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SMALL-TIME LOCAL ATTAINABILITY FOR A CLASS OF CONTROL
SYSTEMS WITH STATE CONSTRAINTS
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Abstract. In this paper we consider the problem of small time local attainability (STLA) for nonlinear
finite-dimensional time-continuous control systems in presence of state constraints. More precisely,
given a nonlinear control system subjected to state constraints and a closed set S, we provide sufficient
conditions to steer to S every point of a suitable neighborhood of S along admissible trajectories of the
system, respecting the constraints, and giving also an upper estimate of the minimum time needed for
each point to reach the target. Methods of nonsmooth analysis are used.
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1. Introduction

Consider a finite-dimensional control system of the form{
ẏ(t) = f(y(t), u(t)),
y(0) = x.

where U is a given compact subset of R
m, x ∈ R

d,

u(·) ∈ U := {v : [0,+∞[→ U such that v is measurable},

and f : R
d × U → R

d satisfies some standard smoothness assumptions in order to guarantee the existence and
uniqueness of the solution of the above Cauchy problem (see Sect. 2) for every choice of u ∈ U . Such solutions
are called admissible trajectories of the system starting from x.

Given a closed subset S of R
d, called the target set, an important problem studied in control theory is to

provide sufficient conditions on f and U ensuring that, for every horizon time T > 0, all the points sufficiently
near to S can be steered to S by admissible trajectories of the system in time less than T .
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We refer to this property as small-time local attainability (STLA), see Definition 2.4. We recall that a (small-
time) fully controllable system is a system enjoying the following property: given x̄ ∈ R

d and T > 0 there exists
δ = δT,x̄ > 0 such that every couple of points x, y ∈ B(x̄, δT,x̄) can be joined by an admissible trajectory in time
less than T . Clearly, any (small-time) fully controllable system enjoy also STLA, however the class of STLA
systems is much wider.

When the target reduces to a point x0, STLA is equivalent to the well-known small time local contollability
from x0 for the system obtained reversing the dynamics: namely, for all T > 0 the reachable set at time less
or equal than T from x0 for the reversed dynamics system contains a neighborhood of x0. Small time local
controllability property from a point has been extensively studied under various degree of generality from the
beginning of the history of control theory. In the early 60’s, Kalman proved the following result. Assume that
f is linear, i.e., f(x, u) = Ax + Bu where A ∈ Matn×n(R), B ∈ Matn×m(R) are constant matrices, S = {0}.
Then the following are equivalent:

(1) the system is controllable to the equilibrium point 0, i.e., every point can be steered to the origin in finite
time;

(2) the matrix (B|AB|A2B| . . . |An−1B) has full rank (equals n).

The second condition above is the celebrated Kalman rank condition, and implies the Hölder continuity of T ,
with exponent depending on the smallest 0 ≤ k ≤ n− 1 such that the matrix

(B|AB|A2B| . . . |AkB)

has full rank.
Later, in the 70’s, several generalizations, mainly concerned the case when target set S is an equilibrium

point for the system, of this condition to nonlinear systems were proved by several authors among which we
recall Hermes, Sussmann, Hörmander and many others (we refer to [1, 9] for more details). All these results
involve a suitable expansion around the equilibrium point, and STLA is achieved by imposing some conditions
on the Lie algebra generated by the vector fields. The Agrachev−Gamkrelidze formalism (AGF), also known as
chronological calculus, introduced by Agrachev and Gamkrelidze in 1978 (see e.g. [1]) turned out to be a powerful
tool in such kind of analysis, allowing to formulate many problems in a purely algebraic way on abstract Lie
algebras (see [1, 12] for further details).

However, as pointed out in [11], where also is provided a comparison between STLA and classical conditions for
small time local controllability, the problem of local attainability of a closed set with respect to the trajectories
of a control system can not be reduced to the problem of small-time local attainability at every point of
its boundary (or to small-time controllability from every point of the boundary of the target for the reversed
dynamics). The reason is that the small-time local attainability depends not only on the dynamics of the control
system, but also on the geometry of the considered closed set. So, it needs a specific study.

One of the most common conditions ensuring STLA is Petrov’s condition, which can be stated as follows in
the case of compact target S: there exist δ, μ > 0, such that for every x ∈ R

d \ S whose distance dS(x) from S
is less than δ there exist u ∈ U and a point x̄ ∈ S with ‖x− x̄‖ = dS(x) and

〈x− x̄, f(x, u)〉 ≤ −μdS(x).

