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SPECTRAL INEQUALITY AND OPTIMAL COST OF CONTROLLABILITY
FOR THE STOKES SYSTEM ∗

Felipe W. Chaves-Silva1 and Gilles Lebeau1

Abstract. In this paper we present a new proof of the null controllability property for the Stokes
system. The proof is based on a new spectral inequality for the eigenfunctions of the Stokes operator.
As a consequence, we obtain the cost of the null controllability for the Stokes system of order eC/T ,
when T is small, i.e., the same order in time as for the heat equation.

Mathematics Subject Classification. 35K40, 35Q30, 49J20.

Received June 6, 2016. Accepted June 7, 2016.

1. Introduction

Let Ω ⊂ RN (N ≥ 2) be a bounded connected open set, whose boundary ∂Ω is smooth. Let T > 0 and let
ω be a nonempty subset of Ω which will usually be referred to as a control domain. We will use the notation
Q := Ω × (0, T ) and Σ := ∂Ω × (0, T ) and we will denote by ν(x) the outward unit normal to Ω at the point
x ∈ ∂Ω.

We introduce the following usual spaces in the context of fluid mechanics

V = {u ∈ H1
0 (Ω)N ; div u = 0},

H = {u ∈ L2(Ω)N ; div u = 0, u · ν = 0 on ∂Ω}
and consider the controlled Stokes system∣∣∣∣∣∣∣

yt −Δy + ∇p = f1ω in Q,
div y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω.

(1.1)

The goal of this paper is to present a proof of the following result.

Theorem 1.1. Let ω be a nonempty subset of Ω. There exist constants C1 > 0, C2 > 0 depending only on Ω,ω,
such that the following holds true.
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For every T > 0 and every y0 ∈ H, there exists a control f ∈ L2(ω× (0, T )) such that the associated solution
of the Stokes system (1.1) satisfies

y(T ) = 0, (1.2)

and one has the following estimate on the cost of the control

‖f‖L2(ω×(0,T )) ≤ C1eC2/T ‖y0‖H. (1.3)

The problem of finding a control function f such that the solution of (1.1) satisfies (1.2) is known as the
null controllability problem for the Stokes system, and has been proved by several authors in the past few years.
Therefore what is new in our result is the bound (1.3) on the cost of the control.

Let us recall that in [8], a proof of null controllability is obtained by means of global Carleman inequalities
for parabolic equations with homogeneous Dirichlet boundary conditions applied to the adjoint system of (1.1)
(see also [2,9,11]). More recently, in [12,13], a slightly different proof is obtained by means of a global Carleman
inequality for parabolic equations with non-homogeneous Dirichlet boundary conditions applied to the dual
problem of the system satisfied by w = curl y.

The smallest positive constant CS for which one has

‖f‖L2(ω×(0,T )) ≤ CS‖y0‖H

is called the cost of the null controllability for the Stokes system at time T . Estimate (1.3) means that the
cost of the null controllability for the Stokes system is at most of order eC/T as T −→ 0, like the cost of null
controllability for the heat equation (see, for instance, [7,22,24] and references therein). It is also important to
mention that, although (1.3) gives a natural bound for the cost of the null controllability of the Stokes system,
until now it was not known if, for any given control domain, estimate (1.3) was true or not. In fact, in all the
previous results on the null controllability for the Stokes system by means of global Carleman estimates, the
best upper bound one can obtain for CS is of the form eC/T

4
. As far as we know, the only known attempt of

optimizing the cost of the controllability for the Stokes system was performed by the first author in [1] where,
using the Control Transmutation Method, it is shown that estimate (1.3) holds if the control domain ω satisfies
some geometrical conditions.

Our proof of Theorem 1.1 follows the strategy introduced in [15] for the null controllability of the heat
equation. As it is well-known, one of the key ingredients in [15] is the obtainment of an interpolation inequality
for an appropriate elliptic equation. However, it is not possible to prove an interpolation inequality for our
equivalent associated elliptic system because the system does not have local Carleman estimates (see Rem. 2.1).
Therefore, instead of proving an interpolation inequality for any solution of the associated elliptic system, we
consider only those given in terms of low modes of the Stokes operator and prove an “almost” interpolation
inequality for its curl instead of for the solution itself (see Thm. 2.2 in Sect. 2 for the precise statement). This
idea of proving an inequality for the curl can be seen as the spectral equivalent to the one developed in [12,13]
and here the main difficulty is also to deal with the boundary terms, which are no longer zero. In Section 3,
we deduce from Theorem 2.2 the spectral inequality given in Theorem 3.1. From this spectral inequality we
then deduce in Section 4 a proof of the main Theorem 1.1; for this proof, we use an argument due to Seidman
in [24] and revisited by Miller in [22]. The idea is to use the spectral inequality for low modes and the decay
properties of the Stokes system to prove directly an observability inequality for the adjoint system. This strategy
can be seen as dual analogous of the method developed in [15]. Finally, in Appendix A we give a proof of the
Carleman inequality (2.14) following closely [15], and in Appendix B a proof of Lemma B.1, which gives a
fundamental result on the spectral localization at the boundary; for the convenience of the reader, we recall
also in Appendix C the proof of the interpolation estimate of Proposition 2.4.

Remark 1.2. Our proof of Theorem 1.1 applies as well in the more general case where Ω is a relatively compact
connected open set in a Riemannian manifold M .

In all the paper, we will use semi-classical analysis in the formulation of Carleman estimates, as it is done
in [14, 15, 17]. We refer to [3, 18] for an introduction to semi-classical analysis.
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2. Interpolation inequality

Let {ej}∞j=1 be an orthonormal basis of H, given by the eigenvectors of the Stokes equation∣∣∣∣∣∣
−Δej + ∇pj = μjej in Ω,
div ej = 0 in Ω,
ej = 0 on ∂Ω,

(2.1)

with the sequence of eigenvalues {μj}∞j=1 satisfying 0 < μ1 ≤ μ2 ≤ . . . and limj→∞ μj = ∞. Then {ej}∞j=1 is
also an orthogonal basis of V and one has

‖curl(ej)‖2
L2 = μj . (2.2)

We introduce the sets
Z = (0, 1) ×Ω and W = (1/4, 3/4)×Ω,

and as in [15], for Λ ≥ 1, we introduce special solutions of the Stokes system of the form

(u, p) =
∑
μj≤Λ

aj
sinh(s√μj)√

μj

(
ej(x), pj(x)

)
, (2.3)

where (aj)j is a given sequence of complex numbers.

Remark 2.1. The pair (u, p) given by (2.3) is a solution of the elliptic system∣∣∣∣−∂2
ssu−Δxu+ ∇xp = 0 in Z,

divx u = 0 in Z (2.4)

with boundary conditions ∣∣∣∣∣∣∣∣
u(s, x) = 0 on (0, 1) × ∂Ω,
u(0, x) = 0 in Ω
∂su(0, x) =

∑
μj≤Λ

ajej(x) in Ω.
(2.5)

The system (2.4) does not have local unique continuation property. Indeed, consider a function q = q(s, x)
such that Δxq = 0, then the pair

(u, p) = (∇xq, ∂
2
ssq)

is a solution of (2.4). Taking q(s, x) = a(s)p(x) with a ∈ C∞
0 (R) and �p = 0, we see that the local zeros

of q do not propagate through the surfaces s = s0. Therefore, we cannot obtain a local Carleman estimate for
system (2.4).

Therefore, we will work with the 2-vector field v = curl(u), given by

v(s, x) =
∑
μj≤Λ

aj
sinh(s√μj)√

μj
curl(ej)(x) (2.6)

which satisfies ∣∣∣∣∣∣∣∣
−∂2

ssv −Δxv = 0 in Z,
v(0, x) = 0 in Ω,
∂sv(0, x) =

∑
μj≤Λ

ajcurl(ej)(x) in Ω.
(2.7)

Recall that in RN , the 2-vector field v = curl(u) is given in coordinates by the 2-antisymetric tensor vi,j =
∂uj

∂xi
− ∂ui

∂xj
. In the Riemannian setting, if the vector field u is identified with a 1-form, then v = curl(u) is identified
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with the 2-form du, where d denotes the exterior derivative. Observe that when u satisfies u|∂Ω = 0, the only
non zero components of curl(u)|∂Ω are the tangential ones. Therefore, in that case, curl(u)|∂Ω is a vector field
tangent to the boundary, which is identified with the 1-form on the boundary du�ν, where � denotes the interior
product of a differential form with a vector.

To overcome the lack of boundary condition for v on (0, 1) × ∂Ω, we introduce a small parameter h related
to Λ by

h =
δ√
Λ

with δ > 0 small. (2.8)

Informally, x �→ v(s, x) is concentrated at frequencies ≤ √
Λ. Thus, for the semiclassical analysis with semi-

classical parameter h, the spectrum of v will be concentrated in the set

|ξ| ≤ h
√
Λ = δ.

Therefore by taking δ > 0 small, we will force localization near ξ = 0. The aim of this section is to prove the
following result.

Theorem 2.2. There exists Λ0 > 0, μ > 0, c > 0, α ∈ (0, 1), and for δ > 0 small enough Cδ > 0, such that for
all Λ ≥ Λ0, all sequence of complex numbers (aj)j, the 2-vector field v defined in (2.6) satisfies with h = δΛ−1/2

‖v‖H1(W ) ≤ Cδ

(
e−μ/h ‖v‖H1(Z) + ec/h ‖v‖1−α

H1(Z) ‖∂sv(0, x)‖αL2(ω)

)
. (2.9)

Remark 2.3. If one want to minimize the right hand side of (2.9) with respect to h, we get that the minimum
is achieved at h∗ given by

c+ μ

h∗
= log(

μ

c
) + α log

( ‖v‖H1(Z)N

‖∂sv(0, x)‖L2(ω)N

)
·

Therefore, in the case δΛ−1/2 < h∗, the minimum of the right hand side of (2.9) in the interval h ∈]0, δΛ−1/2]
will be achieved at h = δΛ−1/2. That is why we do not replace (2.9) by a pure interpolation inequality for
solutions of the system (2.7).

The proof of the inequality (2.9) is based on the use of elliptic Carleman inequalities, and an analytic
deformation argument with respect to the s variable.

Proof of Theorem 2.2. In the proof, v will allways denote the 2-vector field defined in (2.6). We fix the notation
z = (s, x). Let A := −�z = −∂2

ss −Δx. For r > 0 small, let Wr be the open set

Wr =]1/9, 9/10[×{x ∈ Ω, dist(x, ∂Ω) > r/2}. (2.10)

While not stated explicitly in [14], the following proposition is contained in the proof of the interpolation
estimates in paragraph 5.1 of [14], and also implicitly in [15]. For completeness, we recall its proof in Appendix C.

