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GROUND STATES FOR FRACTIONAL MAGNETIC OPERATORS

Pietro d’Avenia1 and Marco Squassina2

Abstract. We study a class of minimization problems for a nonlocal operator involving an external
magnetic potential. The notions are physically justified and consistent with the case of absence of
magnetic fields. Existence of solutions is obtained via concentration compactness.
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1. Introduction and results

Since the late nineties, nonlocal integral operators like

(−Δ)su(x) = cs lim
ε↘0

∫
Bc

ε(x)

u(x) − u(y)
|x − y|3+2s

dy = F−1(|ξ|2sF(u)(ξ))(x), u ∈ C∞
c (R3), (1.1)

where s ∈ (0, 1) and

cs = s22s Γ
(

3+2s
2

)
π3/2Γ (1 − s)

,

being Γ the Gamma function, have been widely used in the theory of Lévy processes. Indeed, in view of the
Lévy−Khintchine formula, the generator H of the semigroup on C∞

c (R3) associated to a general Lévy process
is given by

H u(x) = −aij∂
2
xixj

u(x) − bi∂xiu(x) − lim
ε↘0

∫
Bc

ε(0)

(
u(x + y) − u(x) − 1{|y|<1}(y)y · ∇u(x)

)
dμ, (1.2)

with summation on repeated indexes and where μ is a Lévy nonnegative measure, namely∫
R3

|y|2
1 + |y|2 dμ < ∞.

The last contribution in (1.2) represents the purely jump part of the Lévy process, while the first two terms
represent a Brownian motion with drift. It is now well established that Lévy processes with jumps are more
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appropriate for some mathematical models in finance. Among Lévy processes, the only stochastically stable
ones having jump part are those corresponding to radial measures as

dμ =
cs

|y|3+2s
dy,

hence the importance of the definition (1.1). Moreover, the fractional Laplacian (1.1) allows to develop a
generalization of quantum mechanics and also to describe the motion of a chain or array of particles that are
connected by elastic springs and unusual diffusion processes in turbulent fluid motions and material transports
in fractured media (for more details see e.g. [1, 9, 22, 26] and the references therein). Due to the results of
Bourgain−Brézis−Mironescu [5, 6], up to correcting the operator (1.1) with the factor (1 − s) it follows that
(−Δ)su converges to −Δu in the limit s ↗ 1. Thus, up to normalization, we may think the nonlocal case as an
approximation of the local case.

A pseudorelativistic extension of the Laplacian is the well known pseudodifferential operator
√−Δ + m2−m

where m is a nonnegative number. This operator appears in the study of free relativistic particles of mass m
and

√−Δ + m2 is defined by F−1(
√|ξ|2 + m2F(u)(ξ)) (see [23] for more details). We observe that for m = 0

we have the operator in (1.1) with s = 1/2.
An important role in the study of particles which interact, e.g. using the Weyl covariant derivative, with a

magnetic field B = ∇×A, A : R3 → R3, is assumed by another extension of the Laplacian, namely the magnetic
Laplacian (∇− iA)2 (see [3, 27]). Nonlinear magnetic Schrödinger equations like

−(∇− iA)2u + u = f(u)

have been extensively studied (see e.g. [2, 8, 12, 15, 21, 28]).
In [19], Ichinose and Tamura, through oscillatory integrals, introduce the so-called Weyl pseudodifferential

operator defined with mid-point prescription

HAu(x) =
1

(2π)3

∫
R6

ei(x−y)·ξ
√∣∣∣ξ − A

(
x + y

2

) ∣∣∣2 + m2u(y)dydξ

=
1

(2π)3

∫
R6

ei(x−y)·
(

ξ+A
(

x+y
2

))√
|ξ|2 + m2u(y)dydξ

as a fractional relativistic generalization of the magnetic Laplacian (see also [17], the review article [18] and
the references therein). The operator HA takes the place of

√−Δ + m2 and it is possible to show that for all
u ∈ C∞

c (R3, C),

HAu(x) = mu(x) − lim
ε↘0

∫
Bc

ε(0)

[
e−iy·A

(
x+y

2

)
u(x + y) − u(x) − 1{|y|<1}(y)y · (∇− iA(x))u(x)

]
dμ

= mu(x) + lim
ε↘0

∫
Bc

ε(x)

[
u(x) − ei(x−y)·A(x+y

2 )u(y)
]
μ(y − x)dy,

where

dμ = μ(y)dy =

⎧⎪⎨
⎪⎩

2
(m

2π

)2 K2(m|y|)
|y|2 dy, m > 0,

1
π2|y|4 dy, m = 0,

and K2 is the modified Bessel function of the third kind of order 2 (see e.g. ([18], Sect. 3.1)).
In this paper we are concerned with the operator

(−Δ)s
Au(x) = cs lim

ε↘0

∫
Bc

ε(x)

u(x) − e
i(x−y)·A

(
x + y

2

)
u(y)

|x − y|3+2s
dy, x ∈ R

3, (1.3)
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and, in particular, with ground state solutions of the equation

(−Δ)s
Au + u = |u|p−2u in R

3. (Ps,A)

The operator (1.3) is consistent with the definition of fractional Laplacian given in (1.1) if A = 0 and with HA

for m = 0 and s = 1/2. To our knowledge, this is the first mathematical contribution to the study of nonlinear
problems involving operator (1.3).

For the sake of completeness we mention that there exist other different definitions of the magnetic pseu-
dorelativistic operator (see [18, 20, 23]) and in [16] a fractional magnetic operator (∇− iA)2s is defined through
the spectral theorem (see also discussion on the different definitions in ([18], Prop. 2.6).

Throughout the paper we consider magnetic potentials A’s which have locally bounded gradient. We now
state our results.

Let 2 < p < 6/(3 − 2s) and consider the minimization problem

MA = inf
u∈S

⎛
⎜⎝∫

R3
|u|2dx +

cs

2

∫
R6

∣∣∣e−i(x−y)·A(x+y
2 )u(x) − u(y)

∣∣∣2
|x − y|3+2s

dxdy

⎞
⎟⎠ , (MA)

where

S =
{

u ∈ Hs
A(R3, C) :

∫
R3

|u|pdx = 1
}

and Hs
A(R3, C) is a suitable Hilbert space defined in Section 2. Once a solution to MA exists, due to the Lagrange

Multiplier Theorem, we get a weak solution to (Ps,A), see Sections 2 and 4.
When S is restricted to radially symmetric functions, the problem is denoted by MA,r.
First we give the following

Definition 1.1. We say that A satisfies assumption A , if for any unbounded sequence Ξ = {ξn}n∈N ⊂ R3

there exist a sequence {Hn}n∈N ⊂ R3 and a function AΞ : R3 → R3 such that

lim
n

An(x) = AΞ(x) for all x ∈ R
3 and sup

n
‖An‖L∞(K) < ∞ for all compact sets K, (1.4)

where An(x) := A(x + ξn) + Hn and {ξn} is a subsequence of Ξ such that |ξn| → ∞.

We also set X := {Ξ = {ξn}n∈N unbounded : condition (1.4) holds}. Observe that, if A admits limit as
|x| → ∞, then it satisfies assumption A .

Our main result is

Theorem 1.2 (Subcritical case). The following facts hold:

(i) MA,r has a solution;
(ii) if A is linear, then MA has a solution;
(iii) if A satisfies A and MA < infΞ∈X MAΞ , then MA has a solution.

We also consider the minimization problem

M c
A := inf

u∈S c

cs

2

∫
R6

∣∣∣e−i(x−y)·A(x+y
2 )u(x) − u(y)

∣∣∣2
|x − y|3+2s

dxdy, (M c
A)

where

S c =
{

u ∈ Ds
A(R3, C) :

∫
R3

|u|6/(3−2s)dx = 1
}

and Ds
A(R3, C) is a suitable Hilbert space defined in Section 4.3. We are able to prove.
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Theorem 1.3 (Critical case). The following facts hold:

(i) if M c
A has a solution u, there exist z ∈ R3, ε > 0 and ϑA : R3 → R such that

u(x) = ds

(
ε

ε2 + |x − z|2
) 3−2s

2

eiϑA(x);

(ii) if for some k ∈ N and E ⊂ R6 of positive measure

(x − y) · A
(x + y

2

)

≡ 2kπ for all (x, y) ∈ E,

then M c
A has no solution u of the form eiϑv(x) where ϑ ∈ R and v of fixed sign.

