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CONTROL OF UNDERWATER VEHICLES IN INVISCID FLUIDS
II. FLOWS WITH VORTICITY

Rodrigo Lecaros1 and Lionel Rosier2

Abstract. In a recent paper, the authors investigated the controllability of an underwater vehicle
immersed in an infinite volume of an inviscid fluid, assuming that the flow was irrotational. The aim of
the present paper is to pursue this study by considering the more general case of a flow with vorticity.
It is shown here that the local controllability of the position and the velocity of the underwater vehicle
(a vector in R

12) holds in a flow with vorticity whenever it holds in a flow without vorticity.
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1. Introduction

An accurate model for the motion of a boat (without rudder) equipped with tunnel thrusters was investigated
in [5]. In that paper, using Coron’s return method (see [2]), the authors proved that it was in general possible
to control both the position and the velocity of the boat (a vector in R

6) by using two control inputs. The fluid
was assumed to be inviscid, but not necessarily irrotational, and its motion was described by Euler equations
for incompressible fluids.

In [11], the authors started the study of the controllability of an underwater vehicle S (e.g. a submarine)
immersed in an infinite volume of an inviscid fluid (filling R

3 \S). Assuming that the fluid was irrotational, they
proved by using Coron’s return method the controllability of both the position and the velocity of the vehicle
(a vector in R

12) by using 6, or 4, or merely 3 control inputs for appropriate geometries. The aim of the present
paper is to pursue this study by considering the more general case of a flow with vorticity. We will show that the
local controllability of both the position and the velocity of the underwater vehicle holds in a flow with vorticity
whenever it holds in a flow without vorticity. The method of proof is inspired by the one of [5]: the extension of
the exact controllability to a system with a (small) vorticity is achieved by a perturbative approach relying on
a topological argument. Next, the small vorticity assumption is removed by using a scaling argument. However,
to prove the wellposedness of the complete system we shall use here the contraction mapping theorem instead
of the Schauder fixed-point theorem as in [5]. This choice leads to a more straightforward proof.
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Our fluid-structure interaction system can be described as follows. The underwater vehicle, represented by
a rigid body occupying a connected compact set S(t) ⊂ R

3, is surrounded by a homogeneous incompressible
perfect fluid filling the open set Ω(t) := R

3 \ S(t) (as e.g. for a submarine immersed in an ocean). We assume
that Ω(t) is C∞ smooth and connected. Let S = S(0) and Ω(0) = R

3 \ S(0) denote the initial configuration
(t = 0). Then, the dynamics of the fluid-structure system are governed by the following system of PDE’s

∂u

∂t
+ (u · ∇)u+ ∇p = 0, t ∈ (0, T ), x ∈ Ω(t), (1.1)

div u = 0, t ∈ (0, T ), x ∈ Ω(t), (1.2)
u · n = (h′ + ζ × (x− h)) · n+ w(t, x), t ∈ (0, T ), x ∈ ∂Ω(t), (1.3)

lim
|x|→+∞

u(t, x) = 0, t ∈ (0, T ), (1.4)

m0h
′′ =

∫
∂Ω(t)

pn dσ, t ∈ (0, T ), (1.5)

d
dt

(QJ0Q
∗ζ) =

∫
∂Ω(t)

(x− h) × pn dσ, t ∈ (0, T ), (1.6)

Q′ = S(ζ)Q, t ∈ (0, T ), (1.7)
u(0, x) = u0(x), x ∈ Ω(0), (1.8)

(h(0), Q(0), h′(0), ζ(0)) = (h0, Q0, h1, ζ0) ∈ R
3 × SO(3) × R

3 × R
3. (1.9)

In the above equations, u (resp. p) is the velocity field (resp. the pressure) of the fluid, h denotes the position
of the center of mass of the solid, ζ denotes the angular velocity and Q ∈ R

3×3 the rotation matrix giving the
orientation of the solid. The positive constant m0 and the matrix J0, which stand for the mass and the inertia
matrix of the rigid body, respectively, are defined as

m0 =
∫
S

ρ(x)dx, J0 =
∫
S

ρ(x)(|x|2Id− xx∗)dx,

where ρ(·) represents the density of the rigid body. The vector n is the outward unit vector to ∂Ω(t), x × y is
the cross product between the vectors x and y, and S(y) is the skew-adjoint matrix such that S(y)x = y × x,
i.e.

S(y) =

⎛
⎝ 0 −y3 y2

y3 0 −y1
−y2 y1 0

⎞
⎠ .

The neutral buoyancy condition reads ∫
S

ρ(x)dx =
∫
S

1dx. (1.10)

When f is a function depending on t, f ′ (or ḟ) stands for the derivative of f with respect to t. For A ∈ R
M×N

(M,N ∈ N
∗), A∗ denotes the transpose of the matrix A, and Id denotes the identity matrix. The term w(t, x),

which stands for the flow through the boundary of the rigid body, is taken as control input. Its support will
be strictly included in ∂Ω(t), and actually only a finite dimensional control input will be considered here (see
below (1.17) for the precise form of the control term w(t, x)).

When no control is applied (i.e. w(t, x) = 0), then the existence and uniqueness of strong solutions
to (1.1)−(1.9) was obtained first in [12] for a ball embedded in R

2, and next in [13] for a rigid body S of
arbitrary form (still in R

2). The case of a ball in R
3 was investigated in [14], and the case of a rigid body
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of arbitrary form in R
3 was studied in [17]. (See also [16] for the motion of a rigid body in the inviscid limit

of Navier–Stokes equations and [6] for the time regularity of the flow.) The detection of a rigid body S(t) from
a partial measurement of the fluid velocity (or of the pressure) has been tackled in [3] when Ω(t) = Ω0 \ S(t)
(Ω0 ⊂ R

2 denoting a fixed cavity) and in [4] when Ω(t) = R
2 \ S(t).

Note also that since the fluid is flowing through a part of the boundary of the rigid body, additional boundary
conditions are needed to ensure the uniqueness of the solution of (1.1)−(1.9) (see [7], [9]). In dimension three,
one can specify the tangent components of the vorticity ω(t, x) := curl v(t, x) on the inflow section; that is, one
can set

ω(t, x) · τi = g0(t, x) · τi for w(t, x) < 0, i = 1, 2, (1.11)

where g0(t, x) is a given function and τi, i = 1, 2, are linearly independent vectors tangent to ∂Ω(t). On the
other hand, since ω is divergence-free in Ω, we have that

∫
∂Ω(t) ω(t, x) · n dσ = 0.

In order to write the equations of the fluid in a fixed frame, we perform a change of coordinates. We set

x = Q(t)y + h(t), (1.12)
v(t, y) = Q∗(t)u(t, Q(t)y + h(t)), (1.13)
q(t, y) = p(t, Q(t)y + h(t)), (1.14)
l(t) = Q∗(t)h′(t), (1.15)
r(t) = Q∗(t)ζ(t). (1.16)

Then x (resp. y) represents the vector of coordinates of a point in a fixed frame (respectively in a frame linked
to the rigid body). Note that, at any given time t, y ranges over the fixed domain

Ω := Q∗
0(Ω(0) − h0)

when x ranges over Ω(t). Finally, we assume that the control takes the form

w(t, x) = w(t, Q(t)y + h(t)) =
m∑

j=1

wj(t)χj(y), (1.17)

where m ∈ N
∗ stands for the number of independent inputs, and wj(t) ∈ R is the control input associated with

the function χj ∈ C∞(∂Ω). To ensure the conservation of the mass of the fluid, we impose the relation∫
∂Ω

χj(y)dσ = 0 for 1 ≤ j ≤ m. (1.18)

Then the functions (v,q, l, r) satisfy the following system

∂v

∂t
+ ((v − l − r × y) · ∇)v + r × v + ∇q = 0, t ∈ (0, T ), y ∈ Ω, (1.19)

div v = 0, t ∈ (0, T ), y ∈ Ω, (1.20)

v · n = (l + r × y) · n+
∑

1≤j≤m

wj(t)χj(y), t ∈ (0, T ), y ∈ ∂Ω, (1.21)

lim
|y|→+∞

v(t, y) = 0, t ∈ (0, T ), (1.22)

m0 l̇ =
∫

∂Ω

qn dσ −m0r × l, t ∈ (0, T ), (1.23)

J0ṙ =
∫

∂Ω

q(y × n) dσ − r × J0r, t ∈ (0, T ), (1.24)

(l(0), r(0)) = (l0, r0) := (Q∗
0h1, Q

∗
0ζ0), v(0, y) = v0(y) := Q∗

0u0(Q0y + h0). (1.25)
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The initial velocity field v0 ∈ C2,α(Ω) has to satisfy the following compatibility conditions⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

curl v0 = ω0 in Ω,
div v0 = 0 in Ω,
v0 · n = (l0 + r0 × y) · n+

∑
1≤j≤m

wj(0)χj(y) on ∂Ω,

lim
|y|→+∞

v0(y) = 0

(1.26)

where ω0 := curl v0 is the initial vorticity.
Once (l, r) is known, the motion of the underwater vehicle is described by the system

Q′(t) = Q(t)S(r(t)), (1.27)
h′(t) = Q(t)l(t), (1.28)
ζ(t) = Q(t)r(t). (1.29)

Using quaternions, the rotation matrix Q can be parametrized by

q ∈ B1(0) := {q = (q1, q2, q3) ∈ R
3; |q| :=

√
q21 + q22 + q33 < 1}

(see e.g. [11]); namely, we can write Q = R(q) where

R(q) :=

⎛
⎝ q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q2q1 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q3q1 − q0q2) 2(q3q2 + q0q1) q20 − q21 − q22 + q23

⎞
⎠ .

with q = (q1, q2, q3) ∈ B1(0) and q0 :=
√

1 − |q|2. Let Q0 = R(q0) with q0 = (q1,0, q2,0, q3,0).
Then the dynamics of q and h are given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h′(t) = (1 − |q|2)l + 2
√

1 − |q|2 q × l + (l · q )q − q × l × q,

q ′(t) = 1
2 (
√

1 − |q|2 r + q × r),

h(0) = h0, q(0) = q0.

(1.30)

When there is no vorticity (ω ≡ 0), sufficient conditions of local exact controllability for (h, q, l, r) were
derived in ([11], Thm. 3.10). That result was applied to the controllability of an ellipsoidal submarine with a
small number of controls: m ∈ {3, 4, 6}. The reader is referred to [11] for precise statements. The method of
proof of ([11], Thm. 3.10), inspired by the one of ([5], Thm. 2.1), combined Coron’s return method (see [2]),
the flatness approach (for the construction of the reference trajectory) and a variant of Silverman−Meadows
criteria. In the following, we shall assume that the conclusion of ([11], Thm. 3.10) (controllability without
vorticity) holds; namely,

(H) For any T > 0, there exist a number η > 0 and a map W ∈ C1(BR24 (0, η), C1([0, T ]; Rm)) which associates
with any (h0, q0, l0, r0, hT , qT , lT , rT ) ∈ BR24(0, η) a control w ∈ C1([0, T ],Rm) with w(0) = 0 steering the state
of system (1.19)−(1.25) and (1.30) without vorticity from (h0, q0, l0, r0) at t = 0 to (hT , qT , lT , rT ) at t = T .

