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SPECTRAL INEQUALITY AND OPTIMAL COST OF CONTROLLABILITY
FOR THE STOKES SYSTEM *

FELIPE W. CHAVES-SILVA! AND GILLES LEBEAU!

Abstract. In this paper we present a new proof of the null controllability property for the Stokes
system. The proof is based on a new spectral inequality for the eigenfunctions of the Stokes operator.
As a consequence, we obtain the cost of the null controllability for the Stokes system of order ¢“/7,
when T is small, i.e., the same order in time as for the heat equation.
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1. INTRODUCTION

Let 2 C RY (N > 2) be a bounded connected open set, whose boundary 942 is smooth. Let T > 0 and let
w be a nonempty subset of {2 which will usually be referred to as a control domain. We will use the notation
Q=02 x(0,T) and X := 92 x (0,T) and we will denote by v(x) the outward unit normal to {2 at the point
x € 0f2.

We introduce the following usual spaces in the context of fluid mechanics
V = {uc H}(2)Y; divu =0},
H={uecL*2)Y; divu=0,u-v=0o0n 0N}

and consider the controlled Stokes system

yr — Ay +Vp = fl,in Q,

divy=0 in Q,
y=20 on X, (1.1)
y(0) = yo in £2.

The goal of this paper is to present a proof of the following result.

Theorem 1.1. Let w be a nonempty subset of §2. There exist constants C; > 0,Cy > 0 depending only on (2, w,
such that the following holds true.
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For every T > 0 and every yo € H, there exists a control f € L?(w x (0,T)) such that the associated solution
of the Stokes system (1.1) satisfies

y(T) =0, (1.2)
and one has the following estimate on the cost of the control
£l L2@x 0.7)) < C1e® T |lyollm. (1.3)

The problem of finding a control function f such that the solution of (1.1) satisfies (1.2) is known as the
null controllability problem for the Stokes system, and has been proved by several authors in the past few years.
Therefore what is new in our result is the bound (1.3) on the cost of the control.

Let us recall that in [8], a proof of null controllability is obtained by means of global Carleman inequalities
for parabolic equations with homogeneous Dirichlet boundary conditions applied to the adjoint system of (1.1)
(see also [2,9,11]). More recently, in [12,13], a slightly different proof is obtained by means of a global Carleman
inequality for parabolic equations with non-homogeneous Dirichlet boundary conditions applied to the dual
problem of the system satisfied by w = curl .

The smallest positive constant Cg for which one has

I fllz2@wx 0,1y < Csllyollm

is called the cost of the null controllability for the Stokes system at time 7. Estimate (1.3) means that the
cost of the null controllability for the Stokes system is at most of order e“/T as T — 0, like the cost of null
controllability for the heat equation (see, for instance, [7,22,24] and references therein). It is also important to
mention that, although (1.3) gives a natural bound for the cost of the null controllability of the Stokes system,
until now it was not known if, for any given control domain, estimate (1.3) was true or not. In fact, in all the
previous results on the null controllability for the Stokes system by means of global Carleman estimates, the
best upper bound one can obtain for Cy is of the form e¢/ 7" As far as we know, the only known attempt of
optimizing the cost of the controllability for the Stokes system was performed by the first author in [1] where,
using the Control Transmutation Method, it is shown that estimate (1.3) holds if the control domain w satisfies
some geometrical conditions.

Our proof of Theorem 1.1 follows the strategy introduced in [15] for the null controllability of the heat
equation. As it is well-known, one of the key ingredients in [15] is the obtainment of an interpolation inequality
for an appropriate elliptic equation. However, it is not possible to prove an interpolation inequality for our
equivalent associated elliptic system because the system does not have local Carleman estimates (see Rem. 2.1).
Therefore, instead of proving an interpolation inequality for any solution of the associated elliptic system, we
consider only those given in terms of low modes of the Stokes operator and prove an “almost” interpolation
inequality for its curl instead of for the solution itself (see Thm. 2.2 in Sect. 2 for the precise statement). This
idea of proving an inequality for the curl can be seen as the spectral equivalent to the one developed in [12,13]
and here the main difficulty is also to deal with the boundary terms, which are no longer zero. In Section 3,
we deduce from Theorem 2.2 the spectral inequality given in Theorem 3.1. From this spectral inequality we
then deduce in Section 4 a proof of the main Theorem 1.1; for this proof, we use an argument due to Seidman
in [24] and revisited by Miller in [22]. The idea is to use the spectral inequality for low modes and the decay
properties of the Stokes system to prove directly an observability inequality for the adjoint system. This strategy
can be seen as dual analogous of the method developed in [15]. Finally, in Appendix A we give a proof of the
Carleman inequality (2.14) following closely [15], and in Appendix B a proof of Lemma B.1, which gives a
fundamental result on the spectral localization at the boundary; for the convenience of the reader, we recall
also in Appendix C the proof of the interpolation estimate of Proposition 2.4.

Remark 1.2. Our proof of Theorem 1.1 applies as well in the more general case where 2 is a relatively compact
connected open set in a Riemannian manifold M.

In all the paper, we will use semi-classical analysis in the formulation of Carleman estimates, as it is done
in [14,15,17]. We refer to [3,18] for an introduction to semi-classical analysis.
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2. INTERPOLATION INEQUALITY

Let {e; };i1 be an orthonormal basis of H, given by the eigenvectors of the Stokes equation

—Aej + Vp; = pje; in £2,
dive; =0 in £2, (2.1)
ej =0 on 042,

with the sequence of eigenvalues {/’Lj};‘)il satisfying 0 < p1 < pp < ... and limj_, p; = 00. Then {ej}f‘;l is
also an orthogonal basis of V and one has

leurl(e))[13 = . (2.2)

We introduce the sets
Z =(0,1) x 2 and W = (1/4,3/4) x 2,

and as in [15], for A > 1, we introduce special solutions of the Stokes system of the form

_ .sinh(s ) o (). ol
(u,p) —H;Aaj N ( (@), pi( ))v (2:3)

where (a;); is a given sequence of complex numbers.

Remark 2.1. The pair (u,p) given by (2.3) is a solution of the elliptic system

—02u—Au+Vyp=0in Z,
’divgﬁ w=0 in Z (24)
with boundary conditions
u(s,z) =0 on (0,1) x 912,
u(0,2) =0 in 2
. (2.5)
Osu(0, ) = Z aje;(z) in £2.
ng <A

The system (2.4) does not have local unique continuation property. Indeed, consider a function ¢ = ¢(s, x)
such that A,q = 0, then the pair

(u,p) = (vaa 83sQ)

is a solution of (2.4). Taking ¢(s,z) = a(s)p(x) with a € C§°(R) and Ap = 0, we see that the local zeros
of ¢ do not propagate through the surfaces s = sy. Therefore, we cannot obtain a local Carleman estimate for
system (2.4).

Therefore, we will work with the 2-vector field v = curl(u), given by

inh :
v(s,z) = Z ajwcurl(ej)(w) (2.6)
<A Hi

which satisfies
—020—Av =0 in Z,
v(0,z2) =0 in £2, 27
05v(0,2) = Z a;curl(e;)(z) in £2. '

hj <A

Recall that in RY, the 2-vector field v = curl(u) is given in coordinates by the 2-antisymetric tensor v; ; =
au_j Ou;
T4

8Ii 0 J

. In the Riemannian setting, if the vector field u is identified with a 1-form, then v = curl(u) is identified
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with the 2-form du, where d denotes the exterior derivative. Observe that when u satisfies u|s; = 0, the only
non zero components of curl(u)|ss, are the tangential ones. Therefore, in that case, curl(u)|sq is a vector field
tangent to the boundary, which is identified with the 1-form on the boundary du_v, where  denotes the interior
product of a differential form with a vector.

To overcome the lack of boundary condition for v on (0,1) x 92, we introduce a small parameter h related
to A by

)
h=— ith 6 >0 small 2.8
a" 28)

Informally, 2 — wv(s, ) is concentrated at frequencies < V/A. Thus, for the semiclassical analysis with semi-
classical parameter h, the spectrum of v will be concentrated in the set

| < hVA =4

Therefore by taking § > 0 small, we will force localization near £ = 0. The aim of this section is to prove the
following result.