The local version of the above results can be found in the work [15] by Esteban and Lions. In [14], for the
case without magnetic field and with subcritical nonlinearities, existence of ground states was obtained using
different arguments, namely without involving concentration compactness arguments, but instead symmetrizing
the minimizing sequences, by using

∫
R6

||u(x)|∗ − |u(y)|∗|2
|x − y|3+2s

dxdy ≤
∫

R6

|u(x) − u(y)|2
|x − y|3+2s

dxdy,

for all u ∈ Hs(R3), where v∗ denotes the Schwarz symmetrization of v : R3 → R+. On the contrary, when
A 
≡ 0, the inequality

∫
R6

∣∣∣e−i(x−y)·A(x+y
2 )|u(x)|∗ − |u(y)|∗

∣∣∣2
|x − y|3+2s

dxdy ≤
∫

R6

∣∣∣e−i(x−y)·A(x+y
2 )u(x) − u(y)

∣∣∣2
|x − y|3+2s

dxdy,

does not seem to work and a different strategy for the proof has to be outlined. Dealing with the nonlocal case,
it is natural to expect that, in the study of minimizing sequences, the hardest stage is that of ruling out the
dichotomy in the concentration compactness alternative. This is in fact the case, but thanks to a careful analysis
developed in Lemma 3.9, dichotomy can be ruled out allowing for tightness and hence the strong convergence
of minimizing sequences up translations and phase changes.

We organize the paper in the following way: in Section 2 we introduce the functional setting of the problem
and we provide some basic properties about it; in Section 3 we show further technical facts on the functional
setting as well as some preliminary results about the Concentration-Compactness procedure; finally, in Section 4,
we complete with the proofs of our results.

Notations. We denote by BR(ξ) a ball in R3 of center ξ and radius R. For a measurable set E ⊂ R3 we
denote by Ec the complement of E in R3, namely Ec = R3 \ E. We denote by 1E the indicator function of E.
The symbol Ln(Ω) stands for the Lebesgue measure of a measurable subset Ω ⊂ Rn. For a complex number
z ∈ C, the symbol 
z indicates its real part and �z its imaginary part. The modulus of z is denoted by |z|.
The standard norm of Lp spaces is denoted by ‖ · ‖Lp .

2. Functional setting

Let L2(R3, C) be the Lebesgue space of complex valued functions with summable square endowed with the
real scalar product

〈u, v〉L2 := 

∫

R3
uv̄dx, for all u, v ∈ L2(R3, C),



GROUND STATES FOR FRACTIONAL MAGNETIC OPERATORS 5

and A : R3 → R3 be a continuous function. We consider the magnetic Gagliardo semi-norm defined by

[u]2s,A :=
cs

2

∫
R6

∣∣∣e−i(x−y)·A(x+y
2 )u(x) − u(y)

∣∣∣2
|x − y|3+2s

dxdy,

the scalar product defined by

〈u, v〉s,A := 〈u, v〉L2 +
cs

2


∫

R6

(
e−i(x−y)·A(x+y

2 )u(x) − u(y)
)(

e−i(x−y)·A(x+y
2 )v(x) − v(y)

)
|x − y|3+2s

dxdy,

and the corresponding norm denoted by

‖u‖s,A :=
(‖u‖2

L2 + [u]2s,A

)1/2
.

We consider the space H of measurable functions u : R3 → C such that ‖u‖s,A < ∞.

Proposition 2.1. (H, 〈·, ·〉s,A) is a real Hilbert space.

Proof. It is readily checked that 〈u, v〉s,A is a real scalar product. Let us prove that H with this scalar product
is complete. Let {un}n∈N be a Cauchy sequence in H, namely for every ε > 0 there exists νε ∈ N such that for
all m, n > νε we have ‖un−um‖s,A < ε. Thus {un}n∈N is a Cauchy sequence on L2(R3, C) and then there exists
u ∈ L2(R3, C) such that un → u in L2(R3, C) and a.e. in R3. Firstly, we prove that u ∈ H. By Fatou Lemma
we have

[u]2s,A ≤ lim inf
n

[un]2s,A ≤ lim inf
n

([un − uν1 ]s,A + [uν1 ]s,A)2 ≤ (1 + [uν1 ]s,A)2.

Thus it remains to prove that [un − u]s,A → 0 as n → ∞. Again, by Fatou Lemma

[un − u]s,A ≤ lim inf
k

[un − uk]s,A ≤ lim inf
k

‖un − uk‖s,A ≤ ε,

for all ε > 0 and n large. �

For any function w : R3 → C and a.e. x ∈ R3, we set

wx(y) := ei(x−y)·A(x+y
2 )w(y), for y ∈ R

3. (2.1)

We have

Proposition 2.2. The space C∞
c (R3, C) is a subspace of H.

Proof. It is enough to prove that [u]s,A < ∞, for any u ∈ C∞
c (R3, C). If K is the compact support of u, we have

∫
R6

∣∣∣e−i(x−y)·A(x+y
2 )u(x) − u(y)

∣∣∣2
|x − y|3+2s

dxdy ≤ 2
∫

K×R3

|ux(x) − ux(y)|2
|x − y|3+2s

dxdy.

Observe that, since ∇A is locally bounded, the gradient of the function (x, y) �→ ux(y) is bounded on K × R3.
Then we have |ux(x) − ux(y)| ≤ C|x − y| for any (x, y) ∈ K × R3. Of course, we also have |ux(x) − ux(y)| ≤ C
for any (x, y) ∈ K × R3. Hence, we get∫

K×R3

|ux(x) − ux(y)|2
|x − y|3+2s

dxdy ≤ C

∫
K×R3

min{|x − y|2, 1}
|x − y|3+2s

dxdy

≤ C

∫
B1(0)

1
|z|1+2s

dz + C

∫
Bc

1(0)

1
|z|3+2s

dz,

which concludes the proof. �

Thus we can give the following
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Definition 2.3. We define Hs
A(R3, C) as the closure of C∞

c (R3, C) in H.

Then, Hs
A(R3, C) is a real Hilbert space by Proposition 2.1. For A = 0 this space is consistent with the usual

fractional space Hs(R3, C) whose norm is denoted by ‖ · ‖s. For a given Lebesgue measurable set E ⊂ R3 the
localized Gagliardo norms are defined by

‖u‖Hs
A(E) :=

⎛
⎜⎝∫

E

|u(x)|2dx +
cs

2

∫
E×E

∣∣∣e−i(x−y)·A(x+y
2 )u(x) − u(y)

∣∣∣2
|x − y|3+2s

dxdy

⎞
⎟⎠

1/2

,

‖u‖Hs(E) :=
(∫

E

|u(x)|2dx +
cs

2

∫
E×E

|u(x) − u(y)|2
|x − y|3+2s

dxdy

)1/2

.

The operator (−Δ)s
A : Hs

A(R3, C) → H−s
A (R3, C) is defined by duality as

〈(−Δ)s
Au, v〉 :=

cs

2


∫

R6

(
e−i(x−y)·A(x+y

2 )u(x) − u(y)
)(

e−i(x−y)·A(x+y
2 )v(x) − v(y)

)
|x − y|3+2s

dxdy

=
cs

2


∫

R6

(
u(x) − ei(x−y)·A(x+y

2 )u(y)
)(

v(x) − ei(x−y)·A(x+y
2 )v(y)

)
|x − y|3+2s

dxdy.

If f ∈ H−s
A (R3, C), we say that u ∈ Hs

A(R3, C) is a weak solution to

(−Δ)s
Au + u = f, in R

3, (2.2)

if we have

cs

2


∫

R6

(
u(x) − ei(x−y)·A(x+y

2 )u(y)
)(

v(x) − ei(x−y)·A(x+y
2 )v(y)

)
|x − y|3+2s

dxdy

+ 

∫

R3
uvdx = 


∫
R3

fvdx, for all v ∈ Hs
A(R3, C).

Of course, one can equivalently define the weak solution by testing over functions v ∈ C∞
c (R3, C).

On smooth functions, the operator (−Δ)s
A admits the point-wise representation (1.3). To show this we need

the following preliminary results.

