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Abstract. In this paper, a behavior of certain modified Perona−Malik functionals is considered as
the parameter, which determines the scaling and the amount of the regularization, tends to zero.
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1. Introduction

Minimizing the Mumford−Shah functional is a classical way to segment or restore an image, reference [21]. In
this model, the segmentation is defined as a joint smoothing and edge detection problem. The Mumford−Shah
functional is defined as

E(u, K) := μ||f − u||2L2(Ω) + λ

�
Ω\K

|∇u|2 dx + 2
�

K

dσ (1.1)

where μ, λ ∈ R, Ω ⊂ R
2, f ∈ L2(Ω), K ⊂ Ω is a closed set modeling the edges of the image u, and dσ denotes

the line integral. In the above energy, the first term forces that the segmentation u is near the original image f ,
the second term forces u to be smooth outside the edge set K, and the last term forces that the image u does
not contain too many edges.

The direct minimization of (1.1) is difficult both theoretically and numerically. In a weak formulation of the
Mumford−Shah functional, the minimization over functions u and sets K is replaced by the minimization over
functions u ∈ SBV(Ω) where the edge set K is identified with the jump set Su of the function u. This results
in the weak form

E(u) := μ||f − u||2L2(Ω) + λ

�
Ω

|∇au|2 dx + 2H1(Su). (1.2)

From now on we use at times the term Mumford−Shah functional to refer also to the weak form. Of course it is
not directly clear how the weak form is mathematically related to the original functional. For the existence of
minimizers of the energies (1.1) and (1.2), and the connections between the models, see e.g. the brief discussion
in reference [5]. Despite the simplification, the numerical minimization of the energy (1.2) is still challenging
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due to the H1(Su) term. Thus it is natural to approximate the functional E in (1.2) (or E in (1.1)) by a
family {Fε}ε>0 of relatively simple functionals, which are easy to minimize, and prove that in some sense these
functionals converge towards the functional E as ε → 0+.

The literature on approximating the Mumford−Shah functional is huge. We only mention some pioneering
works. In reference [3], Ambrosio and Tortorelli utilized an auxiliary function v defined in Ω to approximately
represent the edge set Su (or K) such that v ≈ 1−χSu , where χSu denotes the characteristic function of the set
Su. Then they approximated the H1(Su) term by an energy expression depending only on v. In reference [10],
Chambolle proposed an approximation based on finite differences and he proved that this family Γ -converges
to an anisotropic Mumford−Shah functional. In reference [7], Braides and Dal Maso proposed a non-local
approximation of (1.2) and they proved that their family of functionals Γ -converges to the Mumford−Shah
functional as the index controlling the regularization and rescaling goes to zero. In these non-local models, the
regularization is based on averaging over small balls. In reference [14], Gobbino proved that a family based on
non-local approximation, where the gradient is replaced by finite differences, Γ -converges to the Mumford−Shah
functional. In reference [9], Chambolle and Dal Maso approximated the Mumford−Shah functional in the sense
of Γ -converge based on adaptive finite elements.

Another classical approach to restore or segment an image is the Perona−Malik diffusion, reference [23].
Formally, if f is the original image defined on Ω ⊂ R

2, then the Perona−Malik diffusion forms a nonlinear
scale space {ut}t≥0 such that u(·, 0) = f(·) and for t > 0, ∂tu = div(g(|∇u|)∇u), with the suitable boundary
conditions. In the model, the diffusivity was chosen either as g(t) = 1/(1 + (t/γ)2) or g(t) = e−(t/γ)2 where
γ > 0 is a constant. The diffusion corresponding to the choice g = 1/(1 + (t/γ)2) could formally be seen to be
the gradient flow of the Perona−Malik energy

u �→ γ2

2

�
Ω

log(1 + |∇u/γ|2) dx (1.3)

with respect to the metric L2(Ω).
The segmentation based on the minimization of the Mumford−Shah functional and the segmentation based on

the Perona−Malik diffusion, although very different at first glance, are related. In reference [20], Morini and Negri
proved that a suitably rescaled family of biased discrete Perona−Malik energies Γ -converges to an anisotropic
Mumford−Shah functional. In reference [17], Kawohl argues that the Ambrosio-Tortorelli approximation [3] of
the Mumford−Shah functional naturally leads to the diffusion model of Perona and Malik. In reference [22],
Negri considers regularized Perona−Malik functionals in the non-local approximation framework and proves
that the Γ -limit of these functionals is the Mumford−Shah functional. See also [13] for a discussion on the
Mumford−Shah and Perona−Malik models and [19] for more recent results on Gamma-limits of convolution
functionals.

In this paper, similar to [22], we also consider approximating the weak form of the Mumford−Shah functional
by Perona−Malik type functionals. In contrast to [22], where the approximating functionals are defined in a
Sobolev space, we consider the approximating functionals defined in the space of functions of bounded variation.

2. Preliminaries and statement of the main result

We denote by Ω ⊂ R
n a bounded domain with Lipschitz boundary. Thus it is assumed that ∂Ω can be

covered by a finite number of Lipschitz graphs in some suitable coordinate systems. If E ⊂ R
n and δ > 0, we

denote by Eδ the open δ-neighborhood of E.
In this paper, G ∈ C1

c (Rn) is a radially symmetric, radially decreasing function such that supp(G) = B(0, 1),
G ≥ 0, and

�
Rn Gdx = 1. If σ > 0, let Gσ(x) := 1

σn G(x/σ). We denote

�(σ) := σ log
(

1 +
1
σ

)
(2.1)
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where σ > 0. Clearly, �(σ) → 0 as σ → 0+. If Q ⊂ R
n, we use |v|Q to denote the integral average of |v| over Q,

i.e.
|v|Q =

�
Q

|v| dx.

Next we state some facts regarding the functions of bounded variation. For the proofs, see e.g. [2]. The space
of functions of bounded variation, BV(Ω), consists of the functions u ∈ L1(Ω) whose total variation is finite.
Here the total variation of u is defined as

sup
{�

Ω

u div(ϕ) dx|ϕ ∈ C1
c (Ω; Rn), ||ϕ||L∞(Ω) ≤ 1

}
. (2.2)

If u ∈ BV(Ω), then it follows from the Riesz representation theorem that the distributional gradient of u is an
R

n-valued Radon measure Du, whose total variation measure |Du| has the property that |Du|(Ω) equals the
total variation of u defined in (2.2). If u ∈ BV(Ω), then the measure Du can be decomposed as

Du = ∇au dx + Dsu = ∇au dx + Dju + Dcu = ∇au dx + (u+ − u−)|νu Hn−1|Su + Dcu. (2.3)

In the decomposition (2.3), ∇au ∈ L1(Ω; Rn) is the approximate gradient and the measure Dsu is the singular
part of Du. The measure Dsu is mutually singular to Ln = dx, i.e. Dsu ⊥ Ln. The singular part can further
be decomposed as the sum of the jump part Dju = (u+ − u−)|νu Hn−1|Su and the Cantor part Dcu, where
Su is the jump set of u and νu is a normal vector field to Su, and u+(x), u−(x) denote the traces where
limσ→0+

�
B+(x,σ)

|u(y) − u+(x)| dy = 0 and limσ→0+

�
B−(x,σ)

|u(y) − u−(x)| dy = 0. In the limits, B+(x, σ) =
{ y | ||x − y|| < σ, (y − x) · νu(x) > 0 } and B−(x, σ) is defined analogously.