Theorem 2.2. There exists Ag >0, u >0, ¢ >0, a € (0,1), and for 6 > 0 small enough Cs > 0, such that for
all A > Ay, all sequence of complex numbers (a;);, the 2-vector field v defined in (2.6) satisfies with h = §A~1/2

- I-a ,
ol qury < Cs (7 ol + ¢/ ol i) 195000, 2) 3o )- (29)
Remark 2.3. If one want to minimize the right hand side of (2.9) with respect to h, we get that the minimum
is achieved at h, given by
c+p 7 ||”||H1(Z)N
=log(=) + alo .
h* g(c) g <||8sv(0,x)||L2(w)N

Therefore, in the case §A7/? < h,, the minimum of the right hand side of (2.9) in the interval h €]0,54~1/2]
will be achieved at h = §47/2. That is why we do not replace (2.9) by a pure interpolation inequality for
solutions of the system (2.7).

The proof of the inequality (2.9) is based on the use of elliptic Carleman inequalities, and an analytic
deformation argument with respect to the s variable.

Proof of Theorem 2.2. In the proof, v will allways denote the 2-vector field defined in (2.6). We fix the notation
z=(s,z). Let A:= -/, =—-0% — A,. For r > 0 small, let W, be the open set

W, =]1/9,9/10[x{z € 2,dist(z,082) > r/2}. (2.10)

While not stated explicitly in [14], the following proposition is contained in the proof of the interpolation
estimates in paragraph 5.1 of [14], and also implicitly in [15]. For completeness, we recall its proof in Appendix C.

Proposition 2.4. For all v > 0, there exists D > 0 and v €]0,1[ such that for all f € H*(Z) such that
fls=0 =0, one has

1wy < DIy (A sy + 1070, 2) sy ) (2.11)
For r» > 0, let K, be the compact set
K, ={z € 0, dist(z,00) <r}.

In the sequel, we choose ry small enough, such that the map from K,, into [0, 7] x 02 defined by z +— (r,y),
where r = dist(z, 02) and y € 012 satisfies dist(x,02) = |z — y|, is a C*° diffeomorphism. Let so € [1/4,3/4].
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We introduce the function ¢ (s,r) = r — (s — s¢)? and consider ¢ = eP¥. It is well known that, for D > 0 large
enough, ¢ satisfies Hormander’s sub-ellipticity condition for the operator A in the variables (s, 7, y) and one has

Ore(s,2) >0 in [0,1]s X K. (2.12)

We also consider a cut-off function x(s,7) = xo(s)x1(r), with xo € C§(Jso — 284,80 + 2s4[), 0 < xo < 1,
Xo(s) =1 for |s — so| < 3s,/2, with s, > 0 small, and x; € C§°([0,70]), 0 < x1 < 1, with x;1 =1 on [0,70/2].
Decreasing ry, we will assume 79 < s2. In particular, we will use the following fact:

There exists po > 0 such that {|s — sg| > s« and r < ro} = {©(s,7) < ©(s0,0) — po}- (2.13)

Applying the Carleman inequality given in Theorem A.5 in Appendix A to xv, there exist C' and h; > 0 such
that

hlle?™xvllZaz) + B2/ Vs 0 (x0) 72 2)

< C(hlew/hxvliz(r—m + 12 1e?/"V sy (00) 72 =0y + h4|e“"/hA(Xv)li2(z))7 (2.14)

for every h € (0,h;1]. We now analyze each one of the terms on the right-hand side of (2.14). First, let us
rewrite (2.14) in a more convenient way. We define the 2-vector field G by

Gls,7,y) = xo(s)xa(r)e? M Mo(s,r,y) = xo(s)xa (r)e? SN 7 aj(s)ewrl( e;)(r,y) (2.15)
pi<A

and we denote by G the trace of G on the boundary, which is the vector field tangent to the boundary

Go(s,y) = x0(s)e?° ) g (s, y) = xo(s)e?° /™ 3™ a;(s)eurl( e;)on(y),
<A

where a;(s) = ajsinh(s,\/i;)/\/I;, vo = v]an and @o(s) = ¢(s,0). Inequality (2.14) then reads (with an other
constant C):

IGIR . < C<||G0||isc + h3|e“’/hA(Xv)|%2(z)>> (2.16)
where we use the notations, with X =]0, 1[x 012,

IGIR sc = Gll72(2) + 1MV s2Glli2(z),  [1Go

13 5c = ||G0||2L2(X) + ||hvs,yG0||2L2(X)~

e Fstimate of the boundary terms:

We consider a cut-off function § € C§°(]—2, 2) satisfying 0 < 6 < 1, and # = 1 in a neighborhood of [—/3, v/3].
Let Apg be the Laplace operator on the boundary 9f2 acting on vector fields. Let €; be an orthonormal basis
of eigenfunctions of Agp with —Apge; = T]2€j. Let © = 0(v/1 — A=1App) be the bounded operator acting on
L? sections of the tangent bundle T0S2

O i) = 2 0(y/1+ 47173 fre,.

We know (see [3]) that O is a semi-classical pseudo-differential operator of degree 0 (with small parameter A~1/2),
with a scalar semi-classical principal symbol equal to

o(0) = 9( 1+ mg)m
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where |n\§ denotes the square of Riemannian length of the covector n € T;;0f2. From the properties of 0, we get

that the essential support of © is contained in the set |n|, < V3, and © is microlocally equal to Id on the set
[nly < V2. We write
GO(sv y) = Gl (8, y) + GQ(S, y)a

with
G1 =0(Gy), G2 =(1-060)(Gy).

Remark 2.5. Notice that the operator @ acts only on the y € 92 variable, and that G; and G5 are respectively
the low and the high frequencies of Gjg. More precisely, G is concentrated in the set |0,| < V3V/A, and G is
concentrated in the set |0,| > V2VA.

From (2.16), we get
IGI7, < C<h3|e“"/hf4(xv)l2m(2) +2|Gillf o + 2|G2||isc>' (2.17)

To estimate the contribution of Ga to the right hand side of (2.17), we first observe that Lemma B.1 in
Appendix B implies that, for every N € N, there exists Cy such that for all s € [0, 1] one has

/m Ga(s, )2 + |hV,Ga(s, ) do(y) < OnA~NK(s), (2.18)

sinh? (s /[
where K (s Z X2 (s)e2eo(e)/h g 2 VT2 (5v/Hy) . Next, we notice that
1
B <A

/ IGI2da >/ GlPde > e20@/M3(5) S Ja[2sinh? (s /5) — / 22 ()@ My (s ) 2da.
<ro/2 11y <A r>ro/2

(2.19)
The proof of (2.19) is achieved taking into account that o(s,r) > ¢o(s) for every r € [0,79), x1(r) = 1 for
r € [0,70/2], curl e; L curl e; in L?(£2) if i # j and [|curl ejHQLQ(Q) = p; for all j. From pg > 0, we thus get
from (2.19) that there exists C' > 0 such that

K(s) < C (/ G2dz +/ A2 (5)e22 5 By (s .)|2das> .
9} r>ro/2

Integrating this last inequality with respect to s, using Proposition 2.4 and A(v) = 0, and also
support(K(s)) C support(xo(s)) CJ1/9,9/10[, we get that there exists v € (0,1) and Cy such that for all
h €]0, hq] the following inequality holds true

/ K(s ds<C<|G||L2 oG/t 210 (/ 1050(0, 2)| dx) ) (2.20)

Therefore, estimate (2.18) implies

1
/O /89 |G| + [hV,Ga|? do(y)ds < CnA™Y <||G|iz(z) +e00/h\|v||§}}(;)) (/ |asv(o,x)|2dx)2”> . (2.21)

By Lemma B.1, we also have

[ 0.Gats ) dotu) < 0xa™ 3 [n0s (xals)e s 0) (2.22)

ng <A
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Let xo0 € C5°(]so — 254,50 + 254[), 0 < xo < 1 and xo = 1 on the support of xo. Let

