THE REGULARITY OF SOLUTIONS TO SOME VARIATIONAL PROBLEMS, INCLUDING THE *p*-LAPLACE EQUATION FOR $2 \le p < 3$

Arrigo Cellina

Abstract. We consider the higher differentiability of solutions to the problem of minimizing

$$\int_{\Omega} [L(\nabla v(x)) + g(x, v(x))] dx \quad \text{on} \quad u^0 + W_0^{1, p}(\Omega)$$

where $L(\xi) = l(|\xi|) = \frac{1}{p} |\xi|^p$ and $u^0 \in W^{1,p}(\Omega)$. We show that, for $2 \leq p < 3$, under suitable regularity assumptions on g, there exists a solution u to the Euler–Lagrange equation associated to the minimization problem, such that

$$\nabla u \in W^{1,2}_{\text{loc}}(\Omega).$$

In particular, for g(x,u) = f(x)u with $f \in W^{1,2}(\Omega)$ and $2 \le p < 3$, any $W^{1,p}(\Omega)$ weak solution to the equation

 $\operatorname{div}(|\nabla u|^{p-2}\nabla u) = f$

is in $W^{2,2}_{\text{loc}}(\Omega)$.

Mathematics Subject Classification. 49K10.

Received February 1, 2016. Revised July 6, 2016. Accepted September 18, 2016.

1. INTRODUCTION

We consider the regularity, in the sense of the higher differentiability, of solutions to the problem of minimizing

$$\int_{\Omega} [L(\nabla v(x)) + g(x, v(x))] \mathrm{d}x \quad \text{on} \quad u^0 + W_0^{1, p}(\Omega)$$
(1.1)

where $L(\xi) = l(|\xi|) = \frac{1}{p}|\xi|^p$ and $u^0 \in W^{1,p}(\Omega)$. As it is well known, for p = 2, under reasonable assumptions on the term g, there exists a solution u to the Euler–Lagrange equation associated to (1.1) that belongs to $W^{2,2}_{\text{loc}}(\Omega)$; however, whenever p > 2, the matrix of the second derivatives of L vanishes at 0, an obstacle to establishing that the gradient of a solution u is a Sobolev function.

The regularity of solutions to minimization problems with a Lagrangian L growing like $\frac{1}{p}|\xi|^p$ or, more precisely, to their Euler–Lagrange equations, has been known since the work of Ladyzhenskaya and Uraltseva [10]; however,

Keywords and phrases. Regularity of solutions to variational problems - p-harmonic functions - higher differentiability.

Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via R. Cozzi 53, 20125 Milano, Italy. arrigo.cellina@unimib.it

in their work, the Lagrangians are defined near the origin so as to satisfy a strict ellipticity condition of the kind

$$\sum_{i,j} \frac{\partial L^i}{\partial \xi_j} v_i v_j \ge \nu |v|^2$$

with $\nu > 0$, thus removing the degeneracy at the origin $(L(\xi) = \frac{1}{p}|\xi|^p)$ does not satisfy this condition for p > 2); the same approach has been used since (*cf.*, for instance, [7] and, for different regularity results, [8, 15, 16]); hence, the assumptions on L used in establishing the regularity of solutions to problem (1.1) in the case of p-growth, do not apply to $L(\xi) = \frac{1}{p}|\xi|^p$, unless p = 2.

The purpose of the present paper is to show that, for $L(\xi) = \frac{1}{p} |\xi|^p$ and $2 \le p < 3$, under suitable regularity assumptions on g (Assumption 2.1 below), there exists a solution u to to the Euler–Lagrange equation associated to the minimization of (1.1), such that

$$\nabla u \in W^{1,2}_{\text{loc}}(\Omega).$$

In particular, for g(x, u) = f(x)u with $f \in W^{1,2}(\Omega)$ and $2 \le p < 3$, any $W^{1,p}(\Omega)$ weak solution to the equation

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) = f \tag{1.2}$$

is in $W_{\text{loc}}^{2,2}(\Omega)$. Our assumption on f is stronger than the assumption required for the case p = 2 [13]. Hence, to extend the regularity result to 2 , we pay the price of assuming more regularity on <math>f.

When f = 0, a solution to (1.2) is a *p*-harmonic function, and properties of such functions have been extensively studied (se, *e.g.*, [1, 2, 4, 5, 12, 14]). Still. it seems that the regularity we present in this paper is not known even in this case.

Our proof is based on a variation that is a nonlinear function of $|\nabla u|$, suited to contrast the fact that the matrix of the second derivatives of L tends to zero. The proof fails at p = 3, since in this case the required function of $|\nabla u|$ would have to grow like the logarithm, that is unbounded near the origin.

For semilinear problems, in particular for $L(\xi) = \frac{1}{p} |\xi|^p$, a recent comprehensive survey of pointwise estimates for the gradient of a solution (hence, different from our results) is presented in [9].

2. NOTATIONS AND PRELIMINARY RESULTS

The transpose of a is a^T ; the dimension of the space is N and $\Omega \subset \mathbb{R}^N$; $|\Omega|$ is the measure of Ω . For a fixed coordinate direction e_s , we set $\delta_{he_s} u$ to be the difference quotient of the function u, defined by $\delta_{he_s} u(x) = \frac{u(x+he_s)-u(x)}{h}$. For a variation η to be defined, D_{η} is such that $|\nabla \eta(x)| \leq D_{\eta}$ and $\operatorname{supp} \eta$ is the support of η . By H_v we mean the Hessian matrix of the function v.

The assumptions on g are:

Assumption 2.1. There exist $\tau \in L^1(\Omega)$ and a non-negative $\lambda_g \in L^2(\Omega)$ such that, for a.e. $x \in \Omega$ and every u, we have

- (i) $g(x, u) \ge \tau(x) \lambda_q(x)|u|$
- (ii) $g_u(x,u) = f(x) + G(u)$, with $f \in W^{1,2}(\Omega)$ and G uniformly Lipschitzian of Lipschitz constant Λ_G and differentiable except at most finitely many values.

Under the assumptions on g, the composition of g_u with a Sobolev function v is a Sobolev function and $\nabla g_u(x, v(x)) = \nabla f(x) + G'(v(x)) \cdot \nabla v(x)$.