The space SBV(Ω) consists of those functions u ∈ BV(Ω) for which the Cantor part of Du vanishes, Dcu = 0.
The space SBV2(Ω) consists of those functions u ∈ SBV(Ω) for which Hn−1(Su) < ∞ and ∇au ∈ L2(Ω; Rn).

If u ∈ L1
loc(R

n), then the maximal operator is defined by

M(u)(x) := sup
r>0

�
B(x,r)

|u(y)| dy

where x ∈ R
n. It is well-known that M : L2(Rn) → L2(Rn) is bounded. The boundedness is still true if the

balls in the definition of M are replaced by cubes.
If u ∈ BV(Ω) and x ∈ Ω, we denote by |Du|σ a regularization of the measure |Du| where

|Du|σ(x) :=
�

Ω∩B(x,σ)

Gσ(x − y) d|Du|(y). (2.4)

If A ⊂ Ω, A open, we define

Fσ(u, A) :=
�

A

1
�(σ)

log
(
1 + �(σ) |Du|σ(x)2

)
dx. (2.5)

We set Fσ(u) := Fσ(u, Ω). If u ∈ L1(Ω) \ BV(Ω), we set Fσ(u) = +∞.
If u ∈ H1(Ω) and x ∈ Ω, let

(|∇u|2)σ(x) :=
�

Ω∩B(x,σ)

Gσ(x − y)|∇u(y)|2 dy.

For u ∈ H1(Ω) and if A ⊂ Ω, A open, we define

FN
σ (u, A) :=

�
A

1
�(σ)

log
(
1 + �(σ) (|∇u|2)σ(x)

)
dx (2.6)

and we set FN
σ (u) := FN

σ (u, Ω). If u ∈ L1(Ω) \ H1(Ω), we set FN
σ (u) = +∞.
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For u ∈ SBV2(Ω) and A ⊂ Ω, A open, we define the weak Mumford−Shah functional in A by

MS(u, A) :=
�

A

|∇au|2 dx + 2Hn−1(Su ∩ A) (2.7)

and we set MS(u) := MS(u, Ω). If u ∈ L1(Ω) \ SBV2(Ω), we set MS(u) = +∞.
Next, the Γ -lower and the Γ -upper limits of the family Fσ are defined. If u ∈ L1(Ω), let

F ′(u) := inf
{

lim inf
σ→0+

Fσ(uσ)|uσ → u in L1(Ω)
}

and

F ′′(u) := inf
{

lim sup
σ→0+

Fσ(uσ)|uσ → u in L1(Ω)
}

.

It is known that both F ′ and F ′′ are lower semicontinuous in L1(Ω). We say that the family Fσ Γ -converges to
F in L1(Ω) if F ′ = F ′′ = F in L1(Ω). See e.g. [6] for an introduction on these topics.

In reference [15, 16], functionals of the form
�

U

g(a(σ)|Du|σ(x)2)
a(σ)

dx (2.8)

were studied as σ → 0+. Here g : [0,∞) → [0,∞) is a potential and a : (0,∞) → (0,∞) is a scaling factor.
In (2.8), σ determines the amount of regularization and a(σ) → 0 as σ → 0+. The main result was the point-wise
behavior for a fixed u of these functionals as σ tends to zero. This result included e.g. the choices g(t) = t

t+1

and g(t) = log(1 + t). The functionals in reference (2.8) corresponding to these choices lead to variants of the
Geman−McClure and Hebert−Leahy (or Perona−Malik) models. In reference [16], also the Γ -convergence was
studied in the case g(t) = t

t+1 and it was shown that the Gamma-limit is the weak form of the Mumford−Shah
functional.

In this paper, we also study a family of functionals which are of the form (2.8). Compared to [16], our
functionals Fσ defined in (2.5) differ regarding how the functionals are defined when x is near the boundary
∂Ω, namely if dist(x, ∂Ω) < σ. We consider only the choice g(t) = log(1 + t) since this leads to an interesting
formal connection between the Mumford−Shah and Perona−Malik models. The main result of this paper is
the Gamma-convergence of the regularized Perona−Malik energies Fσ, defined in (2.5), to the weak form of the
Mumford−Shah functional, as the parameter σ, which controls the regularization and the scaling, tends to zero.
The Gamma-convergence is heavily based on the results proved in reference [22].

The functionals Fσ are a modification of the functionals FN
σ in (2.6) proposed by Negri in reference [22]. Since

in general the distributional derivative Du of u ∈ BV(Ω) may also have a non-vanishing singular part Dsu, it is
easier to handle FN

σ numerically than Fσ, if traditional numerical methods are used. But on the other hand, the
Perona−Malik diffusion may preserve edges or even enhance them and thus in this aspect it could be natural
to associate also the Perona−Malik functionals with a space which can contain images with edges. Now FN

σ

is finite only in H1(Ω) whereas Fσ allows to consider also images which have edges along (n − 1)-dimensional
hypersurfaces, since Fσ is finite if its argument is a BV image.

We know by ([22], Thm. 3.1) that FN
σ Gamma-converges to MS in L1(Ω). Namely, by choosing p = 2,

f(t) = log(1 + t) and aσ = σ log(1/σ) we see that fσ(t) = f(aσt)/aσ satisfies the required conditions regarding
the rescaling of f in ([22], Lem. 4.2). It is quite straightforward to see that if aσ is replaced by �(σ) defined
in (2.1), then the required conditions remain true. It then follows from ([22], Thm. 3.1) that FN

σ Gamma-
converges to MS in L1(Ω).

The following theorem is the main result of this paper. It follows directly from Corollary 3.4 and Theorem 5.3.
The theorem considers the Gamma-convergence of the regularized Perona−Malik functionals Fσ towards the
Mumford−Shah functional.
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Theorem 2.1. Let Ω ⊂ R
n be a bounded Lipschitz domain. Then Fσ Γ -converges to MS in L1(Ω).

As in ([16], Thm. 3.8), one could also give a direct proof for the following result:

Theorem 2.2. Let Ω ⊂ R
n be a bounded Lipschitz domain. If u ∈ SBV2(Ω), then MS(u) ≤ lim infσ→0+ Fσ(u).

3. Γ -limsup inequality

In this section we prove that the Mumford−Shah functional is an upper bound for the Gamma-upper limit
of the family Fσ.

We recall that an (n − 1)-dimensional simplex in R
n is the convex hull of n points x0, x1, . . . , xn−1 ∈ R

n

(called the vertices of the simplex) which are not contained in any hyperplane of dimension n−2. The following
density theorem follows from ([11], Cor. 3.11) where it is proved under more general assumptions.

Theorem 3.1. Let Ω ⊂ R
n be a bounded Lipschitz domain, u ∈ SBV2(Ω) ∩ L2(Ω) and ε > 0. Then there

exists v ∈ SBV2(Ω) ∩ L2(Ω) such that Sv is an intersection of Ω with a finite number of pairwise disjoint
(n − 1)-dimensional simplexes, Hn−1(Sv \ Sv) = 0, v ∈ W k,∞(Ω \ Sv) for every k ∈ N, ||v − u||L2(Ω) < ε,
||∇av −∇au||L2(Ω;Rn) < ε, and |Hn−1(Sv) −Hn−1(Su)| < ε.