- . sinh? (s, /1i;)
K(s) = Z Xg(s)e%@o(s)/h‘aj‘zij.

pg <A J

For s > 1/9 and p; < A, one has hcosh(s,/fi;) < cohﬂ% with ¢y = SUP,> /i /o 2105}}:((5)) Thus, we get
from hv/A =6 < 1, that there exists C such that

105 (xo(s)e? ) a;(s))[* <

sinh(s,/1;) ’
Vi,

3|aj\2e2“°°(3)/h sinh(s, /1)

hdsxo ——=——* + |xo

Dspo|? + |hcosh(sy/1i;)x
VA, of” +| (sv/145)x0

sinh? (s /[
< ORg(s)e?ro ), VI,
J

Therefore, arguing as above and using (2.22), we get

1 2v
/0 /89 1h0,Ga? do(y)ds < Cy AN <||G||2LQ(Z) oMol 200, (/ 83v(0,33)|2dx> > L e

where G is defined as G in (2.15) with Yo(s) instead of xo(s).
One has by construction Xo < xo + 1{s, <|s—so|<2s.}- Lhis and (2.13)implies

1G] < |G + @00 =k0) /by

Summing up, we get that the contribution of Gy to the right hand side of (2.17) is estimate by

2v
_ _ 2(1—v
1GallF < CnaA™Y <||G|%2(Z)+e2(“”(3°’0) “0)/h\|v||2Lz(Z)+eC°/h’||UHH(1(Z)) (/ 8311(0,1:)2dx) ) (2.24)
w

We now estimate the contribution of G;. Let B be the h-pseudodifferential operator acting on the s variable
defined by

B(f)(s) = % / 5=/ (0)bo (s — s0) f(s")ds'do (2.25)

with b; € C5°(] — o, a4]) equal to 1 in [—a;/2, /2], and a; > 0 small.
We have with X =)0, 1[x {2

Gl F (x) < 21BGll7 () +2I1(1 = B)Gill 3 (x)- (2.26)

For the first term on the right-hand side of (2.26), we prove the following.

Claim 1. There exist o;j > 0 and §; > 0 such that for all 6 €]0, 1], BG; satisfies

VN, 3Cy such that | BG1[|F1 x) < CnhY||Gl|7zz)- (2.27)
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Proof of Claim 1. One has
BG, = BO(G)|ag. (2.28)

The operator BO is a h-pseudodifferential tangential operator with essential support contained in the set
K ={(s,y:0.m), |s—s0| < a0, y €02, |o| <o, In] <35}
By construction, one has with A, = h2e?/h A e=#/h
A,G = h%e?/" A(xo(s)x1(r)v) = 0 on the open set |s — so| < 35./2, r €]0,70/2]. (2.29)
The principal symbol of A, is given by
(0 +i0s0) "+ (€ +iVap)”
where ¢ = (7,n) is the dual variable of z = (r,y). Since ¢ is radial, the principal symbol of A, is given by
(0 + 050)°+ (7 + i0,0) 4.

The roots of the principal symbol with respect to 7 are given by

T (r, 8, y50,m) = —i0rp :I:i\/n2 + (o + i(’?scp)Q.

From ¢ = eP¥ and ¢(s,7) = r — (s — s0)?, we get that there exists a constant C' such that for all (r, s,y; 0,7) €
[0,70/2] x K one has
Im T:l:(?", $,Y,0, 77) S _eDw(l - COéo) + 0(6 "‘ 041).

Therefore, for 6 and the a;’s small enough, we get that there exists co > 0 such that
V(’I", S$,Y;0, 77) € [077"0/2} X K7 Im Tj:(T, $,Y,0, 77) S —Ccp < 0. (230)

Then Claim 1 follows from (2.29), (2.28), and classical elliptic boundary estimates applied to the differential
operator A,. O

For the second term on the right-hand side of (2.26), we prove:
Claim 2. There exist C' > 0,y > 0, co > 0 such that
V8 €]0,80), (11— B)GilF (x) < CeX #0000l R y|3, ). (2.31)
Proof of Claim 2:. We begin noticing that

curle~’
Golssy) = 3 apa(e)e™ /" (V7 — e=*v77) J2) (— =>
MJZS:A ’ vHi

Set v = h?u;. We have ,/7j < hv/A = § and
h™Ypo(s) £ sy = h™ " (po(s) £ 5,/75) .

We also have
wo(s) = po(s0) — D(s — s0)* + O((s — s0)").
Let us now make the change of variable s — so +t. Set xo(so +t)bo(t) = X(¢) and 0(t) = ¢o(s0) — po(so+1) =

Dt?+O(t*). The function x € C§° is equal to 1 in a neighborhood of ¢ = 0, and the function 6(t) is real analytic.
Let ¢,(t,0) be the phase function

9;j(t,0) = —to +i(0(t) £ (t + s0)\/v5)-
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and let g; be the vectors fields on the boundary 02
O(curl ej|T:0)(y).
v K

9i(y) =
Then one has

(50, )/ . . /
-8 = T2 Y aig) [0 - nio) ([ e ao (2.32)

pi<A

By classical trace theorem, there exists C’,m’ such that ||g; || g1 90y < C’A™ for all j such that 0<p <py <A,
and by (2.2), one gets easily that there exists C' such that ZM<A laj|* < C’Hv||2L2 2) < CHvHHl( - Since
bi(o) =1 for |o| < ay/2, we get from (2.32), using Cauchy—Schwartz inequality and Weyl formula to estimate
ZM<A laj|llg;ll a1 052, that there exists C,m such that, with (o) = (1 + o2)/?

) (/ ewi(t/’”)/hi(t’)dt’) do|.

Therefore, Claim 2 is a consequence of (2.33), hv/A = < 1, and the following lemma.

(=BG e O < et s [ o (2.33)
|lo|>aq /2

Jomi VA

Lemma 2.6. There exist cg > 0 and 69 > 0 such that for 0 < § < g, and uniformly in |o| > a1/2 and \/Ej <94,
the following estimate holds true

VN,3Cy, ’/ei¢’-7(t’”)/h>2(t)dt’ < On(o)y Nemeo/h, (2.34)

o

<U>/@(t). Here k is a C§°
function whose support is contained in the interior of the set {t; x(t) = 1}, 0 < & < ko, ko > 0 small, and

Proof. To estimate (2.34), we consider a deformation of the real axis ¢t — g(t) =t — 1

k = ko in some interval [—eg, €o]. On this curve, we have, with ¢;(t,0) = ¢;(g(t), o)
Im ¢; =—Imo <t - iwm(t)> +Re 6§ <t - iwn(t)> + Re ((t - iwn(t)> \/Z) + s3,/75
o? o
= H/{(t) +Re 6 <t - z<0—>/€(t)> + (t+ s3)\/Vj
§ o’ 1" 9 ! 4 ‘

= H/{(t) +0(t) — W/ﬁ) t)0"(t)/24+ O <<<0>> K (t)) + (t + s3)\/V5), (2.35)
since O(t + i) = 0(t) +iv0'(t) — v20" (t)/2 — iv30" (t)/6 + O(y*). Hence

I y(t,0) = Zon(t) (1= 20"(0)/2+ 0 Zr o(t) + (¢ 2.36

w d5(t.0) = Zonlt) (1= 5070240 (G 0) ) 00 £+ s (230

Let I" be the integration contour in the complex plane I" = {t —i:Zsx(t), t € R}. Since ¢(t) is a holomorphic
function and support(x) C {¢; X(t) = 1}, one has
/ it/ hg()dt = / 1= /hy(2)dz = / €03 ()M (1) ' (£)dt. (2.37)
R r R

There exists C7 > 0 such that for every ¢ e supp(x), one has |t + so| < C1, [t| < sup(2s., ap), and there exists
C3 > 0 such that for |o| > a1/2 one has = C3(0o). Thus we get from (2.36), decreasing s, and « if necessary,

for all ¢ €]0, do], t € supp(x), |o| > a1/2
Im ¢;(t,0) > Co(o)k(t) /4 + Dt* + O(t*) — C16 > Cy(0)k(t) /4 + Dt*/2 — C1do.
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Thus one has for all § €]0, do], t € supp(x), |o]| > a1/2
Im (;j(t, 0') Z C2a1k0/8 — 0150 for |t‘ S €0, (238)
Im ¢j(t,0) > De2/2 — C16y for |t| > €. (2.39)