Proposition 2.4. For all r > 0, there exists D > 0 and ν ∈]0, 1[ such that for all f ∈ H2(Z) such that
f |s=0 = 0, one has

‖f‖H1(Wr) ≤ D ‖f‖1−ν
H1(Z)

(
‖A(f)‖L2(Z) + ‖∂sf(0, x)‖L2(ω)

)ν
. (2.11)

For r > 0, let Kr be the compact set

Kr = {x ∈ Ω, dist(x, ∂Ω) ≤ r}.
In the sequel, we choose r0 small enough, such that the map from Kr0 into [0, r0] × ∂Ω defined by x �→ (r, y),
where r = dist(x, ∂Ω) and y ∈ ∂Ω satisfies dist(x, ∂Ω) = |x − y|, is a C∞ diffeomorphism. Let s0 ∈ [1/4, 3/4].
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We introduce the function ψ(s, r) = r − (s− s0)2 and consider ϕ = eDψ. It is well known that, for D > 0 large
enough, ϕ satisfies Hormander’s sub-ellipticity condition for the operator A in the variables (s, r, y) and one has

∂rϕ(s, x) > 0 in [0, 1]s ×Kr0. (2.12)

We also consider a cut-off function χ(s, r) = χ0(s)χ1(r), with χ0 ∈ C∞
0 (]s0 − 2s∗, s0 + 2s∗[), 0 ≤ χ0 ≤ 1,

χ0(s) = 1 for |s− s0| ≤ 3s∗/2, with s∗ > 0 small, and χ1 ∈ C∞
0 ([0, r0[), 0 ≤ χ1 ≤ 1, with χ1 ≡ 1 on [0, r0/2].

Decreasing r0, we will assume r0 < s2∗. In particular, we will use the following fact:

There exists μ0 > 0 such that {|s− s0| ≥ s∗ and r ≤ r0} ⇒ {ϕ(s, r) ≤ ϕ(s0, 0) − μ0}. (2.13)

Applying the Carleman inequality given in Theorem A.5 in Appendix A to χv, there exist C and h1 > 0 such
that

h||eϕ/hχv||2L2(Z) + h3||eϕ/h∇s,x(χv)||2L2(Z)

≤ C

(
h||eϕ/hχv||2L2(r=0) + h3||eϕ/h∇s,y(χv)||2L2(r=0) + h4||eϕ/hA(χv)||2L2(Z)

)
, (2.14)

for every h ∈ (0, h1]. We now analyze each one of the terms on the right-hand side of (2.14). First, let us
rewrite (2.14) in a more convenient way. We define the 2-vector field G by

G(s, r, y) = χ0(s)χ1(r)eϕ(s,r)/hv(s, r, y) = χ0(s)χ1(r)eϕ(s,r)/h
∑
μj≤Λ

aj(s)curl( ej)(r, y) (2.15)

and we denote by G0 the trace of G on the boundary, which is the vector field tangent to the boundary

G0(s, y) = χ0(s)eϕ0(s)/hv0(s, y) = χ0(s)eϕ0(s)/h
∑
μj≤Λ

aj(s)curl( ej)|∂Ω(y),

where aj(s) = ajsinh(s√μj)/√μj , v0 = v|∂Ω and ϕ0(s) = ϕ(s, 0). Inequality (2.14) then reads (with an other
constant C):

‖G‖2
1,sc ≤ C

(
‖G0‖2

1,sc + h3||eϕ/hA(χv)||2L2(Z)

)
, (2.16)

where we use the notations, with X =]0, 1[×∂Ω,

‖G‖2
1,sc := ‖G‖2

L2(Z) + ‖h∇s,xG‖2
L2(Z), ‖G0‖2

1,sc := ‖G0‖2
L2(X) + ‖h∇s,yG0‖2

L2(X).

• Estimate of the boundary terms:

We consider a cut-off function θ ∈ C∞
0 (]−2, 2[) satisfying 0 ≤ θ ≤ 1, and θ ≡ 1 in a neighborhood of [−√

3,
√

3].
Let �∂Ω be the Laplace operator on the boundary ∂Ω acting on vector fields. Let εj be an orthonormal basis
of eigenfunctions of �∂Ω with −�∂Ωεj = τ2

j εj . Let Θ = θ(
√

1 − Λ−1Δ∂Ω) be the bounded operator acting on
L2 sections of the tangent bundle T∂Ω

Θ(
∑
j

fjεj) =
∑
j

θ
(√

1 + Λ−1τ2
j

)
fjεj.

We know (see [3]) thatΘ is a semi-classical pseudo-differential operator of degree 0 (with small parameter Λ−1/2),
with a scalar semi-classical principal symbol equal to

σ(Θ) = θ
(√

1 + |η|2y
)
Id



1142 F.W. CHAVES-SILVA AND G. LEBEAU

where |η|2y denotes the square of Riemannian length of the covector η ∈ T ∗
y ∂Ω. From the properties of θ, we get

that the essential support of Θ is contained in the set |η|y ≤ √
3, and Θ is microlocally equal to Id on the set

|η|y ≤ √
2. We write

G0(s, y) = G1(s, y) +G2(s, y),

with
G1 = Θ(G0), G2 = (1 −Θ)(G0).

Remark 2.5. Notice that the operator Θ acts only on the y ∈ ∂Ω variable, and that G1 and G2 are respectively
the low and the high frequencies of G0. More precisely, G1 is concentrated in the set |∂y | ≤

√
3
√
Λ, and G2 is

concentrated in the set |∂y| ≥
√

2
√
Λ.

From (2.16), we get

‖G‖2
H1

sc
≤ C

(
h3||eϕ/hA(χv)||2L2(Z) + 2‖G1‖2

1,sc + 2‖G2‖2
1,sc

)
. (2.17)

To estimate the contribution of G2 to the right hand side of (2.17), we first observe that Lemma B.1 in
Appendix B implies that, for every N ∈ N, there exists CN such that for all s ∈ [0, 1] one has∫

∂Ω

|G2(s, .)|2 + |h∇yG2(s, .)|2 dσ(y) ≤ CNΛ
−NK(s), (2.18)

where K(s) =
∑
μj≤Λ

χ2
0(s)e

2ϕ0(s)/h|aj |2
sinh2(s√μj)

μj
. Next, we notice that

∫
Ω

|G|2dx ≥
∫
r≤r0/2

|G|2dx ≥ e2ϕ0(s)/hχ2
0(s)

∑
μj≤Λ

|aj |2sinh2(s
√
μj) −

∫
r≥r0/2

χ2
0(s)e

2ϕ(s,r)/h|v(s, .)|2dx.

(2.19)
The proof of (2.19) is achieved taking into account that ϕ(s, r) ≥ ϕ0(s) for every r ∈ [0, r0), χ1(r) = 1 for
r ∈ [0, r0/2], curl ej ⊥ curl ei in L2(Ω) if i �= j and ||curl ej ||2L2(Ω) = μj for all j. From μ1 > 0, we thus get
from (2.19) that there exists C > 0 such that

K(s) ≤ C

(∫
Ω

|G|2dx+
∫
r≥r0/2

χ2
0(s)e

2ϕ(s,r)/h|v(s, .)|2dx
)
.

Integrating this last inequality with respect to s, using Proposition 2.4 and A(v) = 0, and also
support(K(s)) ⊂ support(χ0(s)) ⊂]1/9, 9/10[, we get that there exists ν ∈ (0, 1) and C0 such that for all
h ∈]0, h1] the following inequality holds true

∫ 1

0

K(s)ds ≤ C

(
‖G‖2

L2(Z) + eC0/h‖v‖2(1−ν)
H1(Z)

(∫
ω

|∂sv(0, x)|2dx
)2ν
)
. (2.20)

Therefore, estimate (2.18) implies∫ 1

0

∫
∂Ω

|G2|2 + |h∇yG2|2 dσ(y)ds ≤ CNΛ
−N
(
‖G‖2

L2(Z) + eC0/h‖v‖2(1−ν)
H1(Z)

(∫
ω

|∂sv(0, x)|2dx
)2ν)

. (2.21)

By Lemma B.1, we also have∫
∂Ω

|h∂sG2(s, .)|2 dσ(y) ≤ CNΛ
−N ∑

μj≤Λ

∣∣∣h∂s (χ0(s)eϕ0(s)/haj(s)
)∣∣∣2 . (2.22)
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Let χ̃0 ∈ C∞
0 (]s0 − 2s∗, s0 + 2s∗[), 0 ≤ χ̃0 ≤ 1 and χ̃0 = 1 on the support of χ0. Let

K̃(s) =
∑
μj≤Λ

χ̃2
0(s)e

2ϕ0(s)/h|aj |2
sinh2(s√μj)

μj
·

For s ≥ 1/9 and μj ≤ Λ, one has hcosh(s√μj) ≤ c0h
√
Λ

sinh(s
√
μj)√

μ
j

with c0 = supx≥√
μ1/9

cosh(x)
sinh(x) . Thus, we get

from h
√
Λ = δ ≤ 1, that there exists C such that

|h∂s(χ0(s)eϕ0(s)/haj(s))|2 ≤

3|aj|2e2ϕ0(s)/h

⎛
⎝
∣∣∣∣∣h∂sχ0

sinh(s√μj)√
μ
j

|2 + |χ0

sinh(s√μj)√
μ
j

∂sϕ0|2 + |hcosh(s√μj)χ0

∣∣∣∣∣
2
⎞
⎠

≤ Cχ̃2
0(s)e

2ϕ0(s)/h|aj |2
sinh2(s√μj)

μj
·

Therefore, arguing as above and using (2.22), we get

∫ 1

0

∫
∂Ω

|h∂sG2|2 dσ(y)ds ≤ CNΛ
−N
(
‖G̃‖2

L2(Z) + eC0/h‖v‖2(1−ν)
H1(Z)N

(∫
ω

|∂sv(0, x)|2dx
)2ν
)
. (2.23)

where G̃ is defined as G in (2.15) with χ̃0(s) instead of χ0(s).
One has by construction χ̃0 ≤ χ0 + 1{s∗≤|s−s0|≤2s∗}. This and (2.13)implies

|G̃| ≤ |G| + e(ϕ(s0,0)−μ0)/h|v|.