Next a technical lemma which will be used later in this section.

Lemma 3.2. Let c ∈ R, c ≥ 0. Then there exists σ0(c) > 0 such that if 0 < σ < σ0(c) and t ∈ R, t ≥ 0, then

log
(

1 + �(σ)
( c

σ
t
)2
)/

log
(

1 +
1
σ

)
− 1

2
t ≤ 2.

Proof. If c = 0, the claim is true so we assume from now on that c > 0. We denote the expression on the left of
the above inequality by f(σ, t) which is defined for σ > 0 and t ≥ 0. If σ is fixed and so small that �(σ) < 4c2,
then by studying the function t �→ f(σ, t), t ≥ 0, it follows that its global maximum occurs either at t = 0 or

t = t2(σ) := 2c+
√

4c2−�(σ)

c log(1+1/σ) .

Now f(σ, 0) = 0. Since �(σ), t2(σ) → 0 as σ → 0+, then �(σ)(ct2(σ))2 ≤ 1 when σ is small. Using this we see
that f(σ, t2(σ)) ≤ f(σ, t2(σ)) + 1

2 t2(σ) ≤ 2 when σ is small. Then the claim of the lemma follows. �

The following theorem is similar to ([16], Thm. 1.3) where actually an equality is proved. Compared to ([16],
Thm. 1.3) we utilize a certain covering by cubes having mutually disjoint interiors.

Theorem 3.3. Let Ω ⊂ R
n be a bounded domain with Lipschitz boundary. Let u ∈ SBV2(Ω) ∩ L2(Ω) be such

that Su ∩ Ω ⊆ Ω ∩ (∪N
i = 1Si

)
, where the sets Si are pairwise disjoint (n − 1)-dimensional simplexes in R

n, and
Hn−1(Su \ Su) = 0. Then

lim sup
σ→0+

Fσ(u) ≤ MS(u).

Proof. First, we recall from Section 2 that if E ⊂ R
n, then Eσ denotes the set { x ∈ R

n | dist(x, E) < σ }.
If x ∈ Ω \ (Su)σ, then |Du|σ(x) =

�
B(x,σ)∩Ω

Gσ(x − y)|∇au(y)| dy = |∇au|σ(x) where we assume that
|∇au| = 0 outside Ω. Using the inequality log(1 + t) ≤ t, for t ≥ 0, we get

Fσ(u, Ω \ (Su)σ) ≤
�

Ω\(Su)σ

|∇au|σ(x)2 dx.

Since u ∈ SBV2(Ω), we have |∇au| ∈ L2(Ω). Now |∇au|σ(x)2 ≤ (wn||G||L∞M(|∇au|)(x))2 where wn is the
volume of the unit ball in R

n and M is the maximal operator defined in Section 2. Since M is bounded in
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L2(Rn), it follows that (wn||G||L∞M(|∇au|))2 is an integrable majorant of |∇au|2σ on Ω and thus we can apply
the dominated convergence theorem and we get

lim sup
σ→0+

Fσ(u, Ω \ (Su)σ) ≤
�

Ω

|∇au|2 dx.

Since the sets Si are pairwise disjoint and if we apply ([2], p. 32 and [2], Thm. 3.16) to a change of coordinates
transformation which is a rotation followed by a translation (so the transformation is bi−Lipschitz with the
Lipschitz constant 1), we see that for the rest of the proof it is sufficient to assume that Sk ∩Ω �= ∅, Sk ⊂ R

n−1

and to show that
lim sup
σ→0+

Fσ(u, Ω ∩ (Su ∩ Sk)σ) ≤ 2Hn−1(Su ∩ Sk).

Let ε > 0 and x ∈ Ω ∩ (Su ∩ Sk)σ. Since Du = ∇au dx + Dsu and the measures ∇au dx and Dsu are mutually
singular, then

|Du|σ(x) =
�

B(x,σ)∩Ω

Gσ(x − y) d|Dsu|(y) +
�

B(x,σ)∩Ω

Gσ(x − y)|∇au(y)| dy =: |Dsu|σ(x) + |∇au|σ(x).

Using this and the inequality |a + b|2 ≤ (1 + ε)|a|2 + (1 + 1/ε)|b|2, the inequality log(1 + x+ y) ≤ y + log(1 +x),
for x, y ≥ 0, and Bernoulli’s inequality we see that

Fσ(u, Ω ∩ (Su ∩ Sk)σ) ≤1 + ε

ε

�
Ω∩(Su∩Sk)σ

|∇au|2σ dx

+ (1 + ε)
�

Ω∩(Su∩Sk)σ

1
�(σ)

log(1 + �(σ)|Dsu|2σ) dx =: (1) + (2).

Since |∇au|σ(x) ≤ wn||G||L∞M(|∇au|)(x), u ∈ SBV2(Ω) and limσ→0+ Ln((Su)σ) = 0, it follows from the
absolute continuity of the integral that (1) tends to zero as σ → 0. Using this and since ε is arbitrary, it is
sufficient to show that

lim sup
σ→0+

�
Ω∩(Su∩Sk)σ

1
�(σ)

log(1 + �(σ)|Dsu|2σ) dx ≤ 2Hn−1(Su ∩ Sk). (3.1)

If x ∈ Ω, then since log(1 + �(σ)[c/σn]2) ≤ log(1 + 1/σ2n) ≤ 2n log(1 + 1/σ) provided σ is small, we see that

1
�(σ)

log(1 + �(σ)|Du|σ(x)2) ≤ 1
�(σ)

log

(
1 + �(σ)

[
1
σn

||G||L∞ |Du|(Ω)
]2)

≤ 2n

σ
(3.2)

provided σ > 0 is small enough. If σ0 > 0, then Ω ∩ (Su ∩Sk)σ ⊂ Ω ∩ (Sk)σ ⊂ (Ω ∩ [Sk ∩ (∂Ω)σ0 ]σ)∪ (Ω ∩ [Sk \
(∂Ω)σ0 ]σ).

Since Sk ⊂ R
n−1, Ω ∩ [Sk ∩ (∂Ω)σ0 ]σ ⊂ Ω ∩ [(Sk ∩ (∂Ω)σ0 )σ,n−1 × (−σ, σ)] where (·)σ,n−1 denotes the open

σ-neighbourhood of a set in R
n−1. If σ < σ0, then

Ln(Ω ∩ [Sk ∩ (∂Ω)σ0 ]σ) ≤ 2σLn−1(Ω ∩ (Sk ∩ (∂Ω)σ0)σ,n−1) ≤ 2σLn−1(Ω ∩ (Sk ∩ (∂Ω)σ0 )σ0,n−1)

which combined with the inequality (3.2) gives

Fσ(u, Ω ∩ [Sk ∩ (∂Ω)σ0 ]σ) ≤ 4nLn−1(Ω ∩ (Sk ∩ (∂Ω)σ0 )σ0,n−1) < ε

provided σ0 is small enough.
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By the preceding analysis, to prove (3.1) it is sufficient to show that

lim sup
σ→0+

�
Ω∩[Sk\(∂Ω)σ0 ]σ

1
�(σ)

log(1 + �(σ)|Dsu|2σ) dx ≤ 2Hn−1(Su ∩ Sk). (3.3)

To prove the inequality (3.3) we utilize a covering of the set Ω ∩ Sk \ (∂Ω)σ0 ⊂ R
n−1 by (n − 1)-dimensional

cubes where the cubes have mutually disjoint interiors and the area where some of the cubes overlap can be
made arbitrarily small.