REGULARITY

The purpose of this paper is to prove the following result:

Theorem 2.2. Let Ω be a bounded open subset of \mathbb{R}^N , let $L(\xi) = \frac{1}{p} |\xi|^p$ for $2 \le p < 3$.

i) Let g satisfy Assumption 2.1; then, there exist u, a solution to the Euler-Lagrange equation, i.e. such that

$$\int_{\Omega} [\langle \nabla L(\nabla u(x)), \nabla \eta(x) \rangle + g_u(x, u(x))\eta(x)] dx = 0$$

for every $\eta \in C_c^1(\Omega)$, such that $\nabla u \in W^{1,2}_{\text{loc}}(\Omega)$ ii) Let f be in $W^{1,2}(\Omega)$ and let u be a $W^{1,p}(\Omega)$ weak solution to the equation

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) = f;$$

then u is in $W^{2,2}_{\text{loc}}(\Omega)$.

Under some additional assumptions, mainly when q is convex in the variable v (in particular, q linear in v), a solution to the Euler-Lagrange equation is actually a solution to the minimization problem (1.1).

The Proof is based on (a modification of) Nirenberg's method and will also depend on approximating L by the following auxiliary Lagrangian. For $\tau < 1 < T$ and $t \ge 0$, set

$$l_{\tau,T}(t) = \begin{cases} \frac{1}{2}\tau^{p-2}t^2 + \left(\frac{1}{p} - \frac{1}{2}\right)\tau^p & \text{for } 0 \le t < \tau\\ \frac{1}{p}|t|^p & \text{for } 0 \le t < T\\ \frac{1}{p}T^p + T^{p-1}(t-T) + \frac{1}{2}(p-1)T^{p-2}(t-T)^2 & \text{for } t \ge T \end{cases}$$

so that, for $t \geq 0$,

$$\frac{1}{2}(p-1)t^2 - (p-2)t - \frac{3-p}{2} + \frac{1}{p} = \frac{1}{p} + (t-1) + \frac{1}{2}(p-1)(t-1)^2 \le l_{\tau,T}(t) \le l(t)$$
(2.1)

and

$$l'_{\tau,T}(t) = \begin{cases} \tau^{p-2}t & \text{for } 0 \le t < \tau \\ t^{p-1} & \text{for } \tau \le t \le T \\ T^{p-1}(2-p) + (p-1)T^{p-2}t & \text{for } t \ge T; \end{cases}$$

set also $L_{\tau,T}(\xi) = l_{\tau,T}(|\xi|).$

Let $u^{\tau,T}$ be a solution to the problem of minimizing

$$\int_{\Omega} [L_{\tau,T}(\nabla v(x)) + g(x, v(x))] dx \quad \text{on} \quad u^0 + W_0^{1,2}(\Omega).$$
(2.2)

The Lagrangian $L_{\tau,T}(|\xi|)$ is of quadratic growth; moreover, it satisfies a "quadratic strict convexity condition" in the sense that, for a positive constant ν , we have

$$\langle \nabla L(z_1) - \nabla L(z_2), z_1 - z_2 \rangle \ge \nu |z_1 - z_2|^2;$$
(2.3)

hence (see [6]) we have that, for each i, both $u^{\tau,T} \in W^{2,2}_{\text{loc}}(\Omega)$ and $\frac{l'_{\tau,T}(|\nabla u^{\tau,T}|)}{|\nabla u^{\tau,T}|} u^{\tau,T}_{x_i} \in W^{1,2}_{\text{loc}}(\Omega)$.

In order to prove Theorem 2.2 we shall need the following Lemmas.

Lemma 2.3. Let Ω and g as in Theorem 2.2; let $u^{\tau,T}$ be a solution to the minimization of (2.2); let $\phi \in W^{1,2}(\Omega)$ with support compactly contained in Ω . Then, for s = 1, ..., N, we have

$$\int_{\Omega} \left\langle \frac{\mathrm{d}}{\mathrm{d}x_s} \nabla L_{\tau,T}(\nabla u^{\tau,T}), \nabla \phi \right\rangle = \int_{\Omega} \left(\frac{\mathrm{d}}{\mathrm{d}x_s} g_u(\cdot, u^{\tau,T}) \right) \phi$$

Proof.

a) We have that $\nabla u^{\tau,T}$ is in $W^{1,2}_{\text{loc}}(\Omega)$, so that $\frac{\mathrm{d}}{\mathrm{d}x_i}|\nabla u^{\tau,T}| = \langle \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|}, \nabla u^{\tau,T}_{x_i} \rangle$. The map

$$\frac{l'_{\tau,T}(t)}{t} = \begin{cases} \tau^{p-2} & \text{for } 0 \le t < \tau\\ t^{p-2} & \text{for } \tau \le t \le T\\ \frac{T^{p-1}(2-p)}{t} + (p-1)T^{p-2} & \text{for } t \ge T \end{cases}$$

•

is (uniformly) Lipschitzian and it is not differentiable only at at $t = \tau$ and t = T; then, as it is known, the map $x \to \frac{l'_{\tau,T}(|\nabla u^{\tau,T}(x)|)}{|\nabla u^{\tau,T}(x)|}$ is a Sobolev function with

Then

$$\frac{\mathrm{d}}{\mathrm{d}x_i} \left[\frac{l_{\tau,T}'(|\nabla u^{\tau,T}(x)|)}{|\nabla u^{\tau,T}(x)|} \cdot \nabla u^{\tau,T}(x) \right] = \frac{l_{\tau,T}'(|\nabla u^{\tau,T}(x)|)}{|\nabla u^{\tau,T}(x)|} \nabla u_{x_i}^{\tau,T}(x) + \left(\frac{\mathrm{d}}{\mathrm{d}x_i} \frac{l_{\tau,T}'(|\nabla u^{\tau,T}(x)|)}{|\nabla u^{\tau,T}(x)|} \right) \nabla u^{\tau,T}(x).$$
(2.5)

Both terms above are in $L^2_{\text{loc}}(\Omega)$: in fact, $\frac{l'_{\tau,T}(t)}{t}$ is bounded and, from (2.4), the absolute value of the second term is at most $|\nabla u_{x_i}|$. Hence, $\nabla L_{\tau,T}(\nabla u^{\tau,T})$ is in $W^{1,2}_{\text{loc}}(\Omega)$.

b) Under the assumptions of the Lemma, the Euler–Lagrange equation holds for $u^{\tau,T}$ in the sense that, for $\psi \in W^{1,2}(\Omega)$ with support compactly contained in Ω , we have

$$\int_{\Omega} [\langle \nabla L_r(\nabla u^{\tau,T}), \nabla \psi \rangle + g_u(x, u^{\tau,T})\psi] \mathrm{d}x = 0$$

