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LOCAL EXACT BILINEAR CONTROL OF THE SCHRÖDINGER EQUATION ∗

Jean-Pierre Puel1

Abstract. We are going to prove the local exact bilinear controllability for a Schrödinger equation,
set in a bounded regular domain, in a neighborhood of an eigenfunction corresponding to a simple
eigenvalue in dimension N ≤ 3. For a general domain we will require a non degeneracy condition
of the normal derivative of the eigenfunction on a part Γ0 of the boundary satisfying the Geometric
Control Condition (see [G. Lebeau. J. Math. Pures Appl. 71 (1992) 267–291]) and for a rectangle when
N = 2 or an interval for N = 1 no further condition. In the general case we will use real potentials
concentrated in the neighborhood of Γ0 and the linear controllability results with real and sufficiently
regular controls.
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1. Introduction

We are interested in the exact controllability of a Schrödinger equation in a neighborhood of an eigenfunction,
the control being the real potential in the Schrödinger equation. This is then a bilinear controllability problem.

The case of the equation set on the whole space RN is interesting but we will not consider it in the present
work.

More precisely, if Ω is a bounded regular open set of RN with boundary Γ , we consider the Schrödinger
equation for T > 0 ⎧⎨

⎩
i∂y∂t +Δy + V y = 0 inΩ × (0, T ),
y = 0 onΓ × (0, T ),
y(0) = y0 inΩ.

(1.1)

Here V is the potential and y0 is the initial data for which we will make precise assumptions later on.
We denote by (λk)k=1,...,+∞ and (ϕk)k=1,...,+∞ the eigenvalues and the corresponding normalized eigenfunc-

tions of the Laplace operator with Dirichlet boundary conditions. The eigenvalues are real, we also take the
eigenfunctions real, and we then have⎧⎨

⎩
−Δϕk = λkϕk inΩ,
ϕk = 0 onΓ,∫
Ω
ϕkϕjdx = δk,j ∀ k, j = 1, . . . ,+∞.

(1.2)

Notice that if z ∈ C, z �= 0, then zϕk is also an eigenfunction of the Laplace operator.
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If we take the free Schrödinger equation (with zero potential) with initial value ϕk, then the corresponding
solution ϕ̃k is given by

ϕ̃k(t) = e−iλktϕk. (1.3)

We can now formulate our controllability problem.
Given y0, can we find a real potential V such that at time T we have

y(T ) = ϕ̃k(T ) = e−iλkTϕk ? (1.4)

Of course this formulation will be made precise by the choice of the functional setting (for V and y0) which
will be discussed later on. But we will need that (1.1) has a unique solution in a reasonable sense. As V will be
taken real, equation (1.1) will preserve the L2 norm, so that an immediate necessary condition is that∫

Ω

|y0|2dx = 1. (1.5)

Therefore y0 will be taken on the sphere of radius 1 in L2(Ω) which we denote by S.
Results on local bilinear controllability for the Schrödinger equation have been obtained in the 1-dimensional

case by [1, 2]. In these articles, the potentials are taken of the form

V (x, t) = u(t)μ(x)

where μ is a prescribed profile which has to satisfy some conditions on the boundary in addition to a sufficient
regularity. The actual control is the amplitude u(.). In that case, we have to notice that if X is the space of
values of y(t) and if the product by μ is bounded from X to X , due to an abstract result of [4], there is no hope
to obtain a control u ∈ Lrloc(0, T ), r > 1. In [2], an important fact is to consider as functional setting the space

HΔ(Ω) = {z ∈ H1
0 (Ω), Δz ∈ H1

0 (Ω)}. (1.6)

Notice that HΔ(Ω) ⊂ H3(Ω) ∩ H1
0 (Ω) when Ω is regular enough. It can be shown (using for example the

decomposition on the orthonormal basis of eigenfunctions for the Laplace operator) that we also have

HΔ(Ω) = D((−Δ)
3
2 ).

Then the profile μ is taken such that

∀z ∈ HΔ(Ω), μz ∈ H3(Ω) ∩H1
0 (Ω).

but in general
μz /∈ HΔ(Ω).

Using a regularity result for the free Schrödinger equation (proved in the 1-dimensional case in [2] and in the
general case in [10]) and taking u ∈ L2(0, T ), they prove their result using the controllability of the linearized
problem and an inverse mapping theorem.

Unfortunately, in dimensionN ≥ 2, the linearized problem is no longer controllable when the potential is taken
of the form V (x, t) = u(t)μ(x), with μ prescribed, and we cannot apply the same argument. In dimension N = 2,
in [3] the authors obtain a local controllability result, independently from the present work, by considering the
interesting case of potentials V satisfying the Poisson equation{−ΔV (t) + V (t) = 0 inΩ,

V (t) = g(t) onΓ,



1266 J.-P. PUEL

the actual control being here the boundary value g(.). In addition to the restriction on the dimension, their
result requires some technical conditions on the eigenfunctions.

Here we will consider the case of dimension N ≤ 3 and potentials V such that V is real and, for the
eigenfunction ϕk around which we will be working, V ∈ L2(0, T ;E) where

E = {V ∈ H2(Ω), V ϕk ∈ H3(Ω) ∩H1
0 (Ω)}. (1.7)

In fact V will be continuous in time with values in E.
We have to notice that, as the control V will depend on both t and x, the abstract result of [4] does not

apply anymore but this will not be of any help for us.

2. Statement of the result and strategy of proof

2.1. Linear boundary and internal exact controllability problem

First of all we recall some well known results on the linear boundary and internal exact controllability for
the free Schrödinger equation.

The boundary controllability problem can be expressed as follows, due to the reversibility of the equation.
Given a subset Γ0 of Γ , for any y0 ∈ H−1(Ω), can we find g ∈ L2(0, T ;L2(Γ0)) such that the solution y of⎧⎪⎨

⎪⎩
i∂y∂t +Δy = 0 inΩ × (0, T ),
y = g onΓ0 × (0, T ),
y = 0 on (Γ \ Γ0) × (0, T ),
y(0) = y0 inΩ,

(2.1)

satisfies
y(T ) = 0. (2.2)

Taking the adjoint problem ⎧⎨
⎩

i∂ϕ∂t +Δϕ = 0 inΩ × (0, T ),
ϕ = 0 onΓ × (0, T ),
ϕ(0) = ϕ0 inΩ,

(2.3)

it is now well known that the exact controllability problem is equivalent to the following boundary observability
inequality (for a constant C independent of the initial value ϕ0)

||ϕ0||2H1
0 (Ω) ≤ C

∫
Γ0×(0,T )

∣∣∣∣∂ϕ∂ν
∣∣∣∣
2

dσdt, (2.4)

where ν is the outward pointing unit normal vector to Γ .
In [9] the inequality is proved using the multiplier method for any T > 0 with the following assumption on Γ0.

