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THE REGULARITY OF SOLUTIONS TO SOME VARIATIONAL PROBLEMS,
INCLUDING THE p-LAPLACE EQUATION FOR 2 ≤ p < 3

Arrigo Cellina

Abstract. We consider the higher differentiability of solutions to the problem of minimizing

∫
Ω

[L(∇v(x)) + g(x, v(x))]dx on u0 + W 1,p
0 (Ω)

where L(ξ) = l(|ξ|) = 1
p
|ξ|p and u0 ∈ W 1,p(Ω). We show that, for 2 ≤ p < 3, under suitable regu-

larity assumptions on g, there exists a solution u to the Euler–Lagrange equation associated to the
minimization problem, such that

∇u ∈ W 1,2
loc (Ω).

In particular, for g(x, u) = f(x)u with f ∈ W 1,2(Ω) and 2 ≤ p < 3, any W 1,p(Ω) weak solution to the
equation

div(|∇u|p−2∇u) = f

is in W 2,2
loc (Ω).
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1. Introduction

We consider the regularity, in the sense of the higher differentiability, of solutions to the problem of minimizing∫
Ω

[L(∇v(x)) + g(x, v(x))]dx on u0 +W 1,p
0 (Ω) (1.1)

where L(ξ) = l(|ξ|) = 1
p |ξ|p and u0 ∈ W 1,p(Ω). As it is well known, for p = 2, under reasonable assumptions

on the term g, there exists a solution u to the Euler–Lagrange equation associated to (1.1) that belongs to
W 2,2

loc (Ω); however, whenever p > 2, the matrix of the second derivatives of L vanishes at 0, an obstacle to
establishing that the gradient of a solution u is a Sobolev function.

The regularity of solutions to minimization problems with a LagrangianL growing like 1
p |ξ|p or, more precisely,

to their Euler–Lagrange equations, has been known since the work of Ladyzhenskaya and Uraltseva [10]; however,
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in their work, the Lagrangians are defined near the origin so as to satisfy a strict ellipticity condition of the
kind ∑

i,j

∂Li

∂ξj
vivj ≥ ν|v|2

with ν > 0, thus removing the degeneracy at the origin (L(ξ) = 1
p |ξ|p does not satisfy this condition for p > 2);

the same approach has been used since (cf., for instance, [7] and, for different regularity results, [8, 15, 16]);
hence, the assumptions on L used in establishing the regularity of solutions to problem (1.1) in the case of
p−growth, do not apply to L(ξ) = 1

p |ξ|p, unless p = 2.

The purpose of the present paper is to show that, for L(ξ) = 1
p |ξ|p and 2 ≤ p < 3, under suitable regularity

assumptions on g (Assumption 2.1 below), there exists a solution u to to the Euler–Lagrange equation associated
to the minimization of (1.1), such that

∇u ∈W 1,2
loc (Ω).

In particular, for g(x, u) = f(x)u with f ∈W 1,2(Ω) and 2 ≤ p < 3, any W 1,p(Ω) weak solution to the equation

div(|∇u|p−2∇u) = f (1.2)

is in W 2,2
loc (Ω). Our assumption on f is stronger than the assumption required for the case p = 2 [13]. Hence, to

extend the regularity result to 2 < p < 3, we pay the price of assuming more regularity on f .
When f = 0, a solution to (1.2) is a p-harmonic function, and properties of such functions have been

extensively studied (se, e.g., [1, 2, 4, 5, 12, 14]). Still. it seems that the regularity we present in this paper is not
known even in this case.

Our proof is based on a variation that is a nonlinear function of |∇u|, suited to contrast the fact that the
matrix of the second derivatives of L tends to zero. The proof fails at p = 3, since in this case the required
function of |∇u| would have to grow like the logarithm, that is unbounded near the origin.

For semilinear problems, in particular for L(ξ) = 1
p |ξ|p, a recent comprehensive survey of pointwise estimates

for the gradient of a solution (hence, different from our results) is presented in [9].

2. Notations and preliminary results

The transpose of a is aT ; the dimension of the space is N and Ω ⊂ R
N ; |Ω| is the measure of Ω. For a

fixed coordinate direction es, we set δhesu to be the difference quotient of the function u, defined by δhesu(x) =
u(x+hes)−u(x)

h . For a variation η to be defined, Dη is such that |∇η(x)| ≤ Dη and supp η is the support of η. By
Hv we mean the Hessian matrix of the function v.