In (H), we used the obvious notation: BRN (0, η) := {x ∈ R
N ; |x| < η}.

The aim of this work is to extend that property to the more general case of fluids with vorticity. Here, we
shall use the contraction mapping theorem (instead of a compactness approach as in [5]) to obtain in a direct
way the existence and uniqueness of the solution of (1.19)−(1.25). The main result in this paper is the following
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Theorem 1.1. Assume that the assumption (H) is fulfilled, and pick any T0 > 0. Then there exists η > 0 such
that for any (h0, q0, l0, r0) ∈ R

12 and any (hT , qT , lT , rT ) ∈ R
12 with

|(h0, q0)| < η, |(hT , qT )| < η,

and for any ω0 ∈ C1,α(Ω) ∩Mp
1,δ+2 ∩Mp

0,δ+3 (see below for the definition of these spaces) with

|ω0(y1) − ω0(y2)| ≤ K

[1 + min(|y1|, |y2|)]κ |y
1 − y2|, ∀(y1, y2) ∈ Ω2,∣∣∣∣∂ω0

∂y

∣∣∣∣ = O(|y|−1) as |y| → +∞,∣∣∣∣∂ω0

∂y
(y1) − ∂ω0

∂y
(y2)

∣∣∣∣ ≤ K

1 + min(|y1|, |y2|) |y
1 − y2|, ∀(y1, y2) ∈ Ω2

for some constants p ∈ (3, 4], δ ∈ [0, 1− 3
p ), α ∈ (0, 1− 3

p ], κ > 3 + δ + 3
p and K > 0, if v0 denotes the solution

of (1.26) with wj(0) = 0 for 1 ≤ j ≤ m, then there exist a time T ∈ (0, T0] and a control input w ∈ C1([0, T ]; Rm)
with w(0) = 0 such that the system (1.19)−(1.25) and (1.30) admits a solution (h, q, l, r, v,q) satisfying

(h, q, l, r)|t=T = (hT , qT , lT , rT ).

Remark 1.2. In our previous control result ([11], Thm. 3.10) for a system without vorticity, it was required
that the initial/final velocities be small, but this restriction could easily be removed by using the same scaling
argument as in the proof of Theorem 1.1.

The paper is organized as follows. In Section 2 we prove the existence and uniqueness of the solution of
the control problem (1.19)−(1.25) (the vorticity being extended to R

3) by applying the contraction mapping
theorem in Kikuchi’s spaces. The proof of Theorem 1.1 is given in Section 3.

2. Wellposedness of the system with vorticity

Let us introduce some notations. For k ∈ N and α ∈ (0, 1), let Ck,α(Ω) denote the classical Hölder space
endowed with the norm

‖f‖Ck,α(Ω) =
∑

β = (β1, β2, β3) ∈ N
3

β1 + β2 + β3 ≤ k

(
‖∂βf‖L∞(Ω) + |∂βf |0,α

)
,

where

|f |0,α = sup
{ |f(x) − f(y)|

|x− y|α ; x ∈ Ω, y ∈ Ω, x �= y

}
·

We also need some notations borrowed from [10]. Let 〈y〉 = (1 + |y|2) 1
2 . For s ∈ N, p ∈ [1,∞) and λ ≥ 0, let

Mp
s,λ denote the completion of the space of functions in C∞(Ω) with compact support in Ω for the norm

‖u‖Mp
s,λ

=
∑

β = (β1, β2, β3) ∈ N
3

β1 + β2 + β3 ≤ s

‖〈y〉λ+β1+β2+β3∂βu‖Lp(Ω).

In particular, for s = 0, ‖u‖Mp
0,λ

= ‖u‖Lp
pλ

:= (
∫

Ω
|u|p〈y〉pλdy)

1
p . We shall mainly use the space Mp

1,λ (for the
vorticity) and Mp

2,λ (for the velocity) endowed with the respective norms

‖u‖Mp
1,λ

= ‖〈y〉λu‖Lp(Ω) +
∑

1≤i≤3

‖〈y〉λ+1∂yiu‖Lp(Ω), (2.1)

‖u‖Mp
2,λ

= ‖〈y〉λu‖Lp(Ω) +
∑

1≤i≤3

‖〈y〉λ+1∂yiu‖Lp(Ω) +
∑

1≤i,j≤3

‖〈y〉λ+2∂yj∂yiu‖Lp(Ω). (2.2)
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Let π be a continuous linear extension operator from functions defined in Ω to functions defined in R
3, which

maps Ck,α(Ω) to Ck,α(R3) for all k ∈ N and all α ∈ (0, 1). The construction of such a “universal” extension
operator is classical, see e.g. ([15], p. 194). We may also ask that π preserves the divergence-free character, see
e.g. [8].

We introduce some functions φi, i = 1, 2, 3, ϕi, i = 1, 2, 3, and ψj , j = 1, 2, . . . ,m, satisfying

Δφi = Δϕi = Δψj = 0 in Ω, (2.3)

∂φi

∂n
= ni,

∂ϕi

∂n
= (y × n)i,

∂ψj

∂n
= χj on ∂Ω, (2.4)

lim
|y|→+∞

∇φi(y) = 0, lim
|y|→+∞

∇ϕi(y) = 0, lim
|y|→+∞

∇ψj(y) = 0. (2.5)

As the open set Ω and the functions χj , 1 ≤ j ≤ m, supporting the control are assumed to be smooth, we
infer that the functions ∇φi (i = 1, 2, 3), the functions ∇ϕi (i = 1, 2, 3) and the functions ∇ψj (1 ≤ j ≤ m)
belong to H∞(Ω). On the other hand, it follows from ([10], Proof of Lem. 2.7) that for all α = (α1, α2, α3) ∈ N

3

with α1 + α2 + α3 ≥ 1, we have

|∂αφi(y)| + |∂αϕi(y)| + |∂αψj(y)| ≤ C〈y〉−1−(α1+α2+α3), i = 1, 2, 3, j = 1, 2, . . . ,m, y ∈ Ω. (2.6)

For notational convenience, in what follows
∫

Ω
f (resp.

∫
∂Ω

f) stands for
∫

Ω
f(y)dy (resp.

∫
∂Ω

f(y)dσ(y)).
Let us introduce the matrices M,J,N ∈ R

3×3, defined by

Mi,j =
∫
Ω

∇φi · ∇φj =
∫

∂Ω

niφj =
∫

∂Ω

∂φi

∂n
φj , (2.7)

Ji,j =
∫
Ω

∇ϕi · ∇ϕj =
∫

∂Ω

(y × n)iϕj =
∫

∂Ω

∂ϕi

∂n
ϕj , (2.8)

Ni,j =
∫
Ω

∇φi · ∇ϕj =
∫

∂Ω

niϕj =
∫

∂Ω

φi(y × n)j . (2.9)

Next we define the matrix J ∈ R
6×6 by

J =
(
m0 Id 0

0 J0

)
+
(
M N
N∗ J

)
. (2.10)

It is easy to see that J is a (symmetric) positive definite matrix.
For a potential flow (i.e. without vorticity), the dynamics of (l, r) are given by

(
l
r

)′
= J−1(Cw′ + F (l, r, w)), (2.11)

where

F (l, r, w) = −
⎛
⎝S(r) 0

S(l) S(r)

⎞
⎠(J

(
l
r

)
− Cw

)
−

m∑
p=1

wp

⎛
⎝LM

p l+RM
p r +WM

p w

LJ
p l +RJ

p r +W J
p w

⎞
⎠ , (2.12)

and

C = −
(
CM

CJ

)
, (2.13)
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with
(CM )i,j =

∫
Ω

∇φi · ∇ψj =
∫

∂Ω

niψj =
∫

∂Ω

φiχj, (2.14)

(CJ )i,j =
∫
Ω

∇ϕi · ∇ψj =
∫

∂Ω

(y × n)iψj =
∫

∂Ω

ϕiχj , (2.15)

(LM
p )i,j =

∫
∂Ω

(∇φj)iχp, (LJ
p )i,j =

∫
∂Ω

(y ×∇φj)iχp, (2.16)

(RM
p )i,j =

∫
∂Ω

(∇ϕj)iχp, (RJ
p )i,j =

∫
∂Ω

(y ×∇ϕj)iχp, (2.17)

(WM
p )i,j =

∫
∂Ω

(∇ψj)iχp, (W J
p )i,j =

∫
∂Ω

(y ×∇ψj)iχp. (2.18)

We refer the reader to [11] for the derivation of (2.11).
The first main result in this paper is a local existence result.

Theorem 2.1. Let p ∈ (3, 4], δ ∈ [0, 1 − 3
p ), α ∈ (0, 1 − 3

p ], and T > 0. Assume given (l0, r0) ∈ R
3 × R

3 and
ω0 ∈ C1,α(Ω) ∩Mp

1,δ+2 ∩Mp
0,δ+3 with

|ω0(y1) − ω0(y2)| ≤ K

[1 + min(|y1|, |y2|)]κ |y
1 − y2|, ∀(y1, y2) ∈ Ω2, (2.19)∣∣∣∣∂ω0

∂y

∣∣∣∣ = O(|y|−1) as |y| → +∞, (2.20)∣∣∣∣∂ω0

∂y
(y1) − ∂ω0

∂y
(y2)

∣∣∣∣ ≤ K

1 + min(|y1|, |y2|) |y
1 − y2|, ∀(y1, y2) ∈ Ω2 (2.21)

for some constants κ > 3 + δ+ 3
p and K > 0. Let also a control input w ∈ C1([0, T ],Rm) be given. Assume that

the initial velocity field v0 ∈ C2,α(Ω) fulfills the following compatibility conditions⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

curl v0 = ω0 in Ω,
div v0 = 0 in Ω,
v0 · n = (l0 + r0 × y) · n+

∑
1≤j≤m

wj(0)χj(y) on ∂Ω,

lim
|y|→+∞

v0(y) = 0.

(2.22)

Then we can find a time T ′ ∈ (0, T ] satisfying CT ′ < 1, where

C = C(‖ω0‖C1,α(Ω) + ‖ω0‖Mp
1,δ+2

, |l0|, |r0|, ‖w‖C1([0,T ]))

is nondecreasing in all its arguments, and a solution (v,q, l, r) of (1.19)−(1.25) in the class

v ∈ C([0, T ′];C2,α(Ω) ∩Mp
2,δ+1), ∇v ∈ C([0, T ′];L4

p(δ+2)(Ω)), (2.23)

∇q ∈ C([0, T ′];L2(Ω)), (2.24)

lim
|y|→+∞

∇q(t, y) = 0, ∀t ∈ [0, T ′]. (2.25)
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(l, r) ∈ C1([0, T ′]; R3 × R
3). (2.26)

Moreover, for ‖w‖C1([0,T ]) ≤ R (R > 0 being any given constant), this solution satisfies

∥∥(l, r) − (l, r)
∥∥

L∞(0,T ′) + ‖v − v‖L∞(0,T ′;C2,α(Ω)) ≤ C′
(
‖ω0‖C1,α(Ω) + ‖ω0‖Mp

1,δ+2

)
, (2.27)

for some constant C′ > 0, where (l, r, v) is the potential solution of (1.19)−(1.25) associated with l0, r0,
{wj}1≤j≤m, and ω0 = 0.