There exists x0 ∈ R
N such that Γ0 = {x ∈ Γ, (x− x0).ν > 0}. (2.5)

This result has been extended in [7] using micro local analysis arguments to the case where Γ0 satisfies the
so-called geometric control condition (GCC), saying roughly speaking that every ray of the geometrical optics
(reflecting on the boundary) reaches Γ0 at a non diffractive point in uniform time.

In dimension N = 2, the case of a rectangle for Ω is very particular and it is shown in [11] that we can take
for Γ0 the union of intervals on Γ as soon as we take at least one interval in each direction.

The case of internal (distributed) exact controllability problem can be written as follows. Let ω be a non
empty open subset of Ω and Iω be the characteristic function of ω. Let y be the solution of the following
Schrödinger equation. ⎧⎨

⎩
i∂y∂t +Δy = h.Iω inΩ × (0, T ),
y = 0 onΓ × (0, T ),
y(0) = y0 inΩ,

(2.6)
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For any y0 ∈ L2(Ω), can we find a control h ∈ L2(0, T ;L2(ω)) such that we have

y(T ) = 0. (2.7)

Again considering the adjoint problem (2.3) this is equivalent to the following internal observability inequality
(for a constant C independent of ϕ0)

|ϕ0|2L2(Ω) ≤ C

∫
ω×(0,T )

|ϕ|2dxdt. (2.8)

In ([9], Prop. 3.1), the author proves that when Γ0 is such that (2.4) is satisfied, then (2.8) is true when ω = ωη
for η > 0 is the neighborhood of Γ0 defined by

ωη =
⋃
x∈Γ0

(B(x; η) ∩Ω). (2.9)

For the particular case of a rectangle for Ω in dimension N = 2 it is proved in [6] that (2.8) is valid for any non
empty open subset ω of Ω. Of course this is a fortiori valid in dimension N = 1. We are now ready to state our
results.

2.2. Statement of the results

For simplicity of the statement we separate the most general case and the case of a rectangle (N = 2) or an
interval (N = 1).

Theorem 2.1. We assume that N ≤ 3, and that Ω is a non empty bounded open set of RN of class C3,α with
α > 0. Let Γ0 be a non empty open subset of the boundary Γ such that the boundary observability inequality (2.4)
is valid, and let (λk, ϕk) be an eigenpair for the Laplace operator with Dirichlet boundary conditions. We assume
that
(H1) λk is a simple eigenvalue.

(H2) |∂ϕk
∂ν

| > 0 on Γ 0.

Then there exists δ > 0 such that for every y0 ∈ HΔ(Ω) ∩ S with ||y0 − ϕk||HΔ(Ω) ≤ δ (where HΔ(Ω) is
defined by (1.6) and S is the unit sphere in L2(Ω)), there exists a real potential V ∈ C(0, T ;E) such that the
corresponding solution y of (1.1) satisfies

y(T ) = e−iλkTϕk.

Theorem 2.2. We assume that N = 2 and Ω is a rectangle or N = 1 and Ω is an interval. Let (λk, ϕk) be an
eigenpair for the Laplace operator with Dirichlet boundary conditions. We assume hypothesis (H1) in the case
N = 2 and no hypothesis if N = 1 (hypothesis (H1) is automatically satisfied). Then there exists δ > 0 such
that for every y0 ∈ HΔ(Ω) ∩ S with ||y0 − ϕk||HΔ(Ω) ≤ δ (where HΔ(Ω) is defined by (1.6) and S is the unit
sphere in L2(Ω)), there exists a real potential V ∈ C([0, T ];E) such that the corresponding solution y of (1.1)
satisfies

y(T ) = e−iλkTϕk.

Remark 2.3.
(1) In fact our proof will show that we can also reach at time T any target in a small neighborhood of e−iλkTϕk

in HΔ(Ω) ∩ S.
(2) Hypotheses (H1) and (H2) are also assumed in [3]. But in this work, the authors also require N = 2 and

some additional technical assumptions on the eigenfunctions (and therefore on the geometry?). Nevertheless,
we use here part of their intermediate results.

(3) Hypotheses (H1) and (H2) are of course satisfied if we take the first eigenpair (λ1, ϕ1) but there exist several
geometries for which other values of k can be considered.

(4) As will be explained in the next subsection, the control V will be taken with support in a neighborhood of
a part of the boundary satisfying the Geometric Control Condition.
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2.3. Formal strategy of proof

We will restrict ourselves to the case of Theorem 2.1. All the time in the sequel we will take real potentials V
with support concentrated in a neighborhood of Γ0.

For y0 ∈ HΔ(Ω) ∩ S and V ∈ C([0, T ];E) (with the above restriction) we consider the solution y of

⎧⎨
⎩

i∂y∂t +Δy + V y = 0 inΩ × (0, T ),
y = 0 onΓ × (0, T ),
y(0) = y0 inΩ.

(2.10)

We have to show that this problem is well posed and we will actually prove that there exists a unique solution
y ∈ C([0.T ], HΔ(Ω) ∩ S).

Then we can define the mapping

(y0, V ) → Λ(y0, V ) = (y(T ), y0) ∈ (HΔ(Ω) ∩ S)2. (2.11)

Of course we have
Λ(ϕk, 0) = (e−iλkTϕk, ϕk). (2.12)

It will be shown that this mapping is of class C1. If we can show that the derivative of Λ at the point (ϕk, 0) has
a right inverse, then using an inverse mapping theorem, we will obtain our result (and the claim in Rem. 2.3).

