plays a crucial role both in the Proof
of Theorem 2.10 and in that of Theorem 2.11.

3. Construction of stationary supersolutions

For any C > 0, β > 0 define the function

V (x) := C|x|−β (
x ∈ IRN \ {0}). (3.10)

Concerning the function V , we show the next result.

Proposition 3.1. Let assumptions (H0), (H1)− (i) be satisfied; let R0 > 0. Then there exist C > 0, β > 0 such
that the function V satisfies

−a(x)(−Δ)sV (x) ≤ −1 for all x ∈ IRN \BR0 . (3.11)

In particular, V is a supersolution of equation (1.7) in the sense of Definition 2.3. Moreover, (1.8) holds.

Proof. Note that (see Sect. 2)

(−Δ)sV (x) = CN,s

∫
IRN

V (x) − V (y)
|x− y|N+2s

dy for all x ∈ IRN \ {0}.

Moreover (see [23], Exp. 5, p. 257), we have

V̂ (ξ) = CβC|ξ|−N+β

for some Cβ > 0. Hence, by (2.1),

(−Δ)sV (x) = CCβ(F−1|ξ|2s−N+β)(x) = CCβCβ+2s|x|−β+2s for all x ∈ IRN \ {0}.
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Thus, in view of (H0), we have

−a(x)(−Δ)sV (x) ≤ −CC0CβCβ+2s|x|−(β+2s)+α for all x ∈ IRN \ {0}. (3.12)

Now we choose 0 < β < α− 2s; so, from (3.12) it follows that (3.11) is satisfied, provided that

C ≥ 1

Rβ+2s−α
0 C0CβCβ+2s

·

This completes the proof. �

Proposition 3.2. Let assumptions (H0), (H1)−(i) be satisfied. There exists a supersolution h of equation (1.12)
in the sense of Definition 2.3, which satisfies (1.13).

Proof. Let V be given by Proposition 3.1. Take R̂ > 0. From the results in [9] it follows that, for a certain
C1 = C1(N, s) > 0, the function

W̄ (x) ≡ W̄ (|x|) := C1

(
R̂2 − |x|2)s/2

+
(x ∈ IRN ).

solves ⎧⎨
⎩

(−Δ)su = 1 in BR̂

u = 0 in IRN \BR̂.
(3.13)

Hence, it easily follows that for each μ0 > 0, μ1 ≥ μ0 maxBR̂

1
a and μ2 > 0, the function

W (x) ≡W (|x|) := μ1W̄ (x) + μ2

(
x ∈ IRN

)
is a supersolution of problem ⎧⎨

⎩
−a(x)(−Δ)su = −μ0 in BR̂

u = μ2 in IRN \BR̂.
(3.14)

For any C̃ > 0 set
Ṽ (x) ≡ Ṽ (|x|) := C̃V (|x|) (

x ∈ IRN
)
.

It is easily checked that if
μ2 > C 2β R̂−β C̃, (3.15)

then

Ṽ < W in

[
R̂

2
, R̂

]
· (3.16)

Furthermore, since Ṽ (x) → +∞ as x→ 0, in view of (3.16), we can deduce that there exists R̄ ∈ (0, R̂/2) such
that W (R̄) = Ṽ (R̄). Indeed, such R̄ is unique. To see this, take any R̄ > 0 such that W (R̄) = Ṽ (R̄). In view
of (3.16) and the very definition of W and Ṽ we have that R̄ ∈

(
0, R̂2

)
. Furthermore,

R̂2 − R̄2 ≥ 1, (3.17)

provided R̂ > 2. Moreover, it is direct to check that if we show that

W ′(R̄) > Ṽ ′(R̄), (3.18)
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then such R̄ is unique. In order to show (3.18), note that (3.18) is equivalent to

sμ1C1R̄
2 < β(R̂2 − R̄2)1−

s
2 Ṽ (R̄). (3.19)

Now, in view of (3.17) and the definition of W , (3.19) follows if we take

C̃ >
sμ1C1R̂

2+β

βC
· (3.20)

Therefore,
Ṽ ≥W in BR̄, Ṽ (R̄) = W (R̄), Ṽ ≤W in IRN \BR̄. (3.21)

Take 0 < R0 < R̄. Define
h := min{Ṽ , W} in IRN .

We claim that h is a supersolution of equation

−a(−Δ)sh = −min{μ0, C̃} in IRN .