Summing up, we get that the contribution of G2 to the right hand side of (2.17) is estimate by

‖G2‖2
H1

sc
≤ CNΛ

−N
(
‖G‖2

L2(Z) + e2(ϕ(s0,0)−μ0)/h‖v‖2
L2(Z) + eC0/h‖v‖2(1−ν)

H1(Z)

(∫
ω

|∂sv(0, x)|2dx
)2ν
)
. (2.24)

We now estimate the contribution of G1. Let B be the h-pseudodifferential operator acting on the s variable
defined by

B(f)(s) =
1

2πh

∫
ei(s−s

′)σ/hb1(σ)b0(s′ − s0)f(s′)ds′dσ (2.25)

with bj ∈ C∞
0 (] − αj , αj [) equal to 1 in [−αj/2, αj/2], and αj > 0 small.

We have with X =]0, 1[×Ω

‖G1‖2
H1

sc(X) ≤ 2‖BG1‖2
H1

sc(X) + 2‖(1 −B)G1‖2
H1

sc(X). (2.26)

For the first term on the right-hand side of (2.26), we prove the following.

Claim 1. There exist αj > 0 and δ1 > 0 such that for all δ ∈]0, δ1], BG1 satisfies

∀N, ∃CN such that ‖BG1‖2
H1

sc(X) ≤ CNh
N‖G‖2

L2(Z). (2.27)
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Proof of Claim 1. One has
BG1 = BΘ(G)|∂Ω . (2.28)

The operator BΘ is a h-pseudodifferential tangential operator with essential support contained in the set

K = {(s, y;σ, η), |s− s0| ≤ α0, y ∈ ∂Ω, |σ| ≤ α1, ‖η‖ ≤ √
3δ}.

By construction, one has with Aϕ = h2eϕ/h A e−ϕ/h

AϕG = h2eϕ/hA(χ0(s)χ1(r)v) = 0 on the open set |s− s0| < 3s∗/2, r ∈]0, r0/2[. (2.29)

The principal symbol of Aϕ is given by (
σ + i∂sϕ

)2+(ξ + i∇xϕ
)2

where ξ = (τ, η) is the dual variable of x = (r, y). Since ϕ is radial, the principal symbol of Aϕ is given by(
σ + i∂sϕ

)2+(τ + i∂rϕ
)2+η2.

The roots of the principal symbol with respect to τ are given by

τ±(r, s, y;σ, η) = −i∂rϕ± i

√
η2 +

(
σ + i∂sϕ

)2
.

From ϕ = eDψ and ψ(s, r) = r− (s− s0)2, we get that there exists a constant C such that for all (r, s, y;σ, η) ∈
[0, r0/2]×K one has

Im τ±(r, s, y;σ, η) ≤ −eDψ(1 − Cα0) + C(δ + α1).

Therefore, for δ and the αj ’s small enough, we get that there exists c0 > 0 such that

∀(r, s, y;σ, η) ∈ [0, r0/2]×K, Im τ±(r, s, y;σ, η) ≤ −c0 < 0. (2.30)

Then Claim 1 follows from (2.29), (2.28), and classical elliptic boundary estimates applied to the differential
operator Aϕ. �

For the second term on the right-hand side of (2.26), we prove:

Claim 2. There exist C > 0, δ0 > 0, c0 > 0 such that

∀δ ∈]0, δ0], ‖(1 −B)G1‖2
H1

sc(X) ≤ Ce2(ϕ(s0,0)−c0)/h‖v‖2
H1(Z). (2.31)

Proof of Claim 2:. We begin noticing that

G0(s, y) =
∑
μj≤Λ

ajχ0(s)eϕ0(s)/h
(
(es

√
μj − e−s

√
μj )/2

)(curl ej
∣∣
r=0√

μj

)
·

Set νj = h2μj . We have √
νj ≤ h

√
Λ = δ and

h−1ϕ0(s) ± s
√
μj = h−1

(
ϕ0(s) ± s

√
νj
)
.

We also have
ϕ0(s) = ϕ0(s0) −D(s− s0)2 +O((s− s0)4).

Let us now make the change of variable s �→ s0 + t. Set χ0(s0 + t)b0(t) = χ̃(t) and θ(t) = ϕ0(s0)− ϕ0(s0 + t) =
Dt2 +O(t4). The function χ̃ ∈ C∞

0 is equal to 1 in a neighborhood of t = 0, and the function θ(t) is real analytic.
Let φj(t, σ) be the phase function

φj(t, σ) = −tσ + i(θ(t) ± (t+ s0)
√
νj).
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and let gj be the vectors fields on the boundary ∂Ω

gj(y) =
Θ(curl ej

∣∣
r=0

)(y)
√
μj

·

Then one has

(1 −B)G1(t, y) =
eϕ(s0,0)/h

2πh

∑
μj≤Λ

ajgj(y)
∫

eiσt/h(1 − b1(σ))
(∫

eiφj(t
′,σ)/hχ̃(t′)dt′

)
dσ. (2.32)

By classical trace theorem, there exists C′,m′ such that ‖gj‖H1(∂Ω) ≤ C′Λm
′
for all j such that 0 < μ1 ≤ μj ≤ Λ,

and by (2.2), one gets easily that there exists C such that
∑
μj≤Λ |aj |2 ≤ C‖v‖2

L2(Ω) ≤ C‖v‖2
H1(Ω). Since

b1(σ) = 1 for |σ| ≤ α1/2, we get from (2.32), using Cauchy−Schwartz inequality and Weyl formula to estimate∑
μj≤Λ |aj |‖gj‖H1(∂Ω), that there exists C,m such that, with 〈σ〉 = (1 + σ2)1/2

‖(1 −B)G1‖H1
sc(X)e−ϕ(s0,0)/h ≤ CΛmh−1 sup

j,μj≤
√
Λ

∫
|σ|≥α1/2

〈σ〉
∣∣∣∣
(∫

eiφj(t
′,σ)/hχ̃(t′)dt′

)
dσ
∣∣∣∣ . (2.33)

Therefore, Claim 2 is a consequence of (2.33), h
√
Λ = δ ≤ 1, and the following lemma.

Lemma 2.6. There exist c0 > 0 and δ0 > 0 such that for 0 < δ ≤ δ0, and uniformly in |σ| ≥ α1/2 and
√
νj ≤ δ,

the following estimate holds true

∀N, ∃CN ,
∣∣∣∣
∫

eiφj(t,σ)/hχ̃(t)dt
∣∣∣∣ ≤ CN 〈σ〉−N e−c0/h. (2.34)

Proof. To estimate (2.34), we consider a deformation of the real axis t �→ g(t) = t − i σ〈σ〉κ(t). Here κ is a C∞
0

function whose support is contained in the interior of the set {t; χ̃(t) ≡ 1}, 0 ≤ κ ≤ k0, k0 > 0 small, and
κ ≡ k0 in some interval [−ε0, ε0]. On this curve, we have, with φ̃j(t, σ) = φj(g(t), σ)

Im φ̃j = −Im σ

(
t− i

σ

〈σ〉κ(t)
)

+ Re θ
(
t− i

σ

〈σ〉κ(t)
)
± Re

((
t− i

σ

〈σ〉κ(t)
)√

νj

)
± s3

√
νj

=
σ2

〈σ〉κ(t) + Re θ
(
t− i

σ

〈σ〉κ(t)
)
± (t+ s3)

√
νj

=
σ2

〈σ〉κ(t) + θ(t) − σ2

〈σ〉2 κ
2(t)θ′′(t)/2 +O

((
σ

〈σ〉
)4

κ4(t)

)
± (t+ s3)

√
νj), (2.35)

since θ(t+ iγ) = θ(t) + iγθ′(t) − γ2θ′′(t)/2 − iγ3θ′′′(t)/6 +O(γ4). Hence

Im φ̃j(t, σ) =
σ2

〈σ〉κ(t)
(

1 − κ

〈σ〉θ
′′(t)/2 +O

(
σ2

〈σ〉3 κ
3(t)
))

+ θ(t) ± (t+ s3)
√
νj). (2.36)

Let Γ be the integration contour in the complex plane Γ = {t− i σ〈σ〉κ(t), t ∈ R}. Since φ(t) is a holomorphic
function and support(κ) ⊂ {t; χ̃(t) = 1}, one has∫

R

eiφj(t,σ)/hχ̃(t)dt =
∫
Γ

eiφj(z,σ)/hχ̃(z)dz =
∫

R

eiφ̃j(t,σ)/hχ̃(t)g′(t)dt. (2.37)

There exists C1 > 0 such that for every t ∈ supp(χ̃), one has |t+ s0| ≤ C1, |t| ≤ sup(2s∗, α0), and there exists
C2 > 0 such that for |σ| ≥ α1/2 one has σ2

〈σ〉 ≥ C2〈σ〉. Thus we get from (2.36), decreasing s∗ and α0 if necessary,

for all δ ∈]0, δ0], t ∈ supp(χ̃), |σ| ≥ α1/2

Im φ̃j(t, σ) ≥ C2〈σ〉κ(t)/4 +Dt2 +O(t4) − C1δ ≥ C2〈σ〉κ(t)/4 +Dt2/2 − C1δ0.
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Thus one has for all δ ∈]0, δ0], t ∈ supp(χ̃), |σ| ≥ α1/2

Im φ̃j(t, σ) ≥ C2α1k0/8 − C1δ0 for |t| ≤ ε0, (2.38)

Im φ̃j(t, σ) ≥ Dε20/2 − C1δ0 for |t| ≥ ε0. (2.39)

For δ0 small enough, we get that there exists c0 > 0 such that for all δ ∈]0, δ0], t ∈ supp(χ̃), |σ| ≥ α1/2, one has
Im φ̃j(t, σ) ≥ c0, and from (2.37), we get

∣∣∣∣
∫

R

eiφj(t,σ)/hχ̃(t)dt
∣∣∣∣ ≤ Ce−c0/h. (2.40)

Therefore, (2.35) is true for N = 0. The general case is proved by integration by parts in t. �

From Lemma 2.6 we conclude that Claim 2 holds true. �

From (2.17), (2.24), (2.27) and (2.31), we conclude that there exists Λ0, C0, μ > 0 and ν ∈]0, 1[, such that
for Λ ≥ Λ0, δ ∈]0, δ0] and h = δΛ−1/2, the following inequality holds true

‖G‖2
H1

sc
≤ C

(
h3||eϕ/hA(χv)||2L2 + e2(ϕ(s0,0)−μ)/h‖v‖2

H1(Z) + e2C0/h‖v‖2(1−ν)
H1(Z)

(∫
ω

|∂sv(0, x)|2dx
)ν)

. (2.41)

• Estimate of the term ||eϕ/hA(χv)||2L2 :

We begin noticing that, since Av = 0, A(χv) = χ0[A,χ1]v + [A,χ0]χ1v and that [A,χ0] and [A,χ1] are first
order operators whose support are contained in the set

V1 ∪ V2 :=
((

[s0 − 2s∗, s0 − 3s∗/2] ∪ [s0 + 3s∗/2, s0 + 2s∗]
)×[0, r0]

)
∪
(

[s0 − 2s∗, s0 + 2s∗] × [r0/2, r0]
)
.