It will be shown that for z0 ∈ HΔ(Ω) ∩ TSk and W ∈ C([0, T ];E) (real and concentrated near Γ0) with

TSk = {z ∈ L2(Ω),�(z, ϕk)L2(Ω) = 0} (2.13)

Λ′(ϕk.0)[z0,W ] = (z̃(T ), z0) (2.14)

where ⎧⎨
⎩

i∂z̃∂t +Δz̃ +W e−iλktϕk = 0 inΩ × (0, T ),
z̃ = 0 onΓ × (0, T ),
z̃(0) = z0 inΩ.

(2.15)

Writing
z = eiλktz̃

(2.15) can be rewritten as ⎧⎨
⎩

i∂z∂t +Δz + λkz +Wϕk = 0 inΩ × (0, T ),
z = 0 onΓ × (0, T ),
z(0) = z0 inΩ.

(2.16)

We will then have to show that given any (z0, z1) ∈ (HΔ(Ω)∩TSk)2, we can find (continuously) a real potential
W ∈ C([0.T ];E) (concentrated near Γ0) such that the solution of (2.16) verifies

z(T ) = z1.

Due to the reversibility of equation (2.16), it is immediate to see that without loss of generality, we can take
z1 = 0.

We will then have to show a null controllability result for (2.16) with real control of the form Wϕk and also
to show a suitable regularity property for this control.
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3. Proof of the results

3.1. Proof of Theorem 2.1

First of all as already said, for ε > 0 we consider the open subset of Ω defined by

ωε =
⋃
x∈Γ0

(B(x, ε) ∩Ω). (3.1)

Because of hypothesis (H2) and the fact that ϕk ∈ C1(Ω), we know that there exists ε0 > 0 such that

ϕk �= 0 inωε0 and |∂ϕk
∂ν

| �= 0 on ∂ωε0 ∩ Γ.

We now take ε1 and ε such that 0 < ε1 < ε < ε0 and we define a cut-off function χωε ∈ C∞
0 (ωε ∪ (∂ωε ∩ Γ ))

such that {
0 ≤ χωε ≤ 1,
χωε ≥ Iωε1

.
(3.2)

For simplicity we now omit the subscript ε and we write ω = ωε and χω = χωε .

Lemma 3.1. If y ∈ H3(Ω) ∩H1
0 (Ω) then χω.

y

ϕk
∈ H2(Ω).

Proof. In fact this result can be proved locally and it is enough to prove it in a (small) neighborhood still
denoted by ω (even if it can be smaller than ω) of any point of ∂ω ∩ Γ and then we can take χω = 1. We can
suppose, after translation and rotation, that this point is the origin and that the coordinates are (x′, xN ) where
x′ = (x1, . . . , xN−1) are coordinates of the tangent plane at the origin and xN is the normal variable. Without
loss of generality, we can suppose that in ω we have ϕk(x′, xN ) > 0 (and of course vanishes on the boundary).
We can now take new coordinates (x′, ξ) where ξ = ϕk(x′, xN ). This gives a C3 diffeomorphism and the (local)
images of Γ and ω can be taken as {ξ = 0} and {0 < ξ <

ε

2
}. We can write

y(x′, xN ) = ỹ(x′, ξ) =
∫ 1

0

d
dt
ỹ(x′, tξ)dt =

∫ 1

0

∂ỹ

∂ξ
(x′, tξ)ξdt.

Therefore
ỹ(x′, ξ)
ξ

=
∫ 1

0

∂ỹ

∂ξ
(x′, tξ)dt ∈ H2(ω). �

Lemma 3.2. When N ≤ 3, for any y ∈ HΔ(Ω) and V ∈ E, then χω.V y ∈ H3(Ω) ∩H1
0 (Ω) and the mapping

(y, V ) ∈ HΔ(Ω) × E → χω.V y ∈ H3(Ω) ∩H1
0 (Ω)

is bilinear continuous.

Proof. We have (recall that as N ≤ 3, H2(Ω) ⊂ L∞(Ω) and H1(Ω) ⊂ L6(Ω))

χω.V y ∈ L2(Ω),
∂

∂xi
(χωV y) = χω

(
V
∂y

∂xi
+
∂V

∂xi
y

)
+
∂χω
∂xi

V y ∈ L2(Ω).

∂2

∂xi∂xj
(χωV y) = χω

(
V

∂2y

∂xi∂xj
+
∂V

∂xj

∂y

∂xi
+
∂V

∂xi

∂y

∂xj
+

∂2V

∂xi∂xj
y

)

+
∂χω
∂xj

∂V y

∂xi
+
∂χω
∂xi

∂V y

∂xj
+

∂2χω
∂xi∂xj

V y ∈ L2(Ω)

Let us show that
∂3

∂xi∂xj∂xl
(χωV y) ∈ L2(Ω).
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The terms involving derivatives of χω do not make any problem. We only have to treat the terms in factor
of χω.

χω
∂

∂xl

(
V

∂2y

∂xi∂xj

)
= χω

∂V

∂xl

∂2y

∂xi∂xj
+ χωV

∂3y

∂xi∂xj∂xl

As
∂V

∂xl
∈ H1(Ω) ⊂ L6(Ω) and

∂2y

∂xi∂xj
∈ H1(Ω) ⊂ L6(Ω)

we have

χω
∂V

∂xl

∂2y

∂xi∂xj
∈ L2(Ω).

As

V ∈ L∞(Ω) and
∂3y

∂xi∂xj∂xl
∈ L2(Ω)

we have

χωV
∂3y

∂xi∂xj∂xl
∈ L2(Ω)

and therefore

χω
∂

∂xl

(
V

∂2y

∂xi∂xj

)
∈ L2(Ω).

In the same way we show that

χω
∂

∂xl

(
∂V

∂xj

∂y

∂xi
+
∂V

∂xi

∂y

∂xj

)
∈ L2(Ω)·

Now we can write

χω
∂2V

∂xi∂xj
y =

∂2V

∂xi∂xj
ϕkχω

y

ϕk
.

We know that
χω

y

ϕk
∈ H2(Ω).

Let us show that
∂2V

∂xi∂xj
ϕk ∈ H1(Ω)

which will end the proof as we have already seen that a product of a function in H2(Ω) by a function in H1(Ω)
is element of H1(Ω). We can write

∂2V

∂xi∂xj
ϕk =

∂2

∂xi∂xj
(V ϕk) − ∂V

∂xi

∂ϕk
∂xj

− ∂V

∂xj

∂ϕk
∂xi

− V
∂2ϕk
∂xi∂xj

and in the right hand side, each term belongs to H1(Ω) so that

∂2V

∂xi∂xj
ϕk ∈ H1(Ω).