In fact, since V is a supersolution of equation (1.7), by Definition 2.3 and (2.2), for any open bounded subset
Ω′ ⊂ IRN \ BR0 , for any x0 ∈ Ω′, for any test function ϕ ∈ C2(IRN ) such that Ṽ (x0) − ϕ(x0) ≤ Ṽ (x) − ϕ(x)
for all x ∈ Ω′, one has

a(x0)CN,s
∫
IRN

ψ(x0) − ψ(y)
|x0 − y|N+2s

dy ≥ C̃,

where ψ is defined by (2.8) with u replaced by Ṽ and U by Ω′. Hence

a(x0)CN,s

{∫
Ω′

ϕ(x0) − ϕ(y)
|x0 − y|N+2s

dy +
∫
IRN\Ω′

Ṽ (x0) − Ṽ (y)
|x0 − y|N+2s

dy

}
≥ C̃. (3.22)

Similarly, since W is a supersolution of problem (3.14), we have that for any open bounded subset U ⊂ BR0 ,
for any x0 ∈ U , for any test function ϕ ∈ C2(IRN ) such that W (x0) − ϕ(x0) ≤W (x) − ϕ(x) for all x ∈ U , one
has

a(x0)CN,s

{∫
U

ϕ(x0) − ϕ(y)
|x0 − y|N+2s

dy +
∫
IRN\U

W (x0) −W (y)
|x0 − y|N+2s

dy

}
≥ μ0. (3.23)

Now, take any x0 ∈ IRN with |x0| ≥ R̄, any open bounded subset U ⊂ IRN with x0 ∈ U , and any test
function ϕ ∈ C2(IRN ) such that h(x0) − ϕ(x0) ≤ h(x) − ϕ(x) for all x ∈ U . Set

ψ :=

⎧⎨
⎩
ϕ in U

h in IRN \ U.
(3.24)

Note that, due to (3.21), we have
h(x0) = Ṽ (x0). (3.25)

For any 0 < ε < R̄−R0, we have U1 := U ∩ (
IRN \BR0+ε

) ⊂ IRN \BR0 , x0 ∈ U1. Moreover,

ϕ(x) ≤ Ṽ (x) for all x ∈ U1, ϕ(x0) = Ṽ (x0). (3.26)

So, from (3.22) with Ω′ = U1 we get

a(x0)CN,s

{∫
U1

ϕ(x0) − ϕ(y)
|x0 − y|N+2s

dy +
∫
IRN\U1

Ṽ (x0) − Ṽ (y)
|x0 − y|N+2s

dy

}
≥ C̃. (3.27)
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Due to (3.21) and (3.25), since h ≤ Ṽ in IRN , we have

a(x0)CN,s

{∫
U1

ϕ(x0) − ϕ(y)
|x0 − y|N+2s

dy +
∫
IRN\U1

h(x0) − h(y)
|x0 − y|N+2s

dy

}
≥ C̃. (3.28)

Set U2 := U ∩BR0+ε. In view of (3.28), since ϕ(x0) − ϕ(y) ≥ h(x0) − h(y) for all y ∈ U2 we have

a(x0)CN,s
∫
IRN

ψ(x0) − ψ(y)
|x0 − y|N+2s

dy = a(x0)CN,s

{∫
U

ϕ(x0) − ϕ(y)
|x0 − y|N+2s

dy +
∫
IRN\U

h(x0) − h(y)
|x0 − y|N+2s

dy

}

= a(x0)CN,s

{ ∫
U1

ϕ(x0) − ϕ(y)
|x0 − y|N+2s

dy +
∫
IRN\U1

h(x0) − h(y)
|x0 − y|N+2s

dy

−
∫
U2

h(x0) − h(y)
|x0 − y|N+2s

dy +
∫
U2

ϕ(x0) − ϕ(y)
|x0 − y|N+2s

dy

}
≥ C̃. (3.29)

Now, take any x0 ∈ IRN with |x0| < R̄, any open bounded subset U ⊂ IRN with x0 ∈ U , and any test
function ϕ ∈ C2(IRN ) such that h(x0) − ϕ(x0) ≤ h(x) − ϕ(x) for all x ∈ U . Let ψ be defined by (3.24). Note
that (3.21) gives

h(x0) = W (x0). (3.30)

For any 0 < ε < R̄−R0 we have U1 := U ∩BR̄−ε ⊂ BR̄, x0 ∈ U1. Moreover,

ϕ(x) ≤W (x) for all x ∈ U1, ϕ(x0) = W (x0). (3.31)

So, from (3.23) with Ω′ = U1 we get

a(x0)CN,s

{∫
U1

ϕ(x0) − ϕ(y)
|x0 − y|N+2s

dy +
∫
IRN\U1

W (x0) −W (y)
|x0 − y|N+2s

dy

}
≥ μ0. (3.32)

Due to (3.30) and (3.32), since h ≤W in IRN , we have

a(x0)CN,s

{∫
U1

ϕ(x0) − ϕ(y)
|x0 − y|N+2s

dy +
∫
IRN\U1

h(x0) − h(y)
|x0 − y|N+2s

dy

}
≥ μ0. (3.33)

