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ON CONTACT SUB-PSEUDO-RIEMANNIAN ISOMETRIES

Marek Grochowski1 and Wojciech Kryński2

Abstract. We study isometries in contact sub-pseudo-Riemannian geometry. In particular we give an
upper bound on the dimension of the isometry group of a general sub-pseudo-Riemannian manifold
and prove that the maximal dimension is attained for the left invariant structures on the Heisenberg
group.
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1. Introduction

1.1. Results

Let M be a smooth connected manifold. A sub-pseudo-Riemannian structure on M is a pair (D, g) made
up of a smooth bracket generating distribution D of constant rank and a smooth pseudo-Riemannian metric g
on D. At each point q ∈ M , g can be represented as a diagonal matrix

diag(−1, . . . ,−1, +1, . . . , +1)

with, say, l minuses. Clearly, by continuity, the number l does not depend on a point q. It will be denoted ind(g)
and called the index of the metric (D, g).

A triple (M, D, g) is called a sub-pseudo-Riemannian manifold. In particular, if ind(g) = 0 then (M, D, g) is
called a sub-Riemannian manifold. This case is best known and there are a lot of papers and books devoted
to the sub-Riemannian geometry (see [1–4, 15] and references therein). If ind(g) = 1 then (M, D, g) is called a
sub-Lorentzian manifold (see [6, 8, 9, 11]). The sub-pseudo-Riemannian structures can be interpreted as control
systems [1,5]. In particular the sub-Lorentzian structures give rise to a class of control-affine systems (cf. [5,6]).

In sub-pseudo-Riemannian geometry we can ask the same questions as in the classical pseudo-Riemannian
geometry. One of the most fundamental problems considered in the pseudo-Riemannian geometry is connected
to calculations of the isometry group of a given pseudo-Riemannian manifold. We shall consider a generalisation
of this problem to the sub-pseudo-Riemannian case.

Keywords and phrases. Contact structure, sub-Riemannian geometry, sub-Lorentzian geometry, Heisenberg group, isometry
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Definition 1.1. Fix a sub-pseudo-Riemannain manifold (M, D, g). A diffeomorphism f : M → M is called an
isometry if

(D1) f preserves the distribution, i.e. f∗(D) = D;
(D2) f∗ : Dq → Df(q) is a linear isometry for every q ∈ M , i.e. g(f∗(v), f∗(w)) = g(v, w) for all v, w ∈ Dq.

The set of all isometries is a group (in fact a Lie group as it will become clear soon) and will be de-
noted I(M, D, g). The component of the identity of this group is I0(M, D, g). Clearly dim I(M, D, g) =
dim I0(M, D, g). We shall assume that D is a contact distribution meaning that it is locally given by the
kernel of a contact one-form α satisfying

(dα)∧n ∧ α �= 0, (1.1)

where dimM = 2n + 1. In this case (M, D, g) will be referred to as a contact sub-pseudo-Riemannian manifold.
Our main result is the following theorem.

Theorem 1.2. Let (M, D, g) be a contact sub-pseudo-Riemannian manifold. If ind(g) is even or ind(g) = 1
2 rkD

then

dim I(M, D, g) ≤ dim M +
(

1
2

rkD

)2

· (1.2)

If ind(g) is odd and ind(g) �= 1
2 rkD then

dimI(M, D, g) ≤ dim M +
(

1
2

rkD − 1
)2

+ 1. (1.3)

In Section 3, Proposition 3.6, we will show that the maximal dimension in (1.2) and (1.3) is attained by a
left-invariant structure on the Heisenberg group. More precisely we will show that for any value of ind(g) ∈
{0, 1, . . . , rk D} and any t ≤ min{ind(g), rkD − ind(g)} such that ind(g) − t is even there is a left-invariant
structure such that

dimI(M, D, g) = dimM +
(

1
2

rkD − t

)2

+ t2. (1.4)

In particular the maximal dimension in Theorem 1.2 is attained for t = 0 if ind(g) is even, for t = ind(g) if
ind(g) = 1

2 rk D and for t = 1 if ind(g) is odd and not equal 1
2 rkD.

Let us point out here that invariants for the contact sub-pseudo-Riemannian structures has been recently
constructed in [7] (see also [1] for the sub-Riemannian case). The invariants vanish for the left-invariant structures
satisfying (1.4).

1.2. Connections with control systems.

Suppose that (Σ) q̇ = f(q, u) is a control system on a manifold M . By a symmetry of (Σ) we mean a
diffeomorphism of M which maps the trajectories of (Σ) onto trajectories of (Σ). It turns out that the de-
scribed results concerning isometry groups of sub-pseudo-Riemannian manifolds can be formulated in terms of
symmetries of certain control systems.

Indeed, suppose that (M, D, g) is a sub-pseudo-Riemannian manifold with ind(g) = l and rk D = k. By a
timelike (resp. spacelike) curve on (M, D, g) we mean an absolutely continuous curve γ : [a, b] → M such that
γ̇ ∈ Dγ(t) and moreover g(γ̇(t), γ̇(t)) < 0 (resp. g(γ̇(t), γ̇(t)) > 0) for almost every t ∈ [a, b]. Suppose that
X1, . . . , Xk is an orthonormal basis for (D, g) defined on an open set U such that g(Xi, Xi) = −1 for i = 1, . . . , l
and g(Xi, Xi) = 1 for i = l + 1, . . . , k. Timelike (resp. spacelike) curves in U with unit speed parametrization
can be represented as solutions to the following control system

q̇ =
k∑

i =1

uiXi(q), (1.5)
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with the set of control parameters equal to

U =

{
(u1, . . . , uk) | −

l∑
i =1

u2
i +

k∑
i = l+1

u2
i = −1

}
,

or

U =

{
(u1, . . . , uk) | −

l∑
i =1

u2
i +

k∑
i = l+1

u2
i = 1

}
,

respectively, where controls are supposed to be measurable and essentially bounded. Now, it is easy to show that
in both cases the symmetries of (1.5) coincide with the isometry group I(U, D|U , g). One can also consider the
sets of null, or nonspecelike curves defined by similar control systems. However in the latter cases the isometry
group I(U, D|U , g) is only a subgroup of all symmetries.