Remark 2.2.

(1) Note that, using the mean-value theorem, the assumption (2.20) implies (2.19) for κ = 1, while ω0 ∈Mp
1,δ+2

yields |ω0(y)| ≤ O(|y|−δ−2) as |y| → +∞ by ([10], Lem. 2.2).
(2) Note that the fluid-structure system considered here is more complicated than those considered in [14, 17],

for we have added a control input in the boundary condition (1.21). Moreover, we require the solution to
be continuous with respect to the control input in order to apply a perturbative argument at the end of the
proof of Theorem 1.1. Inspired by the method developed in [5], it is quite natural to work in Kikuchi’s spaces.
Here, we shall prove the existence, uniqueness and continuous dependence of the solution with respect to
the control input in one step, by using the contraction mapping theorem.

Theorem 2.1 will be established by using the contraction mapping principle (i.e. the Banach fixed-point theo-
rem). We first define an operator whose fixed-points will give local-in-time solutions.

2.1. The operator

Let p ∈ (3, 4], δ ∈ [0, 1− 3
p ), α ∈ (0, 1 − 3

p ], and T > 0. We fix a control input w ∈ C1([0, T ]; Rm). For N > 0
and P > 0 given, we introduce the set

F :=
{

(l, r, ω) ∈ R
3 × R

3 × (C1,α(Ω) ∩Mp
1,δ+2

)
; |l − l0| + |r − r0| ≤ N,

‖ω‖C1,α(Ω) + ‖ω‖Mp
1,δ+2

≤ P, divω = 0,
∫

∂Ω

ω · n dσ = 0
}
. (2.28)

Then, using Arzela−Ascoli theorem for the restrictions to closed ball centered at the origin of partial derivatives
of order one, it is easy to see that F is a closed subset of the Banach space E := R

3 ×R
3 × (C0,α(Ω)∩Mp

0,δ+2

)
endowed with the norm

‖(l, r, ω)‖E := |l| + |r| + ‖ω‖C0,α(Ω) + ‖ω‖Lp
p(δ+2)(Ω)·

It follows at once that for any T ′ > 0, the set

C := {(l, r, ω) ∈ C([0, T ′],F); (l(0), r(0), ω(0)) = (l0, r0, ω0)}
is a closed subset of the Banach space C([0, T ′];E) endowed with the norm supt∈[0,T ′] ‖(l(t), r(t), ω(t))‖E , which
is also complete for the equivalent norm

�(l, r, ω)� := ‖l‖L∞(0,T ′) + ‖r‖L∞(0,T ′) + ‖ω‖L∞(0,T ′;C0,α(Ω)) + ‖ω‖L∞(0,T ′;Lp
p(δ+2)(Ω)). (2.29)

Therefore, C is complete for the distance associated with the norm � · �.
Here, we pick

P = ee · (C6‖π(ω0)‖C1,α(R3) + C7‖π(ω0)‖Mp
1,δ+2(R3)), (2.30)

where C6 and C7 are some universal constants arising in the computations below and that we do not intend to
give explicitly, and ‖ · ‖C1,α(R3) and ‖ · ‖Mp

1,δ+2(R3) are defined as ‖ · ‖C1,α(Ω) and ‖ · ‖Mp
1,δ+2

, respectively.
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Let us now define the operator τ on C: to any (l, r, ω) ∈ C, we associate

τ (l, r, ω) := (l̂, r̂, ω̂), (2.31)

as follows. First, we introduce the “fluid velocity”

v = η +
3∑

i=1

li∇φi +
3∑

i=1

ri∇ϕi +
∑

1≤j≤m

wj(t)∇ψj , (2.32)

where η is the solution to the div-curl system (see e.g. [10], Prop. 3.1)

curl η = ω, (t, y) ∈ (0, T ) ×Ω, (2.33)
div η = 0, (t, y) ∈ (0, T ) ×Ω, (2.34)

η · n = 0, (t, y) ∈ (0, T ) × ∂Ω, (2.35)
lim

|y|→+∞
η(t, y) = 0, t ∈ (0, T ). (2.36)

Next, we extend the velocity field and the initial vorticity by setting

v̂(t, ·) := π[v(t, ·)], (2.37)

ω̂0 := π[ω0]. (2.38)

The flow X̂ associated with ṽ := v̂ − l− r × y is defined as the solution to the Cauchy problem⎧⎪⎨
⎪⎩

∂

∂s
X̂(s; t, y) = ṽ(s, X̂(s; t, y)) = v̂(s, X̂(s; t, y)) − l(s) − r(s) × X̂(s; t, y),

X̂(t; t, y) = y.

(2.39)

The fact that X̂ is defined globally on [0, T ′]2 × R
3 follows from the boundedness of v̂ (see below (2.50)).

We denote by G the Jacobi matrix of X̂, namely

G(s; t, y) =
∂X̂

∂y
(s; t, y). (2.40)

Differentiating in (2.39) with respect to yj (j = 1, 2, 3), we see that G(s; t, y) satisfies the following system:

∂G

∂s
=
∂v̂

∂y
(s, X̂(s; t, y))G(s; t, y) − r(s) ×G(s; t, y),

=
(
∂v̂

∂y
(s, X̂(s; t, y)) − S(r(s))

)
G(s; t, y), (2.41)

G(t; t, y) = Id (the identity matrix).

We infer from
div(ṽ) = 0 (2.42)

that
det G(s; t, y) = 1. (2.43)

We now define
ω̂(t, y) := G−1(0; t, y)ω̂0(X̂(0; t, y)). (2.44)



1334 R. LECAROS AND L. ROSIER

Finally, in order to define the pair (l̂, r̂), we introduce the function μ : [0, T ′]×Ω → R (defined up to a function
of t) which solves

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δμ = tr
(
∇v · ∇v

)
, in (0, T )× Ω,

∂μ

∂n
= −

∑
1≤j≤m

ẇj(t)χj(y) −
((

(v − l − r × y) · ∇
)
v + r × v

)
· n, on (0, T )× ∂Ω,

lim
|y|→+∞

∇μ(t, y) = 0 in (0, T ).

(2.45)

Note that ∇μ ∈ L2(Ω) if ∇v ∈ L4(Ω) ∩ C1(Ω), and that, by Schauder estimates, μ ∈ C2,α
loc (Ω) if in addition

v ∈ C2,α(Ω). Then we define l̂ and r̂ by

(
l̂(t)
r̂(t)

)
:=
(
l0
r0

)
+ J−1

∫ t

0

⎧⎪⎨
⎪⎩
⎛
⎜⎝
(∫

Ω

∇μ(τ, y) · ∇φi(y) dy
)

i=1,2,3( ∫
Ω

∇μ(τ, y) · ∇ϕi(y) dy
)

i=1,2,3

⎞
⎟⎠−

(
m0r × l
r × J0r

)⎫⎪⎬
⎪⎭ dτ. (2.46)

This completes the definition of τ .

2.2. Fixed-point argument and local-in-time existence

Our first step consists in proving the following result.

Theorem 2.3. Let N > 0 and P > 0 be given. Then there exists some time T ′ > 0 such that τ is a contraction
in C for the distance associated with � · �. Thus, τ has a unique fixed-point in C.

Proof of Theorem 2.3. Set
N := N + |l0| + |r0|.

In the sequel, the various positive constants Ci will depend on the geometry, on J and on the size of the controls
‖wi‖C1 only (hence, possibly also on π, but not on T , l0, r0, ω0, N , etc.).

Step 1. Let (l, r, ω) ∈ C, and let v be defined by (2.32). It follows from ([10], Prop. 2.11) that for any t ∈ [0, T ′],
system (2.33)−(2.36) has a unique solution η(t) ∈Mp

2,δ+1, and that

‖η(t)‖Mp
2,δ+1

≤ C‖ω(t)‖Mp
1,δ+2

.

On the other hand, using (2.6) and the fact that 0 ≤ δ < 1 − 3
p , it is easy to see that ∇φi,∇ϕi,∇ψj ∈Mp

2,δ+1

for i = 1, 2, 3 and j = 1, 2, . . . ,m. It follows that

‖v(t)‖Mp
2,δ+1

≤ C(‖ω(t)‖Mp
1,δ+2

+ |l(t)| + |r(t)| + |w(t)|). (2.47)

Thus v ∈ C([0, T ′];Mp
2,δ+1) with

‖v‖L∞(0,T ′;Mp
2,δ+1) ≤ C(N + P + 1). (2.48)

Set
N := N + P + 1 = N + |l0| + |r0| + P + 1.
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Now Schauder estimates combined with the embedding Mp
2,δ+1 ⊂ C1

b (Ω) (see [10], Lem. 2.2) give that

‖v(t)‖C2,α(Ω) ≤ C
(
‖ω(t)‖C1,α(Ω) + ‖v(t)‖C0,α(Ω) + |l(t)| + |r(t)| + |w(t)|

)
≤ C

(
‖ω(t)‖C1,α(Ω) + ‖v(t)‖Mp

2,δ+1
+ |l(t)| + |r(t)| + |w(t)|

)
≤ C

(
‖ω(t)‖C1,α(Ω) + ‖ω(t)‖Mp

1,δ+2
+ |l(t)| + |r(t)| + |w(t)|

)
.

Thus v ∈ C([0, T ′];C2,α(Ω)) with

‖v‖L∞(0,T ′;C2,α(Ω)) ≤ C
(
‖ω‖L∞(0,T ′;C1,α(Ω)) + ‖ω‖L∞(0,T ′;Mp

1,δ+2)

+ ‖l‖L∞(0,T ′) + ‖r‖L∞(0,T ′) + ‖w‖L∞(0,T ′)

)
. (2.49)

Therefore, using the continuity of π, we obtain that

‖v̂‖L∞(0,T ′;C2,α(R3)) ≤ ‖π‖CN ≤ C1N, (2.50)

where ‖π‖ denotes the norm of π as an operator in L(C2,α(Ω), C2,α(R3)).

Step 2. Let us turn our attention to X̂ and ω̂. Taking the scalar product of each term of the first equation
in (2.39) by X̂ results in

|X̂|∂|X̂|
∂s

=
∂

∂s
(
1
2
|X̂|2) = X̂ · ∂X̂

∂s
= (v̂(s, X̂) − l(s)) · X̂ ≤

(
|v̂(s, X̂(s))| + |l(s)|

)
|X̂ |.

Simplifying by |X̂| and using the second equation in (2.39), we obtain∣∣∣|X̂(s; t, y)| − |y|
∣∣∣ ≤ CT ′N. (2.51)

Thus X̂(s, t; ·) �∈ L∞(R3) for all (s, t) ∈ [0, T ′]2.
It follows from ([10], Lem. 2.2) that any function u ∈ Mp

1,δ+2 satisfies |u(x)| = O(|x|−δ−1) as |x| → +∞,
and from ([10], Lem. 2.3) that Mp

1,δ+2 is an algebra. Let Mp
1,δ+2(R

3) be defined as Mp
1,δ+2 but with functions

from R
3 to R. We introduce the space

V := Mp
1,δ+2(R

3)3×3 ⊕ R
3×3

with norm
‖G‖V := ‖G1‖Mp

1,δ+2(R
3) + ‖G2‖R3×3

if G = G1 + G2 with G1 ∈ Mp
1,δ+2(R

3)3×3 and G2 ∈ R
3×3. (Note that G2 is uniquely determined by G, as it

is nothing but the 3 × 3 matrix of the limits at infinity of the entries of G.) Then it is easy to see that V is a
Banach space and an algebra.