The assumptions on g are:

Assumption 2.1. There exist τ ∈ L1(Ω) and a non-negative λg ∈ L2(Ω) such that, for a.e. x ∈ Ω and every
u, we have

(i) g(x, u) ≥ τ(x) − λg(x)|u|
(ii) gu(x, u) = f(x) + G(u), with f ∈ W 1,2(Ω) and G uniformly Lipschitzian of Lipschitz constant ΛG and

differentiable except at most finitely many values.

Under the assumptions on g, the composition of gu with a Sobolev function v is a Sobolev function and
∇gu(x, v(x)) = ∇f(x) +G′(v(x)) · ∇v(x).
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The purpose of this paper is to prove the following result:

Theorem 2.2. Let Ω be a bounded open subset of R
N , let L(ξ) = 1

p |ξ|p for 2 ≤ p < 3.

i) Let g satisfy Assumption 2.1; then, there exist u, a solution to the Euler–Lagrange equation, i.e. such that∫
Ω

[〈∇L(∇u(x)),∇η(x)〉 + gu(x, u(x))η(x)]dx = 0

for every η ∈ C1
c (Ω), such that ∇u ∈ W 1,2

loc (Ω)
ii) Let f be in W 1,2(Ω) and let u be a W 1,p(Ω) weak solution to the equation

div(|∇u|p−2∇u) = f ;

then u is in W 2,2
loc (Ω).

Under some additional assumptions, mainly when g is convex in the variable v (in particular, g linear in v), a
solution to the Euler–Lagrange equation is actually a solution to the minimization problem (1.1).

The Proof is based on (a modification of) Nirenberg’s method and will also depend on approximating L by
the following auxiliary Lagrangian. For τ < 1 < T and t ≥ 0, set

lτ,T (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2
τp−2t2 +

(
1
p
− 1

2

)
τp for 0 ≤ t < τ

1
p
|t|p for 0 ≤ t < T

1
p
T p + T p−1(t− T ) +

1
2
(p− 1)T p−2(t− T )2 for t ≥ T

so that, for t ≥ 0,

1
2
(p− 1)t2 − (p− 2)t− 3 − p

2
+

1
p

=
1
p

+ (t− 1) +
1
2
(p− 1)(t− 1)2 ≤ lτ,T (t) ≤ l(t) (2.1)

and

l′τ,T (t) =

⎧⎪⎨
⎪⎩
τp−2t for 0 ≤ t < τ

tp−1 for τ ≤ t ≤ T

T p−1(2 − p) + (p− 1)T p−2t for t ≥ T ;

set also Lτ,T (ξ) = lτ,T (|ξ|).
Let uτ,T be a solution to the problem of minimizing∫

Ω

[Lτ,T (∇v(x)) + g(x, v(x))]dx on u0 +W 1,2
0 (Ω). (2.2)

The Lagrangian Lτ,T (|ξ|) is of quadratic growth; moreover, it satisfies a “quadratic strict convexity condition”
in the sense that, for a positive constant ν, we have

〈∇L(z1) −∇L(z2), z1 − z2〉 ≥ ν|z1 − z2|2; (2.3)

hence (see [6]) we have that, for each i, both uτ,T ∈ W 2,2
loc (Ω) and l′τ,T (|∇uτ,T |)

|∇uτ,T | uτ,T
xi

∈ W 1,2
loc (Ω).

In order to prove Theorem 2.2 we shall need the following Lemmas.
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Lemma 2.3. Let Ω and g as in Theorem 2.2; let uτ,T be a solution to the minimization of (2.2); let φ ∈W 1,2(Ω)
with support compactly contained in Ω. Then, for s = 1, . . . , N , we have∫

Ω

〈
d

dxs
∇Lτ,T (∇uτ,T ),∇φ

〉
=
∫

Ω

(
d

dxs
gu(·, uτ,T )

)
φ

Proof.