For h sufficiently small, and s = 1, ..., N, consider the variation $\psi = \delta_{-he_s} \phi$ to obtain

$$\int_{\Omega} \left\langle \frac{\nabla L_{\tau,T}(\nabla u^{\tau,T}(x+he_s)) - \nabla L_{\tau,T}(\nabla u^{\tau,T}(x))}{h}, \nabla \phi(x) \right\rangle \mathrm{d}x$$
$$= \int_{\Omega} g_u(x, u^{\tau,T}(x)) \frac{\phi(x-he_s) - \phi(x)}{-h} \mathrm{d}x = \int_{\Omega} (\delta_{h,e_s} g_u(x, u^{\tau,T})) \phi \mathrm{d}x. \quad (2.6)$$

Since $\nabla L_{\tau,T}(\nabla u^{\tau,T})$ is in $W^{1,2}(B(\operatorname{supp}\psi,|h|))$, we obtain that the family $(\frac{\nabla L_{\tau,T}(\nabla u^{\tau,T}(x+he_i))-\nabla L_{\tau,T}(\nabla u^{\tau,T}(x))}{h})_h$ is bounded in $L^2(B(\operatorname{supp}\psi,|h|))$ and we can assume the existence of a sequence (h_n) such that

$$\frac{\nabla L_{\tau,T}(\nabla u^{\tau,T}(x+h_n e_i)) - \nabla L_{\tau,T}(\nabla u^{\tau,T}(x)))}{h_n} \rightharpoonup \frac{\mathrm{d}}{\mathrm{d}x_i} \nabla L_{\tau,T}(\nabla u^{\tau,T})$$

so that the left hand side of (2.6) converges to $\int_{\Omega} \langle \frac{\mathrm{d}}{\mathrm{d}x_s} \nabla L_{\tau,T}(\nabla u^{\tau,T}), \nabla \phi \rangle$.

REGULARITY

We also have, from Assumption 2.1, that $g_u(x, u^{\tau,T})$ is in $W^{1,2}(\Omega)$ and hence that the family $(\delta_{h,e_s}g_u(x, u^{\tau,T}))_h$ is bounded; then we can assume that along the sequence (h_n) , we have that $\delta_{h_n,e_s}g_u(x, u^{\tau,T}) \rightharpoonup \frac{\mathrm{d}}{\mathrm{d}x_s}g_u(x, u^{\tau,T})$, thus proving the Lemma.

Lemma 2.4. There exists K (independent of τ, T), such that $\|\nabla u^{\tau,T}\|_{L^2(\Omega)} \leq K$ and $\|u^{\tau,T}\|_{L^2(\Omega)} \leq K$.

Proof. Choose β such that $2\beta P^2 = \frac{p-1}{8}$ and call k_0 the resulting constant $V + \frac{1}{2\beta} \int |f|^2 + 2\beta P^2 \int |\nabla w^0|^2$. We obtain

$$\frac{3}{8}(p-1)\int |\nabla u^{\tau,T}|^2 \le 2\frac{(p-2)^2}{p-1}|\Omega| + \frac{1}{8}(p-1)\int |\nabla u^{\tau,T}|^2 + k_0$$

so that $\frac{1}{4}(p-1)\int |\nabla u^{\tau,T}|^2 \leq 2\frac{(p-2)^2}{p-1}|\Omega| + k_0$; hence, there exists k_1 such that

$$\int |\nabla u^{\tau,T}|^2 \le k_1.$$

From this, making use of $w^0 \in W^{1,2}$ and of Poincaré's inequality, we infer that for some k_2 , we also have $\int_{\Omega} |u^{\tau,T}|^2 \leq k_2$. The constants k_1, k_2 are independent of τ, T .

a) Call P the Poincaré constant in $W_0^{1,2}(\Omega)$; we have $\int |u^{\tau,T}|^2 = \int |w^0 - (u^{\tau,T} - w^0)|^2 \leq 2 \int |w^0|^2 + 2P^2 \int |\nabla (u^{\tau,T} - w^0)|^2 \leq 2 \int |w^0|^2 + 4P^2 \int |\nabla u^{\tau,T}|^2 + 4P^2 \int |\nabla w^0|^2$. From Assumption 2.1 and from $\lambda_g |u^{\tau,T}| \leq \frac{1}{2\beta}\lambda_g^2 + \frac{1}{2}\beta |u^{\tau,T}|^2$, for a constant β to be fixed, we obtain

$$\int_{\Omega} g(x, u^{\tau, T}) \ge \int \tau - \frac{1}{2\beta} \int (\lambda_g)^2 - \frac{1}{2} \beta 4 P^2 [\int |\nabla u^{\tau, T}|^2 + \int |\nabla w^0|^2].$$
(2.7)

b) From (2.1) we have

$$V = \int_{\Omega} [L(\nabla u(x)) + g(x, u(x))] dx \ge \int_{\Omega} [L_{\tau,T}(\nabla u(x)) + g(x, u(x))] dx$$
$$\ge \int_{\Omega} [L_{\tau,T}(\nabla u^{\tau,T}(x)) + g(x, u^{\tau,T}(x))] dx.$$

Hence, again from (2.1) and from Assumption 2.1,

$$\int_{\Omega} \left[\frac{1}{2} (p-1) |\nabla u^{\tau,T}|^2 - (p-2) |\nabla u^{\tau,T}| - \frac{3-p}{2} + \frac{1}{p} \right] \le V - \int_{\Omega} g(x, u^{\tau,T}) \le V - \int \tau + \int \lambda_g |u^{\tau,T}| \le V + \int -\tau + \frac{1}{2\beta} \int (\lambda_g)^2 + 2\beta P^2 \int |\nabla u^{\tau,T}|^2 + 2\beta P^2 \int |\nabla w^0|^2$$

that gives, since $-\frac{3-p}{2} + \frac{1}{p} > 0$ for p > 2,

Choose β such that $2\beta P^2 = \frac{p-1}{8}$ and call k_0 the resulting constant $V - \int \tau + \frac{1}{2\beta} \int (\lambda_g)^2 + 2\beta P^2 \int |\nabla w^0|^2$. We obtain

$$\frac{3}{8}(p-1)\int |\nabla u^{\tau,T}|^2 \le 2\frac{(p-2)^2}{p-1}|\Omega| + \frac{1}{8}(p-1)\int |\nabla u^{\tau,T}|^2 + k$$

so that $\frac{1}{4}(p-1)\int |\nabla u^{\tau,T}|^2 \leq 2\frac{(p-2)^2}{p-1}|\Omega| + k$; hence, there exists k_1 such that

$$\int |\nabla u^{\tau,T}|^2 \le k_1.$$

From this, making use of $w^0 \in W^{1,2}$ and of Poincaré's inequality, we infer that for some k_2 , we also have $\int_{\Omega} |u^{\tau,T}|^2 \leq k_2$. The constants k_1, k_2 are independent of τ, T .