Let us check that (∂v̂/∂y)(s, X̂(s; t, y)) ∈ L∞((0, T ′)2, V ). From (2.51) we have that∣∣∣X̂(s; t, y)
∣∣∣ ≤ |y| + CT ′N

and proceeding as in ([10], p. 587−588), we infer that for any u ∈Mp
1,δ+2(R

3)

‖u(X̂(s; t, .))‖Mp
0,δ+2(R3) ≤ C(1 + [CT ′N]p(δ+2))‖u‖Mp

0,δ+2(R
3). (2.52)
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On the other hand, using Gronwall’s lemma in (2.41), we obtain with (2.50) that

‖G(s; t, .)‖L∞(Ω) ≤ C exp(CT ′N). (2.53)

Since
∂[u(X̂(s; t, y)]

∂yj
=

3∑
k=1

∂u

∂xk
(X̂(s; t, y))

∂X̂k

∂yj
(s; t, y),

using (2.52) and (2.53) for ∂u/∂y (with δ + 3 substituted to δ + 2), we arrive to

‖ ∂
∂y

[u(X̂(s; t, y))]‖Mp
0,δ+3(R3) ≤ C exp(CT ′N)‖∂u

∂y
‖Mp

0,δ+3(R3). (2.54)

We infer from (2.48) and (2.50) that

‖∂v̂
∂y

‖L∞(0,T ′,Mp
1,δ+2(R3)) ≤ CN.

It follows that ∂v̂
∂y (s, X̂(s; t, y)) − S(r(s)) ∈ L∞((0, T ′)2, V ) with

∥∥∥∥∂v̂∂y (s, X̂(s; t, y)) − S(r(s))
∥∥∥∥

V

≤ CN exp(CT ′N). (2.55)

Solving the linear Cauchy problem (2.41) in the Banach algebra V , we see that G ∈ C([0, T ′]2;V ) and (with
Gronwall’s lemma) that

‖G‖L∞((0,T ′)2;V ) ≤ C2 exp(C2T
′NeC2T ′N). (2.56)

By (2.43), each entry of G−1 is a cofactor of G, so that we infer that∥∥G−1
∥∥

L∞((0,T ′)2;V )
≤ C3 exp(C3T

′NeC3T ′N). (2.57)

If f ∈ C1(Ω,R3) with ∂f/∂y ∈ C0,α(Ω,R3×3) and g ∈ C1,α(Ω,R3), then

|g ◦ f |0,α ≤ C|g|0,α

∥∥∥∥∂f∂y
∥∥∥∥

α

L∞
, (2.58)∥∥∥∥ ∂∂y (g ◦ f)

∥∥∥∥
L∞

≤ C

∥∥∥∥∂g∂y
∥∥∥∥

L∞

∥∥∥∥∂f∂y
∥∥∥∥

L∞
, (2.59)

∣∣∣∣ ∂∂y (g ◦ f)
∣∣∣∣
0,α

≤ C

(∥∥∥∥∂g∂y
∥∥∥∥

L∞

∣∣∣∣∂f∂y
∣∣∣∣
0,α

+
∥∥∥∥∂f∂y

∥∥∥∥
1+α

L∞

∣∣∣∣∂g∂y
∣∣∣∣
0,α

)
· (2.60)

Using (2.40), (2.41), (2.50), (2.53), (2.58) and Gronwall’s lemma, we obtain that

‖G‖L∞((0,T ′)2;C0,α(R3)) ≤ C exp(CT ′NeCT ′N). (2.61)

Next, it follows from (2.41), (2.50), (2.59), (2.60) and (2.61) that

‖G‖L∞((0,T ′)2;C1,α(R3)) ≤ C4 exp(C4T
′NeC4T ′N). (2.62)

Using again (2.43), we obtain that∥∥G−1
∥∥

L∞((0,T ′)2;C1,α(R3))
≤ C5 exp(C5T

′NeC5T ′N). (2.63)
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We are in a position to derive the required estimates for ω̂. From (2.58)−(2.60) and (2.62), we infer that

‖ω̂0(X̂(0; t, .))‖L∞(0,T ′;C1,α(R3)) ≤ C exp(CT ′NeCT ′N)‖ω̂0‖C1,α(R3)

which yields with (2.44) and (2.63)

‖ω̂‖L∞(0,T ′;C1,α(R3)) ≤ C6 exp(C6T
′NeC6T ′N)‖ω̂0‖C1,α(R3). (2.64)

From (2.52)−(2.54), we obtain that

‖ω̂0(X̂(0; t, .))‖L∞(0,T ′;Mp
1,δ+2(R3)) ≤ C exp(CT ′N)‖ω̂0‖Mp

1,δ+2(R3)

which gives with (2.57)

‖ω̂‖L∞(0,T ′;Mp
1,δ+2(R3)) ≤ C7 exp(C7T

′NeC7T ′N) ‖ω̂0‖Mp
1,δ+2(R3). (2.65)

If we define C8 = max{C6, C7}, and take T ′ > 0 such that

T ′ ≤ 1
C8N

, (2.66)

we obtain

‖ω̂‖L∞(0,T ′;C1,α(R3)) + ‖ω̂‖L∞(0,T ′;Mp
1,δ+2(R3)) ≤ ee · (C6‖ω̂0‖C1,α(R3) + C7‖ω̂0‖Mp

1,δ+2(R3))

=: P. (2.67)

On the other hand, if we consider any scalar function ϕ ∈ C1(R3) with compact support, we obtain by using
the change of variables y = X̂(t; 0, x)∫

R3
ω̂(t, y) · ∇ϕ(y)dy =

∫
R3
G−1(0; t, y)ω̂0(X̂(0; t, y)) · ∇ϕ(y)dy

=
∫

R3
G−1(0; t, X̂(t; 0, x))ω̂0(x) · ∇yϕ(X̂(t; 0, x))dx,

=
∫

R3
G(t; 0, x)ω̂0(x) · ∇yϕ(X̂(t; 0, x))dx

=
∫

R3
ω̂0(x) · ∇x[ϕ(X̂(t; 0, x))]dx.

Since, by (2.51), the function ϕ(X̂(t; 0, ·)) ∈ C1(R3) has a compact support, we infer from div(ω̂0) = 0 that

div(ω̂) = 0 in R
3. (2.68)

Integrating over Ω, we obtain ∫
Ω

ω̂ · ndσ = 0. (2.69)

On the other hand, ω̂(0)|Ω = ω0. Therefore, the condition about ω̂ for (l̂, r̂, ω̂) to belong to C is satisfied.

Step 3. Let us turn our attention to (l̂, r̂). Since Mp
1,δ+2(R

3) ⊂ L∞(R3) and ∇v̂(t) ∈ Mp
1,δ+2(R

3) for all
t ∈ [0, T ′], we infer from (2.48) that for all t ∈ [0, T ′]∫

R3
|∇v̂|4〈y〉p(δ+2)dy ≤ ‖∇v̂‖4−p

L∞(R3)

∫
R3

|∇v̂|p〈y〉p(δ+2)dy ≤ C‖∇v̂‖4
Mp

1,δ+2(R3) < +∞.
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Furthermore,
‖∇v̂‖L∞(0,T ′,L4(R3)) ≤ C‖∇v̂‖L∞(0,T ′,Mp

1,δ+2(R3)) ≤ C9N. (2.70)

Using (2.45) and (2.50), we infer that

‖∇μ‖L∞(0,T ′,L2(Ω)) ≤ C10N
2. (2.71)

From (2.46), we deduce that (l̂, r̂) ∈ C([0, T ′]; R6) with∥∥∥(l̂, r̂) − (l0, r0)
∥∥∥

L∞(0,T ′)
≤ C11T

′N2.

On the other hand, (l̂(0), r̂(0)) = (l0, r0). Therefore, the condition about (l̂, r̂) for τ (l, r, ω) to belong to C is
satisfied provided that

T ′ ≤ N

C11N2
· (2.72)

Hence for T ′ satisfying (2.66) and (2.72), one has τ (C) ⊂ C.
Note also that, since ∇v̂(t) ∈Mp

1,δ+2(R
3) for all t ∈ [0, T ], we have

〈y〉∇v̂(t) ∈Mp
1,δ+1(R

3) ⊂ C0(R3) for all t ∈ [0, T ′].

Step 4. Now, we prove that the operator τ is a contraction in C for the distance induced by � ·� for T ′ small
enough.

From now on, the constant C may depend on N, but not on T ′ or on (lk, rk, ωk).
Assume given (lk, rk, ωk) ∈ C, k = 1, 2. Note that (l1, r1, ω1) and (l2, r2, ω2) correspond to the same initial

data (l0, r0, ω0) and the same control input ω.
Let us introduce for k = 1, 2

τ (lk, rk, ωk) := (l̂k, r̂k, ω̂k).

Then, for k = 1, 2, ω̂k fulfills
ω̂k(t, y) = Ak(0; t, y)ω̂0(X̂k(0; t, y)), (2.73)

where ω̂0 = π(w0), X̂k denotes the solution to⎧⎪⎨
⎪⎩

∂

∂s
X̂k(s; t, y) = v̂k(s, X̂k(s; t, y)) − lk(s) − rk(s) × X̂k(s; t, y),

X̂k(t; t, y) = y,

(2.74)

Gk(s; t, y) :=
∂X̂k

∂y
(s; t, y), G(t; t, y) = Id, (2.75)

and Ak := (Gk)−1. The velocity v̂k = π(vk) : R
3 → R

3 is the extension of the velocity vk : Ω → R
3

decomposed as

vk = ηk +
3∑

i=1

lki ∇φi +
3∑

i=1

rk
i ∇ϕi +

∑
1≤j≤m

wj(t)∇ψj ,

where ηk is the solution of

curl ηk = ωk, (t, y) ∈ (0, T )×Ω, (2.76)
div ηk = 0, (t, y) ∈ (0, T ) ×Ω, (2.77)
ηk · n = 0, (t, y) ∈ (0, T ) × ∂Ω, (2.78)

lim
|y|→+∞

ηk(t, y) = 0, t ∈ (0, T ). (2.79)
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We introduce the functions

v := v1 − v2, η := η1 − η2, r := r1 − r2, l := l1 − l2, ω := ω1 − ω2, and A := A1 −A2. (2.80)

Thus v may be written as

v = η +
3∑

i=1

li∇φi +
3∑

i=1

ri∇ϕi, v(0, y) = 0, (2.81)

where η is the solution to the system

curl η = ω, (t, y) ∈ (0, T ) ×Ω, (2.82)

div η = 0, (t, y) ∈ (0, T ) ×Ω, (2.83)
η · n = 0, (t, y) ∈ (0, T ) × ∂Ω, (2.84)

lim
|y|→+∞

η(t, y) = 0, t ∈ (0, T ). (2.85)

Step 5. Let X̂ := X̂1 − X̂2. Then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂

∂s
X̂(s; t, y) = v̂1(s, X̂1(s; t, y)) − v̂1(s, X̂2(s; t, y)) + v̂(s, X̂2(s; t, y))

−l(s) − r1(s) × X̂(s; t, y) − r(s) × X̂2(s; t, y),

X̂(t; t, y) = 0,

(2.86)

where v̂ := v̂1 − v̂2 = π(v).
Taking the scalar product of each term in (2.86) by X̂ results in

|X̂|∂|X̂|
∂s

=
∂

∂s

(
1
2
|X̂|2

)
= X̂ · ∂X̂

∂s
=
(
v̂1(s, X̂1) − v̂1(s, X̂2) + v̂(s, X̂2) − l − r × X̂2

)
· X̂.