a) We have that ∇uτ,T is in W 1,2
loc (Ω), so that d

dxi
|∇uτ,T | = 〈 ∇uτ,T

|∇uτ,T | ,∇uτ,T
xi

〉. The map

l′τ,T (t)
t

=

⎧⎪⎨
⎪⎩
τp−2 for 0 ≤ t < τ
tp−2 for τ ≤ t ≤ T
T p−1(2 − p)

t
+ (p− 1)T p−2 for t ≥ T

.

is (uniformly) Lipschitzian and it is not differentiable only at at t = τ and t = T ; then, as it is known, the map

x→ l′τ,T (|∇uτ,T (x)|)
|∇uτ,T (x)| is a Sobolev function with

d
dxi

l′τ,T (|∇uτ,T (x)|)
|∇uτ,T (x)| =

[(
l′τ,T (t)
t

)′
◦ |∇uτ,T (x)|

]〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xi

〉

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for |∇uτ,T (x)| ≤ τ

(p− 2)|∇uτ,T (x)|p−3

〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xi

〉
for τ ≤ |∇uτ,T (x)| ≤ T(

T p−1(p− 2)
|∇uτ,T (x)|2

)〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xi

〉
otherwise.

(2.4)

Then

d
dxi

[
l′τ,T (|∇uτ,T (x)|)

|∇uτ,T (x)| · ∇uτ,T (x)

]
=
l′τ,T (|∇uτ,T (x)|)

|∇uτ,T (x)| ∇uτ,T
xi

(x) +

(
d

dxi

l′τ,T (|∇uτ,T (x)|)
|∇uτ,T (x)|

)
∇uτ,T (x). (2.5)

Both terms above are in L2
loc(Ω): in fact,

l′τ,T (t)

t is bounded and, from (2.4), the absolute value of the second
term is at most |∇uxi |. Hence, ∇Lτ,T (∇uτ,T ) is in W 1,2

loc (Ω).

b) Under the assumptions of the Lemma, the Euler–Lagrange equation holds for uτ,T in the sense that, for
ψ ∈W 1,2(Ω) with support compactly contained in Ω, we have∫

Ω

[〈∇Lr(∇uτ,T ),∇ψ〉 + gu(x, uτ,T )ψ]dx = 0.

For h sufficiently small, and s = 1, . . . , N , consider the variation ψ = δ−hesφ to obtain∫
Ω

〈∇Lτ,T (∇uτ,T (x+ hes)) −∇Lτ,T (∇uτ,T (x))
h

,∇φ(x)
〉

dx

=
∫

Ω

gu(x, uτ,T (x))
φ(x − hes) − φ(x)

−h dx =
∫

Ω

(δh,esgu(x, uτ,T ))φdx. (2.6)

Since ∇Lτ,T (∇uτ,T ) is in W 1,2(B(suppψ, |h|)), we obtain that the family (∇Lτ,T (∇uτ,T (x+hei))−∇Lτ,T (∇uτ,T (x))
h )h

is bounded in L2(B(suppψ, |h|)) and we can assume the existence of a sequence (hn) such that

∇Lτ,T (∇uτ,T (x + hnei)) −∇Lτ,T (∇uτ,T (x))
hn

⇀
d

dxi
∇Lτ,T (∇uτ,T )

so that the left hand side of (2.6) converges to
∫

Ω〈 d
dxs

∇Lτ,T (∇uτ,T ),∇φ〉.
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We also have, from Assumption 2.1, that gu(x, uτ,T ) is in W 1,2(Ω) and hence that the family
(
δh,esgu(x, uτ,T )

)
h

is bounded; then we can assume that along the sequence (hn), we have that δhn,esgu(x, uτ,T ) ⇀ d
dxs

gu(x, uτ,T ),
thus proving the Lemma. �
Lemma 2.4. There exists K (independent of τ, T ), such that ‖∇uτ,T‖L2(Ω) ≤ K and ‖uτ,T‖L2(Ω) ≤ K.

Proof. Choose β such that 2βP 2 = p−1
8 and call k0 the resulting constant V + 1

2β

∫ |f |2 + 2βP 2
∫ |∇w0|2. We

obtain
3
8
(p− 1)

∫
|∇uτ,T |2 ≤ 2

(p− 2)2

p− 1
|Ω| + 1

8
(p− 1)

∫
|∇uτ,T |2 + k0

so that 1
4 (p− 1)

∫ |∇uτ,T |2 ≤ 2 (p−2)2

p−1 |Ω| + k0; hence, there exists k1 such that∫
|∇uτ,T |2 ≤ k1.