One has from (2.13) ϕ ≤ ϕ(s0, 0) − μ0 on V1 and for some C1 > 0, ϕ ≤ C1 on V2. Therefore, from (2.41),
decreasing μ > 0 if necessary, we get

‖G‖2
H1

sc
≤ C

(
e2C1/h||v||2H1(V2) + e2(ϕ(s0,0)−μ)/h‖v‖2

H1(Z) + e2C0/h‖v‖2(1−ν)
H1(Z)

(∫
ω

|∂sv(0, x)|2dx
)ν)

. (2.42)

Let U be the open subset of Z defined by U = {ϕ(s, r) > ϕ(s0, 0) − μ/2, |s − s0| < s∗, r < r0/2}. From
Proposition 2.4, one has for some ν1 ∈]0, 1[

||v||H1(V2) ≤ C ‖v‖1−ν1
H1(Z)N ‖∂sv(0, x)‖ν1L2(ω) .

Decreasing eventually ν and increasing C0 we conclude from (2.42) that there exists Λ0, C0, μ > 0 and ν ∈]0, 1[,
such that for Λ ≥ Λ0, δ ∈]0, δ0] and h = δΛ−1/2, the following inequality holds true:

||v||H1
sc(U) ≤ C

(
e−

μ
2h ‖v‖H1(Z) + eC0/h‖v‖1−ν

H1(Z) ‖∂sv(0, x)‖νL2(ω)

)
, (2.43)

Since the open set U is a neighborhood of [1/4, 3/4]×∂Ω, we conclude from (2.43), ||v||H1(U) ≤ h−1||v||H1
sc(U),

and Proposition 2.4 that Theorem 2.2 holds true. �
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3. Spectral inequality

In this section, using the interpolating inequality (2.9), we show a spectral inequality for the low modes of
the Stokes operator. This result will be used in the next section to prove Theorem 1.1.

Theorem 3.1. Let ω ⊂ Ω be a nonempty open set. There exist constants M > 0, K > 0 such that, for every
sequence of complex numbers zj and every real Λ > 0, we have

∑
μj≤Λ

|zj |2 =
∫
Ω

∣∣∣∣∣∣
∑
μj≤Λ

zjej(x)

∣∣∣∣∣∣
2

dx ≤MeK
√
Λ

∫
ω

∣∣∣∣∣∣
∑
μj≤Λ

zjej(x)

∣∣∣∣∣∣
2

dx. (3.1)

Proof. Let ω̃ be a nonempty set such that ω̃ ⊂⊂ ω and consider u(s, x) =
∑
μj≤Λ

zj
sinh(s√μj)√

μj
ej(x) and

v = curl u. Using (2.2), the norm ‖v‖H1(W ) can be estimated from below as follows

||v||2H1(W ) ≥ ||v||2L2(W ) =
∑
μj≤Λ

∫ 3/4

1/4

|zj|2 sinh2(s
√
μj)ds ≥

∑
μj≤Λ

μj |zj|2
∫ 3/4

1/4

s2ds. (3.2)

Next, from the fact that ‖v‖2
H1(Z) = ‖∂v∂s ‖2

L2(Z) + ‖Δxu‖2
L2(Z)) + ‖v‖2

L2(Z), we get

‖v‖2
H1(Z) ≤

∑
μj≤Λ

(2μj + 1) |zj|2
∫ 1

0

e2s
√
μj ds ≤

∑
μj≤Λ

(2μj + 1) |zj |2 e2
√
Λ. (3.3)

Since ‖∂sv(0, x)‖2
L2(ω̃) =

∫
ω̃

∣∣∣∑μj≤Λ zjcurl(ej)
∣∣∣2 dx, from Theorem 2.2, estimates (3.2) and (3.3), there exists

α ∈ (0, 1), C0, δ0 > 0, μ > 0, Λ0, such that for all δ ∈]0, δ0] and all Λ ≥ Λ0, one has

∑
μj≤Λ

|zj |2 ≤ Cδ

⎛
⎜⎝e2C0Λ

1/2/δ

⎛
⎝∑
μj≤Λ

Λ |zj|2 e2
√
Λ

⎞
⎠

1−α⎛⎜⎝∫
ω̃

∣∣∣∣∣∣
∑
μj≤Λ

zjcurl(ej)

∣∣∣∣∣∣
2

dx

⎞
⎟⎠
α

+e−2μ
√
Λ/δ

∑
μj≤Λ

Λ |zj |2 e2
√
Λ

⎞
⎟⎠.

(3.4)
Take δ1 ∈]0, δ0] such that 2μ/δ1 − 2 > 1 and Λ1 such that one has Cδ1Λe−

√
Λ ≤ 1/2 for all Λ ≥ Λ1. From (3.4),

we get for all Λ ≥ Λ1 with C = Cδ1 ,

∑
μj≤Λ

|zj|2 ≤ 2C

⎛
⎜⎝e2C0Λ

1/2/δ1

⎛
⎝∑
μj≤Λ

Λ |zj|2 e2
√
Λ

⎞
⎠

1−α⎛⎜⎝∫
ω̃

∣∣∣∣∣∣
∑
μj≤Λ

zjcurl(ej)

∣∣∣∣∣∣
2

dx

⎞
⎟⎠
α⎞
⎟⎠

which gives for some M̃ and K̃ positive

∑
μj≤Λ

|zj |2 ≤ M̃eK̃
√
Λ

∫
ω̃

∣∣∣∣∣∣
∑
μj≤Λ

zjcurl(ej)

∣∣∣∣∣∣
2

dx. (3.5)
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To finish the proof, we consider a function θ ∈ C∞
0 (ω) such that θ ≥ 0 and θ ≡ 1 in ω̃ and estimate the local

integral in the right-hand side of (3.5) as follows

∫
ω̃

∣∣∣∣∣∣
∑
μj≤Λ

zjcurl(ej)

∣∣∣∣∣∣
2

dx ≤
∫
ω

θ

∣∣∣∣∣∣
∑
μj≤Λ

zjcurl(ej)

∣∣∣∣∣∣
2

dx

=
∫
ω

θ

⎛
⎝∑
μj≤Λ

zjcurl(ej)

⎞
⎠
⎛
⎝∑
μk≤Λ

zkcurl(ek)

⎞
⎠ dx

=
∫
ω

⎛
⎝∑
μj≤Λ

zjej

⎞
⎠P

⎛
⎝θ ∑

μk≤Λ
zkcurl(ek)

⎞
⎠ dx, (3.6)

where P is a first order differential operator. Thus we get by Cauchy−Schwarz inequality

∫
ω̃

∣∣∣∣∣∣
∑
μj≤Λ

zjcurl(ej)

∣∣∣∣∣∣
2

dx ≤

⎛
⎜⎝∫

ω

∣∣∣∣∣∣
∑
μj≤Λ

zjej

∣∣∣∣∣∣
2

dx

⎞
⎟⎠

1/2⎛
⎜⎝∫

Ω

∣∣∣∣∣∣P
⎛
⎝θ ∑

μk≤Λ
zkcurl(ek)

⎞
⎠
∣∣∣∣∣∣
2

dx

⎞
⎟⎠

1/2

≤ CΛ

⎛
⎜⎝∫

ω

∣∣∣∣∣∣
∑
μj≤Λ

zjej

∣∣∣∣∣∣
2

dx

⎞
⎟⎠

1/2⎛
⎝∑
μj≤Λ

|zj |2
⎞
⎠

1/2

. (3.7)

Finally, from (3.5) and (3.7), we get that Theorem 3.1 holds true. �

4. Cost of the null controllability for the Stokes system

In this section we prove Theorem 1.1. This proof follows closely the ideas in [22, 24]. First, we introduce the
adjoint system (with the change of orientation t �→ T − t) of the Stokes system (1.1):

∣∣∣∣∣∣∣
zt −Δz + ∇q = 0 in Q,
div z = 0 in Q,
z = 0 on Σ,
z(0) = z0 in Ω.

(4.1)

It is well-know that the Stokes system 1.1 is null controllable at time T if and only if

‖z(T )‖2
H ≤ C2

S

∫ T

0

∫
ω

|z|2 dxdt, ∀z0 ∈ H. (4.2)

Moreover, we have that (4.2) holds if and only if (1.3) holds with CS = C1eC2/T .
To prove Theorem 1.1, we need the following two results:

Lemma 4.1. Let T ′ > 0 and m ∈ (0, 1). If the approximate observability estimate

f(t)‖z(t)‖2 − f(mt)‖z0‖2 ≤
∫ t

0

∫
ω

|z|2 dxdt, ∀z0 ∈ H2(Ω)N ∩ V, t ∈ (0, T ′], (4.3)

holds with f(t) −→ 0 as t −→ 0+, then C2
S ≤ 1/f((1 −m)T ) for T ∈ (0, T ′], i.e., the cost does not grow more

than the inverse of
√
f .
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Proof. Let T < T ′, τk = mk(1−m)T and consider a disjoint partition ∪(Tk+1, Tk] of (0, T ], with Tk+1 = Tk−τk,
T0 = T , k ∈ N. We apply (4.3) to z0 = z(Tk+1) and t = τk, we obtain

f(τk)‖z(Tk)‖2 − f(τk+1)‖z(Tk+1)‖2 ≤
∫ Tk

Tk+1

∫
ω

|z|2 dxdt, k ∈ N.

We add these inequalities to get

f(τ0)‖z(T )‖2 − f(τk)‖z(Tk)‖2 ≤
∫ T

Tk

∫
ω

|z|2 dxdt, k ∈ N

and taking the limit k −→ ∞ completes the proof since f(t) −→ 0 and the function t �→ ‖z(t)‖ is bounded
in [0, T ]. �

We use Lemma 4.1 to prove:

Lemma 4.2. Let T0 > 0 and β > 0. If the approximate observability estimate

f(T )‖z(T )‖2 − g(T )‖z0‖2 ≤
∫ T

0

∫
ω

|z|2 dxdt, ∀z0 ∈ H2(Ω)N ∩V, t ∈ (0, T0], (4.4)

holds with f(T ) = f0e−2/(d2T )β

and g(T ) = g0e−2/(d1T )β

, where f0, g0, d1 < d2 are positive, then for all
d ∈ (0, d2 − d1) there exists T ′ ∈ (0, T0] such that C2

S ≤ f−1
0 e2/(dT )β

for T ∈ (0, T ′]. Moreover, if g0 ≤ f0 then
we may take d = d1 − d2 and T ′ = T0.