It follows that
∂|X̂|
∂s

≤ C

(∥∥∥∥∂v̂1

∂y

∥∥∥∥
L∞(R3)

|X̂| + ‖v̂‖L∞(R3) + |l| + |r| · |X̂2|
)
.

Since
‖v̂(s)‖L∞(R3) ≤ C‖v(s)‖C0,α(Ω) ≤ C

(
‖η(s)‖C0,α(Ω) + |l(s)| + |r(s)|

)
≤ C � (l, r, ω)�

and
|X̂2| ≤ |y| + CT ′N ≤ C〈y〉,

we obtain with Gronwall’s lemma that for (s, t, y) ∈ [0, T ′]2 × R
3,

|X̂(s, t, y)| ≤ eCT ′
∫ T ′

0

C(1 + 〈y〉) � (l, r, ω) � dt ≤ CT ′〈y〉 � (l, r, ω) � . (2.87)

Step 6. Let us set A := A1 −A2. (Recall that Ak = (Gk)−1 for k = 1, 2.) Then we notice that

∂Ak

∂s
(s; t, y) = −Ak(s; t, y)

(
∂v̂k

∂y
(s, X̂k(s; t, y)) − S(rk(s))

)
, Ak(t; t, y) = Id.



1340 R. LECAROS AND L. ROSIER

Thus

∂A

∂s
(s; t, y) = −A(s; t, y)

(
∂v̂1

∂y
(s, X̂1(s; t, y)) − S(r1(s))

)

−A2(s; t, y)
(
∂v̂1

∂y
(s, X̂1(s; t, y)) − ∂v̂1

∂y
(s, X̂2(s; t, y))

)

−A2(s; t, y)
(
∂v̂

∂y
(s, X̂2(s; t, y)) − S(r(s))

)
, (2.88)

A(t; t, y) = 0. (2.89)

It follows that∥∥∥∥∂A∂s (s; t, y)
∥∥∥∥ ≤ C

(
‖A‖

(∥∥∥∥∂v̂1

∂y

∥∥∥∥
L∞(R3)

+ |r1|
)

+ ‖A2‖ ·
∥∥∥∥∂v̂1

∂y

∥∥∥∥
W 1,∞(R3)

|X̂| + ‖A2‖
(∥∥∥∥∂v̂∂y

∥∥∥∥
L∞(R3)

+ |r|
))

.

(2.90)
From (2.50), we have that ∥∥∥∥∂v̂1

∂y
(s)
∥∥∥∥

W 1,∞(R3)

≤ ∥∥v̂1(s)
∥∥

C2,α(R3)
≤ CN ≤ C.

Clearly, ∥∥A2
∥∥+ |r1| ≤ CN ≤ C.

On the other hand, it follows from Morrey’s inequality that

‖η‖
C

0,1− 3
p (Ω)

≤ C‖η‖Mp
1,δ+1

≤ C‖ω‖Mp
0,δ+2

.

Let

|f |0,α,R3 := sup
{ |f(x) − f(y)|

|x− y|α ; x, y ∈ R
3, x �= y

}
.

Then, since 0 < α ≤ 1 − 3
p , we have that∥∥∥∥∂v̂∂y (s)

∥∥∥∥
L∞(R3)

+
∣∣∣∣∂v̂∂y (s)

∣∣∣∣
0,α,R3

≤ C‖v(s)‖C1,α(Ω)

≤ C
(
‖η(s)‖C1,α(Ω) + |l(s)| + |r(s)|

)
≤ C

(
‖η(s)‖C0,α(Ω) + ‖ω(s)‖C0,α(Ω) + |l(s)| + |r(s)|

)
≤ C

(
‖ω(s)‖Mp

0,δ+2
+ ‖ω(s)‖C0,α(Ω) + |l(s)| + |r(s)|

)
≤ C � (l, r, ω) � . (2.91)

We infer with (2.87) and (2.90) that∥∥∥∥∂A∂s (s; t, y)
∥∥∥∥ ≤ C‖A‖ + C(T ′〈y〉 + 1) � (l, r, ω) � .

Since A(t; t, y) = 0, we obtain by using Gronwall’s lemma that for (s, t, y) ∈ [0, T ′]2 × R
3

‖A(s; t, y)‖ ≤ CT ′〈y〉 � (l, r, ω) � . (2.92)
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Step 7. Let ω̂ := ω̂1 − ω̂2. We first give an estimate of ‖ω̂‖L∞(Ω). We write

|ω̂| =
∣∣∣A1(0; t, y)ω̂0(X̂1(0; t, y)) −A2(0; t, y)ω̂0(X̂2(0; t, y))

∣∣∣
≤
∣∣∣A(0; t, y)ω̂0(X̂1(0; t, y))

∣∣∣+ ∣∣∣A2(0; t, y)
(
ω̂0(X̂1(0; t, y)) − ω̂0(X̂2(0; t, y))

)∣∣∣ . (2.93)

Since ω0 ∈Mp
1,δ+2, we have by ([10], Lem. 2.2) that

|ω̂0(y)| = O(|y|−δ−2) as |y| → +∞, (2.94)

so that we infer from (2.51) and (2.92) that∣∣∣A(0; t, y)ω̂0(X̂1(0; t, y))
∣∣∣ ≤ CT ′〈y〉 � (l, r, ω) � |ω̂0(X̂1(0; t, y)| ≤ CT ′ � (l, r, ω) � .

On the other hand, by (2.19), (2.63) and (2.87), we have that∣∣∣A2(0; t, y)
(
ω̂0(X̂1(0; t, y)) − ω̂0(X̂2(0; t, y))

)∣∣∣ ≤ C

1 + min(|X̂1|, |X̂2|) |X̂ | ≤ CT ′ � (l, r, ω)�,

where we used (2.51) to get 1+ min(|X̂1|, |X̂2|) ≥ C〈y〉 for y ∈ Ω and t ∈ [0, T ′]. Thus, we have proved that for
T ′ > 0 satisfying (2.66) and (2.72), we have

‖ω̂‖L∞(0,T ′;L∞(Ω)) ≤ CT ′ � (l, r, ω) � . (2.95)

Step 8. Let us now estimate the Hölder norm |ω̂|0,α. Note first that it is not clear whether X̂ ∈ C0,α(Ω),
since it could happen that X̂ ∼ 〈y〉 as |y| → +∞ (and hence, X̂ �∈ L∞(Ω)). Rather, we shall prove that
〈y〉−1X̂ ∈ C0,α(Ω).

We infer from (2.86) that

∂

∂s

(
〈y〉−1X̂(s; t, y)

)
= 〈y〉−1

(
v̂1(s, X̂1(s; t, y)) − v̂1(s, X̂2(s; t, y)) + v̂(s, X̂2(s; t, y))

−l(s) − r1(s) × X̂(s; t, y) − r(s) × X̂2(s; t, y)
)
,

=
∫ 1

0

∂v̂1

∂y
(s, X̂2 + σX̂)〈y〉−1X̂dσ

+〈y〉−1(v̂(s, X̂2) − l − r1 × X̂ − r × X̂2)

Therefore, using (2.58), we obtain

∣∣∣∣∣ ∂∂s
(
X̂

〈y〉

)∣∣∣∣∣
0,α,R3

≤
⎡
⎣∥∥∥∥∂v̂1

∂y

∥∥∥∥
L∞(R3)

∣∣∣∣∣ X̂〈y〉
∣∣∣∣∣
0,α,R3

+
∣∣∣∣∂v̂1

∂y

∣∣∣∣
0,α,R3

⎛
⎝
∥∥∥∥∥∂X̂

2

∂y

∥∥∥∥∥
L∞(R3)

+

∥∥∥∥∥∂X̂
1

∂y

∥∥∥∥∥
L∞(R3)

⎞
⎠

α

‖ X̂〈y〉‖L∞(R3)

⎤
⎦

+

∣∣∣∣∣ v̂(s, X̂
2)

〈y〉

∣∣∣∣∣
0,α,R3

+ C

⎛
⎝1 +

∣∣∣∣∣ X̂
2

〈y〉

∣∣∣∣∣
0,α,R3

⎞
⎠ � (l, r, ω) � +C

∣∣∣∣∣ X̂〈y〉
∣∣∣∣∣
0,α,R3

· (2.96)

It is clear that ∥∥∥∥∂v̂1

∂y

∥∥∥∥
L∞(R3)

+
∣∣∣∣∂v̂1

∂y

∣∣∣∣
0,α,R3

+

∥∥∥∥∥∂X̂
2

∂y

∥∥∥∥∥
L∞(R3)

+

∥∥∥∥∥∂X̂
1

∂y

∥∥∥∥∥
L∞(R3)

≤ C. (2.97)
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To bound | X̂2

〈y〉 |0,α,R3 , we notice that X̂2

〈y〉 solves the system

∂

∂s

(
X̂2

〈y〉

)
=
v̂2(s, X̂2)

〈y〉 − l2

〈y〉 − r2 × X̂2

〈y〉 ,

X̂2

〈y〉 (t; t, y) =
y

〈y〉 ·

Since |v̂2(s, X̂2)|0,α,R3 ≤ C|v̂2|0,α‖∂X̂2

∂y ‖α
L∞(R3) ≤ C, ‖v̂2(s, X̂2)‖L∞(Ω) ≤ C, and both 〈y〉−1 and 〈y〉−1y belong

to W 1,∞(R3) ⊂ C0,α(R3), we obtain with Gronwall’s lemma that∣∣∣∣∣ X̂
2

〈y〉

∣∣∣∣∣
0,α,R3

≤ C. (2.98)

On the other hand, we infer from (2.58) and (2.91) that∣∣∣∣∣ v̂(s, X̂
2)

〈y〉

∣∣∣∣∣
0,α,R3

≤ C
(
‖v̂(s,X2)‖L∞(R3) + |v̂(s, X̂2)|0,α,R3

)
≤ C � (l, r, ω) � .