From this, making use of w0 ∈ W 1,2 and of Poincaré’s inequality, we infer that for some k2, we also have∫
Ω
|uτ,T |2 ≤ k2. The constants k1, k2 are independent of τ, T .

a) Call P the Poincaré constant in W 1,2
0 (Ω); we have

∫ |uτ,T |2 =
∫ |w0 − (uτ,T − w0)|2 ≤ 2

∫ |w0|2 +
2P 2

∫ |∇(uτ,T −w0)|2 ≤ 2
∫ |w0|2 + 4P 2

∫ |∇uτ,T |2 + 4P 2
∫ |∇w0|2. From Assumption 2.1 and from λg|uτ,T | ≤

1
2βλ

2
g + 1

2β|uτ,T |2, for a constant β to be fixed, we obtain∫
Ω

g(x, uτ,T ) ≥
∫
τ − 1

2β

∫
(λg)2 − 1

2
β4P 2[

∫
|∇uτ,T |2 +

∫
|∇w0|2]. (2.7)

b) From (2.1) we have

V =
∫

Ω

[L(∇u(x)) + g(x, u(x))]dx ≥
∫

Ω

[Lτ,T (∇u(x)) + g(x, u(x))]dx

≥
∫

Ω

[Lτ,T (∇uτ,T (x)) + g(x, uτ,T (x))]dx.

Hence, again from (2.1) and from Assumption 2.1,∫
Ω

[
1
2
(p− 1)|∇uτ,T |2 − (p− 2)|∇uτ,T | − 3 − p

2
+

1
p

]
≤ V −

∫
Ω

g(x, uτ,T ) ≤ V −
∫
τ +

∫
λg |uτ,T |

≤ V +
∫

−τ +
1
2β

∫
(λg)2 + 2βP 2

∫
|∇uτ,T |2 + 2βP 2

∫
|∇w0|2

that gives, since − 3−p
2 + 1

p > 0 for p > 2,[
p− 1

2
− 2βP 2

] ∫
|∇uτ,T |2 ≤

∫
(p− 2)|∇uτ,T | + V −

∫
τ +

1
2β

∫
(λg)2 + 2βP 2

∫
|∇w0|2

Choose β such that 2βP 2 = p−1
8 and call k0 the resulting constant V − ∫

τ + 1
2β

∫
(λg)2 + 2βP 2

∫ |∇w0|2. We
obtain

3
8
(p− 1)

∫
|∇uτ,T |2 ≤ 2

(p− 2)2

p− 1
|Ω| + 1

8
(p− 1)

∫
|∇uτ,T |2 + k

so that 1
4 (p− 1)

∫ |∇uτ,T |2 ≤ 2 (p−2)2

p−1 |Ω| + k; hence, there exists k1 such that∫
|∇uτ,T |2 ≤ k1.

From this, making use of w0 ∈ W 1,2 and of Poincaré’s inequality, we infer that for some k2, we also have∫
Ω
|uτ,T |2 ≤ k2. The constants k1, k2 are independent of τ, T . �
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3. Proof of Theorem 1

Proof. Since the case p = 2 is well known, we shall assume that 2 < p < 3.

a) From (2.5) we have

d
dxs

(
l′τ,T (|∇uτ,T |)

|∇uτ,T | uτ,T
xi

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τp−2uτ,T
xixs

(p− 2)|∇uτ,T |p−3

〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xs

〉
uτ,T

xi
+ |∇uτ,T |p−2uτ,T

xixs

T p−1(p− 2)
|∇uτ,T |2

〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xs

〉
uτ,T

xi
+
(
T p−1(2 − p)
|∇uτ,T | + (p− 1)T p−2

)
uτ,T

xixs

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τp−2uτ,T
xixs

,

|∇uτ,T |p−2

[
(p− 2)

〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xs

〉
uτ,T

xi

|∇uτ,T | + uτ,T
xixs

]
,

T p−2(p−2)
|∇uτ,T |

[
T

〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xs

〉
uτ,T

xi

|∇uτ,T |+
(
−T+

p− 1
p− 2

|∇uτ,T |
)
uτ,T

xixs

]
,

(3.1)

for |∇uτ,T | < τ , for τ ≤ |∇uτ,T | < T and for |∇uτ,T | > T respectively.