3. Proof of Theorem 1

Proof. Since the case p = 2 is well known, we shall assume that 2 .

a) From (2.5) we have

$$\frac{\mathrm{d}}{\mathrm{d}x_{s}} \left(\frac{l_{\tau,T}'(|\nabla u^{\tau,T}|)}{|\nabla u^{\tau,T}|} u_{x_{i}}^{\tau,T} \right) = \begin{cases} \tau^{p-2} u_{x_{i}x_{s}}^{\tau,T} \\ (p-2)|\nabla u^{\tau,T}|^{p-3} \left\langle \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|}, \nabla u_{x_{s}}^{\tau,T} \right\rangle u_{x_{i}}^{\tau,T} + |\nabla u^{\tau,T}|^{p-2} u_{x_{i}x_{s}}^{\tau,T} \\ \frac{T^{p-1}(p-2)}{|\nabla u^{\tau,T}|^{2}} \left\langle \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|}, \nabla u_{x_{s}}^{\tau,T} \right\rangle u_{x_{i}}^{\tau,T} + \left(\frac{T^{p-1}(2-p)}{|\nabla u^{\tau,T}|} + (p-1)T^{p-2} \right) u_{x_{i}x_{s}}^{\tau,T} \\ = \begin{cases} \tau^{p-2} u_{x_{i}x_{s}}^{\tau,T}, \\ |\nabla u^{\tau,T}|^{p-2} \left[(p-2) \left\langle \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|}, \nabla u_{x_{s}}^{\tau,T} \right\rangle \frac{u_{x_{i}}^{\tau,T}}{|\nabla u^{\tau,T}|} + u_{x_{i}x_{s}}^{\tau,T} \right], \\ \frac{T^{p-2}(p-2)}{|\nabla u^{\tau,T}|} \left[T \left\langle \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|}, \nabla u_{x_{s}}^{\tau,T} \right\rangle \frac{u_{x_{i}}^{\tau,T}}{|\nabla u^{\tau,T}|} + \left(-T + \frac{p-1}{p-2} |\nabla u^{\tau,T}| \right) u_{x_{i}x_{s}}^{\tau,T} \right], \end{cases} \tag{3.1}$$

for $|\nabla u^{\tau,T}| < \tau$, for $\tau \leq |\nabla u^{\tau,T}| < T$ and for $|\nabla u^{\tau,T}| > T$ respectively.

b) Set

$$\lambda_{\tau,T}(t) = \begin{cases} \tau^{2-p} & \text{for } |t| < \tau \\ t^{2-p} & \text{for } \tau \le |t| \le T \\ \frac{t}{T^{p-2}(p-2)[-T + \frac{p-1}{p-2}t]} & \text{for } t \ge T; \end{cases}$$

 $\lambda_{\tau,T}$ is globally Lipschitzian and differentiable except at $t = \tau$; then, since $x \to |\nabla u^{\tau,T}(x)|$ is in $W^{1,2}_{\text{loc}}(\Omega)$, the function $x \to \lambda_{\tau,T}(|\nabla u^{\tau,T}(x)|)$ is in $W^{1,2}_{\text{loc}}(\Omega)$ and

$$\frac{\mathrm{d}}{\mathrm{d}x_{i}}\lambda_{\tau,T}(|\nabla u^{\tau,T}|) = \begin{cases} 0 & \text{for} \quad |\nabla u^{\tau,T}(x)| < \tau \\ (2-p)|\nabla u^{\tau,T}|^{1-p} \left\langle \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|}, \nabla u^{\tau,T}_{x_{i}} \right\rangle & \text{for} \quad \tau < |\nabla u^{\tau,T}| < T \\ \frac{-1}{T^{p-3}(p-2)\left(-T + \frac{p-1}{p-2}|\nabla u^{\tau,T}|\right)^{2}} \left\langle \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|}, \nabla u^{\tau,T}_{x_{i}} \right\rangle & \text{for} \quad |\nabla u^{\tau,T}| \ge T. \end{cases}$$

Then, the map

$$x \to \gamma^s_{\tau,T}(x) = \lambda_{\tau,T}(|\nabla u^{\tau,T}(x)|) u^{\tau,T}_{x_s}(x)$$

is in $W^{1,2}_{\text{loc}}(\Omega)$ and

$$|\gamma_{\tau,T}^s(x)| \leq \begin{cases} \tau^{3-p} & \text{for } |\nabla u^{\tau,T}(x)| < \tau \\ |\nabla u^{\tau,T}(x)|^{3-p} & \text{for } \tau < |\nabla u^{\tau,T}(x)| < T \\ |\nabla u^{\tau,T}(x)| & \text{for } |\nabla u^{\tau,T}(x)| \ge T. \end{cases}$$
(3.2)