Let us make the preceding discussion precise. Let ε > 0 again be arbitrary. By assumption, Sk ⊂ R
n−1. We

extend the set Sk \ (∂Ω)σ0 slightly in R
n−1. Let

S′
k := {x ∈ Ω ∩ R

n−1 | d(x, Sk \ (∂Ω)σ0) < δ0}

and

S′′
k :=

{
x ∈ Ω ∩ R

n−1 | d(x, Sk \ (∂Ω)σ0) ≤
δ0

2

}

where, since Sk \ (∂Ω)σ0 is closed, δ0 > 0 can be selected to be so small that δ0 < σ0 and

Hn−1(S′
k \ [Sk \ (∂Ω)σ0 ]) < ε. (3.4)

Now Ω ∩ Sk \ (∂Ω)σ0 ⊂ S′′
k ⊂ S′

k. We can also assume that δ0 is so small that S′
k is at positive distance from

other sets Sl, l �= k, since it is assumed that the simplexes Sj are pairwise disjoint.
Next we write S′

k as S′
k = ∪∞

j=1Qj , where the cubes Qj are closed in R
n−1 and have mutually disjoint interiors.

For instance, the Whitney decomposition can be used to accomplish this. If �(Qj) denotes the side length of Qj,
let Qj,a ⊂ R

n−1 denote the open cube co-centric with Qj and whose side length is �(Qj) + a.
We select εj > 0 for each j such that Qj,2εj is at positive distance from other sets Sl, l �= k, and

∑
j

Hn−1(Qj,εj \ Qj) < ε. (3.5)

Then Hn−1(∪jQj,εj \ (∪jQj)) < ε. Now S′′
k can be covered by the open cubes Qj,εj and since S′′

k is compact in
R

n−1, then S′′
k can be covered by a finite number of cubes Qj,εj , j = 1, . . . , M . Provided σ > 0 is small, we also

have
Ω ∩ [Sk \ (∂Ω)σ0 ]σ ⊂ S′′

k × (−σ, σ) (3.6)

where S′′
k is viewed as a subset of R

n−1.
By ([2], Thm. 3.77), Dsu

∣∣
Ω∩Rn−1 = (u+ − u−)enHn−1

∣∣
Ω∩Rn−1 where en is the nth Cartesian unit coordinate

vector. If x = (x′, xn) ∈ Qi,εi × (−σ, σ), then due to the choice of εi, Qn(x, 2σ), the n-dimensional cube of the
side length 2σ centered at x, is at positive distance from other sets Sl, l �= k, provided σ is small. Then

|Dsu|σ(x′, xn) ≤ c

σ
|u+ − u−|Qn−1(x′,2σ)

where c = 2n−1||G||L∞ and |u+ − u−|Qn−1(x′,2σ) is the integral average of |u+ − u−| in Qn−1(x′, 2σ) ⊂ R
n−1.

Using (3.6) and since S′′
k is covered by the cubes Qi,εi , i = 1, . . . , M , then

�
Ω∩[Sk\(∂Ω)σ0 ]σ

1
�(σ)

log(1+�(σ)|Dsu|2σ) dx ≤
M∑

i =1

�
Qi,εi

2
log(1 + 1

σ )
log
(

1 + �(σ)
[ c

σ
|u+ − u−|Qn−1(x′,2σ)

]2)
dx′.

(3.7)
Since u ∈ SBV2(Ω) ∩ L2(Ω), Sk ⊂ R

n−1 and Qi,2εi is at positive distance from other sets Sl, l �= k, it follows
that provided a > 0 is small enough, then g := u

∣∣
Qi,2εi

×(0,a)
∈ H1(Qi,2εi × (0, a)) and h := u

∣∣
Qi,2εi

×(−a,0)
∈



1506 J. TIIROLA

H1(Qi,2εi × (−a, 0)). It follows from the Sobolev trace theorem that tr(g) ∈ H1/2(∂(Qi,2εi × (0, a))) and tr(h) ∈
H1/2(∂(Qi,2εi × (−a, 0))). Actually, tr(g) = u+ and tr(h) = u− in Qi,2εi (see e.g. [2], Thm. 3.77 and [12],
Rem., Sect. 4.3). Let v := tr(g) − tr(h) in Qi,2εi and v ≡ 0 otherwise in L2(Rn−1). Then v ∈ L2(Rn−1) and
v
∣∣
Qi,2εi

∈ H1/2(Qi,2εi).

It follows from Lemma 3.2 that the integrand in (3.7) has a majorant |v|Qn−1(x′,2σ) + 4 in Qi,εi provided
σ > 0 is small. Since |v|Qn−1(x′,2σ) ≤ M(|v|)(x′) and since the maximal operator is bounded in L2(Rn−1), we
see that we can apply the dominated convergence theorem in (3.7) as σ → 0+.

Next we examine how the integrand in (3.7) behaves for a fixed x′ ∈ Qi,εi as σ → 0+. If x′ ∈ Qi,εi ∩Su, then
|v|Qn−1(x′,2σ) → |v(x′)| �= 0 Hn−1 a.e. Thus for Hn−1 a.e. x′ there exists γ > 0 such that 0 < γ ≤ |v|Qn−1(x′,2σ) ≤
|v(x′)| + 1 provided σ > 0 is small. If C > 0 is a constant, we have

lim
σ→0

2
log(1 + 1

σ )
log
(

1 + �(σ)
c2

σ2
C

)
= 2

and thus for Hn−1 a.e. x′ ∈ Qi,εi ∩ Su, the integrand in (3.7) tends to 2 as σ → 0.
Next we examine the case x′ ∈ Qi,εi \ Su. If x′ ∈ Qi,εi \ Su, then v(x′) = 0 and since v ∈ H

1
2 (Qi,2εi), a

differentiation theorem in ([16], Lem. 4.1) implies that limσ→0
1

σ
1
2
|v|Qn−1(x′,2σ) = 0. Thus 1

σ
1
2
|v|Qn−1(x′,2σ) < 1

provided σ > 0 is small enough. We get for the integrand in (3.7) that

lim
σ→0

log

(
1 + �(σ) c2

σ

( |v|Qn−1(x′,2σ)√
σ

)2
)

log(1 + 1
σ )

≤ lim
σ→0

log(1 + c2 log(1 + 1
σ ))

log(1 + 1
σ )

= 0.

Applying the dominated convergence theorem in (3.7), we then see that

lim sup
σ→0+

�
Qi,εi

2

log
(
1 + 1

σ

) log
(

1 + �(σ)
( c

σ
|v|Qn−1(x′,2σ)

)2
)

dx′ = 2Hn−1(Su ∩ Qi,εi).