b) Set

λτ,T (t) =

⎧⎪⎪⎨
⎪⎪⎩
τ2−p for |t| < τ
t2−p for τ ≤ |t| ≤ T

t

T p−2(p− 2)[−T + p−1
p−2 t]

for t ≥ T ;

λτ,T is globally Lipschitzian and differentiable except at t = τ ; then, since x → |∇uτ,T (x)| is in W 1,2
loc (Ω), the

function x→ λτ,T (|∇uτ,T (x)|) is in W 1,2
loc (Ω) and

d
dxi

λτ,T (|∇uτ,T |) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for |∇uτ,T (x)| < τ

(2 − p)|∇uτ,T |1−p

〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xi

〉
for τ < |∇uτ,T | < T

−1

T p−3(p− 2)
(
−T +

p− 1
p− 2

|∇uτ,T |
)2

〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xi

〉
for |∇uτ,T | ≥ T.

Then, the map

x→ γs
τ,T (x) = λτ,T (|∇uτ,T (x)|)uτ,T

xs
(x)

is in W 1,2
loc (Ω) and

|γs
τ,T (x)| ≤

⎧⎪⎪⎨
⎪⎪⎩
τ3−p for |∇uτ,T (x)| < τ

|∇uτ,T (x)|3−p for τ < |∇uτ,T (x)| < T

|∇uτ,T (x)| for |∇uτ,T (x)| ≥ T.

(3.2)
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Moreover,

d
dxi

γs
τ,T =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

τ2−puτ,T
xsxi

(2 − p)|∇uτ,T |2−p

〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xi

〉
uτ,T

xs

|∇uτ,T | + |∇uτ,T |2−puτ,T
xsxi

1
T p−2(p− 2)

⎡
⎢⎢⎢⎣ −T(

−T +
p− 1
p− 2

|∇uτ,T |
)2 〈

∇uτ,T

|∇uτ,T | ,∇u
τ,T
xi

〉uτ,T
xs

+

⎛
⎜⎜⎝ |∇uτ,T |
−T +

p− 1
p− 2

|∇uτ,T |

⎞
⎟⎟⎠uτ,T

xsxi

⎤
⎥⎥⎥⎦

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ2−puτ,T
xsxi

,

|∇uτ,T |2−p

[
uτ,T

xsxi
− (p− 2)

〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xi

〉
uτ,T

xs

|∇uτ,T |
]
,

|∇uτ,T |
T p−2(p− 2)

(
−T +

p− 1
p− 2

|∇uτ,T |
)
⎡
⎢⎢⎣uτ,T

xsxi
− T(

−T +
p− 1
p− 2

|∇uτ,T |
) 〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xi

〉
uτ,T

xs

|∇uτ,T |

⎤
⎥⎥⎦ ,

(3.3)

for |∇uτ,T | < τ , for τ ≤ |∇uτ,T | < T and for |∇uτ,T | > T respectively.

c) From (3.1) and (3.3) we have

d
dxs

(
l′τ,T (|∇uτ,T |)

|∇uτ,T | uτ,T
xi

)
· d
dxi

γs
τ,T = u2

xixs
, for |∇uτ,T | ≤ τ ;

=
(
uxsxi − (p− 2)

〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xi

〉
uτ,T

xs

|∇uτ,T |
)

×
(

(p− 2)
〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xs

〉
uτ,T

xi

|∇uτ,T | + uxixs

)
, for τ ≤ |∇uτ,T | ≤ T ;

=
1

(−T + p−1
p−2 |∇uτ,T |)

[
uτ,T

xsxi
− T

(−T + p−1
p−2 |∇uτ,T |)

〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xi

〉
uτ,T

xs

|∇uτ,T |

]

×
[
T

〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xs

〉
uτ,T

xi

|∇uτ,T | +
(
−T +

p− 1
p− 2

|∇uτ,T |
)
uτ,T

xixs

]
, for |∇uτ,T | > T.