Moreover,

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x_{i}}\gamma_{\tau,T}^{s} &= \begin{cases} \tau^{2-p}u_{x_{s}x_{i}}^{\tau,T}(2-p)|\nabla u^{\tau,T}|^{2-p}\left\langle\frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|},\nabla u_{x_{i}}^{\tau,T}\right\rangle\frac{u_{x_{s}}^{\tau,T}}{|\nabla u^{\tau,T}|} + |\nabla u^{\tau,T}|^{2-p}u_{x_{s}x_{i}}^{\tau,T}\\ \\ \frac{1}{T^{p-2}(p-2)}\left[\frac{-T}{\left(-T+\frac{p-1}{p-2}|\nabla u^{\tau,T}|\right)^{2}}\langle\frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|},\nabla u_{x_{i}}^{\tau,T}\rangle u_{x_{s}}^{\tau,T} + \left(\frac{|\nabla u^{\tau,T}|}{-T+\frac{p-1}{p-2}|\nabla u^{\tau,T}|}\right)u_{x_{s}x_{i}}^{\tau,T}\\ \\ &= \begin{cases} \tau^{2-p}u_{x_{s}x_{i}}^{\tau,T},\\ |\nabla u^{\tau,T}|^{2-p}\left[u_{x_{s}x_{i}}^{\tau,T} - (p-2)\left\langle\frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|},\nabla u_{x_{i}}^{\tau,T}\right\rangle\frac{u_{x_{s}}^{\tau,T}}{|\nabla u^{\tau,T}|}\right],\\ \\ \frac{|\nabla u^{\tau,T}|}{T^{p-2}(p-2)\left(-T+\frac{p-1}{p-2}|\nabla u^{\tau,T}|\right)}\left[u_{x_{s}x_{i}}^{\tau,T} - \frac{T}{\left(-T+\frac{p-1}{p-2}|\nabla u^{\tau,T}|\right)}\left\langle\frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|},\nabla u_{x_{i}}^{\tau,T}\right\rangle\frac{u_{x_{s}}^{\tau,T}}{|\nabla u^{\tau,T}|}\right], \end{aligned}$$

$$(3.3)$$

for $|\nabla u^{\tau,T}| < \tau$, for $\tau \leq |\nabla u^{\tau,T}| < T$ and for $|\nabla u^{\tau,T}| > T$ respectively.

c) From (3.1) and (3.3) we have

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x_s} & \left(\frac{l'_{\tau,T}(|\nabla u^{\tau,T}|)}{|\nabla u^{\tau,T}|} u^{\tau,T}_{x_i} \right) \cdot \frac{\mathrm{d}}{\mathrm{d}x_i} \gamma^s_{\tau,T} = u^2_{x_i x_s}, \, \text{for } |\nabla u^{\tau,T}| \leq \tau; \\ &= \left(u_{x_s x_i} - (p-2) \left\langle \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|}, \nabla u^{\tau,T}_{x_i} \right\rangle \frac{u^{\tau,T}_{x_s}}{|\nabla u^{\tau,T}|} \right) \\ & \times \left((p-2) \left\langle \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|}, \nabla u^{\tau,T}_{x_s} \right\rangle \frac{u^{\tau,T}_{x_i}}{|\nabla u^{\tau,T}|} + u_{x_i x_s} \right), \, \, \text{for } \tau \leq |\nabla u^{\tau,T}| \leq T; \\ &= \frac{1}{(-T + \frac{p-1}{p-2}|\nabla u^{\tau,T}|)} \left[u^{\tau,T}_{x_s x_i} - \frac{T}{(-T + \frac{p-1}{p-2}|\nabla u^{\tau,T}|)} \left\langle \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|}, \nabla u^{\tau,T}_{x_i} \right\rangle \frac{u^{\tau,T}_{x_s x_i}}{|\nabla u^{\tau,T}|} + \left(-T + \frac{p-1}{p-2}|\nabla u^{\tau,T}| \right) u^{\tau,T}_{x_i x_s} \right], \, \, \text{for } |\nabla u^{\tau,T}| > T. \end{split}$$

For future use, notice that, summing over s, we have

$$\begin{split} \sum_{i,s} \frac{\mathrm{d}}{\mathrm{d}x_s} \left(\frac{l'_{\tau,T}(|\nabla u^{\tau,T}|)}{|\nabla u^{\tau,T}|} u_{x_i}^{\tau,T} \right) \cdot \frac{\mathrm{d}}{\mathrm{d}x_i} \gamma_{\tau,T}^s & \text{for} \quad |\nabla u^{\tau,T}| \leq \tau \\ &= \begin{cases} |H_u|^2 & \text{for} \quad |\nabla u^{\tau,T}| \leq \tau \\ |H_u|^2 - (p-2)^2 \left(\frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|} H_u \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|} \right)^2 & \text{for} \quad \tau \leq |\nabla u^{\tau,T}| \leq T \\ \\ |H_u|^2 - \left(\frac{T}{-T + \frac{p-1}{p-2} |\nabla u^{\tau,T}|} \right)^2 \left(\frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|} H_u \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|} \right)^2 & \text{for} \quad |\nabla u^{\tau,T}| \geq T \end{cases}$$

so that

$$\sum_{i,s} \frac{\mathrm{d}}{\mathrm{d}x_s} \frac{l_{\tau,T}'(|\nabla u^{\tau,T}|)}{|\nabla u^{\tau,T}|} u_{x_i}^{\tau,T} \cdot \frac{\mathrm{d}}{\mathrm{d}x_i} \gamma_{\tau,T}^s \ge \begin{cases} |H_u|^2, \text{ for } |\nabla u^{\tau,T}| \le \tau \\ (1-(p-2)^2)|H_u|^2, \text{ for } \tau \le |\nabla u^{\tau,T}| \le T \\ (p-2)|H_u|^2, \text{ for } |\nabla u^{\tau,T}| \ge T; \end{cases}$$
(3.4)

then, setting $\mu = \min\{p-2, (1-(p-2)^2)\}\)$, so that $\mu > 0$ since p < 3, we have

$$\sum_{i,s} \left(\frac{\mathrm{d}}{\mathrm{d}x_s} \frac{l_{\tau,T}'(|\nabla u^{\tau,T}|)}{|\nabla u^{\tau,T}|} u_{x_i}^{\tau,T} \cdot \frac{\mathrm{d}}{\mathrm{d}x_i} \gamma_{\tau,T}^s \right) \ge \mu |H_u|^2.$$
(3.5)

d) Let x^0 and δ^0 be such that $B(x^0, 4\delta^0) \subset \Omega$. Let $\eta \in C_0^{\infty}(B(x^0, 2\delta^0))$ be such that $0 \leq \eta \leq 1$ and that $\eta(x) = 1$ for $x \in B(x^0, \delta_0^0)$; then the map $\phi = \eta^2 \cdot \gamma_{\tau,T}^s$ is in $W^{1,2}(\Omega)$ with support compactly contained in Ω and $\nabla \phi = 2\eta \nabla \eta \gamma_{\tau,T}^s + \eta^2 \nabla \gamma_{\tau,T}^s$. From Lemma 2.3, we infer that, for every s,