For §y small enough, we get that there exists co > 0 such that for all § €]0, o], ¢t € supp(X), |o| > a1/2, one has
Im ¢;(t,0) > ¢o, and from (2.37), we get

/ewj(tﬁ)/h;((t)dt’ < Qe /M, (2.40)

R

Therefore, (2.35) is true for N = 0. The general case is proved by integration by parts in ¢. O
From Lemma 2.6 we conclude that Claim 2 holds true. g

From (2.17), (2.24), (2.27) and (2.31), we conclude that there exists Ao, Co, p > 0 and v €]0, 1], such that
for A > Ag, § €]0,80) and h = 6A~/2, the following inequality holds true

s — 2(1—v v
1GII% < C’(h3|e“"/hA(Xv)|%2 RO 12, 20|20 ) (/ 8sv(0,x)2dx) ) (2.41)

e Estimate of the term |[e?/" A(xv)||2.:

We begin noticing that, since Av = 0, A(xv) = xo0[A4, x1]v + [4, xo]x1v and that [A, xo] and [A, x1] are first
order operators whose support are contained in the set

Viuvy = (([so — 284,80 — 354/2] U [s0 + 35./2, 50 + 25.]) X[O,To]>u([so — 284, 80 + 284] X [r0/2,r0]>.

One has from (2.13) ¢ < ¢(s0,0) — o on Vi and for some C; > 0, ¢ < C; on V,. Therefore, from (2.41),
decreasing p > 0 if necessary, we get

s — 2(1—v v
G, < c(e”l/h|v|z1(v2>+ew< O ol + Mol 10000, )P do) ) (2.42)

Let U be the open subset of Z defined by U = {¢(s,7) > ¢(s0,0) — p/2, |s — so| < s«, 7 < 79/2}. From
Proposition 2.4, one has for some v; €]0, 1]

1—v v
vl vy < Cllvll gz [1050(0, )] L2, -

Decreasing eventually v and increasing Cy we conclude from (2.42) that there exists Ay, Co, 1 > 0 and v €]0, 1],
such that for A > Ag, § €]0, 0] and h = 64~/2, the following inequality holds true:

lollizs @y < € (€ [oll iz + /M ol 1000, ) 2.y ) (2.43)

Since the open set U is a neighborhood of [1/4, 3/4] x 912, we conclude from (2.43), ||v|| g1y < 2|0l g1 (0,
and Proposition 2.4 that Theorem 2.2 holds true. U
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3. SPECTRAL INEQUALITY

In this section, using the interpolating inequality (2.9), we show a spectral inequality for the low modes of
the Stokes operator. This result will be used in the next section to prove Theorem 1.1.

Theorem 3.1. Let w C {2 be a nonempty open set. There exist constants M > 0, K > 0 such that, for every
sequence of complex numbers z; and every real A > 0, we have

2 2
Z |zj\ / Z zje;(x)| da < MeK‘/Z/ Z zje;j(x)| dx. (3.1)
pj <A pj <A “ k<A
- - . sinh(s,/z;)
Proof. Let @ be a nonempty set such that @ CC w and consider u(s,z) = Z zj ej(z) and

pi<A VHi

v = curl u. Using (2.2), the norm [|v[| 1) can be estimated from below as follows

3/4
ol > 1ol By = 3 / o5 2 sinh (s /)ds > 3 g |2 / (3.2)

;<A 11 <A
Next, from the fact that ||’UH%11(Z) = ||% H%Q(Z) + ||Ax“||2L2(2)) + ||’UH%2(Z), we get
s 2
HU”Hl(Z) < Z 2p5 +1) \zj\ / PV < Z (2p5 +1) |27 e VA (3.3)
pi <A pj <A

2
Since ||851)(0,:E)H%2@) =/ ’ZIMSA zjcurl(ej)‘ dz, from Theorem 2.2, estimates (3.2) and (3.3), there exists
€ (0,1), Cy, dp > 0, o > 0, Ag, such that for all § €]0, §p] and all A > Ay, one has

11—« 2

[e%
S Il < O | @ S0 AP | S st dn | e 3T e
w

pj <A nj <A pi<A py <A

(3.4)
Take 1 €]0, do] such that 2p/6; —2 > 1 and Ay such that one has C(;l/le_‘/Z <1/2for all A > Ay. From (3.4),
we get for all A > A; with C = Cs,,

11—« 2

Z ‘Zj\QSQC 2Co A2 /81 Z /1|zj|2 2V4 / Z zjeurl(e;)| da
@

pi<A i <A pi<A

which gives for some M and K positive

Z \zj|2 < J\;[ek\/z/ Z zjcurl(e;)| de. (3.5)
p <A ¥ lny<A
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To finish the proof, we consider a function § € C§°(w) such that # > 0 and 6 = 1 in @ and estimate the local
integral in the right-hand side of (3.5) as follows

2 2

[ Z zjeurl(e;) dﬂ?S/Q Z zjcurl(e;)| dx

“ui<a ©“p<A

:/9 Z zjeurl(e;) Z Zrcurl(ey) | dz

pj<A e <A

:/ Z ziej | P |6 Z Zreurl(ey) | dz, (3.6)

pi<A pr<A

where P is a first order differential operator. Thus we get by Cauchy—Schwarz inequality

2 2 1/2 2 1/2
/ Z zjcurl(e;)| dz < / Z zje;| dx / Plé Z zpeurl(eg) || dz
“ |ps<a @ <A ° pp<A
2 1/2 1/2
<CcA / Z zjej| dz Z |zj\2 . (3.7)
@ ug<A ni <A
Finally, from (3.5) and (3.7), we get that Theorem 3.1 holds true. O

4. COST OF THE NULL CONTROLLABILITY FOR THE STOKES SYSTEM

In this section we prove Theorem 1.1. This proof follows closely the ideas in [22,24]. First, we introduce the
adjoint system (with the change of orientation ¢t — T —t) of the Stokes system (1.1):

ze — Az+Vqg=0in Q,

div z=0 in @,
z=0 on Y, (4.1)
z(0) = 2o in 2.
It is well-know that the Stokes system 1.1 is null controllable at time 7" if and only if
T
I=(T) 1% < Cg/ / 122 dedt, Vo € HL. (4.2)
0 w
Moreover, we have that (4.2) holds if and only if (1.3) holds with Cis = Cye“2/T.
To prove Theorem 1.1, we need the following two results:
Lemma 4.1. Let T' > 0 and m € (0,1). If the approximate observability estimate
t
FOIO = fmb)l|zol® < / / 22 dedt, V20 € HXQ)N NV, te (0,7), (4.3)
0 Jw

holds with f(t) — 0 as t — 0%, then C% < 1/f((1 —m)T) for T € (0,T'], i.e., the cost does not grow more
than the inverse of \/f.
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Proof. Let T < T', 7 = m*(1—m)T and consider a disjoint partition U(Tj 1, Tk] of (0, T], with Tyy1 = T) — s,
To =T, k € N. We apply (4.3) to zo = 2(Tk+1) and t = 73, we obtain

Ty
FE2(TI? = f(res) 12 (Tegr)1? < / / |2* dzdt, k € N.
Tk+1 w

We add these inequalities to get

T
F)=@D)? = F)l=(T0)]? < /

T

/ |2|* dedt, ke N

and taking the limit & — oo completes the proof since f(t) — 0 and the function ¢ +— ||z(¢)| is bounded

in [0, 77. O
We use Lemma 4.1 to prove:

Lemma 4.2. Let Ty > 0 and 3 > 0. If the approximate observability estimate
T
FONTD) = 9(T) 20 g/ / 22 dedt, Vzo € HXHQ)N NV, t € (0,T0), (4.4)
0 w

holds with f(T) = foe*Q/(‘bT)[f and g(T) = goefz/(le)ﬁ, where fo, go, di < do are positive, then for all
d € (0,ds — dy) there exists T' € (0,Tp] such that C% < fo_lez/(dT)B for T € (0,T’]. Moreover, if go < fo then
we may take d = dy — dy and T' = Ty.