Proof. First, we compute the least m such that g(T ) ≤ f(mT ) for all T ∈ (0, T ′]. We find m = d1
d2
h(T ′), with

h(T ′) =
(
1 + inft∈(0,T ′) t

βdβ1 ln(f0/g0)/2
)−1/β , where the parenthesis is 1 when g0 ≤ f0 and positive for T ′ is

small enough. Now C2
S ≤ 1/(f((1 −m)T )) = 1

f0
e2/(d3T )β

, with d3 = d2 − d1h(T ′) −→ d2 − d1 as T ′ −→ 0. �

Proof of Theorem 1.1. Let T0 > 0, T ∈ (0, T0) and z0 ∈ H. Set HΛ = span{ej;μj ≤ Λ}. For any Λ, the
solution z of (4.1) can be split into z = u + v, where u and v are (together with some pressure) the solutions
of (4.1) associated to u0 ∈ HΛ and v0 ∈ H⊥

Λ , z0 = u0 + v0, respectively. Moreover,

u(t) ∈ HΛ and ‖v(t)‖H ≤ e−Λt‖v0‖H, (4.5)

for every t > 0. For every M1 > 0, we have

‖z(T )‖2
H ≤ 1

T

∫ T

0

∫
Ω

|z(t)|2 dxdt ≤ 1
M1

e
M1
T

∫ T

0

∫
Ω

|z(t)|2 dxdt, ∀T ∈ (0, T0) (4.6)

and ∫ T

0

∫
ω

|z(t)|2 dxdt ≤ T ‖z0‖2
H. (4.7)

From (4.6) and Theorem 3.1, we get

‖u(τ)‖2
H ≤ M

M1
e

M1
τ +K

√
Λ

∫ τ

0

∫
ω

|u(t)|2 dxdt, ∀τ ∈ (0, T0). (4.8)

Let us now consider an observation time τ = εT , with ε ∈ (0, 1) small enough and take
√
Λ = 1

τ . From (4.8), it
follows that

‖u(T )‖2
H ≤ 1

f(T )

∫ T

(1−ε)T

∫
ω

|u(t)|2 dxdt, f(T ) =
M1

M
e−

M1+K
εT . (4.9)
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Using (4.9), the definition of z and (4.7), we get

f(T )‖u(T )‖2
H ≤

∫ T

(1−ε)T

∫
ω

|u(t)|2 dxdt ≤ 2
∫ T

(1−ε)T

∫
ω

|z(t)|2 dxdt+ 2εT ‖v((1 − ε)T )‖2
H. (4.10)

Hence,

f(T )‖z(T )‖2
H ≤

∫ T

(1−ε)T

∫
ω

|z(t)|2 dxdt+ εT ‖v((1 − ε)T ) ‖2
H + 2f(T )‖v(T )‖2

H. (4.11)

Using (4.5) in (4.11), we obtain

f(T )‖z(T )‖2
H − (εT e−2Λ(1−ε)T + 2f(T )e−2ΛT

)‖v0‖2
H ≤

∫ T

(1−ε)T

∫
ω

|z(t)|2 dxdt. (4.12)

Since ‖v0‖2
H ≤ ‖z0‖2

H and f(T ) ≤ f(T0), we obtain

f(T )‖z(T )‖2
H − (T0 + 2f(T0)

)
e−2Λ(1−ε)T ‖z0‖2

H ≤
∫ T

(1−ε)T

∫
ω

|z(t)|2 dxdt. (4.13)

Therefore, since ΛT = 1/(ε2T ), Lemma 4.2 holds with β = 1 and

f0 =
M1

M
, g0 = T0 + 2f(T0), d2 = 2ε/(M1 +K), d1 = ε2/(1 − ε).

One has g(T0) −→ 0 if T0 −→ 0, and for ε small enough, one has d1 < d2. Thus we can apply Lemma 4.2
with g0 ≤ f0 and T0 small and conclude that there exists CS for which (4.2) is true for all solutions of (4.1).
Moreover, there exists T ′ > 0 and C1, C2 > 0 such that

CS ≤ C1eC2/T , ∀T ∈ (0, T ′]. �

Remark 4.3. Arguing as in Theorem 2.2 of [22], it is possible to get some estimate on the size of C2. Never-
theless, the obtainment of the optimal constant C2 for which inequality (1.3) holds has an interest on its own
and, as far as we know, it is open problem.

Appendix A. Carleman inequality for the Laplace operator

In this section we prove the Carleman inequality (2.14) that we have used in the proof of the Theorem 2.2.
The proof follows closely the one given in [15], but we have to take care of the non zero Dirichlet data at the
boundary. Since the notational distinction between the variables s and x plays here no role, we may replace the
triple ((s, x), (0, s0) ×Ω,A) by the triple (x,Ω,−�).

Remark A.1. Observe that since we work on RN , it is equivalent to prove the Carleman inequality (2.14) for
vector fields or for functions. If one replace RN by a Riemannian manifold (M, g), since the Laplace operator
acting on vector fields has a scalar principal symbol equal to the principal symbol of the Laplace operator acting
on functions, and since the Carleman inequality (2.14) is insensitive to lower order terms, it is still equivalent
to prove the Carleman inequality (2.14) for vector fields or for functions.

Given x0 ∈ ∂Ω, we choose the normal geodesic coordinate system x = (x′, xN ), x′ ∈ RN−1, where x′ is a local
coordinate system for ∂Ω so that x0 = 0. In this new coordinate system, Ω is locally define by xN > 0, the
metric g is of the form dx2

N +
∑
i,j≤N−1 gi,jdxidxj , and one has

dist((x′, xN ), ∂Ω) = xN , (A.1)
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where in (A.1), dist is the distance given by the Riemannian metric g. In this coordinate system, the Laplace
operator is equal to

Δg =
1√

det g
∂xN

[√
det g∂xN

]
+

∑
i,j≤N−1

1√
det g

∂x′
i

[√
det g gi,j∂x′

j

]
, (A.2)

where (gi,j) is the inverse matrix of g = (gi,j). Therefore, one has

−Δg = −∂2
xN

−R(x′, xN , ∂x′) +A1(x, ∂x), (A.3)

where A1 is a first order operator and

R(x′, xN , ∂x′) =
∑

i,j≤N−1

gi,j(x′, xN )∂xi∂xj .

Since A1 is a first order operator, and first order terms do not affect the validity of the Carleman inequality of
Theorem A.5, for the rest of this section, we will work with the operator

P = −∂2
xN

−R(x′, xN , ∂x′). (A.4)

In the sequel, we will use the notations of [15] for the class of tangential symbols Sj , and tangential opera-
tors Ej (see [15], Sect. 3, formulas (9) and (10)). We recall the following definition:

Definition A.2. Let V be an open set of RN and ϕ ∈ C∞(RN ; R). We say that ϕ satisfies Hormander’s sub-
ellipticity condition on V for the operator P if, for every x ∈ V , ∇ϕ(x) �= 0, and there exists C > 0 such
that

∀(x, ξ) ∈ V × RN , pϕ(x, ξ) = 0 =⇒ {q̃1, q̃2}(x, ξ) ≥ C,

where pϕ is the principal symbol of the conjugated operator

Pϕ = h2eϕ(x)/hP e−ϕ(x)/h, (A.5)

i.e.,
pϕ = q̃2 + iq̃1,

with
q̃2 = |ξN |2 − |∂xNϕ|2 +

∑
i,j≤N−1

gi,j(x)(ξiξj − ∂xiϕ∂xjϕ)

and

q̃1 = 2

⎛
⎝∂xNϕξN +

∑
i,j≤N−1

gi,j(x)∂xiϕξj

⎞
⎠ .

Remark A.3. The set
Z = {(x, ξ) ∈ V × RN ; pϕ(x, ξ) = 0} (A.6)

is compact.

The following well known Lemma will be useful to construct functions satisfying Hormander’s sub-ellipticity
on a set V for the Lapace operator.

Lemma A.4. Let ψ ∈ C∞(RN ; R) be such that ∇ψ(x) �= 0 for every x ∈ V . Let G ∈ C∞(R; R) be such that
G′ > 0 and G

′′
> 0. There exists a constant A > 0 such that if G

′′ ≥ AG′, then ϕ(x) = G(ψ(x)) satisfies
Hormander’s sub-ellipticity condition on V for the Laplace operator operator −Δ.
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Let V = V ′ × (−r, r) be a neighborhood of x0 in RN and ϕ(x′, xN ) a weight function satisfying Hormander’s
sub-ellipticity condition on V for P and such that

∂ϕ

∂xN
(x′, xN ) �= 0, ∀(x′, xN ) ∈ V .

We prove the following result.

Theorem A.5 (Carleman inequality). Let K be a compact set of V ′ and r′ < r. There exist h1 > 0 and C > 0
such that for every h ∈ (0, h1], and every u(x′, xN ) ∈ C∞(V ′ × [0, r)) satisfying u(x′, 0) = g(x′) and supported
in K × [0, r′], the following inequality holds true

h||eϕ/hu||2L2 + h3||eϕ/h∇u||2L2 ≤C

(
h4||eϕ/hPu||2L2 + h

∫
e2ϕ(x′,0)/h|g(x′)|2dx′ + h3

∫
e2ϕ(x′,0)/h|∇x′g(x′)|2dx′

+ h3

∫
e2ϕ(x′,0)/h|∂xNu(x′, 0)|2dx′

)
. (A.7)

Moreover, if ∂xNϕ > 0 for every (x′, xN ) ∈ V , we have

h||eϕ/hu||2L2 +h3||eϕ/h∇u||2L2 ≤ C

(
h4||eϕ/hPu||2L2 +h

∫
e2ϕ(x′,0)/h|g(x′)|2dx′+h3

∫
e2ϕ(x′,0)/h|∇x′g(x′)|2dx′

)
.

(A.8)

Remark A.6. Since −Δg = P+A1, with A1 being a first order operator, by taking h1 smaller, inequalities (A.7)
and (A.8) are still true if we replace P by −Δg.