This proves that
V y ∈ H3(Ω)

and as y vanishes on the boundary Γ this shows that

V y ∈ H3(Ω) ∩H1
0 (Ω).
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The above proof shows in fact that the mapping

(y, V ) ∈ HΔ(Ω) × E → χω.V y ∈ H3(Ω) ∩H1
0 (Ω)

is bilinear continuous and this finishes the proof of Lemma 3.2. �

From the above lemma we immediately deduce that the mapping

(y, V ) ∈ C([0, T ];HΔ(Ω)) × C([0, T ];E) → χωV y ∈ C([0, T ];H3(Ω) ∩H1
0 (Ω))

is bilinear continuous.

Lemma 3.3. For any y0 ∈ HΔ(Ω) ∩ S and V ∈ C([0, T ];E), with V real, there exists a unique solution
y ∈ C([0, T ];HΔ(Ω) ∩ S) to the Schrödinger equation⎧⎨

⎩
i∂y∂t +Δy + χωV y = 0 inΩ × (0, T ),
y = 0 onΓ × (0, T ),
y(0) = y0 inΩ.

(3.3)

Proof. Let us take ỹ ∈ C([0, T ];HΔ(Ω)). We know that the product χωV ỹ ∈ C([0, T ];H3(Ω) ∩H1
0 (Ω)) and we

can define z as the solution of ⎧⎨
⎩

i∂z∂t +Δz + χωV ỹ = 0 inΩ × (0, T ),
z = 0 onΓ × (0, T ),
z(0) = y0 inΩ.

(3.4)

From the regularity result of [10] we have in fact z ∈ C([0, T ];HΔ(Ω)) and there exists a constant C independent
of the initial value y0 and of T ≤ 1 such that

||z||C([0,T ];HΔ(Ω)) ≤ C(||y0||HΔ(Ω) + ||V ỹ||L2(0,T ;H3(Ω)∩H1
0 (Ω)))

≤ C(||y0||HΔ(Ω) +
√
T ||V ||C([0,T ];E)||ỹ||C([0,T ];HΔ(Ω))).

Notice that the assumption V ∈ C([0, T ];E) is used here to obtain a positive power of T in the second term of
the right hand side. Of course we could have taken V ∈ Lp(0, T ;E) with p > 2.

Then, using a classical fixed point method for T small but independent of the initial value, we obtain existence
and uniqueness for the solution y of (3.3) in C([0, T ];HΔ(Ω)), first for small T (but independent of the initial
value), then by simple iterations for any T > 0 with

y ∈ C([0, T ];HΔ(Ω)).

If y0 ∈ S, then as V is real, the equation preserves the L2 norm and y(t) ∈ S for t ∈ [0, T ]. This finishes the
proof of Lemma 3.3. �

We can now define the mapping Λ by

Λ(y0, V ) = (y(T ), y0) (3.5)

and Λ maps continuously HΔ(Ω) ∩ S × C([0, T ];E) into (HΔ(Ω) ∩ S)2. We have

Λ(ϕk, 0) = (ϕ̃k(T ), ϕk) = (e−iλkTϕk, ϕk).
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Lemma 3.4. The mapping Λ is differentiable at (ϕk, 0) and for any z0 ∈ HΔ(Ω) ∩ TSk and W ∈ C([0, T ];E)
we have

Λ′(ϕk, 0)[z0,W ] = (z̃(T ), z0) (3.6)

where ⎧⎨
⎩

i∂z̃∂t +Δz̃ + χωWϕ̃k = 0 inΩ × (0, T ),
z̃ = 0 onΓ × (0, T ),
z̃(0) = z0 inΩ.

(3.7)

Moreover, z̃(T ) ∈ HΔ(Ω) and �(z̃(T ), ϕ̃k(T ))L2(Ω) = 0.

Proof. For y0 ∈ HΔ(Ω)∩S we denote by Pky0 the projection of y0 −ϕk on HΔ(Ω)∩ TSk and we have to write
the expression of

Λ(y0, V ) − Λ(ϕk, 0) − Λ′(ϕk, 0)[Pky0, V ].

We still write z̃ for the solution of (3.7) with z0 = Pky0. If

w = y − ϕ̃k − z̃

we have ⎧⎨
⎩

i∂w∂t +Δw + χωV (y − ϕ̃k) = 0 inΩ × (0, T ),
w = 0 onΓ × (0, T ),
w(0) = (y0 − ϕk) − Pky0 inΩ.

(3.8)

We have
||w||C([0,T ];HΔ(Ω)) ≤ C(||(y0 − ϕk) − Pky0||HΔ(Ω) + ||V (y − ϕ̃k)||L2(0,T ;H3(Ω)∩H1

0 (Ω)))

But
||(y0 − ϕk) − Pky0||HΔ(Ω) ≤ C||y0 − ϕk||2HΔ(Ω)

and

||y − ϕ̃k||C([0,T ];HΔ(Ω)) ≤ C(||y0 − ϕk||HΔ(Ω) + ||V y||L2(0,T ;H3(Ω)∩H1
0(Ω)))

≤ C(||y0 − ϕk||HΔ(Ω) + C||V ||C([0,T ];E)(||y0||HΔ(Ω) + ||V ||C([0,T ];E))).

Therefore
||w||C([0,T ];HΔ(Ω)) ≤ C(||y0 − ϕk||HΔ(Ω) + C||V ||C([0,T ];E))2

and this proves the differentiability of Λ. To prove that �(z̃(T ), ϕ̃k(T ))L2(Ω) = 0 it suffices to notice that
d
dt (z̃(t), ϕ̃k(t))L2(Ω) is purely imaginary. This finishes the proof of Lemma 3.4. �

Now we write
z(t) = eiλktz̃(t). (3.9)

and we have to show that Λ′ has a right continuous inverse which means (using the reversibility of Schrödinger
equation) that we have to solve a null controllability problem for the problem⎧⎨

⎩
i∂z∂t +Δz + λkz + χωWϕk = 0 inΩ × (0, T ),
z = 0 onΓ × (0, T ),
z(0) = z0 inΩ.