Proof. First, we compute the least m such that g(T) < f(mT) for all T € (0,7’]. We find m = g—;h(T’), with
hT") = (1 + infye 0,77 tﬁd'fln(fo/go)/Q)fl/B, where the parenthesis is 1 when gy < fy and positive for T is
small enough. Now CZ < 1/(f((1—m)T)) = ineQ/(dST)B, with d3 =dy — d1h(T") — do —dy as T — 0. O

Proof of Theorem 1.1. Let Ty > 0, T € (0,Tp) and zp € H. Set Hy = span{e;;p; < A}. For any A, the
solution z of (4.1) can be split into z = u + v, where u and v are (together with some pressure) the solutions
of (4.1) associated to ug € H, and vy € H/Jf, Zo = ug + vo, respectively. Moreover,

u(t) € Hy and [lo(t)]ler < e vl (4.5)

for every t > 0. For every M7 > 0, we have

1 (T 1 o [T
(Tl < = / /Q 20) dodt < e / /Q ()2 dadt, VT € (0,T0) (4.6)

and -
/ / |2(8))? dedt < T||zol/3s- (4.7)
0 w

From (4.6) and Theorem 3.1, we get

M T
Ju e < e ™[ o o, vr e 0., (4.8)

1 0 w
Let us now consider an observation time 7 = €T', with € € (0, 1) small enough and take v/A = 1. From (4.8), it

follows that
M JvIl;:K

T
O < g [ [ woFasa, gy = Fpe (4.9



1150 F.W. CHAVES-SILVA AND G. LEBEAU

Using (4.9), the definition of z and (4.7), we get

T T
sonlis [ [poPaass [ pop s odpa-gnig @)

1—e)T

Hence,
T

FOT) | < /

(1- )T/ |2()]” dadt + eT|lo((1 = )T) |31 + 2/ (T)|lo(T) 4. (4.11)

Using (4.5) in (4.11), we obtain

T
FDAT) I = (e 2109 4 2f (e T) ooy < [

(1—e)T

/ |2(t)[* dadt. (4.12)

Since [|vo||%4; < ||20l|%; and f(T') < f(Tp), we obtain

T
FIOND) N — (To + 2/ (To) Je =Tz < /

1—e¢)

/ |2(t)|? dadt. (4.13)

Therefore, since AT = 1/(e*T), Lemma 4.2 holds with 8 =1 and

M
fo=37 90=To+2f(Tv), d> =2¢/(My + K), dy = /(1= ).
One has ¢g(Ty) — 0 if Ty — 0, and for € small enough, one has d; < d2. Thus we can apply Lemma 4.2
with go < fo and Ty small and conclude that there exists Cs for which (4.2) is true for all solutions of (4.1).
Moreover, there exists 77 > 0 and C7,Cy > 0 such that

Cs < C1e/T vT € (0,T"). O

Remark 4.3. Arguing as in Theorem 2.2 of [22], it is possible to get some estimate on the size of C. Never-
theless, the obtainment of the optimal constant Cs for which inequality (1.3) holds has an interest on its own
and, as far as we know, it is open problem.

APPENDIX A. CARLEMAN INEQUALITY FOR THE LAPLACE OPERATOR

In this section we prove the Carleman inequality (2.14) that we have used in the proof of the Theorem 2.2.
The proof follows closely the one given in [15], but we have to take care of the non zero Dirichlet data at the

boundary. Since the notational distinction between the variables s and z plays here no role, we may replace the
triple ((s, ), (0,s0) x §2, A) by the triple (z, 2, —A).

Remark A.1. Observe that since we work on R” | it is equivalent to prove the Carleman inequality (2.14) for
vector fields or for functions. If one replace RY by a Riemannian manifold (M, g), since the Laplace operator
acting on vector fields has a scalar principal symbol equal to the principal symbol of the Laplace operator acting
on functions, and since the Carleman inequality (2.14) is insensitive to lower order terms, it is still equivalent
to prove the Carleman inequality (2.14) for vector fields or for functions.

Given xg € 0f2, we choose the normal geodesic coordinate system x = (2, zx), 2’ € RV~ where 2’ is a local
coordinate system for 0f2 so that xg = 0. In this new coordinate system, (2 is locally define by zny > 0, the
metric ¢ is of the form dz3, + >ij<n—19ijdwidz;, and one has

dist((2', zn), 002) = a2y, (A1)
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where in (A.1), dist is the distance given by the Riemannian metric g. In this coordinate system, the Laplace
operator is equal to

1 1 y
Ay = —=—=0,, |/ det g0y ——=0, [\/det g ¢"7 0, |, A2
1= Vg e 2 gtV o0 (A2
where (g"7) is the inverse matrix of g = (g; ;). Therefore, one has
—Ay=-02 —R(,zn,00) + A1z, 0,), (A.3)

where A; is a first order operator and

R($/7$N78x’) = Z givj(xlva)aﬂhaﬂﬁj'

i, j<N—1

Since A; is a first order operator, and first order terms do not affect the validity of the Carleman inequality of
Theorem A.5, for the rest of this section, we will work with the operator

P= —8§N —R(SL’I,ZL'N,(?I/). (A4)
In the sequel, we will use the notations of [15] for the class of tangential symbols S7, and tangential opera-
tors &7 (see [15], Sect. 3, formulas (9) and (10)). We recall the following definition:

Definition A.2. Let V be an open set of RN and ¢ € C°(RY ; R). We say that ¢ satisfies Hormander’s sub-
ellipticity condition on V for the operator P if, for every z € V, Vp(z) # 0, and there exists C' > 0 such
that

V(2,6) € VX RY, py(,€) = 0= {@1,@}(,§) > C,

where p,, is the principal symbol of the conjugated operator

P, = h2e?@)/h pe=e(@)/h (A.5)
1.€.,
Dy = G2 +1iq1,
with
G = NI = 10un el + Z 9i.j(2)(&i&j — Oz, 00, 0)
ij<N-1
and

G =2 Ounobn+ D 9i(2)00, 06

i,j<N-—1
Remark A.3. The set .
Z={(2,6) € VxRY; py(x,6) =0} (A.6)
is compact.

The following well known Lemma will be useful to construct functions satisfying Hormander’s sub-ellipticity
on a set V for the Lapace operator.

Lemma A.4. Let ¢ € C®(RM;R) be such that Vi(x) # 0 for every x € V. Let G € C*(R;R) be such that
G >0 and G > 0. There ezists a constant A > 0 such that if G" > AG', then o(z) = G((x)) satisfies
Hormander’s sub-ellipticity condition on V' for the Laplace operator operator —A.
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Let V' =V’ x (—=r,7) be a neighborhood of z¢ in RY and ¢(z',7x) a weight function satisfying Hormander’s
sub-ellipticity condition on V for P and such that
0 —
i(m’,xN) #£0, V(z',zn) € V.
8$N

We prove the following result.

Theorem A.5 (Carleman inequality). Let K be a compact set of V' and r’ < r. There exist hy >0 and C > 0
such that for every h € (0,h1], and every u(z',xn) € C° (V' x [0,7)) satisfying u(z',0) = g(x’) and supported
in K x [0,7'], the following inequality holds true

Bl + 191102 Sl <0 (W16 Pulffa -+ [ 2O Mg\l 12 [ 22O g P

+n? / e2w<w’v°>/h|amu(x’,0)|2dx’>. (A.7)
Moreover, if O, > 0 for every (z/,zn) € V, we have

Blle? Ml 2+ 13|/l 2, < c<h4|e«>/hPu|§2+h/e2w<w”°>/h|g(x')2dx/+h3/e2w<w”0>/h|vz/g(x')2dx/>.
(A%)

Remark A.6. Since —A, = P+ A1, with A; being a first order operator, by taking h; smaller, inequalities (A.7)
and (A.8) are still true if we replace P by —A,.