Set U2 := U ∩ (
IRN \BR̄−ε

)
. In view of (3.33), since ϕ(x0) − ϕ(y) ≥ h(x0) − h(y) for all y ∈ U2 we have

a(x0)CN,s
∫
IRN

ψ(x0) − ψ(y)
|x0 − y|N+2s

dy = a(x0)CN,s

{∫
U

ϕ(x0) − ϕ(y)
|x0 − y|N+2s

dy +
∫
IRN\U

h(x0) − h(y)
|x0 − y|N+2s

dy

}

= a(x0)CN,s

{ ∫
U1

ϕ(x0) − ϕ(y)
|x0 − y|N+2s

dy +
∫
IRN\U1

h(x0) − h(y)
|x0 − y|N+2s

dy

−
∫
U2

h(x0) − h(y)
|x0 − y|N+2s

dy +
∫
U2

ϕ(x0) − ϕ(y)
|x0 − y|N+2s

dy

}
≥ μ0. (3.34)

From (3.29) and (3.34) the claim follows. Therefore,

h := C̄h in IRN ,

with C̄ ≥ max
{

1
μ0
,

1
C̃

}
, is a supersolution of equation (1.12); moreover, it is immediately seen that it satis-

fies (1.13). �
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4. Proofs of existence and uniqueness results

To begin with, let us show the next quite standard comparison principle.

Proposition 4.1. Let assumptions (H0), (H1) be satisfied. Let u be a subsolution of problem (1.1), let v be a
supersolution of problem (1.1). Suppose that both

lim sup
|x|→∞

(u− v) ≤ 0 uniformly for t ∈ [0, T ].

Then
u ≤ v in ST .

Proof. Set w := u− v. Let ε > 0. Then there exists Rε > 0 such that

|w(x, t)| ≤ ε for all x ∈ IRN \BRε , t ∈ [0, T ].

Hence, it is easily seen that w is a subsolution of problem (in the sense of Def. 2.1)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tw = −a (−Δ)sw + cw in BRε × (0, T ]

w = ε in
(
IRN \BRε

) × (0, T ]

w = 0 in IRN × {0}.

(4.1)

Moreover, it is easily seen that the function

z(x, t) := ε e‖c‖∞t
(
x ∈ IRN , t ∈ [0, T ]

)
is a supersolution of problem (4.1). By the comparison principle (see Rem. 2.6),

w ≤ z in IRN × [0, T ]. (4.2)

Letting ε→ 0+, we get w ≤ 0 in IRN × [0, T ]. Hence the proof is complete. �
Let us prove Theorem 2.7. Hereafter, {ζj} ⊂ C∞

c (Bj) will be a sequence of functions such that

0 ≤ ζj ≤ 1, ζj ≡ 1 in Bj/2 for each j ∈ IN. (4.3)

Proof of Theorem 2.7. For any j ∈ IN let uj be the unique solution (see Rem. 2.6) of the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu = −a (−Δ)su+ cu+ f in Bj × (0, T ]

u = g in
(
IRN \Bj

) × (0, T ]

u = u0,j in IRN × {0},

(4.4)

where
u0,j(x) := ζj(x)u0(x) + [1 − ζj(x)]g(0) for all x ∈ Bj .

It is easily seen that the function

v(x, t) := Ceβt
(
(x, t) ∈ IRN × [0, T ]

)
is a supersolution of problem (4.4) for any j ∈ IN , provided that

β ≥ 1 + ‖c‖∞, C ≥ max{‖f‖∞, ‖g‖∞, ‖u0‖∞}.
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Thus, by the comparison principle (see Rem. 2.6),

uj(x, t) ≤ v̄(x, t) for all (x, t) ∈ IRN × [0, T ]. (4.5)

Furthermore, the function
v(x, t) := −Ceβt

(
(x, t) ∈ IRN × [0, T ]

)
is a subsolution of problem (4.4) for any j ∈ IN . Thus, by the comparison principle,

uj(x, t) ≥ v(x, t) for all (x, t) ∈ IRN × [0, T ]. (4.6)

From (4.5)−(4.6) we obtain ∣∣uj(x, t)∣∣ ≤ CeβT =: KT for all (x, t) ∈ IRN × [0, T ]. (4.7)

By the a priori estimates recalled in Remark 2.6(iii) and usual compactness arguments, there exists a subse-
quence {ujk} ⊂ {uj} and a function u ∈ C(ST ) such that

u := lim
k→∞

ujk uniformly in D × [τ, T ],

for any compact subset D ⊂ IRN and for any τ ∈ (0, T ). For simplicity we still denote {ujk} by {uj}. In view
of stability properties of viscosity solutions under local uniform convergence, the function u is a solution of
equation

∂tu = −a (−Δ)su+ cu+ f in IRN × (0, T ].

Claim 1. We have that
lim
t→0+

u(x, t) = u0(x) for any x ∈ IRN .