Lemma 2.4. Let K be a compact subset of R3, R > 0 and set K ′ = {x ∈ R3 : d(x, K) ≤ R}. Assume that
f ∈ C2(R6) and that g ∈ C1,γ(K ′) for some γ ∈ [0, 1]. If h(x, y) = f(x, y)g(y), then there exists a positive
constant C depending on K, f, g, R, such that

|∇yh(x, y2) −∇yh(x, y1)| ≤ C|y2 − y1|γ ,

for all x ∈ K and every y2, y1 ∈ K ′.

Proof. The proof is omitted as it is straightforward. �

Lemma 2.5. Let A ∈ C2(R3) and u ∈ C1,γ
loc (R3, C) for some γ ∈ [0, 1]. Then, for any compact set K ⊂ R3 and

R > 0, there exists a positive constant C depending on R, K, A, u, such that

|ux(x + y) + ux(x − y) − 2ux(x)| ≤ C|y|1+γ ,

for every x ∈ K and y ∈ BR(0).
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Proof. Fix a compact set K ⊂ R3 and R > 0. Consider x ∈ K and y ∈ BR(0). Then, by the Mean Value
Theorem, there exist τ1, τ2 ∈ [0, 1] such that

|ux(x + y) + ux(x − y) − 2ux(x)| = |∇yux(x + τ1y) · y −∇yux(x − τ2y) · y|
≤ |∇yux(x + τ1y) −∇yux(x − τ2y)||y| ≤ C|y|1+γ ,

where in the last inequality we use Lemma 2.4 with f(x, y) = ei(x−y)·A(x+y
2 ) and g(y) = u(y). �

Thus in the case u and A are smooth enough, we have the following result

Theorem 2.6 (Weak to strong solution). Let u ∈ Hs
A(R3, C) be a weak solution to (2.2). Assume that A ∈

C2(R3) and that
u ∈ L∞(R3, C) ∩ C1,γ

loc (R3, C), for some γ ∈ (0, 1] with γ > 2s− 1.

Then u solves problem (2.2) pointwise a.e. in R3.

Proof. With the notation introduced in (2.1), the definition of weak solution writes as

cs

2


∫

R6

(ux(x) − ux(y)) (vx(x) − vx(y))
|x − y|3+2s

dxdy + 

∫

R3
uvdx = 


∫
R3

fvdx, (2.3)

for all v ∈ C∞
c (R3, C). Let us fix a v ∈ C∞

c (R3, C) and set K := supp(v). Now, for any ε > 0, we introduce the
auxiliary function gε : K → R defined by

gε(x) :=
cs

2

∫
R3

ux(x) − ux(y)
|x − y|3+2s

1Bc
ε(x)(y)dy.

Note that for all x ∈ K we have that

gε(x) → 1
2
(−Δ)s

Au(x), as ε → 0 whenever the limit exists. (2.4)

Simple changes of variables show that gε can be equivalently written as

gε(x) = −cs

4

∫
R3

ux(x + y) + ux(x − y) − 2ux(x)
|y|3+2s

1Bc
ε(0)(y)dy.

Furthermore, by Lemma 2.5, there exist C > 0 and R > 0 such that

|ux(x + y) + ux(x − y) − 2ux(x)| ≤ C|y|1+γ , for x ∈ K and y ∈ BR(0).

Therefore, taking into account that |ux(y)| ≤ ‖u‖L∞ for all y ∈ R3, we have the inequality

|ux(x + y) + ux(x − y) − 2ux(x)|
|y|3+2s

≤ C

|y|2+2s−γ
1BR(0)(y) +

C

|y|3+2s
1Bc

R(0)(y),

for some constant C. Due to the assumption γ > 2s − 1, the right hand side belongs to L1(R3). Then, by
dominated convergence, the limit of gε(x) as ε → 0 exists a.e. in K and it is thus equal to 1

2 (−Δ)s
Au(x) by (2.4).

Since also |gε(x)| ≤ C a.e. in K, again the dominated convergence yields

gε → 1
2
(−Δ)s

Au, strongly in L1(K). (2.5)
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Now, the first term in formula (2.3) can be treated as follows

cs

2

∫
R6

(ux(x) − ux(y)) (vx(x) − vx(y))
|x − y|3+2s

dxdy

= lim
ε→0

cs

2

∫
R6

(ux(x) − ux(y)) (vx(x) − vx(y))
|x − y|3+2s

1Bc
ε(x)(y)dxdy

= lim
ε→0

(∫
R3

gε(x)v(x)dx − cs

2

∫
R6

(ux(x) − ux(y)) vx(y)
|x − y|3+2s

1Bc
ε(x)(y)dxdy

)
.

By Fubini Theorem on the second term of the last equality, switching the two variables and observing that

− (uy(y) − uy(x)) vy(x)1Bc
ε(y)(x) = (ux(x) − ux(y))v(x)1Bc

ε(x)(y)

yields

cs

2

∫
R6

(ux(x) − ux(y)) (vx(x) − vx(y))
|x − y|3+2s

dxdy = lim
ε→0

∫
R3

2gε(x)v(x)dx =
∫

R3
(−Δ)s

Au(x)v(x)dx,

where we used (2.5) in the last equality. Then, from formula (2.3), we conclude that



(∫

R3

(
(−Δ)s

Au + u − f
)
vdx

)
= 0, for all v ∈ C∞

c (R3, C),

yielding (−Δ)s
Au + u = f a.e. in R3. The proof is complete. �

We conclude the section with an observation about the formal consistency of the spaces Hs
A(R3, C), up to

suitably correcting the norm, with the usual local Sobolev spaces without magnetic field in the singular limit
as s → 1 and A → 0 pointwise. Consider the modified norm

|||u|||s,A :=
(‖u‖2

L2 + (1 − s)[u]2s,A

)1/2
.

By arguing as in the proof of Lemma 4.6, it follows that

lim
A→0

[u]2s,A = [u]2s,0, for all u ∈ C∞
c (R3, C).

Moreover, from the results of Brezis−Bourgain−Mironescu [5, 6], we know that

lim
s→1

(1 − s)[u]2s,0 = ‖∇u‖2
L2, for all u ∈ C∞

c (R3, C).

In conclusion
lim
s→1

lim
A→0

|||u|||s,A = ‖u‖H1(R3), for all u ∈ C∞
c (R3, C).

Hence |||u|||s,A approximates the H1-norm for s ∼ 1 and A ∼ 0.

3. Preliminary stuff

In this section we provide some technical facts about the functional setting of the problem as well as some
preliminary results about the Concentration-Compactness procedure.

Lemma 3.1 (Diamagnetic inequality). For every u ∈ Hs
A(R3, C) it holds |u| ∈ Hs(R3). More precisely

‖|u|‖s ≤ ‖u‖s,A, for every u ∈ Hs
A(R3, C).
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Proof. For a.e. x, y ∈ R3 we have


(e−i(x−y)·A(x+y
2 )u(x)u(y)

) ≤ |u(x)||u(y)|.
Therefore, we have

|e−i(x−y)·A(x+y
2 )u(x) − u(y)|2 = |u(x)|2 + |u(y)|2 − 2
(e−i(x−y)·A(x+y

2 )u(x)u(y)
)

≥ |u(x)|2 + |u(y)|2 − 2|u(x)||u(y)| = ||u(x)| − |u(y)||2,
which immediately yields the assertion. �

Remark 3.2 (Pointwise diamagnetic inequality).
There holds

||u(x)| − |u(y)|| ≤ |e−i(x−y)·A(x+y
2 )u(x) − u(y)|, for a.e. x, y ∈ R

3.

We have the following local embedding of Hs
A(R3, C).

Lemma 3.3 (Local embedding in Hs(R3, C)). For every compact set K ⊂ R3, the space Hs
A(R3, C) is contin-

uously embedded into Hs(K, C).

Proof. Fixed a compact K ⊂ R3, we have

‖u‖2
Hs(K) =

∫
K

|u(x)|2dx +
cs

2

∫
K×K

|u(x) − u(y)|2
|x − y|3+2s

dxdy

≤
∫

R3
|u(x)|2dx + C

∫
K×K

∣∣∣e−i(x−y)·A(x+y
2 )u(x) − u(y)

∣∣∣2
|x − y|3+2s

dxdy

+ C

∫
K×K

|u(x)|2|e−i(x−y)·A(x+y
2 ) − 1|2

|x − y|3+2s
dxdy

≤ C‖u‖2
s,A + CJ,

where we have set

J :=
∫

K×K

|u(x)|2|e−i(x−y)·A(x+y
2 ) − 1|2

|x − y|3+2s
dxdy.