(3.10)

More precisely, we want to show that for any z0 ∈ HΔ(Ω) ∩ TSk, we can find a real potential (control)
W ∈ C([0, T ];E) such that the solution of (3.10) satisfies

z(T ) = 0. (3.11)

The following result has an independent interest and it follows essentially the lines of the analogous result in [3].
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Proposition 3.5. Let T > 0 and let us assume that ω is constructed as in (3.1) with Γ0 satisfying (2.4). Then
for every z0 ∈ TSk, there exists a real control g ∈ C([0, T ];L2(Ω)) such that if z is the solution of⎧⎨

⎩
i∂z∂t +Δz + λkz + χωg = 0 inΩ × (0, T ),
z = 0 onΓ × (0, T ),
z(0) = z0 inΩ.

(3.12)

then we have
z(T ) = 0.

Proof. Let us consider the adjoint equation⎧⎨
⎩

i∂ψ∂t +Δψ + λkψ = 0 inΩ × (0, T ),
ψ = 0 onΓ × (0, T ),
ψ(0) = ψ0 inΩ,

(3.13)

(notice that ψ̃ = e−iλktψ is solution of the free Schrödinger equation), and let us take T0 such that 0 < T0 < T
and δ > 0 such that 4δ ≤ (T − T0).

From the construction of ω and of χω, and the result by [9] already mentioned, we know that we have the
internal observality inequality

|ψ0|2L2(Ω) = |ψ(2δ)|2L2(Ω) ≤ C

∫
ωε1×(2δ,T0+2δ)

|ψ|2dxdt ≤ C

∫
ω×(2δ,T0+2δ)

χω|ψ|2dxdt. (3.14)

It is then well known from Lions’ HUM (see [8]) that (3.14) implies for any z0 ∈ L2(Ω) the existence of a
complex valued control g such that z(T ) = 0.

The difference here is that we require a real valued control.
Now we take z0 ∈ TSk. Let ψ (respectively ψ̂) be the solution of (3.13) with initial value ψ0 ∈ TSk (respec-

tively ψ̂0 ∈ TSk). We define a function η ∈ C∞
0 (R) such that⎧⎪⎨

⎪⎩
0 ≤ η(t) ≤ 1, ∀t ∈ R,

η(t) = 1, ∀t ∈ [2δ, T − 2δ],
Supp(η) = [δ, T − δ], η(t) �= 0 for t ∈ (δ, T − δ).

(3.15)

This function η will be required for the proof of Lemma 3.6 below and for the regularity of the control later on.
We define w as the solution of the (backward) equation⎧⎨

⎩
i∂w∂t +Δw + λkw + ηχω�ψ = 0 inΩ × (0, T ),
w = 0 onΓ × (0, T ),
w(T ) = 0 inΩ.

(3.16)

As ψ ∈ C([0, T ];L2(Ω)) we also have w ∈ C([0, T ];L2(Ω)) so that w(0) ∈ L2(Ω) and it can be easily shown
that w(0) ∈ TSk. Now multiplying (3.16) by ψ̂ and integrating by parts, we obtain for every ψ0, ψ̂0 ∈ TSk

−i
∫
Ω

w(0) ¯̂
ψ0dx+

∫
ω×(0,T )

ηχω�ψ ¯̂
ψdxdt = 0.

This implies

−�(w(0), ψ̂0)L2(Ω) =
∫
ω×(0,T )

ηχω�ψ�ψ̂dxdt.

In order to solve our controllability problem, we would like to find ψ0 such that w(0) = z0 or equivalently such
that

∀ψ̂0 ∈ TSk, �(w(0), ψ̂0)L2(Ω) = �(z0, ψ̂0)L2(Ω).

Then the control g = ηχω�ψ and the corresponding solution of (3.12) z = w would solve our problem.
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Let us define
∀ψ0, ψ̂0 ∈ TSk, a(ψ0, ψ̂0) =

∫
ω×(0,T )

ηχω�ψ�ψ̂dxdt. (3.17)

We want to find a solution ψ0 ∈ TSk of the variational problem

a(ψ0, ψ̂0) = −�
∫
Ω

z0
¯̂
ψ0dx, ∀ψ̂0 ∈ TSk. (3.18)

We know that TSk, equipped with the scalar product �(z, ẑ)L2(Ω) is a real Hilbert space, and it is clear that
a(., .) is a bilinear continuous form on TSk × TSk. If we can prove a coercivity inequality of the form

∃C > 0, ∀ψ0 ∈ TSk, |ψ0|2L2(Ω) ≤ Ca(ψ0, ψ0) = C

∫
ω×(0,T )

ηχω|�ψ|2dxdt, (3.19)

then by Lax–Milgram theorem, (3.18) will have a unique solution ψ0 and this will prove Proposition 3.5.
Notice that (3.19) is another type of internal observability inequality and we will prove it in two steps which

follow the lines of [3].

Lemma 3.6. There exists C > 0 such that for every ψ0 ∈ L2(Ω)

|ψ0|2L2(Ω) ≤ C

∫
ω×(0,T )

ηχω |�ψ|2dxdt+ C||ψ0||2H−2(Ω). (3.20)

Proof. We have

2�ψ =
ψ − ψ̄

i

so that
4|�ψ|2 = −(ψ)2 − (ψ̄)2 + 2|ψ|2,

and
|ψ|2 = 2|�Ψ |2 +

1
2
((ψ)2) + (ψ̄)2).

From the internal observability inequality (3.14) we have

|ψ0|2L2(Ω) = |ψ(2δ)|2L2(Ω) ≤ C

∫
ω×(2δ,T0+2δ)

χω|ψ|2dxdt ≤ C

∫
ω×(0,T )

ηχω|ψ|2dxdt

≤ 2C
∫
ω×(0,T )

ηχω|�ψ|2dxdt+
C

2

∣∣∣∣∣
∫
ω×(0,T )

ηχω(ψ)2dxdt

∣∣∣∣∣ +
C

2

∣∣∣∣∣
∫
ω×(0,T )

ηχω(ψ̄)2dxdt

∣∣∣∣∣ .
Let us show that ∣∣∣∣∣

∫
ω×(0,T )

ηχω(ψ)2dxdt

∣∣∣∣∣ ≤ C||ψ0||H−2(Ω).