For future use, notice that, summing over s, we have

∑
i,s

d
dxs

(
l′τ,T (|∇uτ,T |)

|∇uτ,T | uτ,T
xi

)
· d
dxi

γs
τ,T

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

|Hu|2 for |∇uτ,T | ≤ τ

|Hu|2 − (p− 2)2
( ∇uτ,T

|∇uτ,T |Hu
∇uτ,T

|∇uτ,T |
)2

for τ ≤ |∇uτ,T | ≤ T

|Hu|2 −

⎛
⎜⎜⎝ T

−T +
p− 1
p− 2

|∇uτ,T |

⎞
⎟⎟⎠

2( ∇uτ,T

|∇uτ,T |Hu
∇uτ,T

|∇uτ,T |
)2

for |∇uτ,T | ≥ T
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so that

∑
i,s

d
dxs

l′τ,T (|∇uτ,T |)
|∇uτ,T | uτ,T

xi
· d
dxi

γs
τ,T ≥

⎧⎪⎪⎨
⎪⎪⎩

|Hu|2, for |∇uτ,T | ≤ τ

(1 − (p− 2)2)|Hu|2, for τ ≤ |∇uτ,T | ≤ T

(p− 2)|Hu|2, for |∇uτ,T | ≥ T ;

(3.4)

then, setting μ = min{p− 2, (1 − (p− 2)2)}, so that μ > 0 since p < 3, we have

∑
i,s

(
d

dxs

l′τ,T (|∇uτ,T |)
|∇uτ,T | uτ,T

xi
· d
dxi

γs
τ,T

)
≥ μ|Hu|2. (3.5)

d) Let x0 and δ0 be such that B(x0, 4δ0) ⊂⊂ Ω. Let η ∈ C∞
0 (B(x0, 2δ0)) be such that 0 ≤ η ≤ 1 and that

η(x) = 1 for x ∈ B(x0, δ0); then the map φ = η2 · γs
τ,T is in W 1,2(Ω) with support compactly contained in Ω

and ∇φ = 2η∇ηγs
τ,T + η2∇γs

τ,T .
From Lemma 2.3, we infer that, for every s,∫

Ω

∑
i

(
d

dxs

(
l′τ,T (|∇uτ,T |)

|∇uτ,T | uτ,T
xi

))(
η2 d

dxi
γs

τ,T + 2ηηxiγ
s
τ,T

)
dx = Gs, (3.6)

where Gs =
∫

Ω
η2( d

dxs
gu(·, uτ,T ))γs

τ,T )dx; summing over s the previous equations, from (3.4) we obtain∫
Ω

η2μ|Huτ,T |2dx ≤
∫

Ω

η2
∑
i,s

((
d

dxs

l′τ,T (|∇uτ,T |)
|∇uτ,T | uτ,T

xi

)
· d
dxi

γs
τ,T

)
dx

= −
∑
i,s

∫
Ω

2ηηxiγ
s
τ,T

d
dxs

(
l′τ,T (|∇uτ,T |)

|∇uτ,T | uτ,T
xi

)
dx+

∑
s

Gs. (3.7)

e) On the other hand we have(
d

dxs

(
l′τ,T (|∇uτ,T |)

|∇uτ,T | uτ,T
xi

))
γs

τ,T

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

uτ,T
xixs

uτ,T
xs(

(p− 2)
〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xs

〉
uτ,T

xi

|∇uτ,T | + uτ,T
xixs

)
uτ,T

xs

(〈 ∇uτ,T

|∇uτ,T | ,∇u
τ,T
xs

〉
Tuτ,T

xi

|∇uτ,T | +
(
−T +

p− 1
p− 2

|∇uτ,T |
)
uτ,T

xixs

)⎛⎜⎜⎝ 1

−T +
p− 1
p− 2

|∇uτ,T |

⎞
⎟⎟⎠uτ,T

xs

respectively for |∇uτ,T | < τ , for τ ≤ |∇uτ,T | < T and for |∇uτ,T | > T . Then we obtain

∑
i,s

2ηηxi

(
d

dxs

(
l′τ,T (|∇uτ,T |)

|∇uτ,T | uτ,T
xi

))
γs

τ,T

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2η(∇ηTHuτ,T ∇uτ,T )

2η
[
(∇ηTHuτ,T ∇uτ,T ) + (p− 2)