We now prove that J ≤ C‖u‖2
L2, which ends the proof. We have

J =
∫

K

|u(x)|2
∫

K∩{|x−y|≥1}

∣∣∣e−i(x−y)·A(x+y
2 ) − 1

∣∣∣2
|x − y|3+2s

dxdy

+
∫

K

|u(x)|2
∫

K∩{|x−y|≤1}

∣∣∣e−i(x−y)·A(x+y
2 ) − 1

∣∣∣2
|x − y|3+2s

dxdy

≤ C

∫
K

|u(x)|2
∫

K∩{|x−y|≥1}

1
|x − y|3+2s

dxdy

+ C

∫
K

|u(x)|2
∫

K∩{|x−y|≤1}

1
|x − y|1+2s

dxdy,

where in the last line we used that∣∣∣e−i(x−y)·A(x+y
2 ) − 1

∣∣∣2 ≤ C|x − y|2, for |x − y| ≤ 1, x, y ∈ K,

since A is locally bounded. The proof is now complete. �
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Lemma 3.4. Let {An}n∈N be a sequence of uniformly locally bounded functions An : R3 → R3 with locally
bounded gradient and, for any n ∈ N, un ∈ Hs

An
(R3, C) be such that

sup
n∈N

‖un‖s,An < ∞.

Then, up to a subsequence, {un}n∈N converges strongly to some function u in Lq(K, C) for every compact set
K and any q ∈ [1, 6/(3 − 2s)).

Proof. Arguing as in the proof of Lemma 3.3, the assertion follows by ([13], Cor. 7.2). �

Lemma 3.5 (Magnetic Sobolev embeddings). The injection

Hs
A(R3, C) ↪→ Lp(R3, C)

is continuous for every 2 ≤ p ≤ 6
3−2s . Furthermore, the injection

Hs
A(R3, C) ↪→ Lp(K, C)

is compact for every 1 ≤ p < 6
3−2s and any compact set K ⊂ R3.

Proof. By combining Remark 3.2 with the continuous injection Hs(R3) ↪→ L6/(3−2s)(R3) (see [13], Thm. 6.5)
yields

‖u‖L6/(3−2s)(R3) ≤ C

⎛
⎜⎝∫

R6

∣∣∣e−i(x−y)·A(x+y
2 )u(x) − u(y)

∣∣∣2
|x − y|3+2s

dxdy

⎞
⎟⎠

1/2

for all u ∈ Hs
A(R3, C). (3.1)

Whence, by interpolation the first assertion immediately follows. For the compact embedding, taking into
account Lemma 3.3, the assertion follows by ([13], Cor. 7.2). �

Lemma 3.6 (Vanishing). Let {un}n∈N be a bounded sequence in Hs(R3) and assume that, for some R > 0 and
2 ≤ q < 6

3−2s , there holds

lim
n

sup
ξ∈R3

∫
B(ξ,R)

|un|qdx = 0.

Then un → 0 in Lp(R3) for 2 < p < 6
3−2s .

Proof. (See [11], Lem. 2.3). �

Lemma 3.7 (Localized Sobolev inequality). Let ξ ∈ R3 and R > 0. Then, for u ∈ Hs(BR(ξ)),

‖u‖
L

6
3−2s (BR(ξ))

≤ C(s)

(
1

R2s

∫
BR(ξ)

|u(x)|2dx +
∫

BR(ξ)×BR(ξ)

|u(x) − u(y)|2
|x − y|3+2s

dydx

)1/2

for some constant C(s) > 0. In particular for every 1 ≤ p ≤ 6
3−2s there holds

‖u‖Lp(BR(ξ)) ≤ C(s, R)‖u‖Hs(BR(ξ))

for some constant C(s, R) > 0 and all u ∈ Hs(BR(ξ)).

Proof. (See [4], Prop. 2.5) for the first inequality. The second inequality immediately follows. �
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Lemma 3.8 (Cut-off estimates). Let u ∈ Hs
A(R3, C) and ϕ ∈ C0,1(R3) with 0 ≤ ϕ ≤ 1. Then, for every pair of

measurable sets E1, E2 ⊂ R3, we have

∫
E1×E2

∣∣∣e−i(x−y)·A(x+y
2 )ϕ(x)u(x) − ϕ(y)u(y)

∣∣∣2
|x − y|3+2s

dxdy ≤ C min
{∫

E1

|u|2dx,

∫
E2

|u|2dx

}

+ C

∫
E1×E2

∣∣∣e−i(x−y)·A(x+y
2 )u(x) − u(y)

∣∣∣2
|x − y|3+2s

dxdy,

where C depends on s and on the Lipschitz constant of ϕ.

Proof. The proof follows by arguing as in ([13], Lem. 5.3), where the case A = 0 and E1 = E2 is considered.
For the sake of completeness, we show the details. We have∫

E1×E2

|e−i(x−y)·A(x+y
2 )ϕ(x)u(x) − ϕ(y)u(y)|2
|x − y|3+2s

dxdy

≤ C

∫
E1×E2

|e−i(x−y)·A(x+y
2 )u(x) − u(y)|2

|x − y|3+2s
dxdy + C

∫
E1×E2

|u(y)|2|ϕ(x) − ϕ(y)|2
|x − y|3+2s

dxdy.

On the other hand, the second integral splits as∫
E2

|u(y)|2
∫

E1∩{|x−y|≤1}

1
|x − y|1+2s

dxdy +
∫

E2

|u(y)|2
∫

E1∩{|x−y|≥1}

1
|x − y|3+2s

dxdy ≤ C

∫
E2

|u|2dy.

Analogously, we have∫
E1×E2

|ϕ(x)u(x) − ei(x−y)·A(x+y
2 )ϕ(y)u(y)|2

|x − y|3+2s
dxdy

≤ C

∫
E1×E2

|e−i(x−y)·A(x+y
2 )u(x) − u(y)|2

|x − y|3+2s
dxdy + C

∫
E1×E2

|u(x)|2|ϕ(x) − ϕ(y)|2
|x − y|3+2s

dxdy,

and the second term can be estimated as before by
∫

E1
|u|2dx. The assertion follows. �

Thus we can prove

Lemma 3.9 (Dicothomy). Let {un}n∈N be a sequence in Hs
A(R3, C) such that, for some L > 0,

‖un‖Lp(R3) = 1, lim
n

‖un‖2
s,A = L,

and let us set

μn(x) = |un(x)|2 +
∫

R3

|e−i(x−y)·A(x+y
2 )un(x) − un(y)|2

|x − y|3+2s
dy, x ∈ R

3, n ∈ N.

Assume that there exists β ∈ (0, L) such that for all ε > 0 there exist R̄ > 0, n̄ ≥ 1, a sequence of radii
Rn → +∞ and {ξn}n∈N ⊂ R3 such that for n ≥ n̄∣∣∣∣

∫
R3

μ1
n(x)dx − β

∣∣∣∣ ≤ ε, μ1
n := 1BR̄(ξn)μn,∣∣∣∣

∫
R3

μ2
n(x)dx − (L − β)

∣∣∣∣ ≤ ε, μ2
n := 1Bc

Rn
(ξn)μn,∫

R3
|μn(x) − μ1

n(x) − μ2
n(x)|dx ≤ ε. (3.2)
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Then there exist {u1
n}n∈N, {u2

n}n∈N ⊂ Hs
A(R3, C) such that dist(supp(u1

n), supp(u2
n)) → +∞ and∣∣‖u1

n‖2
s,A − β

∣∣ ≤ ε, (3.3)

∣∣‖u2
n‖2

s,A − (L − β)
∣∣ ≤ ε, (3.4)

‖un − u1
n − u2

n‖s,A ≤ ε, (3.5)
∣∣∣1 − ‖u1

n‖p
Lp(R3) − ‖u2

n‖p
Lp(R3)

∣∣∣ ≤ ε (3.6)

for any n ≥ n̄.