In the same way we will show that ∣∣∣∣∣
∫
ω×(0,T )

ηχω(ψ̄)2dxdt

∣∣∣∣∣ ≤ C||ψ0||H−2(Ω).

We can decompose ψ0 on the hilbert basis of eigenfunctions

ψ0 =
+∞∑
j=1

ajϕj
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with
+∞∑
j=1

|aj |2 = |ψ0|2L2(Ω) and
+∞∑
j=1

|aj |2
λ2
j

= ||ψ0||2H−2(Ω).

Then

ψ(t) =
+∞∑
j=1

aj(t)ϕj

where
ia′j(t) − λjaj(t) + λkaj(t) = 0, and aj(0) = aj,

so that

ψ(t) =
+∞∑
j=1

aje−i(λj−λk)tϕj .

Therefore

∫
ω×(0,T )

ηχω(ψ)2dxdt =
+∞∑
j,l=1

∫
ω×(0,T )

(ηe2iλkt)e−i(λj+λl)tajalϕjϕldxdt

=
+∞∑
j,l=1

∫
ω

ajalϕjϕldx
∫ T

0

(ηe2iλkt)e−i(λj+λl)tdt.

Now we can integrate by parts 2m times the term
∫ T
0 (ηe2iλkt)e−i(λj+λl)tdt to obtain

∣∣∣∣∣
∫ T

0

(ηe2iλkt)e−i(λj+λl)tdt

∣∣∣∣∣ ≤ C

(λj + λl)2m

where C depends on λk and on derivatives of η.
We then obtain ∣∣∣∣∣

∫
ω×(0,T )

ηχω(ψ)2dxdt

∣∣∣∣∣ ≤ C
+∞∑
j,l=1

∫
Ω

|aj ||al|
(λj + λl)2m

|ϕj ||ϕl|dx

≤ C

+∞∑
j,l=1

|aj |
λmj

|al|
λml

≤ C

⎛
⎝+∞∑
j=1

|aj|
λmj

⎞
⎠

2

≤ C

⎛
⎝+∞∑
j=1

|aj |2
λ2
j

⎞
⎠

⎛
⎝+∞∑
j=1

1

λ
(2m−2)
j

⎞
⎠

≤ C||ψ0||H−2(Ω)

from Weyl’s theorem [12] if we choose m large enough.
This proves Lemma 3.6. �

Lemma 3.7. There exists C > 0 such that for every ψ0 ∈ TSk,

|ψ0|L2(Ω) ≤ C

∫
ω×(0,T )

ηχω|�ψ|2dxdt = Ca(ψ0, ψ0). (3.21)
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Proof. We already know from Lemma 3.6 that there exists C > 0 such that for ψ0 ∈ L2(Ω)

Ca(ψ0, ψ0) = C

∫
ω×(0,T )

ηχω|�ψ|2|dxdt ≥ |ψ0|L2(Ω) − C||ψ0||H−2(Ω)

and we know that L2(Ω) is compactly embedded in H−2(Ω). It is then standard to show that if we have the
uniqueness property

ψ0 ∈ TSk and a(ψ0, ψ0) = 0 =⇒ ψ0 = 0

then there exists C > 0 such that

∀ψ0 ∈ TSk, Ca(ψ0, ψ0) ≥ |ψ0|L2(Ω).

We then have to prove the uniqueness property. Let

K = {ψ0 ∈ TSk, a(ψ0, ψ0) = 0}.
If ψ0 ∈ K, it says that ⎧⎪⎨

⎪⎩
ψ0 ∈ TSk,

i∂ψ∂t +Δψ + λkψ = 0 inΩ × (0, T ),
ψ = 0 onΓ × (0, T ),
ψ(0) = ψ0 inΩ,

and ηχω�ψ = 0 on (0, T ) which implies χω�ψ = 0 on (δ, T − δ).
Then K is a (real) vector subspace of L2(Ω) and from Lemma 3.6 we know that

∀ψ0 ∈ K, |ψ0|L2(Ω) ≤ C||ψ0||H−2(Ω).

Because of the compact embedding of L2(Ω) inH−2(Ω) we immediately see thatK must be of finite dimension J .

Let us take τ such that 0 < τ <
δ

2
and define

ψτ (t) =
ψ(t+ τ) − ψ(t)

τ
·

Then χω�ψτ = 0 on (δ, T − τ − δ) ⊃ (δ, T − δ

2
).

Notice that Lemma 3.6 is still valid if we change the function η in η̃ such that Suppη̃ = [δ, T − 3
δ

2
] and η̃ �= 0

on (δ, T − 3
δ

2
).

As χω�ψτ = 0 on (δ, T − 3
δ

2
) we still have

∀τ, 0 < τ <
δ

2
, |ψτ (0)|L2(Ω) ≤ C||ψτ (0)||H−2(Ω).

But ψτ (0) converges to
∂ψ

∂t
(0) = i(Δψ0 + λkψ0) in H−2(Ω) when τ tends to 0.

From the above inequality we see that in fact

∂ψ

∂t
(0) = i(Δψ0 + λkψ0) ∈ L2(Ω).

On the other hand, as ψ0 ∈ TSk we have ψ(t) ∈ TSk for t ∈ (0, T ) so that ψτ (0) ∈ TSk which implies
∂ψ

∂t
(0) = i(Δψ0 + λkψ0) = ψ̂0 ∈ TSk.
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Let ψ̂ be the solution of (3.13) with initial value ψ̂0. We know that ψ̂(t) = limτ→0 ψτ (t).
We know that χω�ψτ = 0 on [δ, T − δ − τ ] so that χω�ψ̂ = 0 on (δ, T − δ) and ηχω�ψ̂ = 0 on (0, T ).
Therefore ψ̂0 ∈ K and i(Δψ0 + λkψ0) ∈ K.
Now the operator −i(Δ+ λkI) maps K into K, is antisymmetric, and K is finite dimensional.
If K �= {0}, we can diagonalize this operator on K and obtain an orthonormal family of eigenfunctions

(w1, . . . , wJ ) with J = dimK and corresponding purely imaginary eigenvalues (iμ1, . . . , iμJ). For j = 1, . . . , J
we write w̃j the solution of ⎧⎨

⎩
i
∂w̃j

∂t +Δw̃j + λkw̃j = 0 inΩ × (0, T ),
w̃j = 0 onΓ × (0, T ),
w̃j(0) = wj inΩ,

We know, because wj ∈ K, that wj ∈ TSk and χω�w̃j = 0 on (δ, T − δ). But also −Δwj − λkwj = μjwj so
that wj is very regular and therefore (μj + λk) is a real eigenvalue λl of the Laplace operator with Dirichlet
boundary conditions. Now we have

w̃j(t) = e−iμjtwj , and χω�w̃j = 0 on (δ, T − δ).