In the sub-Lorentzian setting the future directed nonspacelike curves can be described by a control-affine
system. To be precise, by a time orientation of a sub-Lorentzian manifold (M, D, g) we understand a timelike
vector field X on M (i.e. X(q) ∈ Dq and g(X(q), X(q)) < 0 for every q ∈ M). A nonspacelike curve γ : [a, b] → M
is said to be future directed if g(γ̇(t), X(γ(t))) < 0 a.e. on [a, b] (cf. [5, 6]). Suppose that X is a fixed time
orientation and U is an open set on which there exist spacelike vector fields X2, . . . , Xk such that X, X2, . . . , Xk

form an orthonormal basis for (D, g) over U . As it is explained in [5] every nonspacelike future directed curve
in U is, up to a reparameterization, a trajectory of the control-affine system

q̇ = X +
k∑

i=2

uiXi(q), (1.6)

where the set of control parameters equals the unit ball in R
k−1 centered at zero. Now it is clear that I(U, D|U , g)

is a group of symmetries of the system (1.6). We refer to [1,5,6] for more information on the mentioned control
systems, the corresponding reachable sets and optimal solutions to the control problems.

1.3. The content of the paper.

The paper is organised as follows. In Section 2 we formulate and explain basic facts and assumptions that
we use later on. We show that g can be extended to a metric on TM in a canonical way and exploit this fact to
prove that I(M, D, g) is a Lie group (Thm. 2.2). Moreover, we introduce a canonical symplectic structure on D.

Sections 3 and 4 are devoted to special classes of sub-pseudo-Riemannian metrics. In Section 3 we consider
sub-pseudo-Riemannian structures satisfying an additional compatibility condition. In the Riemannian signature
the condition guarantees that D caries an almost complex structure. In Section 4 we consider so-called regular
structures, which include all sub-Riemannian and sub-Lorentzian metrics in neighbourhoods of generic points.
We estimate from above dimensions of the isometry groups for these spacial classes of structures (Thms. 3.3
and 4.2). Moreover, we construct examples with isometry groups of dimension given by formula (1.4).

Section 5 contains the proof of Theorem 1.2. The main idea relies on the calculation of the Tanaka prolonga-
tions of certain graded Lie algebras and on the results of Kruglikov [12, 13] that extend Tanaka’s theory to the
case of non-constant symbol algebras.

2. Contact sub-pseudo-Riemannian structures

2.1. Extended metric

Let (M, D, g) be a contact sub-pseudo-Riemannian manifold of dimension 2n + 1. Fix q ∈ M and assume
that D = kerα in a neighbourhood of q, where α satisfies (1.1). The contact form α defines the Reeb vector
field Xα by the conditions

Xα ∈ ker dα, α(Xα) = 1. (2.1)



1754 M. GROCHOWSKI AND W. KRYŃSKI

It follows that Xα is transverse to D. Clearly Xα depends essentially on the choice of α and the one-form is not
unique. However it can be normalised in the following way. Let (X1, . . . , X2n) be an orthonormal frame of D in
a neighbourhood of q. Then, multiplying α by a smooth function, we can impose the condition

|(dα)∧n(X1, . . . , X2n)| = 1, (2.2)

which does not depend on the choice of an orthonormal frame. As a result, we get a canonical contact form α
given up to a multiplication by ±1 in the neighbourhood of q ∈ M . We shall see later that for oriented structures
one can get rid of this ambiguity and get a unique canonical global contact form α on M . However, we do not
need the uniqueness at this point and using the two normalised contact forms in a neighbourhood of any point
q ∈ M we are able to extend g from D to a metric G on TM . Indeed, we set

G|D×D = g

and
G(Xα, Xα) = 1, G(Xα, D) = 0,

where α is a contact form satisfying (2.2) and Xα is the Reeb vector field corresponding to α. Since α is given
up to a sign, we conclude that Xα is given up to a sign too. However, G does not depend on the sign and
we obtain unique G in a neighbourhood of each point q ∈ M . The uniqueness implies that G must coincide
on overlaps of neighbourhoods of different points. Thus, we get a globally defined metric G on M which is
canonically determined by the structure (D, g). Since any isometry preserves the form α up to a sign, we have
proved the following

Proposition 2.1. If f : M → M is an isometry of a contact sub-pseudo-Riemannian structure (D, g) then
f∗G = G. Thus f is an isometry of G, too.

We shall denote by I(M, G) the group of isometries of (M, G). We refer to [7] for more detailed discussion
on the possible extensions of g.

Let OG(M) be the orthonormal frame bundle for G. We define OD,g(M), the orthonormal frame bundle of
(D, g), as a sub-bundle of OG(M) consisting of points (q; v1, . . . , v2n, v0) such that (v1, . . . , v2n) is an orthonormal
basis of Dq. In particular, it follows that v0 = Xα(q) where α is one of the two contact forms normalised by (2.2)
in a neighbourhood of q. Now, any pseudo-Riemannian isometry f ∈ I(M, G) is uniquely determined by the
values of f(q) and f∗(q) where q is an arbitrary fixed point in M [10]. Since I(M, D, g) is a closed subgroup of
I(M, G) we get

Theorem 2.2. I(M, D, g) is a Lie group with respect to the open-compact topology. Moreover any contact sub-
pseudo-Riemannian isometry f ∈ I(M, D, g) is uniquely determined by two values: f(q) and f∗(q), where q ∈ M
is an arbitrarily fixed point. Additionally, fixing an arbitrary point (q; v1, . . . , v2n, v0) ∈ OD,g(M), the mapping

f �−→ (f(q); f∗(v1), . . . , f∗(v2n), f∗(v0)) (2.3)

defines an embedding of I(M, D, g) to OD,g(M).