( ∇uτ,T

|∇uτ,T |Huτ,T

∇uτ,T

|∇uτ,T |
)〈∇uτ,T ,∇η〉]

2η

⎡
⎢⎢⎣(∇ηTHuτ,T ∇uτ,T ) +

T

−T +
p− 1
p− 2

|∇uτ,T |

( ∇uτ,T

|∇uτ,T |Huτ,T

∇uτ,T

|∇uτ,T |
)〈∇uτ,T ,∇η〉

⎤
⎥⎥⎦
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and, for a constant α to be fixed, we have

∑
i,s

2ηηxi

(
d

dxs
(
l′τ,T (|∇uτ,T |)

|∇uτ,T | uτ,T
xi

)

)
γs

τ,T

≤

⎧⎪⎪⎨
⎪⎪⎩
αη2|Huτ,T |2 + 1

αD
2
η|∇uτ,T |2

αη2|Huτ,T |2 + 1
αD

2
η|∇uτ,T |2 + (p− 2)[αη2|Huτ,T |2 + 1

αD
2
η|∇uτ,T |2]

αη2|Huτ,T |2 + 1
αD

2
η|∇uτ,T |2 + (p− 2)

[
αη2|Huτ,T |2 + 1

αD
2
η|∇uτ,T |2]

so that, for some constant C(p), we have

∑
i,s

2ηηxi

(
d

dxs

(
l′τ,T (|∇uτ,T |)

|∇uτ,T | uτ,T
xi

))
γs

τ,T ≤ C(p)
[
αη2|Huτ,T |2 +

1
α
D2

η|∇uτ,T |2
]

(3.8)

f) It is left to estimate

∑
s

|Gs| =
∑

s

∣∣∣∣
∫

Ω

η2

(
d

dxs
gu(·, uτ,T )

)
γs

τ,T )dx
∣∣∣∣ =

∑
s

∣∣∣∣
∫
f(η2 d

dxs
γs

τ,T + 2ηηxsγ
s
τ,T )

∣∣∣∣ .
We have d

dxs
gu(x, uτ,T ) = d

dxs
f(x) + G′(uτ,T (x)) d

dxs
uτ,T (x); from the estimate (independent of τ, T ) for

‖∇uτ,T‖L2(Ω) of Lemma 2.4 and the estimate for |γs
τ,T | in (3.2), we obtain that, for some k1, ‖γs

τ,T‖L2(Ω) ≤ k1;
we also have that ∥∥∥∥G′(uτ,T (x))

d
dxs

uτ,T (x)
∥∥∥∥

L2(Ω)

≤ ΛGK

and hence, for some KG, we obtain ∑
s

|Gs| ≤ KG. (3.9)

g) From (3.6)−(3.8) and (3.9) we obtain∫
Ω

η2μ|Huτ,T |2dx ≤ C(p)
∫

Ω

[αη2|Huτ,T |2 +
1
α
D2

η|∇uτ,T |2]dx+KG. (3.10)

Choose α so that C(p)α =
1
2
μ. Recalling the estimate of Lemma 2.4 for ‖∇uτ,T‖L2(Ω), we obtain that, for a

constant H (independent of τ, T ), we have ∫
Ω

η2|Huτ,T |2dx ≤ H. (3.11)

h) Set τ = 1
n and T = n; set also u

1
n ,n = un and L

1
n ,n = Ln. Recalling the estimates of Lemma 2.4, we can

assume that ∫
B(x0,δ0)

|∇un|2 ≤ K2 (3.12)

and ∫
B(x0,δ0)

|Hun |2 ≤ K2. (3.13)

Then, the family (∇un)n is contained in a compact subset of L2(B(x0, δ0)).
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Consider
(

l′n(|∇un|)
|∇un| un

xi

)
n
. From (3.1) we have

∣∣∣∣ d
dxs

(
l′n(|∇un|)
|∇un| un

xi

)∣∣∣∣ ≤
⎧⎪⎨
⎪⎩

|un
xixs

| for |∇un| < τ

|∇un|p−2
[
(p− 2)|∇un

xs
| + |un

xixs
|] for τ ≤ |∇un| < T

np−2(p− 2)
[|∇un

xs
| + |un

xixs

]
for |∇un| > T.