Since the cubes Qi have mutually disjoint interiors, since
∑

i Hn−1(Qi,εi \Qi) < ε by (3.5) and since Hn−1(S′
k \

[Sk \ (∂Ω)σ0 ]) < ε by (3.4), we see that

M∑
i = 1

Hn−1(Su ∩ Qi,εi) ≤
M∑

i = 1

Hn−1(Su ∩ Qi) + Hn−1(Qi,εi \ Qi) ≤ Hn−1(Su ∩ (∪M
i =1Qi)) + ε

≤ Hn−1(Su ∩ S′
k) + ε = Hn−1(Su ∩ Sk \ (∂Ω)σ0 ) + Hn−1(Su ∩ S′

k \ [Sk \ (∂Ω)σ0 ])
+ ε ≤ Hn−1(Su ∩ Sk) + 2ε,

and since ε > 0 is arbitrary, we see that (3.3) is true. �

Corollary 3.4. F ′′(u) ≤ MS(u) for all u ∈ L1(Ω).

Proof. The proof is based on a density argument ([6], Rem. 1.29). If u ∈ L1(Ω)\SBV2(Ω), the claim is trivially
true. If u ∈ SBV2(Ω), let uk denote the truncation of u with the levels −k and k. Then uk ∈ SBV2(Ω)∩L∞(Ω),
uk → u in L1(Ω) and limk→+∞ MS(uk) = MS(u), see e.g. the proof of ([8], Thm. A.1).

By Theorem 3.1 there exists vk ∈ SBV2(Ω) ∩ L2(Ω) such that MS(vk) ≤ MS(uk) + 1
k and vk → u in L1(Ω).

Applying Theorem 3.3 to vk we get lim supσ→0+ Fσ(vk) ≤ MS(vk) and thus F ′′(vk) ≤ MS(vk). Using the lower
semicontinuity of F ′′ and the analysis we just made we see that F ′′(u) ≤ lim infk→+∞ F ′′(vk) ≤ MS(u). �
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4. BV extension theorem

In this section we consider an extension of a BV function where the extension does not cause a jump along
the boundary. The extension will be used as a technical tool later in this paper. The extension is different from
the one in ([2], Prop. 3.21).

The following reflection result follows e.g. from ([1], Rem. 8.2 or [18], Appendix A).

Theorem 4.1. Let Ω ⊂ R
n be a bounded Lipschitz domain. Then there exist an open neighborhood W of ∂Ω

and a bi−Lipschitz map φ : W → W such that if W+ := W ∩ Ω and W− := W \ Ω, then φ(W±) = W∓ and
φ(x) = x for x ∈ ∂Ω.

Next the actual result. Similar extension was considered in the proof of ([8], Thm. 1.2).

Theorem 4.2. Let Ω ⊂ R
n be a bounded Lipschitz domain and let u ∈ BV(Ω). Let W , W± and φ be as in

Theorem 4.1. We set

uext(x) =

{
u(x), x ∈ Ω

u(φ(x)), x ∈ W−.

On the boundary ∂Ω, uext can be set to be e.g. a constant. Then uext ∈ BV(Ω ∪ W−) and |Duext|(∂Ω) = 0.

Proof. Applying ([2], Thm. 3.16) and since ∂Ω is a Lipschitz boundary we see that uext ∈ BV(Ω ∪ W−). We
can suppose that ∂Ω ⊂ ∪N

i =1Ri where each Ri is an open rectangle and Ri ⊂ Ω ∪ W−. So, Ri = Li × (−t, t)
in some local coordinate system where Li is an (n − 1)-dimensional rectangle and t > 0. Let R′

i := L′
i × (−t, t)

where L′
i is a rectangle such that L′

i ⊂⊂ Li. We can suppose that also the rectangles R′
i cover ∂Ω. Next we

select i arbitrary and set R := L × (−t, t) and R′ := L′ × (−t, t). To prove the theorem, it is sufficient to show
that |Duext|(R′ ∩ ∂Ω) = 0.

We can assume that in some local coordinate system, R∩Ω = {x ∈ R | xn > f(x1, . . . , xn−1), (x1, . . . , xn−1) ∈
L} where f is a Lipschitz function. We can assume that in L, inf f > −t and sup f < t. Let S : R → R be
the vertical deformation from the proof of ([2], Prop. 3.21) which straightens out ∂Ω ∩ R. The function S is
bi−Lipschitz.

Next we consider how smooth functions behave under certain extension. These smooth functions are then
used to approximate a general BV function. Let β > 0, c1 := 1 + Lip(S ◦ φ ◦ S−1), a ∈ C∞(L × (0, c1β)) and
define aext in L′ × (−β, β) by

aext(x) =

{
a(x), x ∈ L′ × (0, β)
a ◦ S ◦ φ ◦ S−1(x), x ∈ L′ × (−β, 0).

(4.1)

When β is small, then S ◦ φ ◦ S−1(L′ × (−β, 0)) ⊂ L × (0, c1β) and aext is then well defined. We prove
that |Daext|(L′ × (−β, β)) ≤ (1 + c2)|Da|(L × (0, c1β)) where c2 depends only on S, φ and n. Namely, let
ϕ ∈ C1

c (L′ × (−β, β)), ||ϕ||L∞ ≤ 1. By the integration by parts, since the outward normals for the boundaries
of L′ × (−β, 0) and L′ × (0, β) are opposite on L′ ×{0}, since φ

∣∣
∂Ω

= id, and since by the chain rule, Jx(a ◦ S ◦
φ ◦ S−1) = JS◦φ◦S−1(x)a · Jx(S ◦ φ ◦ S−1) for Ln a.e. x where Ja(g) denotes the Jacobian matrix of a function g
at a, we see after some calculations that�

L′×(−β,β)

aext(x)
∂ϕ

∂xi
(x) dx = −

�
L′×(0,β)

∂

∂xi
a(x)ϕ(x) dx

−
�

L′×(−β,0)

n∑
j=1

∂a

∂j
(S ◦ φ ◦ S−1(x)) · ∂(S ◦ φ ◦ S−1)j

∂xi
(x) · ϕ(x) dx = (1) + (2).

Using the substitution y := S◦φ◦S−1(x) for (2), since ||ϕ||L∞ ≤ 1, and since ||Jx(S◦φ◦S−1)|| ≤ Lip(S◦φ◦S−1),
we see that

|Daext|(L′ × (−β, β)) ≤ |Da|(L′ × (0, β)) + C(S, φ)|Da|(S ◦ φ ◦ S−1(L′ × (−β, 0))) ≤ (1 + c2)|Da|(L × (0, c1β)).
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We return to the general case. Let c3 := Lip(S). Now u ◦ S−1 ∈ BV(L × (0, a)). Let r > 0 be so small that
c1c3r < t. E.g. by ([4], Thm. 10.1.2) it is possible to find a sequence {ak} ⊂ C∞(L × (0, c1c3r)) such that
ak → u ◦ S−1 in L1(L × (0, c1c3r)) and |Dak|(L × (0, c1c3r)) → |D[u ◦ S−1]|(L × (0, c1c3r)).