Proof. Follows from the fact that I(M, G) is a Lie group [10] (note that although [10] deals with Riemannian
metrics only, the proof remains unchanged for metrics of arbitrary index) and its subgroup I(M, D, g) is closed
in I(M, G). �

2.2. Orientation

Let (M, D, g) be a contact sub-pseudo-Riemannian manifold of dimension 2n + 1. We shall say that the
structure is oriented if the two vector bundles TM and D are oriented (see [6] for various notions of orientations
related to the casual decomposition of the distribution under consideration). We shall prove that the structure
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is oriented if and only if there is a global contact form annihilating D. There are two cases depending on the
parity of n.

If n is even then (dα)∧n is independent of the sign of α. Conversely, the sign of dα∧n ∧ α changes if the sign
of α changes. Thus, on the one hand, D is canonically oriented, because fixing an open cover {Us}s∈Σ of M and
local contact forms {αs}s∈Σ annihilating D on Us we can rescale the forms such that (dαs)∧n glue to a global
2n-form non-degenerate on D. On the other hand, M is oriented if and only if there is a global contact form
annihilating D. Indeed, if α is a global contact form then dα∧n∧α defines an orientation of M . Conversely, if an
orientation of M is given then we can rescale local contact forms {αs}s∈Σ annihilating D such that dα∧n

s ∧ αs

agree with the orientation. Clearly, such rescaled one-forms must coincide on the intersections of domains Us.
Thus, they define a global one-form on M .

If n is odd then (dα)∧n ∧ α is independent of the sign of α. Conversely, the sign of dα∧n changes if the sign
of α changes. Thus, similarly to the case of even n, we deduce that on the one hand M is canonically oriented,
and, on the other hand, D is oriented if and only if there is global contact form annihilating D.

Suppose that (M, D, g) is oriented. In view of the discussion above we can assume that the orientation of M
is given by dα∧n ∧ α and the orientation of D is given by dα∧n, where α is a global contact form. Then α
is given up to a multiplication by a positive function. However, we can choose the unique one which satisfies
the normalisation condition (2.2). We shall call this form the canonical contact form of an oriented contact
structure. The canonical contact form satisfies

(dα)∧n(X1, . . . , X2n) = 1. (2.4)

where (X1, . . . , X2n) is an arbitrary positively oriented orthonormal frame of D.
If (M, D, g) is oriented then we shall consider isometries preserving the orientation.

2.3. Symplectic structure

Assume that (M, D, g) is an oriented contact sub-pseudo-Riemannian manifold and let α be the canonical
contact form. We introduce

ω = −dα|D.

Then ω is a symplectic structure on D canonically defined by α.

Proposition 2.3. If f : M → M is an isometry of an oriented contact sub-pseudo-Riemannian structure then
f∗ω = ω.

The pair (g, ω) defines the operator J : D → D by the formula

ωq(v, w) = g(Jq(v), w), q ∈ M, v, w ∈ Dq. (2.5)

The eigenvalues of Jq are basic invariants of the structure (D, g) at each point q ∈ M . A real invariant subspace
of Dq corresponding to an eigenvalue λ of Jq will be denoted Dλ (if λ is complex then Dλ = Dλ̄). Each Dλ

can decompose further into a number of real invariant subspaces corresponding to different Jordan blocks of Jq.
The following properties of J will be used later (we give a proof for completeness, however the properties can
be also extracted from the Kronecker theorem on normal forms of pencils of matrices applied to the pair (ω, g),
see [14, 17]).

Proposition 2.4. Let (M, D, g) be an oriented contact sub-pseudo-Riemannian manifold and let q ∈ M . Then

(P1) If λ is an eigenvalue of Jq then also −λ is and Dλ and D−λ are of the same dimension.
(P2) Any two invariant subspaces Dλ1 and Dλ2 are orthonormal unless λ1 = −λ2. In particular, if λ has

non-zero real part then g|Dλ
= 0.
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Proof. Let S be the skew-symmetric matrix of ω written in an orthonormal basis of D with respect to g. Then
SIl is the matrix of J , where l = ind(g) and

Il = diag

⎛
⎝−1, . . . ,−1︸ ︷︷ ︸

l

, +1, . . . , +1

⎞
⎠ .

Let J∗ : D∗ → D∗ be the map dual to J . Then J∗ written in the dual orthonormal basis has the matrix
(SIl)T = −IlS. Hence, Il maps Dλ to the invariant subspace of J∗ corresponding to the eigenvalue −λ. Indeed,
if J(X) = λX then, since I2

l = Id, J∗(IlX) = −IlSIlX = −IlJ(X) = −λIlX , and similarly if J(X) = λX + Y
then J∗(X) = −λIlX − IlY . On the other hand J∗ has the same decomposition to the Jordan blocks as J . This
proves (P1).