If μj �= 0 this implies χω�wj = χω�wj = 0 in Ω and as wj is an eigenfunction of −Δ this implies wj = 0 which
is impossible.

If μj = 0, because λk is a simple eigenvalue, we have wj = μϕk with μ ∈ C, |μ| = 1, and as wj ∈ TSk this
implies μ = ±i but as �wj = 0 we have wj = 0 which is impossible.

Therefore we have a contradiction and K must be reduced to {0}. This proves the uniqueness property and
finishes the proof of Lemma 3.7 and of Proposition 3.5. �

We now want to prove that when the initial condition z0 is element of HΔ(Ω) ∩ TSk we can choose a real
control ηχωg in a more regular space, namely in C([0, T ];H3(Ω) ∩H1

0 (Ω)). We denote by A the operator

A = −(Δ+ λkI).

with Dirichlet boundary conditions. Notice that D(A) = H2(Ω) ∩H1
0 (Ω) and D(A

3
2 ) = HΔ(Ω).

Lemma 3.8. If z0 ∈ HΔ(Ω) ∩ TSk, then the solution ψ0 of (3.18) satisfies

ψ0 ∈ HΔ(Ω) ∩ TSk. (3.22)

This implies that ηχω�ψ ∈ C([0, T ];H3(Ω) ∩H1
0 (Ω)).

Proof. We adapt slightly here the argument of [5] which can be almost followed term by term but for sake of
completeness we give the complete proof here.

We recall that ψ0 ∈ TSk is solution of

a(ψ0, ψ̂0) =
∫
ω×(0,T )

ηχω�ψ�ψ̂dxdt = −�
∫
Ω

z0
¯̂
ψ0dx, ∀ψ̂0 ∈ TSk

We assume now that z0 ∈ D(A). Let τ be such that 0 < τ < δ. As the Schrödinger equation corresponds
to a group we can extend all equations on (−δ, T + δ) and we recall that in the equation for z we have
Supp(η) = [δ, T − δ]. Let us define

ψ̂0 =
ψ(τ) − 2ψ0 + ψ(−τ)

τ2
·

Then

ψ̂ (t) =
ψ (t+ τ) − 2ψ (t) + ψ (t− τ)

τ2
·
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Let H be defined by

H =
∫
ω×(0,T )

ηχω�ψ�ψ̂dxdt =
∫
ω×(0,T )

η (t)χω�ψ (t)�
(
ψ (t+ τ) − 2ψ (t) + ψ (t− τ)

τ2

)
dxdt

On the one hand we have

H = −�
(
z0,

ψ (τ) − 2ψ0 + ψ (−τ)
τ2

)
L2(Ω)

. (3.23)

On the other hand, because η vanishes outside (δ, T − δ), some elementary computations give

H =
1
τ

∫
ω×(0,T )

η (t)χω�ψ (t)�
(
ψ (t+ τ) − ψ (t)

τ

)
dxdt

−1
τ

∫
ω×(0,T )

η (t)χω�ψ (t)�
(
ψ (t) − ψ (t− τ)

τ

)
dxdt

=
1
τ

∫
ω×(−τ,T )

η (t)χω�ψ (t)�
(
ψ (t+ τ) − ψ (t)

τ

)
dxdt

−1
τ

∫
ω×(−τ,T )

η (t+ τ)χω�ψ (t+ τ)�
(
ψ (t+ τ) − ψ (t)

τ

)
dxdt

=
∫
ω×(−τ,T )

(
η (t) − η (t+ τ)

τ

)
χω�

(
ψ (t) + ψ (t+ τ)

2

)
�

(
ψ (t+ τ) − ψ (t)

τ

)
dxdt

+
∫
ω×(−τ,T )

(
η (t) + η (t+ τ)

τ

)
χω�

(
ψ (t) − ψ (t+ τ)

2

)
�

(
ψ (t+ τ) − ψ (t)

τ

)
dxdt.

Notice that all integrals between −τ and 0 vanish because of the presence of η. We know that∣∣∣∣η(t) − η(t+ τ)
τ

∣∣∣∣ ≤ ||η′||L∞(0.T )

and because of the equation (3.18) satisfied by ψ0 and the coercivity condition (3.19)

|ψ0|L2(Ω) ≤ C|z0|L2(Ω).

Therefore, from the preservation of the L2 norm by the Schrödinger equation, we obtain

H ≤ C
∫
ω×(0,T ) χω

∣∣∣∣ψ(t) + ψ(t+ τ)||ψ(t + τ) − ψ(t)
τ

∣∣∣∣ dxdt

− 1
2

∫
ω×(0,T )(η(t+ τ) + η(t))χω

∣∣∣∣�
(
ψ(t+ τ) − ψ(t))

τ

)∣∣∣∣
2

dxdt

≤ C|z0|L2(Ω)

∣∣∣∣ψ(τ) − ψ0

τ

∣∣∣∣
L2(Ω)

− 1
2

∫
ω×(0,T )

(η(t+ τ) + η(t))χω

∣∣∣∣�
(
ψ(t+ τ) − ψ(t))

τ

)∣∣∣∣
2

dxdt

Now from the observability inequality obtained in Lemma 3.7 we have
∣∣∣∣ψ(τ) − ψ0

τ

∣∣∣∣
2

L2(Ω)

≤ C

2

∫
ω×(0,T )

η(t)χω

∣∣∣∣�
(
ψ(t+ τ) − ψ(t))

τ

)∣∣∣∣
2

dxdt

≤ C

2

∫
ω×(0,T )

(η(t+ τ) + η(t))χω

∣∣∣∣�
(
ψ(t+ τ) − ψ(t))

τ

)∣∣∣∣
2

dxdt.
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Therefore ∣∣∣∣ψ(τ) − ψ0

τ

∣∣∣∣
2

L2(Ω)

≤ C|z0|L2(Ω)

∣∣∣∣ψ(τ) − ψ0

τ

∣∣∣∣
L2(Ω)

− CH. (3.24)

From (3.23) we have

H = �
(
z0,

ψ(τ) − 2ψ0 + ψ(−τ)
τ2

)
L2(Ω)

= �
(
z0,

ψ(τ) − ψ0

τ2

)
L2(Ω)

−�
(
z0,

ψ0 − ψ(−τ)
τ2

)
L2(Ω)

.