Proof. Taking v = e¥/"u, we see that v solves

Poo= ] in V' % (0,7),
ol 0) = @), ' (4.9)

where, P, is given by (A.5), f=h2?/"f and § = e?@0)/hg,
Noticing that hd,yv = e?/"(hd,yu + p.yu) and using the fact that u(z’,0) = g(z'), we see that (A.7) is
equivalent to (see [15] for the definition of the semi-classical tangential norms|.||¢,s)

(10l + Wh0cyele ) < (1 A2+ [ lataPas’ 412 [ 190 Pas’ 4 b [ 100,00, 00
(A.10)

and (A.8) is equivalent to
h(|v||%,1 4 |hamv||3,o)< C(| Ao+ n [late)Pa +3° | |vz/§<w/>|2dw/). (A11)

Next, we write P, = Q2 +iQ1, with Q2 = Re(P,) = (P, + P}) and Q1 = Im(P,) = % (P, — P). Moreover,
we separate the operators Qi, i = 1,2, in the derivatives in the normal variable xn and the tangential ones.
Indeed, we write

- h 2
Q2= (gaxw) +Q2, Q2€ £?
UQ(QQ) =q2= R(l'/vaag/) - R(w/7l'Na QOI/) - (‘pIN)z

h

~ 2
Q1= 7<praxN +2Q1, Q€&

0’1(Q1) =q1 = R(l‘/,l‘N;gl, ‘Pw’)

where R(z/,zn;a,b) = Z gj.kx(@', xN)a;by.
jk<N-1
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Let us denote Dy = 20, and < z,w >o= [ z(2/,0)@(2’,0)da’ the scalar product of the trace of the functions z,

3

w over the boundary zxy = 0. We have the following identities
(w1, Qaws) = (Qawi, wa) — ih (w1, Dywa)o + (Dywy, wa)o) ,

(w1, Qrws) = (Qrw1, wa) — 2ih(a w1, wa)o.

Then, we have

171172 = 1@z + iQ1)v][72 = 1|Q2vlIZ: + [|Quvl[72 + h(%[@z@ﬂv,v) +hBo(v),

with ) i i
Bo(v) = (DnQ1 — 202y Q2)v,v)0 + (Q1v, Dnv)o. (A.12)
One has

- - h
DNQI - 2‘;0INQ2 = DN(2§OINDN +2Q1) - Q@wN(D?V + QQ) = 2DNC’21 - 2‘)011\/@2 +2?(8§N90)DN
=As+ A1 Dy

with A; € &7, Therefore, we get by Cauchy—Schwarz, with the notation Dyv(z’,0) = w

(P3G = 200 Ga) v.0), | < C(NIR + 1219l + ol + 149.10) )

Since Q1 = 2p,y Dn + 2Q1, we get from (A.12)
Bo(0) = 20pe (. 0w ol < (1318 -+ #2I¥dll + ol + 1¥dll) ). (413
Next, using that %[Qz, @1] is a differential operator of order 2, and the definition of Q2 and Q1, we see that

%[Qz, Q1] = HoQ2 + H1Q: + Ho,
with Hy, € €F, 0 < k < 2. Writing
G2 = &% + @27 2N, €), @1 = 2(Panén + 201 (7 2N, €))
and using the sub-ellipticity condition on ¢, we have, for every (z/,zx) € [~7,7] x V/ and every ¢ € RV,
=0 =0={q@.q}t=>C. (A.14)
To finish the proof, we use the following Lemma, which is proved in ([15], Sect. 3, Lem. 1):

Lemma A.7. There erists p (large enough) such that

I
()2

To finish the proof of Theorem A.5, we consider

(a1 + 2, q2) + 02(Ha) > C(€)2. (A.15)

¢= L@t ee
t
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and use Garding’s inequality to see that there exists hy > 0 such that

~ ~ ~ 1~ ~
1f][Z2 = hBo(v) = [|Q2v][72 + [|Quv| 72 + h(s1Q2, Qu]v, v)
> |\Q~2v|\%2 + HQwH%Q + hRe(HoQov,v) + hRe(Hlélv,v)
— hRe(Q1 + ¢2 Qav, Gv) — Coh|lv|[? 1, (A.16)
for some Cy > 0 and every h € (0, hy). Since H* € £*, we have

|[hRe(HoQ2v,v)| < Ch'2(|Q2v][7 o + ChY2|Ju]|Z,,

[hRe(H1Q1v, )| < Ch'2||Quol[F o + OB [v][7,

and

1D olfo < C(11Q1v]

Taking h; smaller, we obtain from (A.16) that

?,O"_H'U

[£1)-

171122 = hBo(v) + hRe(QF + ¢3 , Q2v, Gv) = - (|Q2vlZ: + [|Q1vl|22) +Ch(|[v

i1+ [[Dvollfo).  (ALT)

DN | =

From the definition, we also have

_ _ -1 s _
QT+ 2, Q2 € oy Q2 — §DN 0 Pun Q1+ E'Q1 + hE'Dy + hE!

and

- - h -
hRe(Dn o @, Q1v, Gv) = hRe(psyQ1v, DNGv) — hRe <;<pmNQ1v, Gv> .
0

Taking h; smaller if necessary, and from the fact that DyG € GDy + hEY, we deduce that

Ch(|[v||?y +||Dyv

170) < [IF1I72 — hBo(v). (A.18)

The proof of (A.10) and (A.11) then follows from (A.13). O

APPENDIX B. SPECTRAL INEQUALITY FOR LOW FREQUENCIES AT THE BOUNDARY

This section is devoted to the proof of Lemma B.1, which gives an inequality for the traces on the boundary
912 of vector fields of the form u(z) = >, _,a;e;(x). As in Appendix A, we choose on the open subset
{z € 2,dist(z,002) < ro} of 2, with ¢ small, the normal geodesic coordinate system z = (2/,zy),2" €
002, xn = dist(x, 002) €]0, 7]

Let A be the Laplace operator acting on vector fields. Let us first recall the expression of A in this coordinate
system (see [6]). For a vector field u, we have the following decomposition

N-1
0 0
U=y UL, “H:Z“HJ@
j=1 J

TN

and we write u = (u),u1). We also have

1
divy u = m@w [\/det gul]—l—diVHuH,
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with
N-1
. 1 0
div)ju = NaEw ; (%; (\/det guHJ) .

For a given function p, we have

Ozn
with
N—-1 N-—-1
_ 9 _ ik 9P
Vaup = Gy 4= 95
=1 zj k=1 Tk

For u = (u|,u1), the Laplace operator applied to u, Aw, is the vector field

a ()= (Gmyan (1) (). 1)

where A, is the Laplace operator acting on functions, given by (A.2), and 4| the operator

Al = ———0,.[\/det g0y |Id + P(z', xn,0ur).
1= Jaet g v [Vdet g0z JId + P(2' 2, Orr)

Here P is a (N — 1) x (N — 1) matrix that contains only horizontal derivatives 0, of order at most 2. Moreover,
the principal symbol of 4| is scalar, and one has o(4|) = 0(4y)Id. In (B.1), M, is a differential operator of
order 1 of the form

0
M1 = ZMLJ'(.T/,.’L‘N)a 5 ZMl’j = (i Ek)) (BQ)

and My is a N x N matrix (i.e., a differential operator of order 0). Observe that M; does not contain derivatives
in 0;, and sends the normal vector v into a horizontal vector.

As in Section 2, we consider a cut-off function 6 € C§°(] — 2,2[) satisfying 0 < # < 1, and # = 1 in a
neighborhood of [—+/3, /3], and we denote by Agq the Laplace operator on the boundary 942 acting on vector
fields. Recall that © is the bounded operator acting on L? sections of the tangent bundle 792 defined by
O =0(v1— A"1Ayp). The aim of this section is to prove the following lemma.