In order to prove (P2) assume first that λ1 and λ2 are real eigenvalues of J . Let X0
1 and X0

2 be the correspond-
ing eigenvectors and let X i

1 and Xj
2 satisfy J(X i

1) = λ1X
i
1 + X i−1

1 and J(Xj
2) = λ2X

j
2 + Xj−1

2 for i = 1, . . . , s1

and j = 1, . . . , s2. Then

0 = ω(X i
1, X

j
2) + ω(Xj

2 , X i
1) = g(J(X i

1), X
j
2) + g(J(Xj

2), X i
1)

= (λ1 + λ2)g(X i
1, X

j
2) + g(X i−1

1 , Xj
2) + g(X i

1, X
j−1
2 ),

where the two last terms are 0 if i = 0 or j = 0, respectively. This, by induction, proves g(X i
1, X

j
2) = 0 for all

i = 0, . . . , s1 and j = 0, . . . , s2, provided that λ1 + λ2 �= 0.
Now, assume that both λ1 and λ2 are complex eigenvalues of J . Let Z0

1 = X0
1 + iY 0

1 and Z0
2 = X0

2 + iY 0
2 be

the corresponding eigenvectors and let Zi
1 = X i

1 + iY i
1 and Zj

2 = Xj
2 + iY j

2 satisfy J(Zi
1) = λ1Z

i
1 + Zi−1

1 and
J(Zj

2) = λ2Z
j
2 + Zj−1

2 for i = 1, . . . , s1 and j = 1, . . . , s2. Then similarly to the real case we get (proceeding by
induction and omitting terms involving Zi−1

1 and Zj−1
2 )

0 = ω(Zi
1, Z

j
2) + ω(Zj

2 , Z
i
1)

= (λ1 + λ2)(g(X i
1, X

j
2) − g(Y i

1 , Y j
2 ) + i(g(X i

1, Y
j
2 ) + g(Y i

1 , Xj
2))),

and

0 = ω(Z̄i
1, Z

j
2) + ω(Zj

2 , Z̄
i
1)

= (λ̄1 + λ2)(g(X i
1, X

j
2) + g(Y i

1 , Y j
2 ) + i(g(X i

1, Y
j
2 ) − g(Y i

1 , Xj
2))),

which imply that g(X i
1, X

j
2) = 0, g(Y i

1 , Xj
2) = 0, g(X i

1, Y
j
2 ) = 0 and g(Y i

1 , Y j
2 ) = 0 for all i = 0, . . . , s1 and

j = 0, . . . , s2, provided that λ1 + λ2 �= 0 and λ̄1 + λ2 �= 0.
Finally, if λ1 is complex and λ2 is real and Z0

1 = X0
1 + iY 0

1 and X0
2 are the corresponding eigenvectors

and Zi
1 = X i

1 + iY i
1 and Zj

2 satisfy J(Zi
1) = λ1Z

i
1 + Zi−1

1 and J(Xj
2) = λ2X

j
2 + Xj−1

2 for i = 1, . . . , s1 and
j = 1, . . . , s2, then exactly the same argument proves that g(X i

1, X
j
2) = 0, g(Y i

1 , Xj
2) = 0. This completes the

proof of (P2). �

We get that at each q ∈ M
Dq = D̂q ⊕ D̃q (2.6)

where D̂ is as a sum of eigenspaces corresponding to purely imaginary eigenvalues of J and D̃ is a sum of
eigenspaces corresponding to eigenvalues of J with non-zero real part. The last one are null with respect to g
and appear in pairs Dλ ⊕ D−λ.

Corollary 2.5. ind(g|D̃) = 1
2 dim D̃ and ind(g|D̂) is even. In particular, D = D̂ in the sub-Riemannian case,

and dim D̃ = 2 in the sub-Lorentzian case.



SUB-PSEUDO-RIEMANNIAN ISOMETRIES 1757

Proof. Note that (P2) in Proposition 2.4 imply that g restricted to any Dλ ⊕D−λ, where λ has non-trivial real

part, is of the form
(

0 A
A 0

)
where A is certain s×s matrix, s = dim Dλ. This implies that ind(g|Dλ⊕D−λ

) = s and

consequently ind(g|D̃) = 1
2 dim D̃. On the other hand, if λ is purely imaginary then, proceeding as in the proof

of Proposition 2.4, one gets g(Zi, Zj) = 0 where Z1, . . . , Zs are complex vectors spanning the complexification

of Dλ. This implies that g restricted to Dλ is composed from 2 × 2 blocks of the form
(

aij bij

−bij aij

)
, where

aij = aji, bij = bji and bii = 0. Consequently ind(g|D̂) is even. �

Let Ĵ = J |D̂ and J̃ = J |D̃. Then, according to (2.6), we can write

J = Ĵ ⊕ J̃ .

Note that if all Jordan blocks corresponding to purely imaginary eigenvalues of J are 2-dimensional then

Ĵ =

⎛
⎜⎜⎜⎜⎝

0 −b1 . . . 0 0
b1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 −bs

0 0 . . . bs 0

⎞
⎟⎟⎟⎟⎠ , (2.7)

for some (b1, . . . , bs), where s = 1
2 dim D̂. It is easy to prove that Ĵ is necessarily of this form provided that g

is definite on each Dλ. In particular this happens if g is sub-Riemannian (see [1]) or sub-Lorentzian (due to
Cor. 2.5). The numbers (b1, . . . , bs) are called frequencies in this case.

Similarly, if all eigenvalues of J̃ are real and the corresponding Jordan blocks are 1-dimensional then

J̃ =

⎛
⎜⎜⎜⎜⎝

0 c1 . . . 0 0
c1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 ct

0 0 . . . ct 0

⎞
⎟⎟⎟⎟⎠ (2.8)

for some (c1, . . . , ct) where t =
1
2

dim D̃. If (2.7) and (2.8) mutually hold then

(
s∏

i = 1

bi

)(
t∏

i =1

ci

)
= 1,

due to (2.4).