$$\int_{\Omega} \sum_{i} \left(\frac{\mathrm{d}}{\mathrm{d}x_{s}} \left(\frac{l'_{\tau,T}(|\nabla u^{\tau,T}|)}{|\nabla u^{\tau,T}|} u^{\tau,T}_{x_{i}} \right) \right) \left(\eta^{2} \frac{\mathrm{d}}{\mathrm{d}x_{i}} \gamma^{s}_{\tau,T} + 2\eta \eta_{x_{i}} \gamma^{s}_{\tau,T} \right) \mathrm{d}x = G_{s}, \tag{3.6}$$

where $G_s = \int_{\Omega} \eta^2 (\frac{\mathrm{d}}{\mathrm{d}x_s} g_u(\cdot, u^{\tau,T})) \gamma^s_{\tau,T}) \mathrm{d}x$; summing over s the previous equations, from (3.4) we obtain

$$\int_{\Omega} \eta^2 \mu |H_{u^{\tau,T}}|^2 \mathrm{d}x \leq \int_{\Omega} \eta^2 \sum_{i,s} \left(\left(\frac{\mathrm{d}}{\mathrm{d}x_s} \frac{l'_{\tau,T}(|\nabla u^{\tau,T}|)}{|\nabla u^{\tau,T}|} u_{x_i}^{\tau,T} \right) \cdot \frac{\mathrm{d}}{\mathrm{d}x_i} \gamma_{\tau,T}^s \right) \mathrm{d}x \\
= -\sum_{i,s} \int_{\Omega} 2\eta \eta_{x_i} \gamma_{\tau,T}^s \frac{\mathrm{d}}{\mathrm{d}x_s} \left(\frac{l'_{\tau,T}(|\nabla u^{\tau,T}|)}{|\nabla u^{\tau,T}|} u_{x_i}^{\tau,T} \right) \mathrm{d}x + \sum_s G_s.$$
(3.7)

e) On the other hand we have

$$\begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}x_s} \left(\frac{l_{\tau,T}'(|\nabla u^{\tau,T}|)}{|\nabla u^{\tau,T}|} u_{x_i}^{\tau,T} \right) \right) \gamma_{\tau,T}^s \\ = \begin{cases} u_{x_ix_s}^{\tau,T} u_{x_s}^{\tau,T} \\ \left((p-2) \left\langle \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|}, \nabla u_{x_s}^{\tau,T} \right\rangle \frac{u_{x_i}^{\tau,T}}{|\nabla u^{\tau,T}|} + u_{x_ix_s}^{\tau,T} \right) u_{x_s}^{\tau,T} \\ \left(\left\langle \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|}, \nabla u_{x_s}^{\tau,T} \right\rangle \frac{T u_{x_i}^{\tau,T}}{|\nabla u^{\tau,T}|} + \left(-T + \frac{p-1}{p-2} |\nabla u^{\tau,T}| \right) u_{x_ix_s}^{\tau,T} \right) \left(\frac{1}{-T + \frac{p-1}{p-2} |\nabla u^{\tau,T}|} \right) u_{x_s}^{\tau,T} \end{cases}$$

respectively for $|\nabla u^{\tau,T}| < \tau$, for $\tau \leq |\nabla u^{\tau,T}| < T$ and for $|\nabla u^{\tau,T}| > T$. Then we obtain

$$\begin{split} \sum_{i,s} 2\eta \eta_{x_i} \left(\frac{\mathrm{d}}{\mathrm{d}x_s} \left(\frac{l_{\tau,T}'(|\nabla u^{\tau,T}|)}{|\nabla u^{\tau,T}|} u_{x_i}^{\tau,T} \right) \right) \gamma_{\tau,T}^s \\ &= \begin{cases} 2\eta (\nabla \eta^T H_{u^{\tau,T}} \nabla u^{\tau,T}) \\ 2\eta \left[(\nabla \eta^T H_{u^{\tau,T}} \nabla u^{\tau,T}) + (p-2) \left(\frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|} H_{u^{\tau,T}} \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|} \right) \left\langle \nabla u^{\tau,T}, \nabla \eta \right\rangle \right] \\ 2\eta \left[(\nabla \eta^T H_{u^{\tau,T}} \nabla u^{\tau,T}) + \frac{T}{-T + \frac{p-1}{p-2} |\nabla u^{\tau,T}|} \left(\frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|} H_{u^{\tau,T}} \frac{\nabla u^{\tau,T}}{|\nabla u^{\tau,T}|} \right) \left\langle \nabla u^{\tau,T}, \nabla \eta \right\rangle \right] \end{cases}$$

and, for a constant α to be fixed, we have

$$\begin{split} \sum_{i,s} 2\eta \eta_{x_i} \left(\frac{\mathrm{d}}{\mathrm{d}x_s} (\frac{l'_{\tau,T}(|\nabla u^{\tau,T}|)}{|\nabla u^{\tau,T}|} u_{x_i}^{\tau,T}) \right) \gamma_{\tau,T}^s \\ & \leq \begin{cases} \alpha \eta^2 |H_{u^{\tau,T}}|^2 + \frac{1}{\alpha} D_{\eta}^2 |\nabla u^{\tau,T}|^2 \\ \alpha \eta^2 |H_{u^{\tau,T}}|^2 + \frac{1}{\alpha} D_{\eta}^2 |\nabla u^{\tau,T}|^2 + (p-2)[\alpha \eta^2 |H_{u^{\tau,T}}|^2 + \frac{1}{\alpha} D_{\eta}^2 |\nabla u^{\tau,T}|^2] \\ \alpha \eta^2 |H_{u^{\tau,T}}|^2 + \frac{1}{\alpha} D_{\eta}^2 |\nabla u^{\tau,T}|^2 + (p-2)[\alpha \eta^2 |H_{u^{\tau,T}}|^2 + \frac{1}{\alpha} D_{\eta}^2 |\nabla u^{\tau,T}|^2] \end{cases}$$

so that, for some constant C(p), we have

$$\sum_{i,s} 2\eta \eta_{x_i} \left(\frac{\mathrm{d}}{\mathrm{d}x_s} \left(\frac{l'_{\tau,T}(|\nabla u^{\tau,T}|)}{|\nabla u^{\tau,T}|} u^{\tau,T}_{x_i} \right) \right) \gamma^s_{\tau,T} \le C(p) \left[\alpha \eta^2 |H_{u^{\tau,T}}|^2 + \frac{1}{\alpha} D^2_{\eta} |\nabla u^{\tau,T}|^2 \right]$$
(3.8)

f) It is left to estimate

$$\sum_{s} |G_{s}| = \sum_{s} \left| \int_{\Omega} \eta^{2} \left(\frac{\mathrm{d}}{\mathrm{d}x_{s}} g_{u}(\cdot, u^{\tau, T}) \right) \gamma_{\tau, T}^{s} \right| \mathrm{d}x \right| = \sum_{s} \left| \int f(\eta^{2} \frac{\mathrm{d}}{\mathrm{d}x_{s}} \gamma_{\tau, T}^{s} + 2\eta \eta_{x_{s}} \gamma_{\tau, T}^{s}) \right|$$