In fact, let x0 ∈ IRN . Take j0 ∈ IN so large that x0 ∈ Bj0/2. In view of the definition of {ζj} (see (4.3)) there
exists δ0 ∈ (0, 1) such that for any j ≥ j0

uj(x, 0) = u0,j(x) = u0(x) for all x ∈ Bδ0(x0). (4.8)

Since u0 ∈ C(IRN ), for any 0 < ε < 1 there exists δ ∈ (0, δ0) such that

−ε < u0(x) − u0(x0) < ε for all x ∈ Bδ(x0). (4.9)

From (4.8), (4.9) it follows that for any 0 < ε < 1 and any j ≥ j0 there holds

−ε < uj(x, 0) − u0(x0) < ε for all x ∈ Bδ(x0). (4.10)

Consider a function χ ∈ C∞(IRN ) such that

χ(x) = |x− x0|2
(
x ∈ B1(x0)

)
,

0 ≤ χ ≤ 2 in IRN , χ ≡ 2
(
x ∈ IRN \B2(x0)

)
.

Observe that since χ ∈ C∞(IRN ) ∩ L∞(IRN ), we have that (−Δ)sχ ∈ C(IRN ) (see Sect. 2). Therefore

sup
x∈Bδ(x0)

∣∣(−Δ)sχ(x)
∣∣ <∞.

Define
h(x, t) :=

[
χ(x) +At

]
eηt (x ∈ IRN , t ∈ [0, δ]),
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v(x, t) := Mh(x, t) + u0(x0) + ε (x ∈ IRN , t ∈ [0, δ]),

where A > 0, η > 0,M are constants to be determined. We have that

∂tv(x, t) = M [Aeηt + ηh(x, t)] (x ∈ IRN , t ∈ [0, δ]),

whereas
−a(x)(−Δ)sv(x, t) + c(x)v(x, t) + f(x)

≤Meηδ max
Bδ(x0)

∣∣a(−Δ)sχ
∣∣ +Mc(x)h(x, t) + ‖c‖∞(‖u0‖∞ + 1) + ‖f‖∞

(
x ∈ Bδ(x0), t ∈ [0, δ]

)
.

Therefore,
∂tv(x, t) ≥ −a(x)(−Δ)sv(x, t) + c(x)v(x, t) + f(x)

(
x ∈ Bδ(x0), t ∈ [0, δ]

)
, (4.11)

if
η ≥ ‖c‖∞, A ≥ max

Bδ(x0)

∣∣a(−Δ)sχ
∣∣ + ‖c‖∞(‖u0‖∞ + 1) + ‖f‖∞. (4.12)

Furthermore, since
h(x, t) ≥ δ2 for all x ∈ IRN \Bδ(x0), t ∈ [0, δ],

it easily follows that
v(x, t) ≥ uj(x, t) for all x ∈ IRN \Bδ(x0), t ∈ [0, δ], (4.13)

if
M ≥ 2KT

δ2
· (4.14)

From (4.10) we get
v(x, 0) ≥ uj(x, 0) for all x ∈ Bδ(x0), (4.15)

while
v(x, 0) ≥Mδ2 + u0(x0) ≥ uj(x, 0) for all x ∈ IRN \Bδ(x0), (4.16)

due to (4.14).
Suppose that (4.12), (4.14) hold. Then, by (4.11), (4.13), (4.15), (4.16), for any j ∈ IN the function v is a

supersolution (in the sense of Def. 2.2) of problem
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tv = −a (−Δ)sv + cv + f in Bδ(x0) × (0, δ]

v = uj in
(
IRN \Bδ(x0)

) × (0, δ]

v = uj in IRN × {0},

(4.17)

while uj is a solution of the same problem. By the comparison principle (see Rem. 2.6) we obtain

uj ≤ v in Bδ(x0) × (0, δ]. (4.18)

Define
v(x, t) := −Mh(x, t) + u0(x0) − ε (x ∈ IRN , t ∈ [0, δ]);

suppose that (4.12) and (4.14) hold. By the same arguments as above, we can show that there holds

uj ≥ v in Bδ(x0) × (0, δ]. (4.19)

Inequalities (4.18)−(4.19) yield

−Mh(x, t) − ε ≤ uj(x, t) − u0(x0) ≤ Mh(x, t) + ε (4.20)
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for all x ∈ Bδ(x0), t ∈ [0, δ]. Letting j → ∞, thus we obtain

−Mh(x, t) − ε ≤ u(x, t) − u0(x0) ≤ Mh(x, t) + ε (4.21)

for all x ∈ Bδ(x0), t ∈ (0, δ]. Letting x → x0, t → 0+, and then ε → 0+, we get that limx→x0 u(x, t) = u0(x0).
Hence the Claim 1 has been shown.

Claim 2. We have that

lim
|x|→∞

u(x, t) = g(t) uniformly with respect to t ∈ [0, T ].

In fact, fix any t0 ∈ [0, T ], 0 < ε < 1. Since g ∈ C([0, T ]), there exists δ ∈ (0, 1) such that

g(t0) − ε

2
≤ g(t) ≤ g(t0) +

ε

2
for any t ∈ [tδ, tδ], (4.22)

where
tδ := max{t0 − δ, 0}, tδ := min{t0 + δ, T }.