2.4. Reduction

Let (D, g) be an oriented sub-pseudo-Riemannian contact structure on M . Then the symplectic structure ω
reduces the full frame bundle of M to the set of frames OD,g,ω(M) consisting of (q; v1, . . . , v2m, v0) such that
(v1, . . . , v2m) put (gq, ωq) into the canonical Kronecker form defined, for instance, in ([14], Thm. 12.1) and
v0 = Xα(q), where Xα is the Reeb vector field corresponding to the canonical contact form. Then the following
group acts freely and transitively on OD,g,ω(M)q

Gg,ω(q) =
{(

A 0
0 1

)
| A ∈ O(gq) ∩ Sp(ωq)

}
, (2.9)
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where O(gq) is the subgroup of GL(Dq) preserving gq and Sp(ωq) is the subgroup of GL(Dq) preserving ωq.
Of course O(gq) 
 O(l, 2n − l), where l = ind(g) and O(l, 2n − l) is the standard group of matrices preserving
a metric of index l and Sp(ωq) 
 Sp(2n), where Sp(2n) is the group of matrices preserving the standard
symplectic form given by

Ω =
(

0 −Idn

Idn 0

)
. (2.10)

Note that automatically O(gq) ∩ Sp(ωq) ⊂ SO(gq), because the orientation is defined in terms of ωq.
The intersection O(gq)∩ Sp(ωq) essentially depends on g and ω at a given point and the groups Gg,ω(q) may

be not isomorphic for different q (in particular OD,g,ω(M) is not necessarily a fiber bundle). Actually, we shall
show later that the dimension of Gg,ω(q) depends on the decomposition of Jq into the sum of eigenspaces.

3. Compatibility condition

3.1. Isometries of compatible structures

We will consider a particular class of oriented contact sub-pseudo-Riemannian structures such that g and ω
are compatible. One expects that the most symmetric structures are among this class.

Definition 3.1. Let (M, D, g) be an oriented sub-pseudo-Riemannian manifold and let ω be the corresponding
symplectic structure on D. Then g and ω are compatible if in a neighbourhood of any q ∈ M there is an
orthonormal frame with respect to g which is, after possible reordering, symplectic with respect to ω. The
sub-pseudo-Riemannian structure satisfies the compatibility condition if g and ω are compatible.

Note that in the case of compatible structures with g being Riemannian, J is an almost complex structure
on D. Similarly, in the case of compatible structures with ind(g) = 1

2 rkD, J is a para-CR structure, provided
that there are no purely imaginary eigenvalues of J . In general, the compatibility condition can be expressed in
terms of frequencies.

Proposition 3.2. An oriented contact sub-pseudo-Riemannian structure satisfies the compatibility condition if
and only if Ĵ is of the form (2.7) with bi = 1, i = 1, . . . , s and J̃ is of the form (2.8) with ci = 1, i = 1, . . . , t.

Proof. Follows directly from the definition. �

The bundle OD,g,ω(M) for a structure (D, g) satisfying the compatibility condition is the bundle of frames
that are mutually orthonormal with respect to g and symplectic with respect to ω. Proposition 3.2 implies
that under the compatibility condition all Gg,ω(q), q ∈ M , are isomorphic, because Jq depends smoothly on q
and M is connected. Thus OD,g,ω(M) is a principal bundle with the structure group isomorphic to Gg,ω(q) for
any fixed q ∈ M . The structure group will be simply denoted Gg,ω . Moreover, Proposition 2.3 implies that the
embedding (2.3) restricted to the component of identity I0(M, D, g) takes values in OD,g,ω(M). Precisely, fixing
(q; v1, . . . , v2n, v0) ∈ OD,g,ω we get that

f �−→ (f(q); f∗(v1), . . . , f∗(v2n), f∗(v0)) (3.1)

defines an embedding of I0(M, D, g) in OD,g,ω(M). This embedding permits to prove

Theorem 3.3. Let (M, D, g) be an oriented contact sub-pseudo-Riemannian manifold satisfying the compati-
bility condition. Then

dimI(M, D, g) ≤ 2n + 1 + s2 + (n − s)2,

where dim M = 2n + 1 and s = 1
2 rk D̂ is the multiplicity of i =

√−1 as an eigenvalue of the endomorphism J .
Moreover, the parity of n − s equals to the parity of ind(g).
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Proof. We recall that g restricted to any two-dimensional component in the decomposition (2.7) is definite
(compare Cor. 2.5). Additionally g restricted to D̃ has index equal to 1

2 rk D̃. Thus

ind(g) =
1
2

rk D̃ mod 2

and since 1
2 rk D̃ = n − s the last statement of the Theorem follows.

Therefore, it is sufficient to compute the dimension of Gg,ω in order to complete the proof, because the
existence of the embedding (3.1) implies

dimI0(M, D, g) ≤ dim M + dimGg,ω ,

and dimI(M, D, g) = dimI0(M, D, g). The result follows from the following general Lemma that will be also
used later in the proof of Theorem 1.2.

Lemma 3.4. Let s = 1
2 rk D̂ and t = 1

2 rk D̃, where D̂ and D̃ are defined by the decomposition (2.6) of the
operator J for a pair (g, ω) of arbitrary non-degenerate symmetric and skew-symmetric bi-linear forms on D,
rk D = 2n. Then

dim (O(g) ∩ Sp(ω)) ≤ s2 + t2.

Moreover, if g and ω are compatible then the equality holds.

Proof. We shall consider the Lie algebra g of O(g) ∩ Sp(ω), because dim g = dim (O(g) ∩ Sp(ω)). Since any
element of O(g) ∩ Sp(ω) preserves the invariant subspaces Dλ of J we get that any A ∈ g, according to (2.6),
decomposes into the following block form

A =
(

B 0
0 C

)
where B is of dimension 2s × 2s and C is of dimension 2t × 2t. Thus we shall estimate the possible number of
independent entries of B and C.

Let us consider B first. In order to get an estimate we can assume that Ĵ is of the form (2.7) with all bi = 1.
Otherwise B would decompose into smaller blocks. So, we can choose a basis in D̂ such that g is diagonal and ω
is a standard symplectic form. Then, on the one hand B is completely determined by entries above the diagonal,
because B ∈ so(l̂, 2s− l̂), where l̂ = ind g|D̂. On the other hand B is completely determined by the entries above
the anti-diagonal (including the anti-diagonal itself), because B ∈ sp(2s). Thus, B has exactly s2 independent
entries.