We have $\frac{\mathrm{d}}{\mathrm{d}x_s}g_u(x, u^{\tau,T}) = \frac{\mathrm{d}}{\mathrm{d}x_s}f(x) + G'(u^{\tau,T}(x))\frac{\mathrm{d}}{\mathrm{d}x_s}u^{\tau,T}(x)$; from the estimate (independent of τ, T) for $\|\nabla u^{\tau,T}\|_{L^2(\Omega)}$ of Lemma 2.4 and the estimate for $|\gamma^s_{\tau,T}|$ in (3.2), we obtain that, for some k_1 , $\|\gamma^s_{\tau,T}\|_{L^2(\Omega)} \leq k_1$; we also have that

$$G'(u^{\tau,T}(x)) \frac{\mathrm{d}}{\mathrm{d}x_s} u^{\tau,T}(x) \bigg\|_{L^2(\Omega)} \le \Lambda_G K$$

and hence, for some K_G , we obtain

$$\sum_{s} |G_s| \le K_G. \tag{3.9}$$

g) From (3.6)-(3.8) and (3.9) we obtain

$$\int_{\Omega} \eta^2 \mu |H_{u^{\tau,T}}|^2 \mathrm{d}x \le C(p) \int_{\Omega} [\alpha \eta^2 |H_{u^{\tau,T}}|^2 + \frac{1}{\alpha} D_{\eta}^2 |\nabla u^{\tau,T}|^2] \mathrm{d}x + K_G.$$
(3.10)

Choose α so that $C(p)\alpha = \frac{1}{2}\mu$. Recalling the estimate of Lemma 2.4 for $\|\nabla u^{\tau,T}\|_{L^2(\Omega)}$, we obtain that, for a constant H (independent of τ, T), we have

$$\int_{\Omega} \eta^2 |H_{u^{\tau,T}}|^2 \mathrm{d}x \le H. \tag{3.11}$$

h) Set $\tau = \frac{1}{n}$ and T = n; set also $u^{\frac{1}{n},n} = u^n$ and $L^{\frac{1}{n},n} = L^n$. Recalling the estimates of Lemma 2.4, we can assume that

$$\int_{B(x^0,\delta^0)} |\nabla u^n|^2 \le K^2 \tag{3.12}$$

and

$$\int_{B(x^0,\delta^0)} |H_{u^n}|^2 \le K^2.$$
(3.13)

Then, the family $(\nabla u^n)_n$ is contained in a compact subset of $L^2(B(x^0, \delta^0))$.

Consider $\left(\frac{l'_n(|\nabla u^n|)}{|\nabla u^n|}u^n_{x_i}\right)_n$. From (3.1) we have

$$\left|\frac{\mathrm{d}}{\mathrm{d}x_s} \left(\frac{l'_n(|\nabla u^n|)}{|\nabla u^n|} u^n_{x_i}\right)\right| \leq \begin{cases} |u^n_{x_ix_s}| & \text{for} \quad |\nabla u^n| < \tau\\ |\nabla u^n|^{p-2} \left[(p-2)|\nabla u^n_{x_s}| + |u^n_{x_ix_s}|\right] & \text{for} \quad \tau \leq |\nabla u^n| < T\\ n^{p-2}(p-2) \left[|\nabla u^n_{x_s}| + |u^n_{x_ix_s}\right] & \text{for} \quad |\nabla u^n| > T. \end{cases}$$

We can write

$$|\nabla u^n|^{p-2} |\nabla u^n_{x_s}| \le \frac{p-2}{p-1} |\nabla u^n|^{p-1} + \frac{1}{p-1} |\nabla u^n_{x_s}|^{p-1}$$

and

$$|\nabla u^n|^{p-2}|u^n_{x_ix_s}| \le \frac{p-2}{p-1}|\nabla u^n|^{p-1} + \frac{1}{p-1}|u^n_{x_ix_s}|^{p-1}.$$

Since $\int_{B(x^0,\delta^0)} [|\nabla u^n|^{p-1}]^{\frac{2}{p-1}} = \int_{\Omega} |\nabla u^n|^2$, and, similarly, $\int_{B(x^0,\delta^0)} [|\nabla u^n_{x_s}|^{p-1}]^{\frac{2}{p-1}} = \int_{\Omega} |\nabla u^n_{x_s}|^2$ and the same for $|u^n_{x_ix_s}|^{p-1}$, from (3.13) and (3.12), we can assume that, for some constant K_p , independent of n, we have that, for $i = 1, \ldots, N$,

$$\int_{B(x^0,\delta^0)} \left| \nabla \left(\frac{l'_n(|\nabla u^n|)}{|\nabla u^n|} u^n_{x_i} \right) \right|^{\frac{2}{p-1}} \le K_p$$

and, since $\frac{2}{p-1} > 1$, that the family $(\frac{l'_n(|\nabla u^n|)}{|\nabla u^n|}\nabla u^n)_n$ is contained in a compact subset of $L^{\frac{2}{p-1}}(B(x^0,\delta^0))$. The arbitrariness of x_0 allows us to extend the previous results from $B(x^0,\delta^0)$ to any $\omega \subset \Omega$.

i) We claim that u is a solution to the Euler-Lagrange equation, *i.e.*, that, for every $\eta \in C_c^1(\Omega)$,

$$\int_{\Omega} [\langle \nabla L(\nabla u(x)), \nabla \eta(x) \rangle + g_u(x, u(x))\eta(x)] dx = 0$$