Clearly, δ = δ(ε) does not depend on t0. Furthermore, due to (1.3), there exists Rε > 0 such that

g(0) − ε

2
≤ u0(x) ≤ g(0) +

ε

2
for all x ∈ IRN \BRε . (4.23)

Let R ≥ max{R0, Rε} with R0 given by Proposition 3.1; set

NR
j := Bj \BR for any j > R.

Define
w(x, t) := −MV (x)eηt − λ(t− t0)2 + g(t0) − ε for all (x, t) ∈ IRN × [0, T ], (4.24)

where M > 0, η > 0, λ > 0 are constants to be chosen in the sequel, while V (x) ≡ V (|x|) is the supersolution
given by Proposition 3.1.

In view of Proposition 3.1, we have

−a(x)(−Δ)sw + c(x)w ≥Meηt −M c(x)V (x) eηt − ‖c‖∞(‖g‖∞ + λ+ 1) for all x ∈ NR
j , t ∈ (tδ, tδ].

Therefore,

∂tw + a(−Δ)sw − cw − f ≤ − ηMV eηt − 2λ(t− t0) −Meηt + cMV eηt

+ ‖c‖∞
(‖g‖∞ + λ+ 1

)
+ ‖f‖∞ ≤ 0 in NR

j × (tδ, tδ], (4.25)

if we take
η ≥ ‖c‖∞, (4.26)

M ≥ 2λ+ ‖f‖∞ + ‖c‖∞(‖g‖∞ + λ+ 1) + ‖f‖∞. (4.27)

In view of (4.7), we obtain

w(x, t) ≤ −MV (R) + ‖g‖∞ ≤ −KT ≤ uj(x, t) for all x ∈ BR, t ∈ (tδ, tδ), (4.28)

if

M ≥ ‖g‖∞ +KT

V (R)
· (4.29)
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From (4.22) we have
w(x, t) ≤ g(t) for all x ∈ IRN \Bj , t ∈ (tδ, tδ). (4.30)

Suppose that tδ = 0 (note that this is always the case when t0 = 0). From (4.22) and (4.23) we have

w(x, 0) ≤ g(t0) − ε ≤ g(0) − ε

2
≤ uj(x, 0) = u0,j(x) for all x ∈ IRN \BR; (4.31)

while
w(x, 0) ≤ −MV (Rε) + ‖g‖∞ ≤ −KT ≤ uj(x, 0) for all x ∈ BR, (4.32)

provided that (4.29) holds.
Suppose that tδ > 0. It follows from (4.7) that

w(x, tδ) ≤ −λδ2 + ‖g‖∞ ≤ −KT ≤ uj(x, tδ) for all x ∈ IRN , t ∈ (tδ, tδ), (4.33)

if

λ ≥ ‖g‖∞ +KT

δ2
· (4.34)

Now, suppose that (4.26), (4.27), (4.29), (4.34) hold. By (4.25), (4.28), (4.30), (4.31), (4.32), (4.33), for any
j ∈ IN, j > R, the function w is a subsolution (in the sense of Def. 2.2) of problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tv = −a (−Δ)sv + cv + f in NR
j × (tδ, tδ]

v = uj in
(
IRN \NR

j

) × (0, T ]

v = uj in IRN × {0},

(4.35)

while uj is a solution of the same problem. By the comparison principle (see Rem. 2.6) we obtain

w ≤ uj in NR
j × (tδ, tδ]. (4.36)

Define
w(x, t) := MV (x)eηt + λ(t− t0)2 + g(t0) + ε for all x ∈ IRN , t ∈ [0, T ]; (4.37)

suppose that (4.26), (4.27), (4.29), (4.34). By the same arguments as above, we can show that there holds

w ≥ uj in NR
j × (tδ, tδ]. (4.38)

From (4.36) and (4.38) we get

−MV (x)eηt − λ(t− t0)2 − ε ≤ uj(x, t) − g(t0) ≤ MV (x)eηt + λ(t− t0)2 + ε (4.39)

for all x ∈ NR
j , t ∈ (tδ, tδ]. Choosing t = t0 in (4.39) and letting j → ∞, we obtain

−MV (x)eηT − ε ≤ u(x, t0) − g(t0) ≤ MV (x)eηT + ε for all x ∈ IRN \BR, t ∈ (tδ, tδ]. (4.40)

From (4.40) it follows that

sup
t0∈[0,T ]

∣∣u(x, t0) − g(t0)
∣∣ ≤ CV (x) + ε for all x ∈ IRN \BR, (4.41)

where C := MeηT . Due to (4.41) and (1.8), letting |x| → ∞, ε → 0+, we obtain (1.4). Hence the Claim 2 has
been shown.

Finally, this solution is unique, due to Proposition 4.1. �
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Now we prove Theorem 2.8. We follow the same line of arguments of the proof of Theorem 2.7, but there
is an important difference. In fact, we need to substitute the estimate (4.7), which is dependent on T , by
another one independent of T . In order to obtain such better estimate we use the supersolution V constructed
in Proposition 3.2.