Now, let us consider C. According to Proposition 2.4 we write D̃ = D̃+ ⊕ D̃− where D̃± are t-dimensional
subspaces of D̃ corresponding to eigenvalues of J with positive and negative real part, respectively. Moreover,
Proposition 2.4 implies

g|D̃ =
(

0 GT

G 0

)
, ω|D̃ =

(
0 ST

−S 0

)
,

for certain t × t-dimensional matrices G and S. It follows that

C =
(

E 0
0 F

)
,

where all E and F are of dimension t × t and satisfy E = −G−1FG and E = −S−1FS. In particular E is
completely determined by F . Hence, C has at most t2 independent entries (if S = G then C has exactly t2

independent entries). �
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3.2. Left invariant structures on the Heisenberg group

We will show that the upper bound on the dimension of the group of isometries from Theorem 3.3 is attained.
In particular, taking into account the parity of ind(g), we will show that there are structures with the isometry
groups of dimensions as in Theorem 1.2 and formula (1.4).

To this end we consider left-invariant structures on the Heisenberg group. We recall that the Heisenberg group
is realised as the space R

2n+1 with the contact distribution D defined as follows. Suppose we have coordinates
x1, . . . , xn, y1, . . . , yn, z on R

2n+1 which will be denote by (x, y, z) for short. Let

Xi =
∂

∂xi
+

1
2
yi

∂

∂z
, Yi =

∂

∂yi
− 1

2
xi

∂

∂z
, (3.2)

i = 1, . . . , n. Define D to be
D = span{X1, Y1, . . . , Xn, Yn}.

We equip (R2n+1, D) with metric g by declaring the frame (X1, Y1, . . . , Xn, Yn) to be orthonormal and such
that

g(Xi, Xi) = ti, g(Yi, Yi) = si,

where ti, si ∈ {−1, 1} depending on the signature of g. The vector fields (3.2) are left invariant fields with
respect to the standard multiplication on the Heisenberg group

(x1, . . . , xn, y1, . . . , yn, z) ∗ (x′
1, . . . , x

′
n, y′

1, . . . , y
′
n, z′)

=

(
x1 + x′

1, . . . .xn + x′
n, y1 + y′

1, . . . , yn + y′
n, z + z′ +

1
2

n∑
i=11

(yix
′
i − y′

ixi)

)
. (3.3)

The symplectic structure on D is the standard one

ω =
n∑

i = 1

dxi ∧ dyi.

Take a matrix σ ∈ Sp(ω) ∩ O(g). We will show that the map fσ : R
2n+1 → R

2n+1 defined by

fσ(x, y, z) = (σ · (x, y)T , z) (3.4)

is an isometry. Denote fσ = (f1
σ , . . . , f2n

σ , f2n+1
σ ). Then

f i
σ(x, y, z) =

n∑
j=1

(σi,jxj + σi,n+jyj) (3.5)

for i = 1, . . . , 2n. First we have

Lemma 3.5. For any σ ∈ Sp(ω)

fσ∗(Xi)(x, y, z) =
n∑

j=1

σj,iXj(fσ(x, y, z)) +
n∑

j=1

σn+j,iYj(fσ(x, y, z))

and

fσ∗(Yi)(x, y, z) =
n∑

j=1

σj,n+iXj(fσ(x, y, z)) +
n∑

j=1

σn+j,n+iYj(fσ(x, y, z))·

In particular, fσ preserves D.
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Proof. We will prove the first equality only. Using (3.5) we directly compute

fσ∗(Xi) =
n∑

j=1

σj,i
∂

∂xj
+

n∑
j=1

σn+j,i
∂

∂yj
+

1
2
yi

∂

∂z
·

Now, it is enough to show that

n∑
j=1

σj,if
n+j
σ (x, y, z) −

n∑
j=1

σn+j,if
j
σ(x, y, z) = yi.

However, using (3.5) again, we have

n∑
j=1

σj,if
n+j
σ (x, y, z)−

n∑
j=1

σn+j,if
j
σ(x, y, z) =

n∑
j,k=1

(σn+j,kσj,i−σj,kσn+j,i)xk+
n∑

j,k=1

(σn+j,n+kσj,i−σj,n+kσn+j,i)yk

and the lemma follows from the fact that ω is the standard symplectic form, i.e. σ Ω σT = Ω, where Ω is given
by (2.10). �

Now, we can prove the following

Proposition 3.6. The group of orientation preserving isometries of the left-invariant contact sub-pseudo-
Riemannian structure defined above on the Heisenberg group is isomorphic to

R
2n+1

� (Sp(ω) ∩ O(g)) . (3.6)

Proof. If σ ∈ Sp(ω)∩O(g) then the formulae for fσ∗(Xi) and fσ∗(Yi) in Lemma 3.5 imply that fσ is an isometry.
Thus any σ ∈ Sp(ω)∩O(g) defines an isometry of (D, g) and we get the second factor in (3.6). The first factor
in (3.6) comes from left translations. There can not be more isometries due to the embedding (3.1). �

Remark 3.7. Let us remark that the full group of isometries is isomorphic to the product R
2n+1

�(
S̃p(ω) ∩ O(g)

)
where S̃p(ω) is the group preserving ω up to the sign.

4. Regularity condition

4.1. Isometries of regular structures

Before proceeding to the general case announced in Theorem 1.2 we will describe a class of sub-pseudo-
Riemannian structures which generalize those satisfying the compatibility condition but, at the same time,
simple enough so that the isometry groups can be explicitly computed.