We can write
|∇un|p−2|∇un

xs
| ≤ p− 2

p− 1
|∇un|p−1 +

1
p− 1

|∇un
xs
|p−1

and
|∇un|p−2|un

xixs
| ≤ p− 2

p− 1
|∇un|p−1 +

1
p− 1

|un
xixs

|p−1.

Since
∫

B(x0,δ0)
[|∇un|p−1]

2
p−1 =

∫
Ω
|∇un|2, and, similarly,

∫
B(x0,δ0)

[|∇un
xs
|p−1]

2
p−1 =

∫
Ω
|∇un

xs
|2 and the same

for |un
xixs

|p−1, from (3.13) and (3.12), we can assume that, for some constant Kp, independent of n, we have
that, for i = 1, . . . , N , ∫

B(x0,δ0)

∣∣∣∣∇
(
l′n(|∇un|)
|∇un| un

xi

)∣∣∣∣
2

p−1

≤ Kp

and, since 2
p−1 > 1, that the family ( l′n(|∇un|)

|∇un| ∇un)n is contained in a compact subset of L
2

p−1 (B(x0, δ0)).
The arbitrariness of x0 allows us to extend the previous results from B(x0, δ0) to any ω ⊂⊂ Ω.

i) We claim that u is a solution to the Euler–Lagrange equation, i.e., that, for every η ∈ C1
c (Ω),∫

Ω

[〈∇L(∇u(x)),∇η(x)〉 + gu(x, u(x))η(x)]dx = 0.

Fix η ∈ C1
c (Ω). There exists a subsequence (nν) such that unν → u in L2(supp η), that ∇unν → ∇u in

L2(supp η) and pointwise a.e., and that
l′nν

(|∇unν |)
|∇unν | ∇unν → d in L

2
p−1 (supp η). Moreover, we have that

∫
Ω

[〈∇Lnν (∇unν ),∇η〉 + gu(x, unν )η] dx = 0

and that gu(x, u) = f(x) + G(u), where G is uniformly Lipschitzian of Lipschitz constant ΛG. Then, from∫
Ω
|gu(x, unν ) − gu(x, u)|dx ≤ ΛG

∫
Ω
|unν − u|dx we obtain∫

Ω

[〈d,∇η〉 + gu(x, u)η] dx = 0

and we have to show that d = ∇L(∇u).
Fix x such that ∇unν (x) → ∇u(x). When ∇u(x) �= 0, there exists a ball B(∇u(x), ε) such that for ν suffi-

ciently large, ∇Lnν (ξ) = ∇L(ξ) for every ξ ∈ B(∇u(x), ε), so that d(x) = lim∇L(∇unν ) = ∇L(∇u(x)); when
∇u(x) = 0, we can assume that |∇unν | ≤ 1; fix arbitrarily τ , then l′nν

(|∇unν |) ≤ |∇unν | ·max{τp−2, |∇unν |p−2},
thus proving the claim.

This proves statement i) of the Theorem 2.2.

j) To prove statement ii), first notice that, in this case, a solution u to the Euler–Lagrange equation is a solution
to the problem of minimizing ∫

Ω

[L(∇v(x)) + f(x)v(x)]dx on u+W 1,p
0 (Ω) :
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in fact, the problem is jointly convex in (∇v, v). We claim that, for this problem, uniqueness of solutions holds.
Once this claim is proved, part i) will apply to u.

Proof of this claim: let u and w be solutions to the minimization problem; then, for every η ∈ C1
c (Ω), we

have ∫
Ω

〈|∇u|p−2∇u− |∇w|p−2∇w,∇η〉dx = 0.

Since |∇u|p−2∇u− |∇w|p−2∇w ∈ Lq and u−w ∈W 1,p
0 , by approximating u−w with a sequence in C1

c (Ω), we
obtain ∫

Ω

〈|∇u|p−2∇u − |∇w|p−2∇w,∇u −∇w〉dx = 0.

On the other hand, from [3,11], we have, for any ξ1 and ξ2, that

〈|ξ1|p−2ξ1 − |ξ2|p−2ξ2, ξ1 − ξ2〉 ≥ 22−p|ξ1 − ξ2|p

and hence that ∫
Ω

22−p|∇u−∇w|pdx = 0

that implies that u = w. �
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