Proof. Taking v = eϕ/hu, we see that v solves∣∣∣∣Pϕv = f̃ in V ′ × (0, r),
v(x′, 0) = g̃(x′),

(A.9)

where, Pϕ is given by (A.5), f̃ = h2eϕ/hf and g̃ = eϕ(x′,0)/hg.
Noticing that h∂xN v = eϕ/h(h∂xNu + ϕxNu) and using the fact that u(x′, 0) = g(x′), we see that (A.7) is

equivalent to (see [15] for the definition of the semi-classical tangential norms‖.‖t,s)

h

(
‖v‖2

t,1 + ‖h∂xN v‖2
t,0

)
≤ C

(
‖ f̃‖2

t,0 + h

∫
|g̃(x′)|2dx′ + h3

∫
|∇x′ g̃(x′)|2dx′ + h

∫
|h∂xN v(x

′, 0)|2dx′
)

(A.10)

and (A.8) is equivalent to

h

(
‖v‖2

t,1 + ‖h∂xNv‖2
t,0

)
≤ C

(
‖ f̃‖2

t,0 + h

∫
|g̃(x′)|2dx′ + h3

∫
|∇x′ g̃(x′)|2dx′

)
. (A.11)

Next, we write Pϕ = Q̃2 + iQ̃1, with Q̃2 = Re(Pϕ) = 1
2 (Pϕ+P ∗

ϕ) and Q̃1 = Im(Pϕ) = 1
2i (Pϕ−P ∗

ϕ). Moreover,
we separate the operators Q̃i, i = 1, 2, in the derivatives in the normal variable xN and the tangential ones.
Indeed, we write

Q̃2 =
(
h

i
∂xN

)2

+Q2, Q2 ∈ E2

σ2(Q2) = q2 = R(x′, xN , ξ′) −R(x′, xN , ϕx′) − (ϕxN )2

Q̃1 =
2h
i
ϕxN∂xN + 2Q1, Q1 ∈ E1

σ1(Q1) = q1 = R̂(x′, xN ; ξ′, ϕx′)

where R̂(x′, xN ; a, b) =
∑

j,k≤N−1

gj,k(x′, xN )ajbk.
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Let us denoteDN = h
i ∂xN and< z,w >0=

∫
z(x′, 0)w(x′, 0)dx′ the scalar product of the trace of the functions z,

w over the boundary xN = 0. We have the following identities

(w1, Q̃2w2) = (Q̃2w1, w2) − ih (〈w1, DNw2〉0 + 〈DNw1, w2〉0) ,

(w1, Q̃1w2) = (Q̃1w1, w2) − 2ih〈ϕxNw1, w2〉0.
Then, we have

||f̃ ||2L2 = ||(Q̃2 + iQ̃1)v||2L2 = ||Q̃2v||2L2 + ||Q̃1v||2L2 + h(
i

h
[Q̃2, Q̃1]v, v) + hB0(v),

with
B0(v) = 〈(DN Q̃1 − 2ϕxN Q̃2)v, v〉0 + 〈Q̃1v,DNv〉0. (A.12)

One has

DNQ̃1 − 2ϕxN Q̃2 = DN (2ϕxNDN + 2Q1) − 2ϕxN (D2
N +Q2) = 2DNQ1 − 2ϕxNQ2 + 2

h

i
(∂2
xN
ϕ)DN

= A2 +A1DN

with Aj ∈ Ej . Therefore, we get by Cauchy−Schwarz, with the notation DNv(x′, 0) = w

∣∣∣〈(DN Q̃1 − 2ϕxN Q̃2

)
v, v
〉

0

∣∣∣ ≤ C

(
||g̃||20 + h2||∇x′ g̃||20 + ||w||0(||g̃||0 + ||h∇x′ g̃||0)

)
.

Since Q̃1 = 2ϕxNDN + 2Q1, we get from (A.12)

|B0(v) − 2〈ϕxN (x′, 0)w,w〉0| ≤ C

(
||g̃||20 + h2||∇x′ g̃||20 + ||w||0(||g̃||0 + ||h∇x′ g̃||0)

)
. (A.13)

Next, using that i
h [Q̃2, Q̃1] is a differential operator of order 2, and the definition of Q̃2 and Q̃1, we see that

i

h
[Q̃2, Q̃1] = H0Q̃2 +H1Q̃1 +H2,

with Hk ∈ Ek, 0 ≤ k ≤ 2. Writing

q̃2 = ξ2N + q2(x′, xN , ξ), q̃1 = 2(ϕxN ξN + 2q1(x′, xN , ξ))

and using the sub-ellipticity condition on ϕ, we have, for every (x′, xN ) ∈ [−r, r] × V ′ and every ξ ∈ RN ,

q̃2 = q̃1 = 0 =⇒ {q̃2, q̃1} ≥ C. (A.14)

To finish the proof, we use the following Lemma, which is proved in ([15], Sect. 3, Lem. 1):

Lemma A.7. There exists μ (large enough) such that

μ

〈ξ′〉2 (q21 + ϕ2
xN
q2) + σ2(H2) ≥ C〈ξ′〉2. (A.15)

To finish the proof of Theorem A.5, we consider

G =
μ

Λ2
t

(Q2
1 + ϕ2

xN
Q2) ∈ E0
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and use Garding’s inequality to see that there exists h1 > 0 such that

||f̃ ||2L2 − hB0(v) = ||Q̃2v||2L2 + ||Q̃1v||2L2 + h(
i

h
[Q̃2, Q̃1]v, v)

≥ ||Q̃2v||2L2 + ||Q̃1v||2L2 + hRe(H0Q̃2v, v) + hRe(H1Q̃1v, v)

− hRe(Q̃2
1 + ϕ2

xN
Q̃2v,Gv) − C0h||v||2t,1, (A.16)

for some C0 > 0 and every h ∈ (0, h1). Since Hk ∈ Ek, we have

|hRe(H0Q̃2v, v)| ≤ Ch1/2||Q̃2v||2t,0 + Ch3/2||v||2t,0,

|hRe(H1Q̃1v, v)| ≤ Ch1/2||Q̃1v||2t,0 + Ch3/2||v||2t,1
and

||DNv||2t,0 ≤ C
(||Q̃1v||2t,0 + ||v||2t,1

)
.

Taking h1 smaller, we obtain from (A.16) that

||f̃ ||2L2 − hB0(v) + hRe(Q̃2
1 + ϕ2

xN
Q̃2v,Gv) ≥ 1

2
(||Q̃2v||2L2 + ||Q̃1v||2L2

)
+Ch

(||v||2t,1 + ||DNv||2t,0
)
. (A.17)

From the definition, we also have

Q̃2
1 + ϕ2

xN
Q̃2 ∈ ϕxN Q̃2 − 1

2
DN ◦ ϕxN Q̃1 + E1Q̃1 + hE0DN + hE1

and

hRe(DN ◦ ϕxN Q̃1v,Gv) = hRe(ϕxN Q̃1v,DNGv) − hRe
〈
h

i
ϕxN Q̃1v,Gv

〉
0

.

Taking h1 smaller if necessary, and from the fact that DNG ∈ GDN + hE0, we deduce that

Ch
(||v||2t,1 + ||DNv||2t,0

)≤ ||f̃ ||2L2 − hB0(v). (A.18)

The proof of (A.10) and (A.11) then follows from (A.13). �

Appendix B. Spectral inequality for low frequencies at the boundary

This section is devoted to the proof of Lemma B.1, which gives an inequality for the traces on the boundary
∂Ω of vector fields of the form u(x) =

∑
μj≤Λ ajej(x). As in Appendix A, we choose on the open subset

{x ∈ Ω, dist(x, ∂Ω) < r0} of Ω, with r0 small, the normal geodesic coordinate system x = (x′, xN ), x′ ∈
∂Ω, xN = dist(x, ∂Ω) ∈]0, r0[.
Let Δ be the Laplace operator acting on vector fields. Let us first recall the expression of Δ in this coordinate
system (see [6]). For a vector field u, we have the following decomposition

u = u|| + u⊥
∂

∂xN

, u|| =
N−1∑
j=1

u||,j
∂

∂x′
j

and we write u = (u||, u⊥). We also have

divg u =
1√

det g
∂xN

[√
det gu⊥

]
+div||u||,
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with

div||u|| =
1√

det g

N−1∑
j=1

∂

∂x′
j

(√
det gu||,j

)
.

For a given function p, we have

∇gp =
(
∇x′p,

∂p

∂xN

)
,

with

∇x′p =
N−1∑
j=1

qj
∂

∂x′
j

, qj =
N−1∑
k=1

gj,k
∂p

∂x′
k

·

For u = (u||, u⊥), the Laplace operator applied to u, Δu, is the vector field

Δ
(
u||
u⊥

)
=
(
Δ||u||
Δgu⊥

)
+M1

(
u||
u⊥

)
+M0

(
u||
u⊥

)
, (B.1)

where Δg is the Laplace operator acting on functions, given by (A.2), and Δ|| the operator

Δ|| =
1√

det g
∂xN [

√
det g∂xN ]Id+ P (x′, xN , ∂x′).

Here P is a (N − 1)× (N − 1) matrix that contains only horizontal derivatives ∂x′ of order at most 2. Moreover,
the principal symbol of Δ|| is scalar, and one has σ(Δ||) = σ(Δg)Id. In (B.1), M1 is a differential operator of
order 1 of the form

M1 =
∑

M1,j(x′, xN )
∂

∂x′
j

,
∑

M1,j =
( ∗ ∗
∗ 0

)
(B.2)

and M0 is a N×N matrix (i.e., a differential operator of order 0). Observe that M1 does not contain derivatives
in ∂xN and sends the normal vector ν into a horizontal vector.

As in Section 2, we consider a cut-off function θ ∈ C∞
0 (] − 2, 2[) satisfying 0 ≤ θ ≤ 1, and θ ≡ 1 in a

neighborhood of [−√
3,
√

3], and we denote by �∂Ω the Laplace operator on the boundary ∂Ω acting on vector
fields. Recall that Θ is the bounded operator acting on L2 sections of the tangent bundle T∂Ω defined by
Θ = θ(

√
1 − Λ−1Δ∂Ω). The aim of this section is to prove the following lemma.