Proof. Notice that we have

∫
R3

μ1
ndx =

∫
BR̄(ξn)

|un|2dx +
∫

BR̄(ξn)×BR̄(ξn)

|e−i(x−y)·A(x+y
2 )un(x) − un(y)|2

|x − y|3+2s
dxdy

+
∫

BR̄(ξn)×Bc
R̄

(ξn)

|e−i(x−y)·A(x+y
2 )un(x) − un(y)|2

|x − y|3+2s
dxdy, (3.7)

as well as

∫
R3

μ2
ndx =

∫
Bc

Rn
(ξn)

|un|2dx +
∫

Bc
Rn

(ξn)×Bc
Rn

(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )un(x) − un(y)

∣∣∣2
|x − y|3+2s

dxdy

+
∫

Bc
Rn

(ξn)×BRn(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )un(x) − un(y)

∣∣∣2
|x − y|3+2s

dxdy,

and, from inequality (3.2), we have, for n ≥ n̄,

∫
{R̄≤|x−ξn|≤Rn}×R3

∣∣∣e−i(x−y)·A(x+y
2 )un(x) − un(y)

∣∣∣2
|x − y|3+2s

dxdy ≤ ε, (3.8)

∫
R3×{R̄≤|y−ξn|≤Rn}

∣∣∣e−i(x−y)·A(x+y
2 )un(x) − un(y)

∣∣∣2
|x − y|3+2s

dxdy ≤ ε, (3.9)

∫
{R̄≤|x−ξn|≤Rn}

|un|2dx ≤ ε. (3.10)

For every r > 0, let ϕr ∈ C∞(R3) be a radially symmetric function such that ϕr = 1 on Br(0) and ϕr = 0 su
Bc

2r(0). In light of Lemma 3.8 applied with E1 = E2 = R3, for any n ∈ N, we can consider the functions

u1
n := ϕR̄(· − ξn)un ∈ Hs

A(R3, C), u2
n := (1 − ϕRn/2(· − ξn))un ∈ Hs

A(R3, C).

We observe for further usage that the functions ϕR̄(·−ξn) and 1−ϕRn/2(·−ξn) have a Lipschitz constant which
is uniformly bounded with respect to n. Moreover, dist(supp(u1

n), supp(u2
n)) → ∞. Let us consider {u1

n}n∈N.
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We have [u1
n]2s,A =

∑5
i=1 Ii

n, where

I1
n :=

∫
BR̄(ξn)×BR̄(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )un(x) − un(y)

∣∣∣2
|x − y|3+2s

dxdy,

I2
n :=

∫
B2R̄(ξn)\BR̄(ξn)×B2R̄(ξn)\BR̄(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )u1

n(x) − u1
n(y)

∣∣∣2
|x − y|3+2s

dxdy,

I3
n := 2

∫
B2R̄(ξn)\BR̄(ξn)×BR̄(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )u1

n(x) − u1
n(y)

∣∣∣2
|x − y|3+2s

dxdy,

I4
n := 2

∫
B2R̄(ξn)\BR̄(ξn)×Bc

2R̄
(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )u1

n(x) − u1
n(y)

∣∣∣2
|x − y|3+2s

dxdy,

I5
n := 2

∫
BR̄(ξn)×Bc

2R̄
(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )u1

n(x) − u1
n(y)

∣∣∣2
|x − y|3+2s

dxdy.

Concerning Ii
n with i = 2, 3, 4, since for suitable measurable sets Ei

2 ⊂ R
3 and ci > 0,

Ii
n = ci

∫
B2R̄(ξn)\BR̄(ξn)×ei

2

∣∣∣e−i(x−y)·A(x+y
2 )u1

n(x) − u1
n(y)

∣∣∣2
|x − y|3+2s

dxdy,

in light of Lemma 3.8 and inequalities (3.8)−(3.10), we have

Ii
n ≤ C

⎡
⎢⎣∫

B2R̄(ξn)\BR̄(ξn)

|un|2dx +
∫

B2R̄(ξn)\BR̄(ξn)×ei
2

∣∣∣e−i(x−y)·A(x+y
2 )un(x) − un(y)

∣∣∣2
|x − y|3+2s

dxdy

⎤
⎥⎦

≤ Cε, (3.11)

being B2R̄(ξn) \ BR̄(ξn) ⊂ {R̄ ≤ |x − ξn| ≤ Rn} for every n large enough.
Concerning I5

n, we have

I5
n = 2

∫
BR̄(ξn)×{2R̄≤|y−ξn|≤Rn}

∣∣∣e−i(x−y)·A(x+y
2 )u1

n(x) − u1
n(y)

∣∣∣2
|x − y|3+2s

dxdy

+ 2
∫

BR̄(ξn)×Bc
Rn

(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )u1

n(x) − u1
n(y)

∣∣∣2
|x − y|3+2s

dxdy.

Then, arguing as in (3.11) for Ii
n (i = 2, 3, 4) we get

∫
BR̄(ξn)×{2R̄≤|y−ξn|≤Rn}

∣∣∣e−i(x−y)·A(x+y
2 )u1

n(x) − u1
n(y)

∣∣∣2
|x − y|3+2s

dxdy ≤ Cε,

for large n. On the other hand, as far as the second term in concerned, we get

∫
BR̄(ξn)×Bc

Rn
(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )u1

n(x) − u1
n(y)

∣∣∣2
|x − y|3+2s

dxdy =
∫

BR̄(ξn)×Bc
Rn

(ξn)

|un(x)|2
|x − y|3+2s

dxdy,
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since u1
n(y) = 0 for all y ∈ Bc

Rn
(ξn) and u1

n(x) = un(x) for all x ∈ BR̄(ξn). Observe first that if (x, y) ∈
BR̄(ξn) × Bc

Rn
(ξn), then |x − y| ≥ Rn − R̄ → ∞, as n → ∞. We thus have∫
BR̄(ξn)×Bc

Rn
(ξn)

|un(x)|2
|x − y|3+2s

dxdy

≤ 1
(Rn − R̄)δ

∫
BR̄(ξn)

|un(x)|2
(∫

{|x−y|≥1}

1
|x − y|3+2s−δ

dy

)
dx ≤ C

(Rn − R̄)δ
≤ Cε, (3.12)

where 0 < δ < 2s. Here we have used the boundedness of {un}n∈N in L2(R3, C). So we have that [u1
n]2s,A =

I1
n + ςn,ε with ςn,ε ≤ Cε for n large, which implies on account of (3.10)

‖u1
n‖2

s,A =
∫

BR̄(ξn)

|un|2dx + I1
n + ςn,ε, ςn,ε ≤ Cε. (3.13)

A similar argument involving {un}n∈N in place of {u1
n}n∈N shows that formula (3.7) writes as∫

R3
μ1

ndx =
∫

BR̄(ξn)

|un|2dx + I1
n + ς̂n,ε, ς̂n,ε ≤ Cε. (3.14)

Indeed, since

∫
BR̄(ξn)×Bc

R̄
(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )un(x) − un(y)

∣∣∣2
|x − y|3+2s

dxdy

≤
∫

BR̄(ξn)×{R̄≤|y−ξn|≤Rn}

∣∣∣e−i(x−y)·A(x+y
2 )un(x) − un(y)

∣∣∣2
|x − y|3+2s

dxdy

+ C

[∫
BR̄(ξn)×Bc

Rn
(ξn)

|un(x)|2
|x − y|3+2s

dxdy +
∫

BR̄(ξn)×Bc
Rn

(ξn)

|un(y)|2
|x − y|3+2s

dxdy

]
,

by (3.9) and arguing as in (3.12) we can conclude. By combining (3.13) and (3.14) we finally obtain the desired
estimate (3.3).