Consider the extension (4.1) for each ak where β = c3r. This implies that (ak)ext → uext ◦ S−1 in L1(L′ ×
(−c3r, c3r)) provided r > 0 is small enough. Let c4 := [Lip(S−1)]n−1 and c5 := [Lip(S)]n−1. Using the preceding
analysis we see that

|Duext|(R′ ∩ (∂Ω)r) ≤ c4|D[uext ◦ S−1]|(L′ × (−c3r, c3r)) ≤ lim inf
k→∞

c4|D(ak)ext|(L′ × (−c3r, c3r))

≤ lim inf
k→∞

c4(1 + c2)|Dak|(L × (0, c1c3r)) = c4(1 + c2)|D[u ◦ S−1]|(L × (0, c1c3r))

≤ c4(1 + c2)c5|Du|(S−1(L × (0, c1c3r))) ≤ c4(1 + c2)c5|Du|(Ω ∩ (∂Ω)c6r)

where also c6 depends only on S, φ and n. Then |Duext|(R′ ∩ ∂Ω) = 0 follows by letting r tend to zero. �

The next theorem shows that Fσ(uext, Ω) can be majorized by Fσ(u) up to a multiplicative constant which
depends neither on u nor σ.

Theorem 4.3. Let Ω be a bounded Lipschitz domain. Let u ∈ BV(Ω). Let uext be as in Theorem 4.2. If σ > 0
is small enough, then

Fσ(uext, Ω) ≤ c Fσ(u)

where the constant c ≥ 0 depends neither on u nor σ.

Proof. By Theorem 4.2, |Duext|(∂Ω) = 0. Let x ∈ Ω such that dist(x, ∂Ω) < σ. Using ([2], Thm. 3.16 and [2],
p. 32) we see that

|Duext|σ(x) =
�

B(x,σ)∩Ω

Gσ(x − y) d|Du|(y) +
�

B(x,σ)\Ω

Gσ(x − y) d|Duext|(y)

≤ |Du|σ(x) + [Lip(φ−1)]n−1

�
φ(B(x,σ)\Ω)

Gσ(x − φ−1(y)) d|Du|(y). (4.2)

If σ is small, then φ maps B(x, σ) \ Ω into Ω. We will show that there exists R > 0 which depends only on
Ω and φ such that φ(B(x, σ) \ Ω) is contained in the ball B(x, Rσ). Then we will cover a ball co-centric with
B(0, R) and whose radius is larger than R by small cubes whose centers aj lie on a regular grid and where 0 is
one of the points aj . Then we will show that |Duext|σ(x) ≤ c

∑ |Du|σ(x + σaj) where c > 0 depends neither on
σ nor x and where the summation is over those j for which x + σaj ∈ Ω.

Let us make the preceding discussion precise. Since dist(x, ∂Ω) < σ and φ
∣∣
∂Ω

= id, we see after some
calculations that φ(B(x, σ) \ Ω) ⊆ B(x, [2 Lip(φ) + 1]σ). Set R := 2 Lip(φ) + 1. Then

|Duext|σ(x) ≤ |Du|σ(x) + β

�
B(x,Rσ)∩Ω∩φ(B(x,σ)\Ω)

Gσ(x − φ−1(y)) d|Du|(y)

where β = [Lip(φ−1)]n−1. Since G is radially symmetric, there exists a function h such that G(x) = h(|x|).
Let c > 0 whose exact value will be fixed later. Select T1/2 > 0 such that h(T1/2) = 1

2 ||G||L∞ . Since ∂Ω is a
Lipschitz boundary, it follows that if z ∈ Ω is near ∂Ω, then there exists θ(z) ∈ R

n, |θ(z)| = 1, such that if
zσ := z + σ

c αθ(z) where α > 0 is a constant depending only on ∂Ω, then B(zσ, σ
c ) ⊂ Ω (this is argued locally

e.g. in the proof of ([12], Thm. 3).
We fix c such that c > 1+α

T1/2
. Then B(zσ, σ

c ) ⊂ B(z, σT1/2). We cover B(0, R + 1
c + α

c ) by small cubes. Let

Q(aj , a) denote the cube centered at aj and of side length a. We assume that a is so small that a < 1
3
√

nc
and

G(a, . . . , a) ≥ 1
2 ||G||L∞ . We choose a regular grid {a1, . . . , aN} such that B(0, R + 1

c + α
c ) ⊂ ∪N

j=1Q(aj , a). We
can assume that 0 is one of the points aj .
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Figure 1. In the figure, the dots denote the grid points x + σak. The large ball is B(x, Rσ)
and the small ball is B(yσ,

σ

c
). We prove that if x is near ∂Ω, then for all y ∈ B(x, Rσ) ∩ Ω ∩

φ(B(x, σ) \ Ω) there exists x + σaj for some j such that y and x + σaj ∈ Ω are so near that

Gσ(x + σaj − y) ≥ 1
2
||G||L∞

1
σn

. To prove this, we will show that the ball B(yσ,
σ

c
) contains

such a point.

For each x ∈ Ω and σ > 0, let N(x, σ) := {aj | j ∈ {1, . . . , N}, x + σaj ∈ Ω}. Since 0 belongs to the grid,
N(x, σ) �= ∅.

Let x ∈ Ω, dist(x, ∂Ω) < σ, and y ∈ B(x, Rσ)∩Ω ∩φ(B(x, σ)\Ω). Then B(yσ, σ
c ) ⊂ B(x, (R+ 1

c + α
c )σ)∩Ω

where yσ = y + σ
c αθ(y). Since a < 1

3
√

nc
, it is possible to place a cube whose side length is 3aσ inside the

ball B(yσ, σ
c ). Since also B(x, (R + 1

c + α
c )σ) ⊆ x + ∪N

j=1Q(ajσ, aσ), we see that B(yσ, σ
c ) contains the cube

x + Q(ajσ, aσ) for some j. Thus there exists aj ∈ N(x, σ) such that x + σaj ∈ B(yσ, σ
c ). See also Figure 1.

Since B(yσ, σ
c ) ⊂ B(y, σT1/2), then Gσ(x + σaj − y) ≥ 1

2 ||G||L∞ 1
σn ≥ 1

2Gσ(x− φ−1(y)). Using this and since
supp(Gσ) = B(0, σ), we get�

B(x,Rσ)∩Ω∩φ(B(x,σ)\Ω)

Gσ(x − φ−1(y)) d|Du|(y) ≤ 2
∑

aj∈N(x,σ)

|Du|σ(x + σaj)

and since 0 belongs to the grid, we get recalling (4.2) that

|Duext|σ(x) ≤ 2[1 + 2[Lip(φ−1)]n−1]
∑

aj∈N(x,σ)

|Du|σ(x + σaj).

Let c(n, φ) := 2[1 + 2[Lip(φ−1)]n−1]. We get using the above inequality and Bernoulli’s inequality that

Fσ(uext, Ω) ≤ (c(n, φ)N)2
�

Ω

1
�(σ)

log
(
1 + �(σ) max

aj∈N(x,σ)
|Du|σ(x + σaj)2

)
dx

≤ c(n, φ)2N2(N + 1)
�

Ω

1
�(σ)

log
(
1 + �(σ)|Du|σ(x)2

)
dx

and so the claim of the theorem is true with the choice c = c(n, φ)2N2(N + 1) which depends neither on u
nor σ. �

5. Γ -liminf inequality

The following lemma is kind of a change-of-scale inequality.
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Lemma 5.1. Let 0 < α, β < 1. There exists Aα,β > 0 such that if σ > 0, x ∈ R
n and y ∈ B(x, α(1 − β)σ),

then
G(1−α)(1−β)σ(z − y) ≤ Aα,βGσ(x − z) (5.1)

for all z ∈ B(y, (1−α)(1−β)σ). Furthermore, if dα,β := α(1−β)
α+β−αβ , and if dα,β → 0 as α, β → 0, then Aα,β → 1.