Lemma B.1. Let Q(x,Dx) be a differential operator defined in a neighborhood of ∂Ω. For all M,N ∈ N there
exists constants CM and DM,N such that for all Λ > 0 and u(x) =

∑
μj≤Λ ajej(x) with aj ∈ C, one has, with

v = Q(u)
∣∣∣∣
∂Ω

and w = (Id−Θ)v

||ΔM
∂Ωv||L2(∂Ω) ≤ CMΛ

2M+1

⎛
⎝∑
μj≤Λ

|aj |2
⎞
⎠

1/2

and ||ΔM
∂Ωw||L2(∂Ω) ≤ DM,NΛ

−N

⎛
⎝∑
μj≤Λ

|aj |2
⎞
⎠

1/2

. (B.3)

Proof. For notational simplicity, we write ∂Ω = Y . The bound on ||ΔM
Y v||L2(Y ) follows from classical trace

theorems, thus we will just concentrated on the bound on ||ΔM
Y w||L2(Y ). From

ΔM
Y w =

∑
μj≤Λ

ajΔ
M
Y (1 − θ)[

√
1 − Λ−1ΔY ]((Q(x,Dx)ej)

∣∣
Y

),
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we see that it is sufficient to show that

sup
μj≤Λ

‖ΔM
Y (1 − θ)[

√
1 − Λ−1ΔY ]((Q(x,Dx)ej)

∣∣
Y

)‖L2(Y ) ≤ DM,NΛ
−N . (B.4)

Indeed, if (B.4) holds true, by Cauchy−Schwartz, we get

‖ΔM
Y w‖L2(Y ) ≤ #{j; μj ≤ Λ}1/2

(∑
μj≤Λ

|aj |2
)1/2

DM,NΛ
−N

and the result will then follows from Weyl’s formula (i.e., #{j; μj ≤ Λ}1/2 ≤ cΛc). Let us now prove (B.4). We
start with the following lemma.

Lemma B.2. We have

(Q(x,Dx)ej)
∣∣
Y

= Q1(μj , x′, ∂x′)(∂xN ej)
∣∣
Y

+Q2(μj , x′, ∂x′)(∂xNpj)
∣∣
Y

+Q3(μj , x′, ∂x′)pj
∣∣
Y
,

where the Qi(μj , x′, ∂x′), 1 ≤ i ≤ 3, are differential operators at the boundary with polynomial dependence in μ.

Proof. We write Q(x,Dx) =
∑
k,β aα,β(x

′, xN )∂βx′∂kxN
.

Since

Δg = ∂2
xN

+ gN (x′, xN )∂xN + R̃(x′, xN , ∂x′)

Δ = ∂2
xN

+MN (x′, xN )∂xN + Q̃(x′, xN , ∂x′),

we get from Δej = ∇gpj − μjej

∂2
xN
ej = −MN(x′, xN )∂xN ej − Q̃(x′, xN , ∂x′)ej − μjej + ∇gpj .

We also have that Δgp = 0, which gives

∂2
xN
pj = −gN (x′, xN )∂xNpj − R̃(x′, xN , ∂x′)pj .

We get easily from this identities by induction on k ≥ 2,

∂kxN
ej = A1

k(μj , x, ∂x′)ej +A2
k(μj , x, ∂x′)∂xN ej +A3

k(μj , x, ∂x′)pj +A4
k(μj , x, ∂x′)∂xNpj .

where the Ajk(μ, x, ∂x′) are tangential differential operators with polynomial dependence in μ. Then the result
follows from ej |xN=0 = 0. �

Let us denote by WFΛ the semi-classical wave front set of a family of functions f(x′, �) on the boundary
∂Ω = Y , with small semi-classical parameter � = Λ−1/2 (see [3, 18]). Let us recall that the essential support of
the operator Id−Θ is contained in the set |η|y ≥ √

2. One has

ΔM
Y (1 − θ)[

√
1 − Λ−1ΔY ]ϕ(x′)∂αx′ = Λ2M+|α|(Λ−2ΔY )M (1 − θ)[

√
1 − Λ−1ΔY ]ϕ(x′)Λ−|α|∂αx′

= Λ2M+|α|p
(
x′,

�

i
∂x′

)
,

where p is an � pseudo-differential operator of degree 2M + |α| and essential support contained in the set
{|η| ≥ √

2}. Therefore, from Lemma B.2, the proof of (B.4) will be achieved if we show the existence of a
constant C <

√
2, such that

WFΛ(∂xN ej
∣∣
Y

) ⊂ {|η| ≤ C}, (B.5)
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WFΛ(p
∣∣
Y

) ⊂ {|η| ≤ C}, (B.6)

WFΛ(∂xN p
∣∣
Y

) ⊂ {|η| ≤ C}. (B.7)

We will get in fact that (B.5), (B.6) and (B.7) hold true with C = 1. Since p is a harmonic function, we have
that (B.6) implies (B.7) and hence we just need to prove (B.5) and (B.6).

Let us introduce ẽj = 1xN≥0ej . Using ej
∣∣
xN=0

= 0, we get that ẽj satisfies∣∣∣∣−Δgẽj + 1xN≥0∇gpj = μj ẽj + (k||, k⊥)δ0,
div ẽj = 0, (B.8)

where (k||, k⊥) = (k||, k⊥)(x′). Taking the divergence operator in (B.8)1, and using (B.8)2, we get

divg(1xN≥0∇pj) =
1√

det g
∂xN [

√
det gk⊥δ0] + div|| (k||δ0).

Denoting by p0
j := pj

∣∣
xN=0

, and p1
j := ∂pj

∂xN

∣∣
xN=0

, and using −Δgpj = 0, we obtain

p1
jδ0 = k⊥δ′0 +

1√
det g

∂xN [
√

det g]k⊥δ0 + div|| (k||)δ0.

Therefore, we have that k⊥ = 0 and p1
j = div|| (k||). Hence, from (B.8),

(−μj − Δg)ẽj + 1xN≥0∇gpj = (k||, 0)δ0.

Now, since ∇g p̃j := ∇g(1xN≥0pj) = 1xN≥0∇gpj + (0, p0
jδ0), we obtain

(−μ− Δg)ẽj + ∇g p̃j = (k||, p0
j)δ0.

Noticing that

−Δgẽj = −1xN≥0Δgej − (∂xN ej)
∣∣
xN=0

⊗δ0,
we get

(−μ− Δg)ẽj + ∇g p̃j = (0, p0
j)δ0 −

(
∂xN ej,||

∣∣
Y

∂xN ej,⊥
∣∣
Y

)
δ0. (B.9)

Moreover, we have that ∂xN ej,⊥
∣∣
Y

= 0 because divg ej = 0 and div|| (k||)
∣∣
Y

= 0. Hence,

k|| = −∂xN ej,||
∣∣
Y

(B.10)

and we find that ẽj , �p̃j = q̃j satisfy the following system:∣∣∣∣ (−μ�2 − �2Δg)ẽj + �∇g q̃j = (�2k||, �q0j )δ0,
�divg ẽj = 0. (B.11)

The proof of Lemma B.1 will be achieved if we show that the system (B.11) is elliptic in |η| > 1 under the
assumption μ�2 ≤ 1. In order to prove ellipticity, it is sufficient to verify that ellipticity holds true in the flat
case, i.e., when the boundary is xN = 0 and Δ is the constant coefficient Laplacian. This ellipticity property
is supposed to be well known, but we will recall the proof for the convenience of the reader.
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In order to prove ellipticity for the system (B.11), we will construct the parametrix (in the flat case) for the
system ∣∣∣∣∣∣

A(v, q) := (−μ−Δ)v + ∇q = f = (f||, f⊥) ⊗ δ0,
div v = 0
v = 0 and q = 0 in xN < 0.

(B.12)

where |μ| ≤ Λ. Taking the Fourier transform in RN in (B.12), we get∣∣∣∣ (|ζ|2 − μ)v̂ + iζq̂ = f̂ ,
ζ · v̂ = 0.

(B.13)

From the fact that Δq = divf , we also have that

i|ζ|2q̂ = ζ · f̂ , (B.14)

or equivalently for ζ �= 0

iζq̂ =
ζ(ζ · f̂)
|ζ|2 · (B.15)

From (B.13) and (B.15), we see that

v̂ =
1

|ζ|2 − μ

[
f̂ − ζ(ζ · f̂)

|ζ|2
]
,

for |ζ| > Λ. Let us now consider a real valued function θ ∈ C∞ such that 0 ≤ θ ≤ 1 and for ε > 0 small

θ(ζ) = 0, for |ζ| ≤ (1 + ε)
√
Λ

and
θ(ζ) = 1, for |ζ| ≥ (1 + 2ε)

√
Λ

and introduce (recall that we have |μ| ≤ Λ, hence θ(ζ)
|ζ|2−μ is well defined)

Ê(f) =

⎧⎪⎨
⎪⎩
v̂θ = θ(ζ)

|ζ|2−μ

[
f̂ − ζ(ζ·f̂)

|ζ|2

]
,

q̂θ = θ(ζ) (ζ·f̂)
i|ζ|2 ·

(B.16)

It is easy to see that (vθ, qθ) = E(f) is the solution of

(−μ−Δ)vθ + ∇qθ = θ(D)f.

Applying E to both sides of (B.12)1, we see that

EA(v, q) = (θ(D)v, θ(D)q) = E(f)

and then we get
E(f) = (v, q) + (θ(D) − 1)(v, q).

Therefore
lim

xN→0−
E(f) = lim

xN→0−
(θ(D) − 1)(v, q)

and hence

WFΛ

(
lim

xN→0−
E(f)

)
= WFΛ

(
lim

xN→0−
(θ(D) − 1)(v, q)

)
.
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Writing ζ = (ξ, η), the dual variable of (xN , y) ∈ R × RN−1, we have∫
e−iy·η

(
lim

xN→0−
(θ(D) − 1)(v, q)

)
dy =

1
2π

lim
xN→0−

∫
eixN ξ(θ(ξ, η) − 1)(v̂, q̂)(ξ, η)dξ,

= 0, if |η| ≥ (1 + 2ε)
√
Λ, (B.17)

which gives
WFΛ( lim

xN→0−
(1 − θ(D))(v, q)) ⊂ { |η| ≤ (1 + 2ε)

√
Λ, }.