Now, concerning {u2
n}n∈N, we have [u2

n]2s,A =
∑5

i=1 J i
n, where we have set

J1
n :=

∫
Bc

Rn
(ξn)×Bc

Rn
(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )un(x) − un(y)

∣∣∣2
|x − y|3+2s

dxdy,

J2
n :=

∫
BRn (ξn)\BRn/2(ξn)×BRn(ξn)\BRn/2(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )u2

n(x) − u2
n(y)

∣∣∣2
|x − y|3+2s

dxdy,

J3
n := 2

∫
BRn (ξn)\BRn/2(ξn)×BRn/2(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )u2

n(x) − u2
n(y)

∣∣∣2
|x − y|3+2s

dxdy,

J4
n := 2

∫
BRn (ξn)\BRn/2(ξn)×Bc

Rn
(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )u2

n(x) − u2
n(y)

∣∣∣2
|x − y|3+2s

dxdy,

J5
n := 2

∫
BRn/2(ξn)×Bc

Rn
(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )u2

n(x) − u2
n(y)

∣∣∣2
|x − y|3+2s

dxdy.
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Concerning J i
n with i = 2, 3, 4, observe that the integration domains are BRn(ξn) \BRn/2(ξn)×Ei

2, for suitable
measurable Ei

2’s, and they are subset of {R̄ ≤ |x − ξn| ≤ Rn} × R3 for n sufficiently large. Thus we can argue
as in (3.11). Finally, J5

n can be estimated with similar arguments to that used in (3.12) and, as for μ1
n, using

also (3.10), we obtain ∫
R3

μ2
n(x)dx =

∫
Bc

Rn
(ξn)

|un|2dx + J1
n + ς̄n,ε, ς̄n,ε ≤ Cε.

By combining all these estimates we get (3.4) for any n large.
Conclusion (3.5) follows by (3.8)−(3.10). In fact, setting

vn := un − u1
n − u2

n = (ϕRn/2(· − ξn) − ϕR̄(· − ξn))un,

for all n, inequality (3.10) yields∫
R3

|vn|2dx =
∫

R3
(ϕRn/2(x − ξn) − ϕR̄(x − ξn))2|un|2dx ≤

∫
{R̄≤|x−ξn|≤Rn}

|un|2dx ≤ ε.

Furthermore, [vn]2s,A =
∑4

i=1 Ki
n, where

K1
n :=

∫
BRn (ξn)\BR̄(ξn)×BRn (ξn)\BR̄(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )vn(x) − vn(y)

∣∣∣2
|x − y|3+2s

dxdy,

K2
n := 2

∫
BRn (ξn)\BR̄(ξn)×BR̄(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )vn(x) − vn(y)

∣∣∣2
|x − y|3+2s

dxdy,

K3
n := 2

∫
BRn (ξn)\BR̄(ξn)×Bc

Rn
(ξn)

∣∣∣e−i(x−y)·A(x+y
2 )vn(x) − vn(y)

∣∣∣2
|x − y|3+2s

dxdy.

Since vn = ϕ̃un with ϕ̃ := (ϕRn/2(· − ξn) − ϕR̄(· − ξn)), we can repeat the arguments performed in (3.11).
Concerning the final assertion (3.6), we have for some ϑ > 0,

1 − ‖u1
n‖p

Lp − ‖u2
n‖p

Lp =
∫

R3

(
1 − ϕp

R̄
(x − ξn) − (1 − ϕRn/2(x − ξn))p

) |un|pdx

≤
∫
{R̄≤|x−ξn|≤Rn}

|un|pdx

≤
(∫

{R̄≤|x−ξn|≤Rn}
|un|2dx

) ϑp
2 (∫

R3
|un| 6

3−2s dx

) (1−ϑ)p(3−2s)
6

≤ ε,

in light of (3.10) and Lemma 3.5. This concludes the proof. �

Lemma 3.10 (Partial Gauge invariance). Let ξ ∈ R
3 and u ∈ Hs

A(R3, C). For η ∈ R
3, let us set

v(x) = eiη·xu(x + ξ), x ∈ R
3.

Then v ∈ Hs
Aη

(R3, C) and
‖u‖s,A = ‖v‖s,Aη , where Aη := A(· + ξ) + η.
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Proof. Of course ‖v‖L2 = ‖u‖L2. Moreover, a change of variables yields

∫
R6

∣∣∣e−i(x−y)·Aη( x+y
2 )v(x) − v(y)

∣∣∣2
|x − y|3+2s

dxdy =
∫

R6

∣∣∣e−i(x−y)·A(x+y
2 +ξ)u(x + ξ) − u(y + ξ)

∣∣∣2
|x − y|3+2s

dxdy

=
∫

R6

∣∣∣e−i(x−y)·A(x+y
2 )u(x) − u(y)

∣∣∣2
|x − y|3+2s

dxdy,

which yields the assertion. �

If A is linear, then, taking η = −A(ξ) in Lemma 3.10, we get Aη = A and hence

Lemma 3.11 (Partial Gauge invariance). Let ξ ∈ R3 and u ∈ Hs
A(R3, C). Assume that A is linear and let us

set
v(x) = e−iA(ξ)·xu(x + ξ), x ∈ R

3.

Then v ∈ Hs
A(R3, C) and ‖u‖s,A = ‖v‖s,A.

4. Existence of minimizers

Let 2 < p < 6/(3 − 2s) and consider the minimization problem (MA). First of all observe that by Sobolev
embedding, MA > 0. Once a solution to (MA) exists, due to the Lagrange Multiplier Theorem, there is λ ∈ R

such that

cs

2


∫

R6

(
e−i(x−y)·A(x+y

2 )u(x) − u(y)
)(

e−i(x−y)·A(x+y
2 )v(x) − v(y)

)
|x − y|3+2s

dxdy

+ 

∫

R3
uv̄dx = λ


∫
R3

|u|p−2uv̄dx, for all v ∈ Hs
A(R3, C).

A multiple of u removes the Lagrange multiplier λ and provides a weak solution to (Ps,A). Moreover, if we set

MA(λ) := inf
u∈S (λ)

‖u‖2
s,A,

where

S (λ) :=
{

u ∈ Hs
A(R3, C) :

∫
R3

|u|pdx = λ

}
,

we have that for every λ > 0
MA(λ) = λ

2
p MA. (4.1)

4.1. Subcritical symmetric case

Let 2 < p < 6
3−2s and consider the problem

MA,r = inf
u∈Sr

‖u‖2
s,A,

where

Sr =
{

u ∈ Hs
A,rad(R3, C) :

∫
R3

|u|pdx = 1
}

.

First we give the following preliminary result.
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Lemma 4.1 (Compact radial embedding). For every 2 < q < 6/(3 − 2s), the mapping

Hs
A,rad(R3, C) � u �→ |u| ∈ Lq(R3),

is compact.

Proof. By Lemma 3.1, namely the Diamagnetic inequality, we know that the mapping

Hs
A(R3, C) � u �→ |u| ∈ Hs(R3, R),

is continuous. Then, the assertion follows directly by ([24], Thm. II.1). �

We are ready to prove (1.2) of Theorem 1.2

Theorem 4.2 (Existence of radial minimizers). For any 2 < p < 6/(3 − 2s), the minimization problem MA,r

admits a solution. In particular, there exists a nontrivial radially symmetric weak solution u ∈ Hs
A,rad(R3, C) to

the problem (Ps,A).

Proof. Let {un}n∈N ⊂ Sr be a minimizing sequence for MA,r, namely ‖un‖Lp(R3) = 1 for all n and ‖un‖2
s,A →

MA,r, as n → ∞. Then, up to a subsequence, it converges weakly to some radial function u. On account of
Lemma 3.5, un → u a.e. up to a subsequence. By Lemma 4.1, up to a subsequence {|un|}n∈N converges strongly
to some v in Lq(R3) for every 2 < q < 6/(3 − 2s). Of course, v = |u| by pointwise convergence. In particular
we can pass to the limit into the constraint ‖un‖Lp(R3) = 1 to get ‖u‖Lp(R3) = 1. Then u is a solution to MA,r,
since by virtue of Fatou Lemma

MA,r ≤
∫

R3
|u(x)|2dx +

∫
R6

∣∣∣e−i(x−y)·A(x+y
2 )u(x) − u(y)

∣∣∣2
|x − y|3+2s

dxdy

≤ lim inf
n

⎛
⎜⎝∫

R3
|un(x)|2dx +

∫
R6

∣∣∣e−i(x−y)·A(x+y
2 )un(x) − un(y)

∣∣∣2
|x − y|3+2s

dxdy

⎞
⎟⎠ = MA,r.

This concludes the proof. �

4.2. Subcritical case

In this subsection we study the minimization problem (MA) in the case 2 < p < 6
3−2s .

4.2.1. Constant magnetic field case

Let us consider (MA) under the assumption that A : R3 → R3 is linear. The local case was extensively
studied in [15] for the magnetic potential

A(x1, x2, x3) =
b

2
(−x2, x1, 0), b ∈ R \ {0}.