Proof. It is sufficient to prove (5.1) in the case x, y and z are collinear. Namely, let us assume that (5.1) is
true in this case. Then, if x, y and z satisfy the assumptions of the lemma but are not necessarily collinear,
let y′ := x + |x − y| z−x

|z−x| . Then x, y′ and z are collinear, y′ ∈ B(x, α(1 − β)σ) and z ∈ B(y′, (1 − α)(1 − β)σ).
It follows that G(1−α)(1−β)σ(z − y′) ≤ Aα,βGσ(x − z). Combining this with |y′ − z| ≤ |y − z| we see that
G(1−α)(1−β)σ(z − y) ≤ Aα,βGσ(x − z).

We can also assume that |x−z| ≥ |z−y|. Namely, let us assume that (5.1) is true in this case. Then, if x, y and
z satisfy the assumptions of the lemma but |x−z| < |z−y|, let z′ := y−(−y+z). Then z′ ∈ B(y, (1−α)(1−β)σ).
We also have |z′ − x| ≥ |y − z + y − z + z − x| + |z − x| − |z − y| ≥ |y − z| = |z′ − y|. Using the above analysis
we see that G(1−α)(1−β)σ(z − y) = G(1−α)(1−β)σ(z′ − y) ≤ Aα,βGσ(z′ − x) ≤ Aα,βGσ(z − x).

We can also assume that |x−z| ≥ |x−y|. Namely, let us assume that (5.1) is true in this case. Then, if x, y and
z satisfy the assumptions of the lemma but |x − z| < |x − y|, let z′ := 2y − z. Then z′ ∈ B(y, (1 − α)(1 − β)σ).
We get |x − z′| ≥ |x − z′| + |x − z| − |x − y| = |2x − 2y + z − x| + |x − z| − |x − y| ≥ |x − y|. We get
G(1−α)(1−β)σ(z − y) = G(1−α)(1−β)σ(z′ − y) ≤ Aα,βGσ(x − z′) ≤ Aα,βGσ(x − z).

The assumptions that x, y and z are collinear such that |x − z| ≥ |z − y| and |x − z| ≥ |x − y| imply that
|z − y| + | − x + y| = |z − x|. Considering when there is an equality in the triangle inequality we see that
z − y = r(−x + y) for some r ≥ 0.

In addition to the preceding paragraph, we can also assume that |x− y| = α(1 − β)σ. Namely, let us assume
that (5.1) is true in this case. Then, suppose that |x − y| < α(1 − β)σ. If y �= x, let y′ := x + α(1 − β)σ y−x

|y−x|
and z′ := y′ + z − y. Then z′ ∈ B(y′, (1 − α)(1 − β)σ). Since z − y = r(−x + y) for some r ≥ 0, we see that
|z′−x| = |z−y|+α(1−β)σ = |z′−y′|+ |y′−x| and still using the previous paragraph, |x−z| = |y−x|+ |y−z| ≤
|x−y′|+|y′−z′| = |x−z′|. We get G(1−α)(1−β)σ(z−y) = G(1−α)(1−β)σ(z′−y′) ≤ Aα,βGσ(x−z′) ≤ Aα,βGσ(x−z)
when y �= x. If y = x, let y′ := x+α(1−β)σ z−x

|z−x| and z′ := y′+z−y. Then |z′−x| = [α(1−β)σ 1
|z−x| +1]|z−x| ≥

|z − x|. Thus G(1−α)(1−β)σ(z − y) = G(1−α)(1−β)σ(z′ − y′) ≤ Aα,βGσ(x − z′) ≤ Aα,βGσ(x − z).
Next we show that (5.1) is true when x, y and z satisfy the assumptions made in the preceding two paragraphs.

So, |x−z| = |x−y|+ |y−z| and |x−y| = α(1−β)σ. Let h(|x|) := G(x) where x ∈ R
n. By using the substitution

d := |z − y|/((1 − α)(1 − β)σ) we see that to show (5.1) to be true it is sufficient to prove that

Aα,β(d) :=
h(d)

(1 − α)n(1 − β)nh(α(1 − β) + (1 − α)(1 − β)d)
, (5.2)

where d ∈ [0, 1], is bounded. First, Aα,β(0) ≥ 1. Now d = α(1− β) + (1−α)(1− β)d if and only if d = α(1−β)
α+β−αβ .

Set dα,β := α(1−β)
α+β−αβ . Clearly dα,β ∈]0, 1[. If d ∈ [dα,β, 1], then d ≥ (1 − β)[α + (1 − α)d] which implies that

Aα,β(d) ≤ 1/((1 − α)n(1 − β)n). It follows from the continuity of h that there exists yα,β ∈ [0, dα,β] such that
1 ≤ Aα,β(yα,β) < ∞ and

yα,β = arg max
d∈[0,dα,β]

Aα,β(d) = arg max
d∈[0,1]

Aα,β(d).

Set Aα,β := Aα,β(yα,β). We have shown that (5.1) is true and clearly Aα,β → 1 if dα,β → 0 as α, β → 0. �

Proposition 5.2. Let Ω ⊂ R
n be a bounded Lipschitz domain. If ui → u in L1(Ω), σi > 0, σi → 0 as i → +∞,

and lim infi→∞ Fσi(ui) < ∞, then u ∈ SBV2(Ω).

Proof. Let uj → u in L1(Ω). If necessary, by passing to a subsequence and renaming it we can assume that
uj ∈ BV(Ω) for all j. Consider the extension of Theorem 4.2 where φ is the reflection map. We denote the
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extension of uj by vj . Let 0 < α, β < 1 such that (1 − β)(α + [2 Lip(φ) + 1](1 − α)) < 1. Let

wj := (G(1−α)(1−β)σj
∗ vj) |Ω .

Then wj ∈ H1(Ω).
Let x ∈ Ω, y ∈ B(x, α(1 − β)σj) ∩ Ω.
If dist(y, ∂Ω) < (1 − α)(1 − β)σj , then by ([2], Thm. 3.16 and [2], p. 32)

|∇wj(y)| ≤ |Duj |(1−α)(1−β)σj
(y) + [Lip(φ−1)]n−1

�
φ(B(y,(1−α)(1−β)σj)\Ω)

G(1−α)(1−β)σj
(y − φ−1(z)) d|Duj |(z).

Since φ
∣∣
∂Ω

= id and dist(y, ∂Ω) < (1 − α)(1 − β)σj , we see after some calculations that φ(B(y, (1 − α)(1 −
β)σj) \ Ω) ⊆ B(y, (1 − α)(1 − β)σj [1 + 2 Lip(φ)]).

Let h be a function such that G(x) = h(|x|). We select Cα,β > 0 such that

Cα,β ≥ 1
((1 − α)(1 − β))n

max
{

h(0)
h((1 − β)(α + [2 Lip(φ) + 1](1 − α)))

,
h(0)

h(1 − β)

}
·

If z ∈ φ(B(y, (1 − α)(1 − β)σj) \ Ω), then the inequality |z − x| < (1 − β)σj(α + (1 − α)[1 + 2 Lip(φ)]) and the
choice of Cα,β imply that if hσ(r) := 1

σn h(r/σ), then

G(1−α)(1−β)σj
(y − φ−1(z)) ≤ h(1−α)(1−β)σj

(0) ≤ Cα,βGσj (z − x).