Lemma B.1. Let Q(z, D;) be a differential operator defined in a neighborhood of 92. For all M, N € N there
eists constants Cyy and D,y such that for all A> 0 and u(x) =3, -, a;e;(x) with a; € C, one has, with

v =Q(u) and w = (Id — O)v
o0

1/2 1/2
14560l 200) < Car APMH N a ) and [|[AjGwl|2(00) < Dun AN | Y oy . (B3)

B <A by <A

Proof. For notational simplicity, we write 92 = Y. The bound on [[Av][12(y) follows from classical trace
theorems, thus we will just concentrated on the bound on ||AY wl|1z2(y). From

Ayw = Z ajﬂy(l —-0)[V1-— AilAYK(Q(anw)ej”y)v

pi<A
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we see that it is sufficient to show that

sup |AY (1 = 0)[V1 — A7 Ay]((Q(z, Do)ej)|y)llz2vy < Daw AN, (B.4)

pi<A
Indeed, if (B.4) holds true, by Cauchy—Schwartz, we get
1/2
Al < #05 s < (3 los)  Dasna~™
nj <A

and the result will then follows from Weyl’s formula (i.e., #{j; p; < A}Y/2 < cA°). Let us now prove (B.4). We
start with the following lemma.

Lemma B.2. We have

(Q(l‘, Dﬂf)ej) |y: Ql(,uja 'T/’ 83?')(83?N6j) |y+Q2(/’6j7 l‘/, 83?')(89¢ij) |y+Q3(Mj’ 'T/’ 83?')pj |y7
where the Q;(p;, 2, 0.), 1 <1 < 3, are differential operators at the boundary with polynomial dependence in p.

Proof. We write Q(z, Dy) =, 5 aa’g(x’,xN)af/afN.
Since

Ay =32 +gn(2',2n)0ey + R(2',on, 00r)
A= 821\, + MN(-T/a -TN)axN + Q(l‘/v TN, 833')7
we get from Ae; = Vyp; — pje;
07 ej = —Mny(a', 2n)0nye; — Q@ an, 0w )ej — pijes + Vop;.

We also have that Agp = 0, which gives

angj = _gN(x/a xN)aszj - R(:L'/a TN, am’)pj
We get easily from this identities by induction on k > 2,
Oyyej = ALy, 00 )ej + AR (1, 2,82 )Duy e + Al (g, 2, 00 )pj + Ay (1, @, 000 ) Do ;-

where the Ai (i, x, O,r) are tangential differential operators with polynomial dependence in p. Then the result
follows from ej|;y—o = 0. O

Let us denote by WF, the semi-classical wave front set of a family of functions f(z’,%) on the boundary
02 =Y, with small semi-classical parameter i = A~/2 (see [3,18]). Let us recall that the essential support of
the operator Id — © is contained in the set |n|, > V2. One has

A (1 —0)[V1 = A1 Ay)p(z)0% = APMH(A2A)YM (1 - 0)[\/1 — AL Ay]p(z') A7 1152
= A2Mtlely, <w/, E@x,> ,
1

where p is an % pseudo-differential operator of degree 2M + |a| and essential support contained in the set
{In| > v/2}. Therefore, from Lemma B.2, the proof of (B.4) will be achieved if we show the existence of a
constant C < \/5, such that

WFA(8$N6j|y) - {|"7‘ < C}’ (B'5)
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WFE(p|,) € {lnl < C},

WFA(Ouyply) C {Inl < C}.
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(B.6)

(B.7)

We will get in fact that (B.5), (B.6) and (B.7) hold true with C' = 1. Since p is a harmonic function, we have

that (B.6) implies (B.7) and hence we just need to prove (B.5) and (B.6).
Let us introduce €; = 1;,>0e;. Using ej’xNZO: 0, we get that €; satisfies

—Ay8j + Lon>0Vgpj = i€ + (ki k1)do,
div é]‘ = 07
where (kj|, k1) = (kj, k1)(2’). Taking the divergence operator in (B.8),, and using (B.8),, we get

. 1 .
dlvg(lxNZ()ij) = \/Te—tgazN[Vdet g/m_éo] + leH (kH(so).

dzN lzn=0’

Denoting by p‘; = pj and p} : and using —Agp; = 0, we obtain

3’,‘1\]:0’

1 .
p}éo = kJ_(SIO + m&zl\, [\/ det g]kj_(so + leH (kH)(SO

Therefore, we have that k; = 0 and p} = div)| (k). Hence, from (B.8),
(=1j — Bg)ej + luy>0Vgp; = (), 0)do.
Now, since Vyp; := Vy(1zy>0p05) = lay>0Vgp; + (O,pgéo), we obtain
(=1 — Ag)é; + Vyp; = (kyy, p})do.
Noticing that

—Ag; = —1yy>0A4€5 — (8wNej)|xN=O®6O’

we get

~ - ax €.
(= Ag)ej + Vyp; = (0,192)60 - < N ?’H|Y > dg-
f”NeJaL|Y

Moreover, we have that 0, e 1 ’Y: 0 because divy e; = 0 and divy (k||)|Y: 0. Hence,

kip = —0

Nejall |Y

and we find that €;, hp; = §G; satisfy the following system:

(—ph? — h2Ag)é; + hV oG; = (h2ky|, hg?)do,
hdiv, &; = 0.

(B.8)

(B.9)

(B.10)

(B.11)

The proof of Lemma B.1 will be achieved if we show that the system (B.11) is elliptic in || > 1 under the
assumption ph? < 1. In order to prove ellipticity, it is sufficient to verify that ellipticity holds true in the flat
case, i.e., when the boundary is £y = 0 and A is the constant coefficient Laplacian. This ellipticity property

is supposed to be well known, but we will recall the proof for the convenience of the reader.
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In order to prove ellipticity for the system (B.11), we will construct the parametrix (in the flat case) for the
system
A(UvQ) = (_/”L - A)U +Vq = f = (fHafJ.) ®507
divo=0 (B.12)
v=0and ¢g=0 inzy <0.

where |u| < A. Taking the Fourier transform in RY in (B.12), we get

é\'d;;g.)ﬁﬂ@:f, (B.13)

From the fact that Ag = divf, we also have that

ilcPa=¢- f, (B.14)
or equivalently for ¢ # 0 )
iCG = C(CC|'2f)- (B.15)
From (B.13) and (B.15), we see that
e C(c-f)}
PPk [f [k

for |¢] > A. Let us now consider a real valued function § € C° such that 0 < 8 < 1 and for € > 0 small
6(¢) =0, for [¢| < (1+e)V4

and

0(¢) =1, for |¢| > (14 2e)VA

and introduce (recall that we have |u| < A, hence ljg—ﬂ)“ is well defined)

PRI (SN P S| (<7))
— Vg = — 22|,
E(f) = 0= ICP=n |:f A|C|2 ]

do = 0(C) s

(B.16)

[ —

Tt is easy to see that (vg,qs) = E(f) is the solution of
(—p—A)vg + Vg =0(D)f.

Applying E to both sides of (B.12),, we see that

EA(v,q) = (6(D)v,6(D)q) = E(f)
and then we get

E(f) = (v,q) + (0(D) — 1)(v, q).

Therefore

lm E(f)= lim (6(D)—1)(v,q)

zny—0~ zny—0~

and hence

WE, ( lim E(f)) = WF, ( lim (0(D) — 1)(1},q)> .

zny—0~ zny—0~
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Writing ¢ = (£, 7), the dual variable of (z,y) € R x RV~1 we have

/ e lim (6(D) — 1)(0,q)dy = 0 lim [ e*¥@(E,n) — 1)(,§)(E,m)dE,

xn—0— 27T rny—0—

=0, if |y > (1+2)V4, (B.17)

which gives
WFA( Tim (1 - 0(D))(v,)) € { |yl < (1+26)VA, }.