Because η vanishes on (0, τ) the function z satisfies⎧⎨
⎩

i∂z∂t +Δz + λkz = 0 inΩ × (0, τ),
z = 0 onΓ × (0, τ),
z(0) = z0 inΩ.

(3.25)

If we define

ψ−τ (t) =
(
ψ(t− τ) − ψ(t)

τ

)

this function satisfies ⎧⎪⎨
⎪⎩

i∂ψ−τ

∂t +Δψ−τ + λkψ−τ = 0 inΩ × (0, τ),
ψ−τ = 0 onΓ × (0, τ),

ψ−τ (0) = (
ψ−τ − ψ0

τ
) inΩ.

(3.26)

Then, multiplying the equation for z by ψ−τ and integrating on (0, τ) gives

i

(
z (τ) ,

(
ψ0 − ψ (τ)

τ2

))
L2(Ω)

− i

(
z0,

(
ψ (−τ) − ψ0

τ2

))
L2(Ω)

= 0.

Therefore we have

H = �
(
z0,

ψ (τ) − ψ0

τ2

)
L2(Ω)

−�
(
z (τ) ,

(
ψ (τ) − ψ (0)

τ2

))
L2(Ω)

= �
((

z0 − z (τ)
τ

)
,

(
ψ (τ) − ψ0

τ

))
L2(Ω)

.

Then for τ small enough we obtain

|H | ≤
∣∣∣∣z0 − z(τ)

τ

∣∣∣∣
L2(Ω)

∣∣∣∣ψ(τ) − ψ0

τ

∣∣∣∣
L2(Ω)

≤ C|Az0|L2(Ω)

∣∣∣∣ψ(τ) − ψ0

τ

∣∣∣∣
L2(Ω)

.

Using (3.24) we obtain

∣∣∣∣ψ(τ) − ψ0

τ

∣∣∣∣
2

L2(Ω)

≤ C|z0|L2(Ω)

∣∣∣∣ψ(τ) − ψ0

τ

∣∣∣∣
L2(Ω)

+ C|Az0|L2(Ω)

∣∣∣∣ψ(τ) − ψ0

τ

∣∣∣∣
L2(Ω)

and therefore

∀τ > 0 small enough,
∣∣∣∣ψ(τ) − ψ0

τ

∣∣∣∣
2

L2(Ω)

≤ C||z0||2D(A). (3.27)



1280 J.-P. PUEL

This implies that Aψ0 ∈ L2(Ω) with |Aψ0|L2(Ω) ≤ C||z0||D(A) which means

ψ0 ∈ D(A) and ||ψ0||D(A) ≤ C||z0||D(A). (3.28)

We can iterate this process exactly in the same way to show that when z0 ∈ D(A2) ∩ TSk, then ψ0 ∈ D(A2)
and

||ψ0||D(A2) ≤ C||z0||D(A2).

By interpolation we see that when z0 ∈ D(A
3
2 ) ∩ TSk then ψ0 ∈ D(A

3
2 ) and

||ψ0||
D(A

3
2 )

≤ C||z0||
D(A

3
2 )
.

As HΔ(Ω) = D(A
3
2 ) we see that z0 ∈ HΔ(Ω) ∩ TSk implies ψ0 ∈ HΔ(Ω) which itself implies ψ ∈

C([0, T ];HΔ(Ω)) and therefore ηχω �ψ ∈ C([0, T ];H3(Ω) ∩H1
0 (Ω)).

This finishes the Proof of Lemma 3.8. �

We have now proved that when the initial data z0 satisfies z0 ∈ HΔ(Ω) ∩ TSk, we can choose a real control
ηχωg ∈ C([0, T ];H3(Ω) ∩H1

0 (Ω)) in Proposition 3.5. This enables us to write this control in the form

ηχωg = ηχωWϕk, with W ∈ C([0, T ];E).

All our constructions are continuous so that this proves that the derivative of the mapping Λ defined in (3.5)
at the point (ϕk, 0) has a continuous right inverse.

Using an inverse mapping theorem, we can find a neighborhood U0 of 0 in C([0, T ];E) and a neighborhood
U1 of (e−iλTϕk, ϕk) in HΔ(Ω)2 such that for any (y0, y1) ∈ U1, there exists V ∈ U0 such that the solution y of⎧⎨

⎩
i∂y∂t +Δy + ηχωV y = 0 inΩ × (0, T ),
y = 0 onΓ × (0, T ),
y(0) = y0 inΩ

(3.29)

satisfies
y(T ) = y1.

This finishes the Proof of Theorem 2.1. �

3.2. Proof of Theorem 2.2

For the case of a rectangle in dimension N = 2 or a fortiori for the case of an interval in dimension N = 1
we consider the eigenfunction ϕk and we take two non empty open subsets of Ω, ω0 and ω such that

ω0 ⊂ ω

and such that
ϕk �= 0 in ω.

Then we define χω ∈ C∞
0 (ω) such that {

0 ≤ χω ≤ 1 in ω,
χω = 1 on ω0.

(3.30)

Then we know from [6] that we have an observability inequality of the form

|ψ0|L2(Ω) ≤ C

∫
ω0×(0,T )

|ψ|2dxdt ≤ C

∫
ω×(0,T )

χω|ψ|2dxdt. (3.31)

The rest of the proof is completely identical to the one for Theorem 2.1. We don’t have to use here the regularity
property given by [10] because the term V y vanishes near the boundary of Ω.

This finishes the Proof of Theorem 2.2.
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