Hence we can prove (1.2) of Theorem 1.2.

Theorem 4.3 (Existence of minimizers, I). Assume that the potential A : R3 → R3 is linear. Then, for any
2 < p < 6

3−2s the minimization problem (MA) admits a solution.
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Proof. Let {un}n∈N ⊂ S be a minimizing sequence for MA, namely ‖un‖Lp = 1 for all n and ‖un‖2
s,A → MA,

as n → ∞. We want to develop a concentration compactness argument [25] on the measure of density defined
by

μn(x) := |un(x)|2 +
∫

R3

∣∣∣e−i(x−y)·A(x+y
2 )un(x) − un(y)

∣∣∣2
|x − y|3+2s

dy, x ∈ R
3, n ∈ N.

Notice that {μn}n∈N ⊂ L1(R3) and, since ‖un‖2
s,A = MA + on(1),

sup
n∈N

∫
R3

μn(x)dx < ∞.

More precisely, we shall apply ([25], Lem. I.1) by taking ρn = μn. Only vanishing, dichotomy or tightness
(yielding compactness) are possible. Vanishing can be ruled out. In fact, assume by contradiction that, for all
R > 0 fixed, there holds

lim
n

sup
ξ∈RN

∫
BR(ξ)

μn(x)dx = 0,

namely

lim
n

sup
ξ∈RN

⎛
⎜⎝∫

BR(ξ)

|un(x)|2dx +
∫

BR(ξ)×R3

∣∣∣e−i(x−y)·A(x+y
2 )un(x) − un(y)

∣∣∣2
|x − y|3+2s

dxdy

⎞
⎟⎠ = 0.

By Remark 3.2 it follows that

lim
n

sup
ξ∈RN

(∫
BR(ξ)

|un(x)|2dx +
∫

BR(ξ)×R3

||un(x)| − |un(y)||2
|x − y|3+2s

dxdy

)
= 0.

In particular, we get
lim
n

sup
ξ∈RN

‖|un|‖2
Hs(BR(ξ)) = 0

and this implies, by virtue of Lemma 3.7, that for any R > 0

lim
n

sup
ξ∈RN

∫
BR(ξ)

|un(x)|pdx = 0.

Thus, in light of Lemma 3.6, un → 0 in Lp which violates the constraint ‖un‖Lp = 1. Whence, vanishing cannot
occur.

We now exclude the dicothomy. According to ([25], Lem. I.1), this, precisely, means that there exists β ∈
(0, MA) such that for all ε > 0 there are R̄ > 0, n̄ ≥ 1, a sequence of radii Rn → +∞ and {ξn}n∈N ⊂ R3 such
that for n ≥ n̄ ∣∣∣∣

∫
R3

μ1
n(x)dx − β

∣∣∣∣ ≤ ε, μ1
n(x) := 1BR̄(ξn)μn,∣∣∣∣

∫
R3

μ2
n(x)dx − (MA − β)

∣∣∣∣ ≤ ε, μ2
n(x) := 1Bc

Rn
(ξn)μn,∫

R3
|μn(x) − μ1

n(x) − μ2
n(x)|dx ≤ ε.
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Then, by virtue of Lemma 3.9, there exist two sequences {u1
n}n∈N, {u2

n}n∈N ⊂ Hs
A(R3, C) such that

dist(supp(u1
n), supp(u2

n)) → +∞ and ∣∣‖u1
n‖2

s,A − β
∣∣ ≤ ε, (4.2)∣∣‖u2

n‖2
s,A − (MA − β)

∣∣ ≤ ε, (4.3)∣∣1 − ‖u1
n‖p

Lp − ‖u2
n‖p

Lp

∣∣ ≤ ε, (4.4)

for any n ≥ n̄. Up to a subsequence, in view of (4.4), there exist ϑε, ωε ∈ (0, 1) such that

‖u1
n‖p

Lp =: ϑn,ε → ϑε, ‖u2
n‖p

Lp =: ωn,ε → ωε, |1 − ϑε − ωε| ≤ ε, as n → ∞.

Notice that ϑε does not converge to 1 as ε → 0, otherwise by (4.1) and (4.2), for ε small we get

β + ε ≥ lim sup
n

‖u1
n‖2

s,A ≥ lim sup
n

MA(ϑn,ε) = MAϑ2/p
ε > β + ε.

Of course ϑε does not converge to 0 either, as ε → 0, otherwise ωε → 1 and a contradiction would again follow by
arguing as above on u2

n and using (4.3). Whence, by means of (4.1), (4.2), (4.3), and since λ2/p +(1−λ)2/p > 1
for any λ ∈ (0, 1), if ε is small enough

MA + 2ε ≥ lim sup
n

(‖u1
n‖2

s,A + ‖u2
n‖2

s,A

) ≥ lim sup
n

(MA(ϑn,ε) + MA(ωn,ε))

= MA

(
ϑ2/p

ε + ω2/p
ε

)
> MA + 2ε,

a contradiction. This means that tightness needs to occur, namely there exists a sequence {ξn}n∈N such that
for all ε > 0 there exists R > 0 with

∫
Bc

R(ξn)

|un(x)|2dx +
∫

Bc
R(ξn)×R3

∣∣∣e−i(x−y)·A(x+y
2 )un(x) − un(y)

∣∣∣2
|x − y|3+2s

dxdy < ε

for any n. In particular, setting ūn(x) := un(x + ξn), for all ε > 0 there is R > 0 such that

sup
n∈N

∫
Bc

R(0)

|ūn(x)|2dx < ε. (4.5)

Let us consider
vn(x) := e−iA(ξn)·xūn(x), x ∈ R

3.

Since, by Lemma 3.11, ‖vn‖s,A = ‖un‖s,A, we have that {vn}n∈N is bounded in Hs
A(R3, C). Notice also that,

since |vn(x)| = |ūn(x)| for a.e. x ∈ R3 and any n ∈ N, by (4.5) we have that for all ε > 0 there is R > 0 such
that

sup
n∈N

∫
Bc

R(0)

|vn(x)|2dx < ε. (4.6)

Thus, in view of the compact injection provided by Lemma 3.5, up to a subsequence, {vn}n∈N converges weakly,
strongly in L2(BR(0), C) and point-wisely to some function v. Moreover, by (4.6), it follows that vn → v strongly
in L2(R3, C) as well as in Lq(R3, C) for any 2 < q < 6/(3 − 2s), via interpolation. Hence ‖v‖Lp = 1. Hence, by
Fatou’s lemma, we have

MA ≤ ‖v‖2
s,A ≤ lim inf

n
‖vn‖2

s,A = lim inf
n

‖un‖2
s,A = MA,

which proves the existence of a minimizer. �
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4.2.2. Variable magnetic field case

We now prove (1.2) of Theorem 1.2.

Theorem 4.4 (Existence of minimizers, II). Assume that the potential A : R3 → R3 satisfies assumption A
and that

MA < inf
Ξ∈X

MAΞ . (4.7)

Then, for any 2 < p < 6
3−2s , the minimization problem (MA) admits a solution.

Proof. By arguing as in the proof of Theorem 4.3, if {un}n∈N is a minimizing sequence for MA, we can find a
sequence {ξn}n∈N such that for all ε > 0 there exists R > 0 with

∫
Bc

R(ξn)

|un(x)|2dx +
∫

Bc
R(ξn)×R3

∣∣∣e−i(x−y)·A(x+y
2 )un(x) − un(y)

∣∣∣2
|x − y|3+2s

dxdy < ε

for any n. In particular, setting again ūn(x) := un(x + ξn), for all ε > 0 there is R > 0 such that

sup
n∈N

∫
Bc

R(0)

|ūn(x)|2dx < ε.

Assume by contradiction that the sequence {ξn}n∈N is unbounded. Then, since A satisfies condition A , there
exists a sequence {Hn}n∈N ⊂ R3 such that (1.4) holds. We thus consider the sequence

vn(x) := eiHn·xūn(x), x ∈ R
3.

By virtue of Lemma 3.10 it follows that

sup
n∈N

‖vn‖s,An = sup
n∈N

‖un‖s,A < ∞, An(x) = A(x + ξn) + Hn.