Proof of Theorem 2.8. Arguing as in the proof of Theorem 2.7 we construct the sequence uj(x, t) of solutions of
problem (4.4) with T = ∞. Let h(x) be the supersolution provided by Proposition 3.2. Then obviously

V0(x) := h(x) − inf
IRN

h+ 1 (4.42)

is also a supersolution of (1.12) and V0(x) ≥ 1. Let B := max{‖f‖∞, ‖u0‖∞, ‖g‖∞} and V0 be defined in (4.42).
Since c ≤ 0, we have that BV0 is a supersolution of problem (4.4), while −BV0 is a subsolution of (4.4). Thus,
by the comparison principle,

|uj | ≤ BV0 in Bj × (0,∞). (4.43)

Passing to the limit as j → ∞ we obtain that

|u| ≤ AV0 ≤ Č := B‖V0‖∞ in IRN × (0,∞). (4.44)

Note that estimate (4.44) substitutes estimate (4.7) which is depending on T . Now, consider the functions w
and w defined in (4.24) and in (4.37), respectively. Assume that

η = 0, M ≥ ‖g‖∞ + Č

V (R)
, λ ≥ ‖g‖∞ + Č

δ2
.

Note that M and λ do not depend on T . We observe that (4.26), (4.27) and (4.34) can be replaced by the present
requirement on η and M , since now we are assuming that c ≤ 0, and (4.44) holds. By the same arguments as
in the proof of Theorem 2.7 we can infer that for any ε > 0

sup
t0∈[0,∞)

∣∣u(x, t0) − g(t0)
∣∣ ≤MV (x) + ε for all x ∈ IRN \BR. (4.45)

Thanks to (4.45) and (1.8), letting |x| → ∞, ε → 0+, we obtain (1.10). Finally, this solution is unique, due to
Proposition 4.1, applied for each fixed T > 0. This completes the proof. �

We have the next quite standard comparison principle.

Proposition 4.2. Let assumptions (H0), (H1) be satisfied. Suppose that c ≤ 0 in IRN . Let u be a subsolution
and v a supersolution to equation (1.2) such that

lim sup
|x|→∞

(u − v) ≤ 0.

Then
u ≤ v in IRN .

Proof. Set w := u− v. Let ε > 0. Then there exists Rε > 0 such that

|w(x)| ≤ ε for all x ∈ IRN \BRε .

Hence, it is easily checked that w is a subsolution of problem (in the sense of Def. 2.3)⎧⎨
⎩

−a (−Δ)sw + cw = 0 in BRε

w = ε in IRN \BRε .
(4.46)
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Moreover, it is easily seen that the function z ≡ ε is a supersolution of problem (4.46). So, by the comparison
principle (see Rem. 2.5),

w ≤ ε in IRN . (4.47)

Letting ε→ 0+, we get w ≤ 0 in IRN . Hence the proof is complete. �
Now, we prove Theorem 2.10.

Proof of Theorem 2.10. Let γ ∈ IR. For any j ∈ IN let uj be the unique solution (see Remark 2.5) of the problem⎧⎨
⎩
a (−Δ)su− cu = f in Bj × (0, T ]

u = γ in IRN \Bj .
(4.48)

We claim that there exists K > 0 such that for any j ∈ IN∣∣uj(x)∣∣ ≤ K for all x ∈ IRN . (4.49)

In fact, let h = h(x) ≡ h(|x|) be the supersolution given by Proposition 3.2. Define

h̃ := C(h+ 1) in IRN ,

where C ≥ max{γ, ‖f‖∞}. It is easily seen that, for any j ∈ IN, h is a supersolution of problem (4.48). Therefore,
by the comparison principle (see Rem. 2.5), we get (4.49), with K = ‖h̃‖∞.

By the a priori estimates recalled in Remark 2.5(iii) and usual compactness arguments, there exists a subse-
quence {ujk} ⊂ {uj} and a function u ∈ C(IRN ) such that

u := lim
k→∞

ujk uniformly in D,

for any compact subset D ⊂ IRN . For simplicity, we still denote {ujk} by {uj}. In view of stability properties
of viscosity solutions under local uniform convergence, the function u is a solution of equation

a (−Δ)su− cu = f in IRN .

Claim. The solution u satisfies condition (1.16).
In fact, define

w(x) := −Mh(x) + γ for all x ∈ IRN , (4.50)

where M > 0 is a constant to be chosen in the sequel.
In view of Proposition 3.2, it is easily seen that, if we take

M ≥ ‖c‖∞γ + ‖f‖∞,
then w is a subsolution of problem (4.48), for any j ∈ IN. By the comparison principle (see Rem. 2.5),

w ≤ uj in IRN . (4.51)

On the other hand, by the same methods as above, we can show that

uj ≤ w in IRN , (4.52)

where
w(x) := Mh(x) + γ for all x ∈ IRN ,

for suitable M > 0.
From (4.51), (4.52) it follows that

−Mh+ γ ≤ uj ≤Mh+ γ in IRN .