It follows from (2.86), (2.96)−(2.98) and Gronwall’s lemma that∣∣∣∣∣ X̂〈y〉
∣∣∣∣∣
0,α

≤ CT ′ � (l, r, ω) � . (2.99)

Next, we prove that a similar estimate holds for | A
〈y〉 |0,α. Writing for 1 ≤ i, j ≤ 3

∂v̂1
i

∂yj
(s, X̂1) − ∂v̂1

i

∂yj
(s, X̂2) =

∫ 1

0

∂

∂y

(
∂v̂1

i

∂yj

)
(s, X̂2 + σX̂) · X̂dσ,

and using (2.88), we infer that∣∣∣∣ ∂∂s
(
A

〈y〉
)∣∣∣∣

0,α

≤ C

∣∣∣∣ A〈y〉
∣∣∣∣
0,α

(∥∥∥∥∂v̂1

∂y

∥∥∥∥
L∞(Ω)

+ |r1|
)

+ C

∥∥∥∥ A〈y〉
∥∥∥∥

L∞(Ω)

∣∣∣∣∂v̂1

∂y

∣∣∣∣
0,α

∥∥∥∥∥∂X̂
1

∂y

∥∥∥∥∥
α

L∞(Ω)

+C ‖A2‖L∞(Ω)

⎛
⎝|v̂1|2,α(

∥∥∥∥∥∂X̂
2

∂y

∥∥∥∥∥
L∞(Ω)

+ ‖∂X̂
1

∂y
‖L∞(Ω))α‖ X̂〈y〉‖L∞(Ω)

+
∥∥∥∥ ∂∂y

(
∂v̂1

∂y

)∥∥∥∥
L∞(Ω)

∣∣∣∣∣ X̂〈y〉
∣∣∣∣∣
0,α

⎞
⎠

+C |A2|0,α‖v̂1‖W 2,∞(Ω)

∥∥∥∥∥ X̂〈y〉
∥∥∥∥∥

L∞(Ω)

+C

∣∣∣∣A2

〈y〉
∣∣∣∣
0,α

(∥∥∥∥∂v̂∂y
∥∥∥∥

L∞(Ω)

+ |r|
)

+ C

∥∥∥∥A2

〈y〉
∥∥∥∥

L∞(Ω)

∣∣∣∣∂v̂∂y
∣∣∣∣
0,α

∥∥∥∥∥∂X̂
2

∂y

∥∥∥∥∥
α

L∞(Ω)

·

Then using (2.87), (2.91), (2.92), we infer that∣∣∣∣ ∂∂s
(
A

〈y〉
)∣∣∣∣

0,α

≤ C| A〈y〉 |0,α + C(1 + T ′) � (l, r, ω) � .
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Therefore, using the fact that A(t; t, y) = 0, we obtain with Gronwall’s lemma that

∣∣∣∣ A〈y〉
∣∣∣∣
0,α

≤ CT ′ � (l, r, ω) � . (2.100)

We are in a position to estimate |ω̂|0,α. We have

|ω̂|0,α ≤
∣∣∣A(0; t, y)ω̂0(X̂1(0; t, y))

∣∣∣
0,α

+
∣∣∣A2(0; t, y)

(
ω̂0(X̂1(0; t, y)) − ω̂0(X̂2(0; t, y))

)∣∣∣
0,α

≤
∣∣∣∣ A〈y〉

∣∣∣∣
0,α

‖〈y〉ω̂0(X̂1)‖L∞(Ω) +
∥∥∥∥ A〈y〉

∥∥∥∥
L∞(Ω)

|〈y〉ω̂0(X̂1)|0,α

+|A2|0,α‖ω̂0(X̂1) − ω̂0(X̂2)‖L∞(Ω) + ‖A2‖L∞(Ω)|ω̂0(X̂1) − ω̂0(X̂2)|0,α

≤ C(1 + |〈y〉ω̂0(X̂1)|0,α)T ′ � (l, r, ω) � +C|ω̂0(X̂1) − ω̂0(X̂2)|0,α

where we used (2.19), (2.87), (2.92), and (2.100). It remains to estimate |ω̂0(X̂1)−ω̂0(X̂2)|0,α and |〈y〉ω̂0(X̂1)|0,α.
For the first one, we write

|ω̂0(X̂1) − ω̂0(X̂2)|0,α =
∣∣∣∣
∫ 1

0

∂ω̂0

∂y
(X̂2 + σX̂)X̂dσ

∣∣∣∣
0,α

≤ C

⎛
⎝ sup

σ∈(0,1)

‖〈y〉∂ω̂0

∂y
(X̂2 + σX̂)‖L∞(Ω)

∣∣∣∣∣ X̂〈y〉
∣∣∣∣∣
0,α

+ sup
σ∈(0,1)

∣∣∣∣〈y〉∂ω̂0

∂y
(X̂2 + σX̂)

∣∣∣∣
0,α

‖ X̂〈y〉‖L∞(Ω)

)

≤ C

(
1 + sup

σ∈(0,1)

∣∣∣∣〈y〉∂ω̂0

∂y
(X̂2 + σX̂)

∣∣∣∣
0,α

)
T ′ � (l, r, ω)�

where we used (2.20), (2.21), (2.87), (2.99), and the fact that (using (2.51) for X̂2)

|X̂2 + σX̂ | ≥ |y| +O(T ′)〈y〉 ≥ 1
2
〈y〉 for T ′ small enough, |y| > 1 and σ ∈ (0, 1).

We aim to prove that

sup
σ ∈ (0, 1)
t ∈ [0, T ′]

∣∣∣∣〈y〉∂ω̂0

∂y
(X̂2(y) + σX̂(y))

∣∣∣∣
0,α

< +∞, (2.101)

where we write X̂(y) for X̂(0; t, y), etc. We have with (2.20) that

sup
σ ∈ (0, 1)
|y − y′| ≥ 1
t ∈ [0, T ′]

∣∣∣〈y〉∂ω̂0
∂y (X̂2(y) + σX̂(y)) − 〈y′〉∂ω̂0

∂y (X̂2(y′) + σX̂(y′))
∣∣∣

|y − y′|α < +∞.
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On the other hand, for σ ∈ (0, 1), |y − y′| < 1, and t ∈ [0, T ′],∣∣∣〈y〉∂ω̂0
∂y (X̂2(y) + σX̂(y)) − 〈y′〉∂ω̂0

∂y (X̂2(y′) + σX̂(y′))
∣∣∣

|y − y′|α

≤
∣∣∣∣ 〈y〉 − 〈y′〉
|y − y′|α

∂ω̂0

∂y
(X̂2(y) + σX̂(y))

∣∣∣∣+ 〈y′〉

∣∣∣∂ω̂0
∂y (X̂2(y) + σX̂(y)) − ∂ω̂0

∂y (X̂2(y′) + σX̂(y′))
∣∣∣

|y − y′|α

≤ C

∥∥∥∥∂ω̂0

∂y

∥∥∥∥
L∞(Ω)

+ C

⎛
⎝
∥∥∥∥∥∂X̂

2

∂y

∥∥∥∥∥
L∞(Ω)

+

∥∥∥∥∥∂X̂∂y
∥∥∥∥∥

L∞(Ω)

⎞
⎠ |y − y′|1−α

where we used (2.21) and the mean value theorem for the last term. This completes the proof of (2.101). We
infer that

|ω̂0(X̂1) − ω̂0(X̂2)|0,α ≤ CT ′ � (l, r, ω) � .

We can prove in a very similar way that |〈y〉ω̂0(X̂1)|0,α < +∞. We conclude that

|ω̂(t)|0,α ≤ CT ′ � (l, r, ω)�, t ∈ [0, T ′]. (2.102)

Step 9. Let us estimate ‖ω̂‖Lp
p(δ+2)(Ω). We write

‖ω̂‖p
Lp

p(δ+2)(Ω)
≤ C

(∫
Ω

|Aω̂0(X̂1)|p〈y〉p(δ+2)dy +
∫

Ω

|A2(ω̂0(X̂1) − ω̂0(X̂2))|p〈y〉p(δ+2)dy
)

=: C(I1 + I2),

where we have written A1 for A1(0; t, y), X̂1 for X̂1(0; t, y), etc.
Then, using the fact that ω0 ∈M0

p,δ+3 and (2.92), we obtain that

I1 ≤ (CT ′ � (l, r, ω)�)p

∫
Ω

|ω̂0(X̂1(0; t, y)|p〈y〉p(δ+3)dy

≤ (CT ′ � (l, r, ω)�)p

∫
R3

|ω̂0(x)|p〈X̂1(t; 0, x)〉p(δ+3)dx

≤ (CT ′ � (l, r, ω)�)p‖ω̂0‖p
Mp

0,δ+3(R
3)
.

Therefore, increasing the value of C if needed, we obtain

I1 ≤ (CT ′ � (l, r, ω)�)p.

For I2, we infer from (2.19) with κ > 3 + δ + 3
p that

I2 ≤ C

∫
Ω

|ω̂0(X̂1) − ω̂0(X̂2)|p〈y〉p(δ+2)dy

≤ C

∫
Ω

(
|X̂|

[1 + min(|X̂1|, |X̂2|)]κ

)p

〈y〉p(δ+2)dy

≤ (CT ′ � (l, r, ω)�)p

∫
R3
〈y〉p(δ+3−κ)dy

≤ (CT ′ � (l, r, ω)�)p.

We conclude that
‖ω̂(t)‖Lp

p(δ+2)(Ω) ≤ CT ′ � (l, r, ω)�, t ∈ [0, T ′]. (2.103)
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Step 10. Let us turn to the estimates of v. Since α ≤ 1 − 3
p , we have Mp

1,δ+1 ⊂ C0,α(Ω), and hence

‖∇v‖C0,α(Ω) ≤ C(‖ω‖C0,α(Ω) + ‖v‖C0,α(Ω) + |l| + |r|)
≤ C(‖ω‖C0,α(Ω) + ‖v‖Mp

1,δ+1
+ |l| + |r|)

≤ C(‖ω‖C0,α(Ω) + ‖ω‖Mp
0,δ+2

+ |l| + |r|)
≤ CT ′ � (l, r, ω) � .

It follows that

‖∇v‖L4(Ω) ≤ ‖∇v‖
p
4
Lp(Ω)‖∇v‖

1− p
4

L∞(Ω)

≤ C‖v‖
p
4
Mp

1,δ+1
‖∇v‖1− p

4

C0,α(Ω)

≤ C(‖ω‖C0,α(Ω) + ‖ω‖Mp
0,δ+2

+ |l| + |r|)
≤ CT ′ � (l, r, ω) � .

Step 11. We now turn our attention to l̂ := l̂1 − l̂2 and r̂ := r̂1 − r̂2, where for k = 1, 2

(
l̂k(t)
r̂k(t)

)
:=
(
l0
r0

)
+ J−1

∫ t

0

⎧⎪⎨
⎪⎩
⎛
⎜⎝
(∫

Ω

∇μk(τ, y) · ∇φi(y) dy
)

i=1,2,3( ∫
Ω

∇μk(τ, y) · ∇ϕi(y) dy
)

i=1,2,3

⎞
⎟⎠−

(
m0r

k × lk

rk × J0r
k

)⎫⎪⎬
⎪⎭ dτ, (2.104)

and the function μk : [0, T ′] ×Ω → R is defined as the solution to the system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Δμk = tr
(
∇vk · ∇vk

)
, in (0, T )×Ω,

∂μk

∂n
= −

∑
1≤j≤m

ẇj(t)χj(y) −
((

(vk − lk − rk × y) · ∇
)
vk + rk × vk

)
· n, on (0, T ) × ∂Ω,

lim
|y|→∞

∇μk(t, y) = 0 in (0, T ).