Definition 4.1. Let (M, D, g) be a contact sub-pseudo-Riemannian manifold of dimension 2n + 1. The metric
(D, g) is said to satisfy the regularity condition if there exists a global orthonormal frame X1, . . . , X2n with
respect to which the symplectic form ω on D can be written as

ω =
n∑

i =1

biα
i ∧ αn+i

where α1, . . . , α2n is the co-frame dual to X1, . . . , X2n, and b1, . . . , bn are smooth real-valued functions such
that there exist positive integers k1, . . . , kr, k1 + . . . + kr = n, for which

b1 = . . . = bk1 < bk1+1 = . . . = bk1+k2 < . . . < bk1+...+kr−1+1 = . . . = bn (4.1)

holds on the whole of M .
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Note that any sub-Riemannian or sub-Lorentzian structure fulfills the regularity condition at least on an
open subset of M . Clearly, the functions bi are related to either real or purely imaginary eigenvalues of the
operator J . In fact, if (M, D, g) is regular then J̃ has necessarily form (2.8). Let

Di = span {Xj , Xn+j | k1 + . . . + ki−1 + 1 ≤ j ≤ k1 + . . . + ki} .

Then all Di, i = 1, . . . , r, are invariant with respect to J and D splits into the Whitney sum

D = D1 ⊕ . . . ⊕ Dr.

Moreover, the groups Gg,ω(q), q ∈ M , split into the direct product

Gg,ω(q) 

(
Sp(ω|D1

q
) ∩ O(g|D1

q
)
)
⊕ . . . ⊕

(
Sp(ω|Dr

q
) ∩ O(g|Dr

q
)
)

. (4.2)

All groups Gg,ω(q) are isomorphic under the regularity condition and will be shortly denoted Gg,ω . Consequently,
the bundle OD,g,ω(M) admits a reduction to a Gg,ω-structure which can be realized as the set of all such frames
(q; v1, . . . , v2n, v0) ∈ OD,g,ω that

vj , vn+j ∈ Di
q, k1 + . . . + ki−1 + 1 ≤ j ≤ k1 + . . . + ki,

for i = 1, . . . , r. The presented considerations lead to the following

Theorem 4.2. Let (M, D, g) be an oriented contact sub-pseudo-Riemannian manifold satisfying the regularity
condition. Then

dimI(M, D, g) ≤ 2n + 1 + s2
1 + (k1 − s1)2 + . . . + s2

r + (kr − sr)2,

where si = 1
2 rk(Di ∩ D̂).

Proof. Indeed, dim I(M, D, g) ≤ dim M +dimGg,ω and the result follows from Lemma 3.4 applied to each factor
of Gg,ω separately. �

4.2. Left invariant regular structures

Now we are going to show that the upper bound on the dimension of the isometry group given in Theorem 4.2 is
attained. To this end, fix positive real numbers bi, i = 1, . . . , n, as in (4.1) and define the following multiplication
on R

2n+1

(x1, . . . , xn, y1, . . . , yn, z) ∗ (x′
1, . . . , x

′
n, y′

1, . . . , y
′
n, z′)

=

(
x1 + x′

1, . . . , xn + x′
n, y1 + y′

1, . . . , yn + y′
n, z + z′ +

1
2

n∑
i = 1

bi(yix
′
i − y′

ixi)

)
. (4.3)

The multiplication (4.3) can be treated as a deformation of the standard multiplication (3.3). Now it is not
difficult to see that the left invariant vector fields with respect to this multiplication are given by formulae

Xi =
∂

∂xi
+

bi

2
yi

∂

∂z
, Yi =

∂

∂yi
− bi

2
xi

∂

∂z
· (4.4)

Let D = span{X1, Y1, . . . , Xn, Yn} and define metric g by declaring the basis X1, Y1, . . . , Xn, Yn to be orthonor-
mal with

g(Xi, Xi) = pi, g(Yi, Yi) = ri,

where pi, ri ∈ {−1, +1} depending on the index of the metric, i = 1, . . . , n. It clear that the canonical contact
form is

α = dz −
n∑

i = 1

(1/2)bi(yidxi − xidyi)
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and

ω =
n∑

i =1

bidxi ∧ dyi.

It follows from the construction that the left translations with respect to (4.3) are isometries of (R2n+1, D, g),
because vector fields (4.4) are left invariant. Moreover, any σ ∈ Gg,ω decomposes according to the splitting (4.2).
Performing similar calculations as in Lemma 3.5 for each factor of this decomposition one can prove

Proposition 4.3. The group of orientation preserving isometries of the left invariant contact sub-pseudo-
Riemannian structure (D, g) constructed above on R

2n+1 is isomorphic to

R
2n+1

� Gg,ω,

where Gg,ω is given by (4.2).

5. General case

5.1. Symbol algebra

Let (M, D, g) be an oriented contact sub-pseudo-Riemannian manifold. Let g(D)(q) be the symbol algebra
of D at point q ∈ M . It is a two-step nilpotent graded Lie algebra

g(D)(q) = g−1(q) ⊕ g−2(q)

where
g−1(q) = Dq, g−2(q) = TqM/Dq.

The Lie bracket g−1(q) ∧ g−1(q) → g−2(q) is defined in terms of the Lie bracket of vector fields on M as
follows. Let v, w ∈ g−1(q) and let Xv and Xw be two extensions of v and w, respectively, to sections of D in a
neighborhood of q. Then

[v, w] = [Xv, Xw](q) mod Dq

does not depend on the extension and defines the Lie bracket in g(D)(q). Clearly, the Lie algebra g(D)(q) does
not depend on q. Moreover the dual space g−2(q)∗ can be identified with D⊥

q ⊂ T ∗
q M spanned by the contact

form αq. It follows that
αq([v, w]) = ωq(v, w),

i.e. the Lie algebra structure is determined by the symplectic form ω.
The symbol algebra g(D, g)(q) of D equipped with g at point q ∈ M is defined as follows

g(D, g)(q) = g(D)(q) ⊕ g0(q)

where g0(q) is the algebra of matrices A ∈ gl(g(D)(q)) preserving the metric g, i.e.

g(Av, w) + g(v, Aw) = 0

and the Lie bracket on g−1(q), i.e.
[Av, w] + [v, Aw] = A[v, w].