321\]—>0_

Using (B.11), we see that the proof will be consequence of the ellipticity for |n| > (1 + 2¢)A of the map
(fH( ), fL(m) — lim, , _o- E(f)(n). Indeeed, for fixed |5 > (1 + 2¢)A, since 6(€,1) = 1 for all £, we get that
lim, . _o- E(f)(n) is equal to

; e(efL ()t Fy(m)

. i iznE 1 fL(n)_ 242
11}%_ 27 /e E2+4+n2—p ]g () — n(éﬁ(n)ian(n))
§2+4n?
1 [f (n)ﬂ VIR (i /P _fL )+ fi()
n? — fim ( i/ T2 = uf(n) +n- fiy(m)
. —ilnl(—i\n\h(n)-s-nfn(n)) )
Z 24[n] - - f 3
T R R T N gmMﬂv“(ﬁ(n)’f”(“))' (B.18)
24[n]
One find o o X
My (fos fip) = (U4 g1(n ) fos fiy + g2(n, wn(n-£y))
with

VR —p—nl —1 _
| nl(1nl + v/n? — k)

=nvVn? = g2, g2(n,p) =

We also have

i iﬁ/ o Ef L)+ f“(n))dg— (—z‘\nlﬁ(n)m.fn(n))

TN 0" € +n? B 2|n]
= my(fL(0), f1(n))- (B.19)
Let a € R, b€ RV71 and define h € R and H = (Hy, Hs) € R x R¥~! by the system
M, (a,b)=H
{ my(a,b) = h. (B.20)

It remains to prove that there exists C' such that for A > 1, |n| > (14 2¢e)A and |u| < A the following inequality
holds true for solutions of (B.20)

la| + |b] < C(|h| + [H]). (B.21)

Since m,, and M, ,, are homogeneous of degree zero under the action of R (n, 1) — (sn, s*41), we may assume
[n| =1 and |u| < ¢ for some ¢ < 1. Since the set K = {|n| =1, |u| < ¢} is compact, it remains to show that for
any (1, 1) € K, the system (B.20) is injective, which is easy to verify. The proof of Lemma B.1 is complete. O
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APPENDIX C. PROOF OF PROPOSITION 2.4

In this section, we follow the arguments in [14]. It is sufficient to prove that for every z € W,., there exist
D >0, v €]0,1[ and a neighborhood U of z such that the following inequality holds true

[0l 10y < D Wl (1400 o ) + 195000, 2l oy ) (1)

Let us begin explaining how we construct the weight function ¢ we need in order to apply Carleman in-
equalities. For a domain U C RV T! and zy € U, we will take our basic function ¢ € C°°(U \ {20}; R) verifying

lim,_,,, ¥ (2) = +oo and ¢'(z) £ 0Vz € U\ {z0}; (C.2)
Jep > 0 such that {z € U,¢o < 9(z) < '} is compact V¢ > ¢. ’

We also choose a sequence of numbers satisfying
o< e <) <cg<cy<ces<cy<oo

and set
V={2€U\{20},a <¥(z)<d}, V'={2eU\ {2} <¥(z)<cs},
Vi={zeU\ {2} ¢ <i(z) <} CV, j=1,23

We have V' C V and the closure V of V in R¥*! is compact and contained in U \ {z0}. Therefore, from
Lemma A.4, there exists a constant D > O such that ¢ = eP¥ satisfies Hormander’s sub-ellipticity condition on
V for the Laplace operator A := —92, —

In the sequel, we take p; = elei, p = eP¢ and X to be a cutt-off function in C§°(V) such that x =1 in a
neighborhood of V. We have p; < ¢ < p] inV; for j =1,2,3.

Proof of case 1: z = (s,x1) € (0,80) X w, with s > 0 small.
Fix z; = (=1,21) and consider 1 (z) = (z — z1)~!, with U = RV*1. We have that g—f(s,x) # 0 for s > —1.
We begin choosing ¢y < 1 such that

{zeRY; 1+ |z — 21 < g%} Cw. (C.3)

Next, we choose 1 < c3 < ¢4 so that V3 C {s < 0} and take ¢, = 1 and ¢y, ¢}, co satisfying cg < ¢; < ¢} < ca < 1.
The vector function xv verifies (xv)(0, z) = 0 and 9s(xv)(0, z) = x(0, z)0sv(0, z). From Theorem A.5 (applied
to each component), there exist C, h; > 0 such that, for every h € (0, hy], we have

Bl o2 + B3[P (o) 22 < C (h4|ewhA<xv>|iz wi [ 62”(°’x)/hxasv(0,x)2dx> o (Ca)

Noticing that A(xv) = x(Av)+[A, x]v, [A, x] is a first order differential operator, [A, x|v is supported in V; UV3
and that x =1 in V5 C V’, from (C.3) and (C.4), we get

ep2/h‘|v|‘H1(VgﬁZ) < o4 (epll/hHUHHl(Z) + ePé/”(HAUH[}(z) + H&Sv((),x)HLz(w))) s (C5)

for some C’ > 0 and every h € (0, h1]. Then we use the following lemma due to Robbiano [23].

Lemma C.1. Let Cy, C5 be positive and My, My and My be nonnegative. Assume there exists C3 > 0 such
that Mo < C3My and dg > 0 such that

Mo < ™My + %20 My

for every § > 0g. Then, there exits Cy such that

My < CoM 02/ C1+C2) 2C'1/(C'1+C2).
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Indeed, since p} < p2 < ph, defining C; = ps — pj and Cy = ps — p2, we obtain

HUHHl(VgﬂZ) < (04 (e_cl/h|’(}|H1(Z) + eC2/h(HAUHL2(Z) + |83U(0,$)|L2(w))|)), (06)
for every h € (0, h1]. Hence,
1ol (vanz) < 200l 2 (1A0] 12 2) + [1050(0, )| L2’ (C.7)

with 6 = m (0,1). The proof is finished noticing that, since ca < ¢4 = 1, the set Vo N Z contains the
points of the form (s,z;), with s small.

Proof of case 2: z3 = (s2,%2) € (0, 50) x {2.

From case 1, there exists z1 = (s1,21), s1 small and 1 € w such that z; verifies (C.1). Since {2 is connected,
7 is connected as well and there exists a path v € C°°(]0, 1]) within Z such that v(0) = z; and (1) = z. Since
~([0,1]) is compact in Z, there exists an open set U such that v([0,1]) C U C Z and a C* diffeomorphism
@ :U — RN = {(21,25) € R x RV} such that &(y(z1)) = (21,0) for every 2; € [0,1]. Taking a = —1 + /2,
which gives %5 = 1, and a C* function F' over RV "1\ {(0,0)}, defined by

F(z1,22) = \/2? + 23 — ax1.

We have that F' > 0 and VF # 0 in RV \ {(0,0)}. Moreover, for every d > 0, the level sets of F(x1,72) =d
are the ellipsoids with equation

2a(z1 — d/2)? + |z2|? = d*(1 + a/2).
In particular, the open set {F(z1,22) < 1} U{(0,0)} contains the segment x € [0, 1], z2 = 0. Let us now define

a C* function ¢ in U \ {z1} by
1

N TE)
The function ¢ verifies assumption (C.2) (with zg = z; and any ¢y > 0). We denote by r1,Cy and d; the
constants for which interpolation (C.1) holds for the point z; and choose co = 1, ¢} large enough such that
29 € Vo and c3 > ¢} in such a way that V3 C B, (z1) N Z.
From ([17], Thm. 3.5), there exist C, hy > 0 such that

hl[e?/"xol| 72 4+ hP[[e?/" Vo (xv)|[72 < CBY|[e?/" A(xv)|[7: (C.8)
for every h € (0, h;]. Arguing as in case 1, we conclude that there exists C’ such that
oMol a1 vy < C° (eﬂi/hwmlm +eﬂé/h|v|H1<v3)), (C.9)
for every h € (0, h;]. From (C.1), and the choice of c3, there exist Cy and ¢; € (0,1) such that |[v||g1 (1) <
ClHUH}pélZ)(HAUHL2(Z) + 1105v(0, ) | 2(2))°* . Therefore, (C.9) implies
/Mol vy < O (ep’l/h|v|H1<Z) + C1e?/M o]0 (1 Av]l 2 (2) + |asv<o,x>|m>>51), (C.10)
for every h € (0, h1]. From Lemma C.1, there exist Cy > 0 and ¢ € (0, 1) such that
ol vy < Callollii3 10,000,235, (C.11)

Since V5 contains a neighborhood of zo, (C.1) is a consequence of (C.11). This finishes the proof of case 2, hence
the proof of Proposition 2.4.
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