If z ∈ B(y, (1 − α)(1 − β)σj) ∩ Ω, then the inequality |z − x| < (1 − β)σj and the choice of Cα,β imply that

G(1−α)(1−β)σj
(y − z) ≤ h(1−α)(1−β)σj

(0) ≤ Cα,βGσj (z − x). (5.3)

By the previous analysis we see that for y ∈ Ω ∩ B(x, α(1 − β)σj), dist(y, ∂Ω) < (1 − α)(1 − β)σj , we have

|∇wj(y)| ≤ [1 + [Lip(φ−1)]n−1]Cα,β |Duj|σj (x). (5.4)

If y ∈ Ω ∩ B(x, α(1 − β)σj) such that dist(y, ∂Ω) ≥ (1 − α)(1 − β)σj , then B(y, (1 − α)(1 − β)σj) ⊂ Ω so
wj(y) = G(1−α)(1−β)σj

∗ uj(y) and using (5.3) we get

|∇wj(y)| ≤ Cα,β |Duj |σj (x). (5.5)

Let E := [1 + [Lip(φ−1)]n−1]Cα,β . Using (5.4) and (5.5) we see that�
B(x,α(1−β)σj)∩Ω

Gα(1−β)σj
(x − y)|∇wj(y)|2 dy ≤ E2|Duj |σj (x)2

for all x ∈ Ω. We denote the expression on the left of the above inequality by (|∇wj |2)α(1−β)σj
(x). Then(∣∣∣∇(wj

E

)∣∣∣2)
α(1−β)σj

(x) ≤ |Duj|σj (x)2.

Let ε > 0. Now limσ→0+
�((1−β)ασ)
(1−β)α�(σ) = 1 and thus there exists σ(α, β, ε) > 0 such that if σ < σ(α, β, ε), then

�(σ)
1+ε ≤ �((1−β)ασ)

(1−β)α ≤ (1 + ε)�(σ). Thus if j is so large that σj < σ(α, β, ε), we get

(1 − β)α
1 + ε

FN
(1−β)ασj

(
wj

[(1 + ε)(1 − β)α]1/2E

)
≤ Fσj (uj).

Since uj → u in L1(Ω) implies that wj → u in L1(Ω) as j → +∞, since the family {FN
ε }ε Gamma-converges

to MS and since lim infi→∞ Fσi(ui) < ∞, it follows that

(1 − β)α
1 + ε

MS
(

u

[(1 + ε)(1 − β)α]1/2E

)
≤ lim inf

j→∞
Fσj (uj) < ∞

so u ∈ SBV2(Ω). �

The following theorem is similar to the lower bound condition of the Gamma-convergence in ([16], Thm. 1.2).
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Theorem 5.3. MS(u) ≤ F ′(u) for all u ∈ L1(Ω).

Proof. Let ui → u in L1(Ω), σi > 0, σi → 0 as i → +∞, and suppose that lim infi→∞ Fσi(ui) < ∞. It is
sufficient to show that MS(u) ≤ lim infi→∞ Fσi(ui). We can assume that ui ∈ BV(Ω) for all i by passing to a
subsequence if necessary. By Proposition 5.2, u ∈ SBV2(Ω).

Let A ⊂ Ω be open such that A ⊂ Ω. Let 0 < α, β < 1. Let wi ∈ H1(Ω) be as in the proof of Proposition 5.2.
Then wi → u in L1(Ω) and wi = G(1−α)(1−β)σi

∗ui in A provided i is large enough. Let x ∈ A. Using Lemma 5.1
we see that |∇wi(y)| ≤ Aα,β |Dui|σi(x) for all y ∈ B(x, α(1 − β)σi). Then

Gα(1−β)σi
∗ |∇wi|2(x) ≤ A2

α,β |Dui|σi(x)2

for all x ∈ A.
Let ε > 0. As in the proof of Proposition 5.2, we see that provided i is large enough, we have

(1 − β)α
1 + ε

FN
(1−β)ασi

(
wi

[(1 + ε)(1 − β)α]1/2Aα,β
, A

)
≤ Fσi (ui, A) ≤ Fσi (ui).

Using the above inequality and ([22], Sect. 6.3) we see that

(1 − β)α
1 + ε

MS
(

u

[(1 + ε)(1 − β)α]1/2Aα,β
, A

)
≤ lim inf

i→∞
Fσi (ui, A).

Letting ε tend to zero we obtain

1
A2

α,β

�
A

|∇au|2 dx + (1 − β)α2Hn−1(Su ∩ A) ≤ lim inf
i→∞

Fσi(ui, A).

Letting α → 1 and β → 0 we get

2Hn−1(Su ∩ A) ≤ lim inf
i→∞

Fσi(ui, A). (5.6)

Let αk := 2−k and βk := 1
k . By Lemma 5.1, Aαk,βk

→ 1 as k → +∞. Thus

�
A

|∇au|2 dx ≤ lim inf
i→∞

Fσi (ui, A). (5.7)

We want to show that
�

A
|∇au|2 dx + 2Hn−1(Su ∩ A) ≤ lim infi→∞ Fσi (ui) for all A ⊂⊂ Ω. Since Su ∩ A is

countably rectifiable, there exist sets Ki ⊂ A, Ki compact in R
n, Ki a subset of a C1 surface Ci, and N ⊂ A,

Hn−1(N) = 0, such that Su ∩ A = N ∪ ∪∞
i =1Ki. It is sufficient to show that

�
A

|∇au|2 dx + 2Hn−1(∪m
i =1Ki) ≤ lim inf

i→∞
Fσi(ui)

for all m.
Let ε > 0 and K := ∪m

i =1Ki. Let K ′
1 := K1. Let V1 := (K ′

1)a1 where a1 > 0 is so small that Hn−1(V1 ∩K) ≤
Hn−1(K ′

1)+ ε/m. Let K ′
2 := K2 \V1 and let V2 := (K ′

2)a2 where a2 > 0 such that Hn−1(V2 ∩K) ≤ Hn−1(K ′
2)+

ε/m. In general, let
K ′

j := Kj \ (V1 ∪ . . . ∪ Vj−1) and Vj := (K ′
j)aj

where aj > 0 is so small that Hn−1(Vj ∩K) ≤ Hn−1(K ′
j)+ ε/m. It follows that the sets K ′

i are mutually disjoint
and the sets Vi cover K. Now Hn−1(∪m

j=1Kj) ≤
∑m

j=1 Hn−1(K ′
j) + ε.
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Select a0 > 0 such that
�
∪m

i = 1(K
′
i)3a0

|∇au|2 dx < ε and for the mutually disjoint sets K ′
i, the sets (K ′

i)a0 are
also mutually disjoint. Using the preceding analysis, the fact that K ′

j ⊆ Su ∩ (K ′
j)a0 , applying (5.7) in the set

A \ ∪m
j=1(K ′

j)3a0 and (5.6) in the set (K ′
j)a0 , we get

�
A

|∇au|2 dx + 2Hn−1(∪m
j=1Kj) ≤ lim inf

i→∞
Fσi(ui) + 3ε.

Letting ε → 0, m → ∞ and A ↑ Ω it follows that MS(u) ≤ lim infi→∞ Fσi(ui). �
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