Since the Lie bracket is encoded in terms of ω it follows that g0(q) is the Lie algebra of the Lie group Gg,ω(q)
and actually can be thought of as a sub-algebra of gl(g−1(q)). Defining

[A, v] = Av

for v ∈ g−1(q) we get that g(D, g)(q) is a graded Lie algebra. We refer to [16] for more information on the
symbol algebras of distributions and related structures.



1764 M. GROCHOWSKI AND W. KRYŃSKI

5.2. Prolongation

The first prolongation of g(D, g)(q) is defined as

pr1(g(D, g)(q)) = g(D, g)(q) ⊕ g1(q),

where g1(q) is the set of all Lie algebra derivations g(D) → g(D, g) increasing the gradation by 1, i.e. any
A ∈ g1(q) maps g−1(q) to g0(q) and g−2(q) to g−1(q) such that

A([v, w]) = A(v)w − A(w)v (5.1)

for all v, w ∈ g−1(q). Note that dim g−2 = 1 thus for any A ∈ g1(q) the image A(g−2) is a one- or zero-dimensional
subspace of g−2.

Higher prolongations of g(D, g)(g) are defined by induction, similarly to the first prolongation, as Lie algebra
derivations increasing the gradation by k ∈ N. We get

pr g(D, g)(q) = g(D, g)(q) ⊕
⊕
k∈N

gk(q)

and one equips pr g(D, g)(q) with the structure of a graded Lie algebra in a natural way. However we shall not
describe the structure in detail because we have the following

Lemma 5.1. The first prolongation of g(D, g)(q) is trivial. Consequently

pr g(D, g)(q) = g(D, g)(q)

Proof. Let α∗
q ∈ g−2(q) be a vector dual to the contact form αq, i.e. αq(α∗

q) = 1. Choose A ∈ g1(q) and denote
vA = A(α∗

q). Let (v1, . . . , v2n) be an orthonormal basis of Dq. Then (5.1) reads

A(vi)vj − A(vj)vi = g(J(vi), vj)vA. (5.2)

Since (v1, . . . , v2n) is orthonormal it follows that all A(vi), i = 1, . . . , 2n, are orthonormal matrices in so(l, 2n−l).
Now, for a fixed value of vA there is unique A that solves (5.2) in so(l, 2n − l), where l = ind(g). This follows
from the uniqueness of the Levi−Civita connection of a pseudo-Riemannian metric which is equivalent to the
algebraic fact that the system

A(vi)vj − A(vj)vi = 0 (5.3)

has unique solution A = 0 in the algebra so(l, 2n− l). The unique solution to (5.2) is of the form

A =
1
2

2k∑
i =1

(vA · J(vi)T )v∗i

where (v∗1 , . . . , v∗2n) are dual to (v1, . . . , v2n) with respect to g and vA · J(vi)T = A(vi) is a rank-one square
matrix A(vi) = (ai

jk)j,k=1,...,2n with entries ai
jk = v∗j (vA)v∗k(J(vi)). Now, since all A(vi) are orthonormal it

follows that v∗j (vA)v∗j (J(vi)) = 0 for any j = 1, . . . , 2n. But, for any i there is j such that v∗j (J(vi)) �= 0. Thus
we get that v∗j (vA) = 0, for j = 1, . . . , 2n. Consequently, vA = 0. This reduces (5.2) to (5.3). Hence A = 0,
because this is the unique solution to (5.3) as was explained above. �

Now we are able to apply Theorem 1 of [13] and get

Theorem 5.2. Let (M, D, g) be an oriented contact sub-pseudo-Riemannian manifold. Then the dimension of
the algebra of the infinitesimal symmetries of (M, D, g) is estimated from above by

dim M + inf
q∈M

dimGg,ω(q).

Proof. We have pr g(D, g)(q) = g(D, g)(q). Thus dim pr g(D, g)(q) = dim M + dimGg,ω(q) since g0(q) is the Lie
algebra of Gg,ω(q). All the prolongations are finite. Therefore, by [13], we have that the dimension of the algebra
of infinitesimal symmetries is estimated from above by infq∈M dim pr g(D, g)(q). �
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5.3. Proof of Theorem 1.2

If (M, D, g) is an oriented sub-pseudo-Riemannian manifold then it suffices to consider isometries preserving
the orientation because dimI(M, D, g) = dimI0(M, D, g). The dimension of I0(M, D, g) equals to the dimension
of the algebra of infinitesimal isometries. Therefore we can apply Theorem 5.2. The maximal possible dimension
of Gg,ω is computed in Lemma 3.4.

If (M, D, g) is not oriented then we consider a double cover M̃ of M consisting of pairs (q, αq) where q ∈ M
and αq is one of the two normalized co-vectors in T ∗

q M annihilating D(q). Then M̃ carries a canonical lift (D̃, g̃)
of the structure (D, g) and the structure (M̃, D̃, g̃) is oriented, because (q, αq) �→ αq defines a global contact
form on M̃ annihilating D̃. Moreover, any isometry of the original structure (M, D, g) defines an isometry of
(M̃, D̃, g̃) and thus dimI(M, D, g) ≤ dim I(M̃, D̃, g̃). Therefore, the estimate in the not oriented case follows
from the estimate in the oriented case.
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Basel (1996) 79–323.

[5] M. Grochowski, The structure of reachable sets for affine control systems induced by generalized Martinet sub-Lorentzian
metrics. ESAIM: COCV 18 (2012) 1150–1177.

[6] M. Grochowski, Remarks on global sub-Lorentzian geometry. Anal. Math. Phys. 3 (2013) 295–309.
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