Fix $\eta \in C_c^1(\Omega)$. There exists a subsequence (n_{ν}) such that $u^{n_{\nu}} \to u$ in $L^2(\operatorname{supp} \eta)$, that $\nabla u^{n_{\nu}} \to \nabla u$ in $L^2(\operatorname{supp} \eta)$ and pointwise a.e., and that $\frac{l'_{n_{\nu}}(|\nabla u^{n_{\nu}}|)}{|\nabla u^{n_{\nu}}|} \nabla u^{n_{\nu}} \to d$ in $L^{\frac{2}{p-1}}(\operatorname{supp} \eta)$. Moreover, we have that

$$\int_{\Omega} \left[\langle \nabla L^{n_{\nu}} (\nabla u^{n_{\nu}}), \nabla \eta \rangle + g_u(x, u^{n_{\nu}}) \eta \right] \mathrm{d}x = 0$$

and that $g_u(x,u) = f(x) + G(u)$, where G is uniformly Lipschitzian of Lipschitz constant Λ_G . Then, from $\int_{\Omega} |g_u(x,u^{n_{\nu}}) - g_u(x,u)| dx \leq \Lambda_G \int_{\Omega} |u^{n_{\nu}} - u| dx$ we obtain

$$\int_{\Omega} \left[\langle \mathbf{d}, \nabla \eta \rangle + g_u(x, u) \eta \right] \mathrm{d}x = 0$$

and we have to show that $d = \nabla L(\nabla u)$.

Fix x such that $\nabla u^{n_{\nu}}(x) \to \nabla u(x)$. When $\nabla u(x) \neq 0$, there exists a ball $B(\nabla u(x), \varepsilon)$ such that for ν sufficiently large, $\nabla L^{n_{\nu}}(\xi) = \nabla L(\xi)$ for every $\xi \in B(\nabla u(x), \varepsilon)$, so that $d(x) = \lim \nabla L(\nabla u^{n_{\nu}}) = \nabla L(\nabla u(x))$; when $\nabla u(x) = 0$, we can assume that $|\nabla u^{n_{\nu}}| \leq 1$; fix arbitrarily τ , then $l'_{n_{\nu}}(|\nabla u^{n_{\nu}}|) \leq |\nabla u^{n_{\nu}}| \cdot \max\{\tau^{p-2}, |\nabla u^{n_{\nu}}|^{p-2}\}$, thus proving the claim.

This proves statement i) of the Theorem 2.2.

j) To prove statement ii), first notice that, in this case, a solution u to the Euler–Lagrange equation is a solution to the problem of minimizing

$$\int_{\Omega} [L(\nabla v(x)) + f(x)v(x)] dx \quad \text{on} \quad u + W_0^{1,p}(\Omega):$$

REGULARITY

in fact, the problem is jointly convex in $(\nabla v, v)$. We claim that, for this problem, uniqueness of solutions holds. Once this claim is proved, part i) will apply to u.

Proof of this claim: let u and w be solutions to the minimization problem; then, for every $\eta \in C_c^1(\Omega)$, we have

$$\int_{\Omega} \langle |\nabla u|^{p-2} \nabla u - |\nabla w|^{p-2} \nabla w, \nabla \eta \rangle \mathrm{d}x = 0.$$

Since $|\nabla u|^{p-2}\nabla u - |\nabla w|^{p-2}\nabla w \in L^q$ and $u - w \in W_0^{1,p}$, by approximating u - w with a sequence in $C_c^1(\Omega)$, we obtain

$$\int_{\Omega} \langle |\nabla u|^{p-2} \nabla u - |\nabla w|^{p-2} \nabla w, \nabla u - \nabla w \rangle \mathrm{d}x = 0.$$

On the other hand, from [3,11], we have, for any ξ_1 and ξ_2 , that

$$\langle |\xi_1|^{p-2}\xi_1 - |\xi_2|^{p-2}\xi_2, \xi_1 - \xi_2 \rangle \ge 2^{2-p}|\xi_1 - \xi_2|^p$$

and hence that

$$\int_{\Omega} 2^{2-p} |\nabla u - \nabla w|^p \mathrm{d}x = 0$$

that implies that u = w.

References

- B. Avelin and K. Nystrm, Estimates for solutions to equations of p-Laplace type in Ahlfors regular NTA-domains. J. Funct. Anal. 266 (2014) 5955–6005.
- [2] A. Bjrn, A regularity classification of boundary points for p-harmonic functions and quasiminimizers. J. Math. Anal. Appl. 338 (2008) 39–47.
- [3] L. Damascelli, Comparison Theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Inst. Henri Poincaré, Anal. Non Linéaire 15 (1998) 493–516.
- [4] E.N. Dancer D. Daners and D. Hauer, A Liouville theorem for p-harmonic functions on exterior domains. Positivity 19 (2015) 577–586.
- [5] D. Daners and P. Drbek, A priori estimates for a class of quasi-linear elliptic equations. Trans. Amer. Math. Soc. 361 (2009) 6475–6500.
- [6] L. Esposito and G. Mingione, Some remarks on the regularity of weak solutions of degenerate elliptic systems. Rev. Mat. Complutense 11 (1998) 203–219.
- [7] E. Giusti, Metodi diretti nel calcolo delle variazioni. Unione Matematica Italiana, Bologna (1994).
- [8] S. Hildebrandt and K.-O. Widman, Some regularity results for quasilinear elliptic systems of second order. Math. Z. 142 (1975) 67–86.
- [9] T. Kuusi and G. Mingione, Guide to nonlinear potential estimates. Bull. Math. Sci. 4 (2014) 1–82.
- [10] O.A. Ladyzhenskaya and N.N. Uraltseva, Linear and quasilinear elliptic equations. Translated from the Russian. Academic Press, New York, London (1968).
- [11] P. Lindqvist, Notes on the p-Laplace equation, Lecture Notes at the University of Jyvaskyla. Department of Mathematics and Statistics (2006).
- [12] J.J. Manfredi, A.M. Oberman and A.P. Sviridov, Nonlinear elliptic partial differential equations and p-harmonic functions on graphs. Differ. Integral Equ. 28 (2015) 79–102.
- [13] L. Nirenberg, Estimates and existence of solutions of elliptic equations. Commun. Pure Appl. Math. 9 (1956) 509–529.
- [14] S. Pigola and G. Veronelli, On the Dirichlet problem for p-harmonic maps I: compact targets. Geom. Dedicata 177 (2015) 307–322.
- [15] P. Tolksdorf, Regularity for a More General Class of Quasilinear Elliptic Equations. J. Differ. Equ. 51 (1984) 126–150.
- [16] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems. Acta Math. 138 (1977) 219–240.