Then μ := μ1 − μ2 satisfies the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δμ = tr
(
∇(v1 + v2) · ∇v

)
, in (0, T ) ×Ω,

∂μ

∂n
= −

((
(v − l − r × y) · ∇

)
v1 + r × v1

)
· n

−
((

(v2 − l2 − r2 × y) · ∇
)
v + r2 × v

)
· n on (0, T )× ∂Ω,

lim
|y|→∞

∇μ(t, y) = 0 in (0, T ).

It follows that

‖∇μ‖L2(Ω) ≤ C
(‖∇v1‖L4(Ω) + ‖∇v2‖L4(Ω)

) ‖∇v‖L4(Ω) + C(‖v‖C0,α(Ω) + ‖∇v‖C0,α(Ω) + |l| + |r|)
≤ CT ′ � (l, r, ω) � . (2.105)

We infer from (2.104) that (l̂, r̂) satisfies

(
l̂(t)
r̂(t)

)
= J−1

∫ t

0

⎧⎪⎨
⎪⎩
⎛
⎜⎝
(∫

Ω

∇μ(τ, y) · ∇φi(y) dy
)

i=1,2,3( ∫
Ω

∇μ(τ, y) · ∇ϕi(y) dy
)

i=1,2,3

⎞
⎟⎠−

(
m0(r × l1 + r2 × l)
r × J0r

1 + r2 × J0r

)⎫⎪⎬
⎪⎭dτ,
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and hence, with (2.105),
|l̂(t)| + |r̂(t)| ≤ CT ′ � (l, r, ω)�, t ∈ [0, T ′]. (2.106)

Gathering together (2.95), (2.102), (2.103) and (2.106), we obtain

�(l̂, r̂, ω̂)� ≤ CT ′ � (l, r, ω)�, t ∈ [0, T ′]. (2.107)

Thus, for T ′ < 1/C, we have that

�τ (l1, r1, ω1) − τ (l2, r2, ω2)� ≤ k � (l1, r1, ω1) − (l2, r2, ω2)�

for some constant k ∈ (0, 1), i.e. τ is a contraction in C. The Proof of Theorem 2.3 is complete. �

2.3. Existence of a solution of system (1.19)−(1.25)

Let us now check that the fixed-point (l, r, ω) given in Theorem 2.3 yields a solution of (1.19)−(1.25). Let v
and μ be given by (2.32)−(2.36) and (2.45), respectively. Since (l, r, ω) ∈ C ⊂ C([0, T ′],F), then (2.23) holds,
∇μ ∈ C([0, T ′], L2(Ω)) and hence, with (2.46), (2.26) holds as well. Let us set

q := μ−
3∑

i=1

l̇iφi −
3∑

i=1

ṙiϕi. (2.108)

Then (2.24) holds and we have for a.e. t ∈ (0, T ′), q(t, .) ∈ C2,α
loc (Ω) and lim|y|→+∞∇q(t, y) = 0.

Proposition 2.4. Let T ′ be as in Theorem 2.3 and let (l, r, ω) denote the corresponding fixed-point of τ in C.
Then (v,q, l, r) is a solution of (1.19)−(1.25) in (0, T ′).

Proof of Proposition 2.4. Let
f := ((v − l − r × y) · ∇) v + r × v. (2.109)

Then we have that f(t, .) ∈ C1,α
loc (Ω) for all t ∈ [0, T ′]. On the other hand, since v ∈ C([0, T ′],Mp

2,δ+1), we have
that |v| ≤ C〈y〉−1−δ and |∇v| ≤ C〈y〉−2−δ, so that

|f(t, y)| ≤ C〈y〉−1−δ.

The divergence of f is given by

div f = div
((

(v − l − r × y) · ∇)v + r × v
)

= ∂i

(
vj∂jvi

)
− ∂i

(
lj∂jvi

)
− ∂i

(
(r × y)j∂jvi

)
+ div

(
r × v

)
= (∂ivj) (∂jvi) − (r × ∂iy)j∂jvi + div

(
r × v

)
= tr

(
∇v · ∇v

)
− ∂j

(
(r × vi∂iy)j

)
+ div

(
r × v

)
= tr

(
∇v · ∇v

)
− div

(
r × v

)
+ div

(
r × v

)
= tr

(
∇v · ∇v

)
= −Δμ,

where we used Einstein’s convention of repeated indices and the fact that div (v) = 0. Therefore, using (2.3)
and (2.108), we obtain

div (f + ∇q) = 0. (2.110)
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Now we turn our attention to the curl of f . Define ṽ := v − l − r × y. Then

curl ṽ = ω − 2r. (2.111)

We shall use the following identities (see e.g. [10])

curl((v · ∇)v) = (v · ∇)curl(v) − (curl(v) · ∇)v + div(v)curl(v), (2.112)
curl(r × v) = div(v)r − (r · ∇)v. (2.113)

Applying the operator curl to f and using (2.112)−(2.113), we obtain

curl f = curl((ṽ · ∇)ṽ) + curl((ṽ · ∇)(l + r × y)) + curl(r × v)
= curl ((ṽ · ∇)ṽ) + curl(r × ṽ) + curl(r × v)
= curl ((ṽ · ∇)ṽ) + div(ṽ)r − (r · ∇)ṽ + div(v)r − (r · ∇)v
= curl ((ṽ · ∇)ṽ) − (r · ∇)ṽ − (r · ∇)v
= (ṽ · ∇)curl(ṽ) − (curl(ṽ) · ∇)ṽ − (r · ∇)ṽ − (r · ∇)v
= (ṽ · ∇)(ω − 2r) − ((ω − 2r) · ∇)ṽ − (r · ∇)ṽ − (r · ∇)v
= (ṽ · ∇)ω − ω · ∇ṽ.

Using (2.44), we see that ω satisfies

∂ω

∂t
+ (ṽ · ∇)ω − (ω · ∇)ṽ = 0, t ∈ (0, T ′). (2.114)

It follows that
curl f +

∂ω

∂t
= 0. (2.115)

On other hand, using (2.45) we obtain that

f · n = −∂μ
∂n

−
∑

1≤j≤m

ẇj(t)χj(y) (2.116)

= − ∂q

∂n
− (l̇ + ṙ × y) · n−

∑
1≤j≤m

ẇj(t)χj(y). (2.117)

Introduce now the function

F (t, y) := v(t, y) − v0(y) +
∫ t

0

(f(s, y) + ∇q(s, y))ds. (2.118)

Then F (t, .) ∈ C1,α
loc (Ω) for all t ∈ [0, T ′]. On the other hand, it follows from (2.110), (2.115) and (2.117) that

div F = 0 in Ω,
curl F = 0 in Ω,
F · n = 0 on ∂Ω,

lim
|y|→+∞

F (t, y) = 0.

Then we infer from ([10], Lem. 2.7) that F ≡ 0. Taking into account the definition of F , this implies that
v ∈ C1([0, T ′];C1,α

loc (Ω)) with (1.19) satisfied together with v(0, .) = v0. Using (2.32)−(2.36), we see that the
equations (1.20)−(1.22) are satisfied. Finally, equations (1.23)−(1.25) hold by (2.46) and (2.108). ��
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2.4. Proof of the estimate (2.27)

The potential solution (l, r, v) of (1.19)−(1.25) associated with l0, r0, {wj}1≤j≤m, and ω0 = 0 is obtained in
the following way. Since ω0 = 0, π(ω0) = 0 in R

3, and hence with (2.44) the vorticity ω is null. Then we infer
from (2.33)−(2.36) that η = 0 and from (2.32) that

v =
3∑

i=1

li∇φi +
3∑

i=1

ri∇ϕi +
∑

1≤j≤m

wj(t)∇ψj . (2.119)

It follows from ([11], Prop. 2.3) that (l, r) satisfies the ODE (2.11), whose solution is unique.
Consider a solution (l, r, ω) associated with the same l0, r0, {wj}1≤j≤m as for (l, r, ω), but with an initial

vorticity ω0 not necessarily null. It follows from (2.28)−(2.30) that for all t ∈ [0, T ′]

‖ω(t)‖C1,α(Ω) + ‖ω(t)‖Mp
1,δ+2

≤ P = ee ·
(
C6‖π(ω0)‖C1,α(R3) + C7‖π(ω0)‖Mp

1,δ+2(R3)

)
.

Now, from (2.32) and (2.33)−(2.36), we infer that for all t ∈ [0, T ′]

‖v(t) − v(t)‖C2,α(Ω) + ‖∇v(t) −∇v(t)‖L4(Ω) ≤ C
(
P + |(l(t) − l(t), r(t) − r(t))|) .

Combined with (2.45), this yields

‖∇μ(t) −∇μ(t)‖L2(Ω) ≤ C
(
P + |(l(t) − l(t), r(t) − r(t))|) .

Using (2.46), we obtain

|(l̇(t) − l̇(t), ṙ(t) − ṙ(t))| ≤ C
(
P + |(l(t) − l(t), r(t) − r(t))|) .

Then (2.27) follows by using Gronwall’s lemma. The proof of Theorem 2.1 is complete. �

2.5. Uniqueness and continuity with respect to the control

The following result is concerned with the uniqueness of the solution (l, r, v,q) of (1.19)−(1.25), when the
vorticity ω = curl v satisfies

ω(t, y) = G−1(0; t, y)π(ω0)(X̂(0; t, y)) (2.120)

where G(s; t, y) = (∂X̂/∂y)(s; t, y) and the flow X̂ is defined on [0, T ′]2 × R
3 by

⎧⎪⎨
⎪⎩

∂

∂s
X̂(s; t, y) = π(v)(s, X̂(s; t, y)) − l(s) − r(s) × X̂(s; t, y),

X̂(t; t, y) = y.

(2.121)

Proposition 2.5. Let l0, r0, ω0, v0 and T ′ be as in Theorem 2.1. Then the solution (v,q, l, r, ω) of (1.19)−(1.25)
and (2.120)−(2.121) is unique in the class (2.23)−(2.26) (q being unique up to the addition of an arbitrary
function of time). On the other hand, for any given initial data (l0, r0, ω0) as above and any R > 0, the map
w ∈ B := {w ∈ C1([0, T ′],Rm); ‖w‖C1([0,T ]) ≤ R} �→ (l, r) ∈ C0([0, T ′],R6) is continuous.