Using (B.11), we see that the proof will be consequence of the ellipticity for |η| ≥ (1 + 2ε)Λ of the map
(f̂||(η), f̂⊥(η)) �→ limxN→0− Ê(f)(η). Indeeed, for fixed |η| ≥ (1 + 2ε)Λ, since θ(ξ, η) = 1 for all ξ, we get that
limxN→0− Ê(f)(η) is equal to

lim
xN→0−

1
2π

∫
eixNξ 1

ξ2 + η2 − μ

⎡
⎣ f̂⊥(η) − ξ

(
ξf̂⊥(η)+η·f̂||(η)

)
ξ2+η2

f̂||(η) − η
(
ξf̂⊥(η)+η·f̂||(η)

)
ξ2+η2

⎤
⎦dξ

=
1

2
√|η|2 − μ

[
f̂⊥(η) + i

√
|η|2−μ
μ

(−i√|η|2 − μf̂⊥(η) + η · f̂||(η)
)

f̂||(η) − η
μ

(−i√|η|2 − μf̂⊥(η) + η · f̂||(η)
)

]

+
i

μ

⎡
⎢⎣

−i|η|
(
−i|η|f̂⊥(η)+η·f̂||(η)

)
2i|η|

η
(
−i|η|f̂⊥(η)+η·f̂||(η)

)
2i|η|

⎤
⎥⎦ =

1
2
√|η|2 − μ

Mη,μ(f̂⊥(η), f̂||(η)). (B.18)

One find
Mη,μ(f̂⊥, f̂||) =

(
(1 + g1(η, μ))f̂⊥, f̂|| + g2(η, μ)η(η.f̂||)

)
with

g1 = |η|
√
η2 − μ g2, g2(η, μ) =

√
η2 − μ− |η|
μ|η| =

−1

|η|(|η| +
√
η2 − μ)

·

We also have

lim
xN→0−

1
2π

∫
eixN ξ

(
ξf̂⊥(η) + η · f̂||(η)

)
ξ2 + η2

dξ =

(
−i|η|f̂⊥(η) + η · f̂||(η)

)
2|η|

= mη(f̂⊥(η), f̂||(η)). (B.19)

Let a ∈ R, b ∈ RN−1, and define h ∈ R and H = (H1, H2) ∈ R × RN−1 by the system{
Mη,μ(a, b) = H
mη(a, b) = h.

(B.20)

It remains to prove that there exists C such that for Λ ≥ 1, |η| ≥ (1+2ε)Λ and |μ| ≤ Λ the following inequality
holds true for solutions of (B.20)

|a| + |b| ≤ C(|h| + |H |). (B.21)

Since mη and Mη,μ are homogeneous of degree zero under the action of R∗
+ (η, μ) �→ (sη, s2μ), we may assume

|η| = 1 and |μ| ≤ c for some c < 1. Since the set K = {|η| = 1, |μ| ≤ c} is compact, it remains to show that for
any (η, μ) ∈ K, the system (B.20) is injective, which is easy to verify. The proof of Lemma B.1 is complete. �
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Appendix C. Proof of Proposition 2.4

In this section, we follow the arguments in [14]. It is sufficient to prove that for every z ∈ W r, there exist
D > 0, ν ∈]0, 1[ and a neighborhood U of z such that the following inequality holds true

‖v‖H1(U) ≤ D ‖v‖1−ν
H1(Z)

(
‖Av‖L2(Z) + ‖∂sv(0, x)‖L2(ω)

)ν
. (C.1)

Let us begin explaining how we construct the weight function ϕ we need in order to apply Carleman in-
equalities. For a domain U ⊂ RN+1 and z0 ∈ U , we will take our basic function ψ ∈ C∞(U \ {z0}; R) verifying

limz→z0 ψ(z) = +∞ and ψ′(z) �= 0 ∀z ∈ U \ {z0};
∃c0 > 0 such that {z ∈ U, c0 ≤ ψ(z) ≤ c′} is compact ∀c′ ≥ c0.

(C.2)

We also choose a sequence of numbers satisfying

c0 < c1 < c′1 < c2 < c′2 < c3 < c′3 <∞
and set

V = {z ∈ U \ {z0}, c1 < ψ(z) < c′3}, V ′ = {z ∈ U \ {z0}, c′1 < ψ(z) < c3},
Vj = {z ∈ U \ {z0}, cj < ψ(z) < c′j} ⊂ V, j = 1, 2, 3.

We have V ′ ⊂ V and the closure V of V in RN+1 is compact and contained in U \ {z0}. Therefore, from
Lemma A.4, there exists a constant D > 0 such that ϕ = eDψ satisfies Hormander’s sub-ellipticity condition on
V for the Laplace operator A := −∂2

ss −Δ.
In the sequel, we take ρj = eDcj , ρ′j = eDc

′
j and χ to be a cutt-off function in C∞

0 (V ) such that χ ≡ 1 in a
neighborhood of V ′. We have ρj ≤ ϕ ≤ ρ′j in V j for j = 1, 2, 3.

Proof of case 1: z = (s, x1) ∈ (0, s0) × ω, with s > 0 small.
Fix z1 = (−1, x1) and consider ψ(z) = (z − z1)−1, with U = RN+1. We have that ∂ψ

∂s (s, x) �= 0 for s > −1.
We begin choosing c0 < 1 such that

{x ∈ RN ; 1 + |x− x1|2 ≤ c−2
0 } ⊂ ω. (C.3)

Next, we choose 1 < c3 < c′3 so that V 3 ⊂ {s < 0} and take c′2 = 1 and c1, c′1, c2 satisfying c0 < c1 < c′1 < c2 < 1.
The vector function χv verifies (χv)(0, x) = 0 and ∂s(χv)(0, x) = χ(0, x)∂sv(0, x). From Theorem A.5 (applied

to each component), there exist C, h1 > 0 such that, for every h ∈ (0, h1], we have

h||eϕ/hχv||2L2 + h3||eϕ/h∇s,x(χv)||2L2 ≤ C

(
h4||eϕ/hA(χv)||2L2 + h3

∫
e2ϕ(0,x)/h|χ∂sv(0, x)|2dx

)
. (C.4)

Noticing that A(χv) = χ(Av)+[A,χ]v, [A,χ] is a first order differential operator, [A,χ]v is supported in V1∪V3

and that χ = 1 in V2 ⊂ V ′, from (C.3) and (C.4), we get

eρ2/h||v||H1(V2∩Z) ≤ C′
(
eρ

′
1/h||v||H1(Z) + eρ

′
3/h(||Av||L2(Z) + ||∂sv(0, x)||L2(ω))

)
, (C.5)

for some C′ > 0 and every h ∈ (0, h1]. Then we use the following lemma due to Robbiano [23].

Lemma C.1. Let C1, C2 be positive and M0, M1 and M2 be nonnegative. Assume there exists C3 > 0 such
that M0 ≤ C3M1 and δ0 > 0 such that

M0 ≤ e−C1δM1 + eC2δM2

for every δ ≥ δ0. Then, there exits C0 such that

M0 ≤ C0M
C2/(C1+C2)
1 M

C1/(C1+C2)
2 .
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Indeed, since ρ′1 < ρ2 < ρ′3, defining C1 = ρ2 − ρ′1 and C2 = ρ′3 − ρ2, we obtain

||v||H1(V2∩Z) ≤ C′
(

e−C1/h||v||H1(Z) + eC2/h(||Av||L2(Z) + ||∂sv(0, x)||L2(ω))||)
)
, (C.6)

for every h ∈ (0, h1]. Hence,

||v||H1(V2∩Z) ≤ 2C′||v||1−δH1(Z)(||Av||L2(Z) + ||∂sv(0, x)||L2(ω))δ, (C.7)

with δ = C1
C1+C2

∈ (0, 1). The proof is finished noticing that, since c2 < c′2 = 1, the set V2 ∩ Z contains the
points of the form (s, x1), with s small.

Proof of case 2: z2 = (s2, x2) ∈ (0, s0) ×Ω.

From case 1, there exists z1 = (s1, x1), s1 small and x1 ∈ ω such that z1 verifies (C.1). Since Ω is connected,
Z is connected as well and there exists a path γ ∈ C∞([0, 1]) within Z such that γ(0) = z1 and γ(1) = z. Since
γ([0, 1]) is compact in Z, there exists an open set U such that γ([0, 1]) ⊂ U ⊂ Z and a C∞ diffeomorphism
Φ : U −→ RN+1 = {(x1, x2) ∈ R × RN} such that Φ(γ(x1)) = (x1, 0) for every x1 ∈ [0, 1]. Taking a = −1 +

√
2,

which gives a
1−a2 = 1

2 , and a C∞ function F over RN+1 \ {(0, 0)}, defined by

F (x1, x2) =
√
x2

1 + x2
2 − ax1.

We have that F > 0 and ∇F �= 0 in RN+1 \ {(0, 0)}. Moreover, for every d > 0, the level sets of F (x1, x2) = d
are the ellipsoids with equation

2a(x1 − d/2)2 + |x2|2 = d2(1 + a/2).

In particular, the open set {F (x1, x2) < 1} ∪ {(0, 0)} contains the segment x1 ∈ [0, 1], x2 = 0. Let us now define
a C∞ function ψ in U \ {z1} by

ψ(z) =
1

F (Φ(z))
·

The function ψ verifies assumption (C.2) (with z0 = z1 and any c0 > 0). We denote by r1, C1 and δ1 the
constants for which interpolation (C.1) holds for the point z1 and choose c2 = 1, c′2 large enough such that
z2 ∈ V2 and c3 > c′2 in such a way that V 3 ⊂ Br1(z1) ∩ Z.

From ([17], Thm. 3.5), there exist C, h1 > 0 such that

h||eϕ/hχv||2L2 + h3||eϕ/h∇s,x(χv)||2L2 ≤ Ch4||eϕ/hA(χv)||2L2 (C.8)

for every h ∈ (0, h1]. Arguing as in case 1, we conclude that there exists C′ such that

eρ2/h||v||H1(V2) ≤ C′
(

eρ
′
1/h||v||H1(Z) + eρ

′
3/h||v||H1(V3)

)
, (C.9)

for every h ∈ (0, h1]. From (C.1), and the choice of c3, there exist C1 and δ1 ∈ (0, 1) such that ||v||H1(V3) ≤
C1||v||1−δ1H1(Z)(||Av||L2(Z) + ||∂sv(0, x)||L2(ω))δ1 . Therefore, (C.9) implies

eρ2/h||v||H1(V2) ≤ C′
(

eρ
′
1/h||v||H1(Z) + C1eρ

′
3/h||v||1−δ1H1(Z)(||Av||L2(Z) + ||∂sv(0, x)||L2(ω))δ1

)
, (C.10)

for every h ∈ (0, h1]. From Lemma C.1, there exist C2 > 0 and δ ∈ (0, 1) such that

||v||H1(V2) ≤ C2||v||1−δδ1H1(Z)||∂sv(0, x)||δδ1L2(ω). (C.11)

Since V2 contains a neighborhood of z2, (C.1) is a consequence of (C.11). This finishes the proof of case 2, hence
the proof of Proposition 2.4.
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