Letting j → ∞, in view of (1.13) we have that (2.4) holds. So, the Claim has been shown.
Finally, the uniqueness of the solution u follows from Proposition 4.2. �
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5. Asymptotic behaviour of solutions: proofs

To begin with, we show the next auxiliary result.

Proposition 5.1. Let assumptions of Theorem 2.8 be satisfied with g ≡ g1. Assume that

g1(t1) ≤ g1(t2) for any 0 ≤ t1 < t2. (5.1)

Let V := −AV0, with
A ≥ ‖g1‖∞ + ‖f‖∞ (5.2)

and V0 defined in (4.42). Let w be the unique solution, provided by Theorem 2.8, of the problem⎧⎨
⎩

∂tu = −a(−Δ)su + cu + f in IRN × (0,∞)

u = V in IRN × {0}
(5.3)

such that
lim

|x|→∞
w(x, t) = g1(t) uniformly for t ∈ [0,∞). (5.4)

Then t �→ w(x, t) is nondecreasing, i.e.,

w(x, t1) ≤ w(x, t2) for all x ∈ IRN , 0 ≤ t1 < t2. (5.5)

Proof of Proposition 5.1. It is easily seen that V is a subsolution of problem (5.3). In fact, since c ≤ 0 and
V < 0, due to (5.2) we have (in the viscosity sense)

−a(−Δ)sV + cV + f ≥ A− ‖f‖∞ ≥ 0 = ∂tV in IRN × (0,∞).

Moreover,
V − w = 0 in IRN × {0},

and by (5.2) and (5.4),

lim sup
|x|→∞

[V (x) − w(x, t)] ≤ 0 uniformly for t ∈ [0,∞).

Since w is a solution of problem (5.3), by Proposition 4.1,

V (x) = w(x, 0) ≤ w(x, t) for all x ∈ IRN , t > 0. (5.6)

In order to show (5.5), take any t0 > 0 and define

w̃(x, t) := w(x, t+ t0) for all x ∈ IRN , t > 0.

Note that both w and w̃ satisfy the equation

∂tv − a(−Δ)sv − cv = f in IRN × (0,∞).

Moreover, from (5.6) we obtain that

w̃(x, 0) ≥ w(x, 0) for all x ∈ IRN . (5.7)

In addition, due to (5.1),

lim
|x|→∞

[w̃(x, t) − w(x, t)] = g̃1(t+ t0) − g1(t) ≥ 0 uniformly for t ∈ [0,∞).
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Thus, by Proposition 4.1 applied for each fixed T > 0,

w̃(x, t) ≥ w(x, t) for all x ∈ IRN , t > 0.

Hence the conclusion follows. �
Similarly, we can show the next result.

Proposition 5.2. Let assumptions of Theorem 2.8 be satisfied with g ≡ g2. Assume that

g2(t1) ≥ g2(t2) for any 0 ≤ t1 < t2. (5.8)

Let V := AV0, where V0 is defined in (4.42) and A in (5.2).
Let w be the unique solution, provided by Theorem 2.8, of the problem⎧⎨

⎩
∂tu = −a(−Δ)su + cu + f in IRN × (0,∞)

u = V in IRN × {0}
(5.9)

such that
lim

|x|→∞
w(x, t) = g2(t) uniformly for t ∈ [0,∞). (5.10)

Then t �→ w(x, t) is nonincreasing, i.e.,

w(x, t1) ≥ w(x, t2) for all x ∈ IRN , 0 ≤ t1 < t2. (5.11)

Now we prove the next result.

Proposition 5.3. Let assumptions of Theorem 2.8 be satisfied. Let g1 ∈ C([0,∞)) ∩ L∞((0,∞)) with

g1(t) ≤ g(t) for all t ∈ [0,∞), (5.12)

lim
t→∞ g1(t) = lim

t→∞ g(t); (5.13)

suppose that (5.1) is satisfied. Let u be the unique solution to problem (1.9) such that condition (1.10) is satisfied,
given by Theorem 2.8. Let w be given by Proposition 5.1, also supposing that

A ≥ ‖u0‖∞. (5.14)

Then
w(x, t) ≤ u(x, t) for all x ∈ IRN , t > 0. (5.15)

Proof. Let z := w − u. Note that z solves equation

∂tz = −a(−Δ)sz + cz in IRN × (0,∞).

In view of (5.14) we have
z(x, 0) = V (x) − u0(x) ≤ 0 for all x ∈ IRN .

Moreover, from (5.12) we obtain

lim
|x|→∞

z(x, t) = g1(t) − g(t) ≤ 0 uniformly for t ∈ [0,∞).

Hence, by Proposition 4.1 applied for each fixed T > 0,

z ≤ 0 for all x ∈ IRN , t > 0.