Proof. Let (v,q, l, r) be a solution of (1.19)−(1.25) in the class (2.23)−(2.26). Then we can expand v in the
form (2.32) with η as in (2.33)−(2.36). Then it is well-known that the vorticity ω = curl v satisfies the equa-
tion (2.114) with ṽ = v − l − r × y, and that it is given by (2.120) “away” from the rigid body. We assume
that it is given by (2.120) everywhere, even on ∂Ω. Roughly speaking, this amounts to specifying the tangent
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components of the vorticity on the inflow section. Let us show that the pair (l, r) satisfies (2.46). Let μ be as
in (2.108) and let f be as in (2.109). Then by (1.19) and the computations above, we have that

−Δμ = −Δq = div f = tr (∇v · ∇v),
and

∂μ

∂n
=
∂q

∂n
+

3∑
i=1

l̇ini +
3∑

i=1

ṙi(y × n)i

= −
(
∂v

∂t
+ f

)
· n+ l̇ · n+ ṙ · (y × n)

= − ∂

∂t

⎛
⎝[l + r × y] · n+

∑
1≤j≤m

wj(t)χj(y)

⎞
⎠− f · n+ l̇ · n+ ṙ · (y × n)

= −
∑

1≤j≤m

ẇj(t)χj(y) −
(
(v − l − r × y) · ∇v + r × v

) · n.
Thus μ solves (2.45). Integrating in (1.23)−(1.24) and using (2.108), we arrive to (2.46) with (l̂, r̂) = (l, r). Thus
(l, r, ω) is a fixed-point of τ . As there is (for T ′ small enough) only one fixed-point of τ by the contraction
mapping theorem, we infer that (l, r, ω) is unique. Then η is unique by (2.33)−(2.36), and v is unique by (2.32).
Finally, ∇q is unique by (1.19) and q is unique (up to the addition of an arbitrary function of time).

Let us proceed with the continuity with respect to the control. Assume given some initial data (l0, r0, ω0) as
above and pick any number R > 0. Let

B := {w ∈ C1([0, T ],Rm); ‖w‖C1([0,T ]) ≤ R}.
Assume that the constants C8 and C11 are suitably chosen to be convenient for all w ∈ B, and pick a time
T ′ > 0 convenient for all w ∈ B. Then
(i) for T ′ small enough, we have for w ∈ B and (li, ri, ωi) ∈ C, i = 1, 2,

�τ (l1, r1, ω1) − τ (l2, r2, ω2)� ≤ k � (l1, r1, ω1) − (l2, r2, ω2)�,

for some constant k ∈ (0, 1);
(ii) for given (l, r, ω) ∈ C, the map w ∈ B �→ (l̂, r̂, ω̂) ∈ C is continuous.

Indeed, the map w ∈ B �→ v ∈ C([0, T ′], C2,α(Ω) ∩ Mp
2,δ+1) is clearly continuous (using (2.32)

and (2.33)−(2.36)), and hence the map w ∈ B �→ (l, r) ∈ C1([0, T ′],R6) is continuous (by (2.45)−(2.46)).
Finally, using the assumption ω0 ∈ Mp

0,δ+3, (2.28), (2.114), Aubin−Lions’ lemma and the continuity of v, one
can see (as e.g. in [5]) that the map w ∈ B �→ ω ∈ C([0, T ′], C0,α(Ω) ∩ Lp

p(δ+2)(Ω)) is continuous.
It follows again from the contraction mapping theorem (for a map depending on a parameter) that the map

which associates with w ∈ B the fixed-point (l, r, ω) ∈ C is continuous. �

3. Proof of the main result

We are now in a position to prove the main result in this paper. Let T0, P,N,K and R be some given
positive numbers. Then by Theorem 2.1, there exists a time T = T (T0, P,N,K,R) ∈ (0, T0] such that sys-
tem (1.19)−(1.25) has a solution (v,q, l, r) for t ∈ [0, T ], with (l, r, ω) ∈ C([0, T ],F), provided that |(l0, r0)| ≤ 1,
‖w‖C1([0,T0]) ≤ R and ω0 satisfies (2.19)−(2.21) and

‖ω0‖C1,α(Ω) + ‖ω0‖Mp
1,δ+2

≤ P, div ω0 = 0,
∫

∂Ω

ω0 · n dσ = 0.
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Let Π be a (continuous and linear) extension operator from C1([0, T ]) to C1([0, T0]) and pick δ := R/‖Π‖.
Then ‖Π(w)‖C1([0,T0]) ≤ R if ‖w‖C1([0,T ]) ≤ δ. In particular, using assumption (H) for the time T , we have that
‖Π(w)‖C1([0,T0]) ≤ R if w = W (h0, q0, l0, r0, hT , qT , lT , rT ) for |(h0, q0, l0, r0, hT , qT , lT , rT )| < η with η > 0
small enough. Then system (1.19)−(1.25) has a solution defined for t ∈ [0, T ] corresponding to (l0, r0, ω0, w) as
above, and also a potential solution corresponding to the same data (l0, r0, w) and to ω̄0 ≡ 0.

Let ω0 be as in the statement of Theorem 1.1, and write a0 = (h0, q0), b0 = (l0, r0), aT = (hT , qT ), and
bT = (lT , rT ). Let a(t) := (h(t), q(t)) and b(t) = (l(t), r(t)). The proof is done in two steps. In the first step, we
prove the result for ||ω0||C1,α(Ω), ||ω0||Mp

1,δ+2
, |l0|, |r0|, |lT | and |rT | small enough, and in the second step, we

remove this assumption by performing a scaling in time.

Step 1. Let the map W be as in the assumption (H) for the time T . We may pick a number η1 ∈ (0, 1) such
that w = W (a0, b0, aT , bT ) is defined for |(a0, b0)| ≤ η1 and |(aT , bT )| ≤ η1, with

||w||C1([0,T ]) ≤ δ.

Pick any initial state (a0, b0) = (h0, q0, l0, r0) with |(a0, b0)| ≤ η1. For any given (aT , bT , v0) with |(aT , bT )| ≤ η1,
we denote by (h, q, l, r, v,q) the solution of (1.19)−(1.25) and (1.30) corresponding to the velocity v0 and to
the control w = W (a0, b0, aT , bT ), and by (h, q, l, r, v,q) the solution corresponding to (a0, b0) together with the
velocity v0 which solves

curl v0 = 0, in Ω,
div v0 = 0, in Ω,
v0 · n = (l0 + r0 × y) · n, on ∂Ω,

lim
|y|→∞

v0(y) = 0,

and to the (same) control w. From (2.27) we infer that there exists some constant C1 > 0 such that

||(l − l, r − r)||L∞(0,T ) ≤ C1

(
‖ω0‖C1,α(Ω) + ‖ω0‖Mp

1,δ+2

)
, (3.1)

whenever
|(l0, r0)| ≤ 1, ||ω0||C1,α(Ω) + ||ω0||Mp

1,δ+2
≤ P, and ||w||C1([0,T ]) ≤ δ. (3.2)

Combined to the equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h′(t) = (1 − |q|2)l + 2
√

1 − |q|2 q × l + (l · q )q − q × l × q,

q ′(t) = 1
2 (
√

1 − |q|2 r + q × r),

h
′
(t) = (1 − |q|2)l + 2

√
1 − |q|2 q × l + (l · q )q − q × l × q,

q ′(t) = 1
2 (
√

1 − |q|2 r + q × r),

h(0) = h(0) = h0, q(0) = q(0) = q0,

this gives for some constant C2 > 0

||(h− h, q − q)||L∞(0,T ) ≤ C2

(
||ω0||C1,α(Ω) + ||ω0||Mp

1,δ+2

)
, (3.3)

provided that (3.2) holds. Let f : B = {x ∈ R
12; |x| ≤ 1} → R

12 be defined by

f(xT ) =
1
η1

(a(T ), b(T )) =
1
η1

(h(T ), q(T ), l(T ), r(T ))

where (aT , bT ) =: η1xT .
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We notice that f is continuous, by virtue of Proposition 2.5 and (1.30). Pick any ε ∈ (0, 1). From (3.1)
and (3.3), we deduce that for

||ω0||C1,α(Ω) + ||ω0||Mp
1,δ+2

< ν (3.4)

with ν > 0 small enough, we have that

|f(xT ) − xT | < ε, for |xT | ≤ 1.

We need the following topological result ([5], Lem. 4.1).

Lemma 3.1. Let B = {x ∈ R
n; |x| < 1} and S = ∂B. Let f : B → R

n be a continuous map such that for
some constant ε ∈ (0, 1)

|f(x) − x| ≤ ε ∀x ∈ S. (3.5)

Then
(1 − ε)B ⊂ f(B). (3.6)

Thus, we infer from Lemma 3.1 that if (a0, b0, aT , bT ) ∈ R
24 is such that

|(a0, b0)| < η1, |(aT , bT )| < η2 := η1(1 − ε),

and (3.4) is satisfied, then there exists a control w = W (a0, b0, ãT , b̃T ) for which the solution of (1.19)−(1.25)
and (1.30) satisfies (h(T ), q(T ), l(T ), r(T )) = (a(T ), b(T )) = (aT , bT ).

Step 2. To drop the assumptions |b0| < η1, |bT | < η2, and (3.4) (corresponding to a given time T ∈ (0, T0]), we
use a scaling in time introduced in [1] for the control of Euler equations. Let (a0, b0), (aT , bT ), and v0 be given
data with

|a0| < η2 and |aT | < η2.

We set bλ0 := λb0, bλT := λbT , and vλ
0 := λv0. Then for λ > 0 small enough, we have that

|(a0, b
λ
0 )| < η2, |(aT , b

λ
T )| < η2,

and ωλ
0 := curl vλ

0 satisfies
||ωλ

0 ||C1,α(Ω) + ||ωλ
0 ||Mp

1,δ+2
< ν.

By Step 1, there exists some trajectory (aλ, bλ) for the underwater vehicle connecting (a0, b
λ
0 ) at t = 0 to (aT , b

λ
T )

at t = T , with corresponding fluid velocity vλ, pressure qλ, and control wλ. Let us set

a(t) := aλ(λ−1t),
b(t) := λ−1bλ(λ−1t),

v(t, y) := λ−1vλ(λ−1t, y),
q(t, y) := λ−2qλ(λ−1t, y),
w(t) := λ−1wλ(λ−1t),

for y ∈ Ω and 0 ≤ t ≤ Tλ := λT ∈ (0, T0]. Then (a, b) is a trajectory for the underwater vehicle connecting
(a0, b0) at t = 0 to (aT , bT ) at t = Tλ and corresponding to the initial fluid velocity v0. ��
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[7] V.I. Judovič, A two-dimensional non-stationary problem on the flow of an ideal incompressible fluid through a given region.
Mat. Sb. (N.S.) 64 (1964) 562–588.

[8] T. Kato, M. Mitrea, G. Ponce and M. Taylor, Extension and representation of divergence-free vector fields on bounded domains.
Math. Res. Lett. 7 (2000) 643–650.

[9] A.V. Kazhikhov, Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid.
Prikl. Matem. Mekhan. 44 (1980) 947–950.

[10] K. Kikuchi, The existence and uniqueness of nonstationary ideal incompressible flow in exterior domains in R3. J. Math. Soc.
Japan 38 (1986) 575–598.

[11] R. Lecaros and L. Rosier, Control of underwater vehicles in inviscid fluids – I. Irrotational flows. ESAIM: COCV 20 (2014)
662–703.

[12] J.H. Ortega, L. Rosier and T. Takahashi, Classical solutions for the equations modelling the motion of a ball in a bidimensional
incompressible perfect fluid. ESAIM: M2AN 39 (2005) 79–108.

[13] J.H. Ortega, L. Rosier and T. Takahashi, On the motion of a rigid body immersed in a bidimensional incompressible perfect
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