Then, by combining Lemma 3.4 with

sup
n∈N

∫
Bc

R(0)

|vn(x)|2dx < ε,

up to a subsequence, {vn}n∈N is strongly convergent in Lq(R3) for all q ∈ [2, 6/(3 − 2s)) to some function v
which satisfies the constraint ‖v‖Lp = 1. By combining Lemma 3.10 with Fatou’s Lemma and (4.7), we get

MAΞ ≤ ‖v‖2
s,AΞ

=
∫

R3
|v|2dx +

∫
R6

∣∣∣e−i(x−y)·AΞ(x+y
2 )v(x) − v(y)

∣∣∣2
|x − y|3+2s

dxdy

≤ lim
n

∫
R3

|vn|2dx + lim inf
n

∫
R6

∣∣∣e−i(x−y)·An(x+y
2 )vn(x) − vn(y)

∣∣∣2
|x − y|3+2s

dxdy

= lim
n

∫
R3

|un|2dx + lim inf
n

∫
R6

∣∣∣e−i(x−y)·A(x+y
2 )un(x) − un(y)

∣∣∣2
|x − y|3+2s

dxdy

= MA < inf
Ξ∈X

MAΞ ≤ MAΞ ,

a contradiction. Therefore, it follows that {ξn}n∈N is bounded. The assertion then immediately follows arguing
on the original sequence {un}n∈N. �
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4.3. Critical case

Let Ds
A(R3, C) be the completion of C∞

c (R3, C) with respect to the semi-norm [·]s,A. The functions of
Ds

A(R3, C) satisfy the Sobolev inequality stated in formula (3.1). The space Ds
A(R3, C) is a real Hilbert space

with respect to the scalar product

(u, v)s,A :=
cs

2


∫

R6

(
e−i(x−y)·A(x+y

2 )u(x) − u(y)
)(

e−i(x−y)·A(x+y
2 )v(x) − v(y)

)
|x − y|3+2s

dxdy.

We consider the minimization problem (M c
A). Of course, by density, we have

M c
A = inf

u∈S c∩C∞
c (R3,C)

[u]2s,A, M c
0 = inf

u∈S c
0 ∩C∞

c (R3,C)
[u]2s,0.

where S c
0 = {u ∈ Ds(R3, C) : ‖u‖L6/(3−2s) = 1}. Moreover, since [|u|]s,0 ≤ [u]s,0, we have

M c
0 = inf

u∈S c
0 ∩C∞

c (R3,R)
[u]2s,0. (4.8)

Remark 4.5. It is known [7, 10] that all the real valued fixed sign solutions to M c
0 are given by

Uz,ε(x) = ds

(
ε

ε2 + |x − z|2
) 3−2s

2

for arbitrary ε > 0, z ∈ R3 and that these are also the unique fixed sign solutions to

(−Δ)su = u
3+2s
3−2s in R

3.

We now prove the following crucial lemma

Lemma 4.6. It holds M c
A = M c

0 .

Proof. Let ε > 0 and u ∈ C∞
c (R3, R) be such that∫

R3
|u|6/(3−2s)dx = 1, [u]2s,0 ≤ M c

0 + ε,

in light of formula (4.8) for M c
0 . Consider now the scaling

uσ(x) = σ− 3−2s
2 u

(x

σ

)
, σ > 0, x ∈ R

3.

It is readily checked that∫
R3

|uσ|6/(3−2s)dx =
∫

R3
|u|6/(3−2s)dx = 1, [uσ]s,0 = [u]s,0, for all σ > 0.

There holds that

[uσ]2s,A =
∫

R6

∣∣∣e−iσ(x−y)·A(σ x+y
2 )u(x) − u(y)

∣∣∣2
|x − y|3+2s

dxdy.

Then, we compute

[uσ]2s,A − [u]2s,0 =
∫

R6

|e−iσ(x−y)·A(σ x+y
2 )u(x) − u(y)|2 − |u(x) − u(y)|2

|x − y|3+2s
dxdy

=
∫

R6
Θσ(x, y)dxdy =

∫
K×K

Θσ(x, y)dxdy,
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where K is the compact support of u and

Θσ(x, y) :=
2


((
1 − e−iσ(x−y)·A(σ x+y

2 )
)
u(x)u(y)

)
|x − y|3+2s

=
2
(
1 − cos

(
σ(x − y) · A(σ x+y

2

)))
u(x)u(y)

|x − y|3+2s
,

a.e. in R6. Of course Θσ(x, y) → 0 for a.e. (x, y) ∈ R6 as σ → 0. Since A is locally bounded then

1 − cos
(
σ(x − y) · A

(
σ

x + y

2

))
≤ C|x − y|2 x, y ∈ K.

Therefore, since u is bounded, it follows that for some C > 0

|Θσ(x, y)| ≤ C

|x − y|1+2s
, for x, y ∈ K with |x − y| < 1,

|Θσ(x, y)| ≤ C

|x − y|3+2s
, for x, y ∈ K with |x − y| ≥ 1.

Then overall, we have

|Θσ(x, y)| ≤ w(x, y), w(x, y) = C min
{

1
|x − y|1+2s

,
1

|x − y|3+2s

}
for x, y ∈ K,

for a suitable constant C > 0. Notice that w ∈ L1(K × K), since∫
K×K

w(x, y)dxdy =
∫

(K×K)∩{|x−y|<1}
w(x, y)dxdy +

∫
(K×K)∩{|x−y|≥1}

w(x, y)dxdy

≤ C

∫
{|z|<1}

1
|z|1+2s

dz + C

∫
{|z|≥1}

1
|z|3+2s

dz < ∞.

Then, by the Dominated Convergence Theorem, we obtain

M c
A ≤ lim

σ→0
[uσ]2s,A = [u]2s,0 ≤ M c

0 + ε,

hence M c
A ≤ M c

0 by the arbitrariness of ε. Since the opposite inequality is trivial through the Diamagnetic
inequality, the desired assertion follows. �

Thus we can prove (1.3) of Theorem 1.3.

Theorem 4.7 (Representation of solutions). Assume that M c
A admits a solutions u ∈ Ds

A(R3, C). Then there
exist z ∈ R3, ε > 0 and a function ϑA : R3 → R such that

u(x) = ds

(
ε

ε2 + |x − z|2
) 3−2s

2

eiϑA(x), x ∈ R
3.

Proof. If u ∈ Ds
A(R3, C) is a solution to M c

A, then by the Diamagnetic inequality and Lemma 4.6,

M c
A = M c

0 ≤ [|u|]2s,0 ≤ [u]2s,A = M c
A.

Then, it follows that M c
0 = [|u|]2s,0, which implies the assertion by Remark 4.5. �
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For a function u ∈ Ds
A(R3, C) we define ΥA

u : R6 → R by setting

ΥA
u (x, y) := 2


(
|u(x)||u(y)| − e−i(x−y)·A(x+y

2 )u(x)ū(y)
)

, a.e. in R
6.

Finally we have

Theorem 4.8 (Nonexistence). Assume that for a function u ∈ Ds
A(R3, C) we have

ΥA
u (x, y) > 0 on E ⊂ R

6 with L6(E) > 0. (4.9)

Then u cannot be a solution to problem M c
A.

Proof. For every u ∈ Ds
A(R3, C) we have |u| ∈ Ds(R3) and there holds

[u]2s,A − [|u|]2s,0 =
∫

R6
ΥA

u (x, y)dxdy.

Assume by contradiction that u solves M c
A. Then, since ‖u‖L6/(3−2s) = 1, by Lemma 4.6 and assumption (4.9),

we conclude that M c
0 = M c

A = [u]2s,A > [|u|]2s,0 ≥ M c
0 , a contradiction. �

As a consequence we get (1.3) of Theorem 1.3.

Corollary 4.9 (Nonexistence of constant phase solutions). Assume that

(x − y) · A(x + y) 
≡ kπ, for some k ∈ N and on some E ⊂ R
6 with L6(E) > 0.

Then M c
A does not admit solutions u ∈ Ds

A(R3, C) of the form u(x) = eiϑv(x) for some ϑ ∈ R and v ∈ Ds
A(R3, R)

of fixed sign.

Proof. Assumption (4.9) is fulfilled, since

ΥA
u (x, y) = 2

(
1 − cos

(
(x − y) · A

(
x + y

2

)))
v(x)v(y) > 0, for a.e. (x, y) ∈ E.

Hence, the assertion follows from Theorem 4.8. �
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