This completes the proof. �
Analogously to Proposition 5.3, the next result can be shown.
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Proposition 5.4. Let assumptions of Theorem 2.8 be satisfied. Let g2 ∈ C([0,∞)) ∩ L∞((0,∞)) with

g2(t) ≥ g(t) for all t ∈ [0,∞), (5.16)

lim
t→∞ g2(t) = lim

t→∞ g(t); (5.17)

suppose that (5.8) is satisfied. Let u be the unique solution to problem (1.9) such that condition (1.10) is satisfied,
given by Theorem 2.8. Let w be given by Proposition 5.2, also supposing that (5.14) holds. Then

w(x, t) ≥ u(x, t) for all x ∈ IRN , t > 0. (5.18)

Now we are in position to prove Theorem 2.11.

Proof of Theorem 2.11. Keep the same notation as in Propositions 5.1−5.4. In view of (5.5) and (5.11), we can
define

W (x) := lim
t→∞w(x, t), W (x) := lim

t→∞w(x, t) for any x ∈ IRN . (5.19)

Observe that the constant C in Remark 2.6 do not depend on T , since a, c, f does not depend on t. Consequently
we have that w → W, w → W as t → ∞ uniformly in each compact subset of IRN ; thus, W,W ∈ C(IRN ). We
claim that both W and W solve

a(−Δ)su− cu = f in IRN . (5.20)

In fact, we limit ourselves to show that W is a subsolution of equation (5.20), since the remaining part of the
claim follows analogously.

Now, let {tn} ⊂ (0,∞) be a sequence with tn → ∞ as n→ ∞. Set

wn(x) := w(x, tn) (x ∈ IRN ).

Thus, wn →W locally uniformly in IRN as n→ ∞.
Take any bounded subset U ⊂ IRN , x0 ∈ U, and take any test function ϕ ∈ C2(IRN) such that

W (x0) − ϕ(x0) ≥W (x) − ϕ(x) for all x ∈ U.

Choose ξ ∈ C2(IRN ) with
0 ≤ ξ < 1 if x ∈ IRN \ {x0}, ξ(x0) = 1. (5.21)

Fix any ε > 0. So,

W (x0) − [ϕ(x0) − εξ(x0)] > W (x) − [ϕ(x) − εξ(x)] for all x ∈ U \ {x0}.

It is easily seen that there exists n̄ = n̄(ε) ∈ IN such that for any n > n̄, for some xεn ∈ U ,

wn(x
ε
n) − [ϕ(xεn) − εξ(xεn)] ≥ wn(x) − [ϕ(x) − εξ(x)] for all x ∈ U ;

moreover, for each ε > 0, xεn → x0 as n→ ∞ .
Since w is a solution of (5.3), due to Definition 2.1, we have that

0 = ∂tχ(xεn) ≤ −a(xεn)(−Δ)sχ(xεn) + c(xεn)wn(x
ε
n) + f(xεn), (5.22)

with

χ ≡ χε,n :=

⎧⎨
⎩
ϕ− εξ in U

wn in IRN \ U.



126 F. PUNZO AND E. VALDINOCI

Note that

(−Δ)sχ(xn) = CN,s

{∫
U

ϕ(xεn) − εξ(xεn) − [ϕ(y) − εξ(y)]
|xεn − y|N+2s

dy +
∫
IRN\U

wn(xεn) − w(y)
|xεn − y|N+2s

dy

}
. (5.23)

Since ϕ, ξ ∈ C2(U), for any ε > 0 we have

lim
n→∞

∫
U

ϕ(xεn) − εξ(xεn) − [ϕ(y) − εξ(y)]
|xεn − y|N+2s

dy =
∫
U

ϕ(x0) − ϕ(y)
|x0 − y|N+2s

dy + ε

∫
U

ξ(y) − ξ(x0)
|x0 − y|N+2s

dy; (5.24)

furthermore,

lim
n→∞

∫
IRN\U

wn(xεn) − wn(y)
|xεn − y|N+2s

dy =
∫
IRN\U

W (x0) −W (y)
|x0 − y|N+2s

dy. (5.25)

From (5.23), (5.24), (5.25), letting n→ ∞ in (5.22), we have, for any ε > 0,

0 ≤ −a(x0)(−Δ)sψ(x0) − a(x0)εCN,s
∫
U

ξ(y) − ξ(x0)
|x0 − y|N+2s

dy + c(x0)w(x0) + f(x0),

with

ψ :=

⎧⎨
⎩
ϕ in U

W in IRN \ U.
Letting ε→ 0, the claim follows.

Note that, in view of (5.4), (5.10), (5.13), (5.17), we can infer that

lim
|x|→∞

W (x) = W (x) = γ,

where γ = limt→∞ g(t). By Proposition 4.2,

W (x) = W (x) for all x ∈ IRN . (5.26)

By (5.15) and (5.18),
w(x, t) ≤ u(x, t) ≤ w(x, t) for all x ∈ IRN , t > 0.

Letting t→ ∞, due to (5.19) and (5.26), we get the thesis, with W := W ≡W.
�
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