When the function dS(·) is differentiable at x /∈ S, the above condition can be written as 〈∇dS(x), f(x, u)〉 ≤
−μ. Since given x ∈ R

d we have that F (x) := {f(x, u) : u ∈ U} ranges among all the possible instantaneous
velocities of admissible trajectories passing through x, and −∇dS(x) is the direction along which we have the
fastest decrease of the distance from the target, at least in a smooth setting, we can interpret Petrov condition
in the following way: for each point sufficiently near to x there exists an admissible trajectory which at the first
order points sufficiently forward to the target.

Petrov’s condition is very strong, and it was proved in [16] that it is equivalent to the local Lipschitz continuity
of the minimum time function T (·) in a neighborhood of the target (see Def. 2.2), i.e., in the compact case
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it is equivalent for any given x near to the target to the existence of an admissible trajectory starting from x and
reaching the target in time less than CdS(x) for a suitable C > 0 depending on μ but not on x. Generalization
to noncompact nonsmooth target S of Petrov’s condition are also well known.

A natural formulation of a naive extension of Petrov’s condition would be of the following type: assume
that for any point x near to S there exists an admissible trajectory starting from x along which the distance
decreases at a sufficiently high rate, then we can expect STLA. Indeed, in classical smooth Petrov condition we
obtain that we have at least one admissible trajectory along which the distance decreases linearly in time, with
decreasing rate proportional to 1/μ.

A generalization of the above problem could be the following one: instead of searching for admissible trajec-
tories along which the distance is decreasing, given x as above we look for a curve Δt 
→ yΔt,x such that yΔt,x

can be reached from x in time Δt and such that dS(yΔt,x) − dS(x) ≤ Δr, without paying any attention to the
behavior of the distance along the admissible trajectory joining x and yΔt, and considering only the relationship
between Δt and Δr. The map t 
→ yt,x is called an A -trajectory, see Definition 3.1. Clearly, every admissible
trajectory is an A -trajectory, but the converse is not true in general.

A first step in this direction was taken by Krastanov-Quincampoix in [11], in which it is assumed that there
exists μ > 0 such that for every x near to S and t sufficiently small we can find an A -trajectory y(t, x) such
that y(0, x) = x and

y(t, x) = x+ a(t;x) + tαA(x) + o(tα;x),

where

(1) α > 0, A(·) is a locally Lipschitz continuous function,
(2) the reminder satisfies a uniform estimate ‖o(tα;x)‖ ≤ Ktα+β with K,β suitable positive constants inde-

pendent of x,
(3) ‖a(·)‖ is bounded from above by MtsdS(x) where M, s > 0 are suitable constants,
(4) there exists a point x̄ ∈ S with ‖x− x̄‖ = dS(x) and

〈x− x̄, A(x)〉 ≤ −μdS(x).

Roughly speaking, Petrov’s condition amounts to require an infinitesimal decreasing condition for the distance
involving the first order term of at least one admissible trajectory, i.e., on admissible velocity. Now, we require it
for the essential leading term of at least an A -trajectory which now is a term of order α ≥ 1. The name “essential
leading term” is motivated by the fact that as long as x is taken near to S, we have that ‖a(·)‖ vanishes. By the
equivalency between Petrov’s condition and local Lipschitz continuity of T (·) we can not expect any more an
estimate like T (x) ≤ CdS(x) in the case α > 1, however it turns out that a similar estimate holds true, yielding
T (x) ≤ Cd

1/α
S (x).

Later, in [13] was treated the case in which the constant μ appearing in Petrov’s condition is a function
μ = μ(dS(x)) allowed to slowly vanish as dS(x) → 0. This was not covered by [11], since they assumed μ to
be always constant. In [13] Petrov-like sufficient conditions were provided for STLA at first and second order,
linking the exponent α of the final estimate T (x) ≤ Cdα

S(x) also with the dependency of μ(·) on dS(·). Many
of the results of this paper were obtained under additional geometrical assumptions on the target, which were
removed in a later paper [10] by Krastanov, where the results of [11,13] are subsumed in a unique formulation,
but still under strong smoothness hypothesis on the terms appearing in the expression of yt,x and taking into
account a decay of r 
→ μ(r) only as suitable powers of r.

The recent paper [15] weakened some smoothness assumptions required in [10, 11] of the terms appearing
in the expression of the A -trajectory t 
→ yt,x, but instead of them, the authors assumed more regularity on
the target set than in [10]. With even more regularity, in [15] is also defined a generalized curvature by means
of suitable generalized gradients of higher order of the distance function. This allows us to consider not only
first-order expansion of the distance along an A -trajectory, but also second-order, improving further STLA
sufficient conditions.
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The higher order controllability conditions studied in [13, 15] were recently extended to the discrete case
in [7]. In particular, the original system is approximated by a higher order one-step method whose order has to
be compatible with the order of controllability conditions. In [7], the discrete minimum time to reach S, which
converges to the true one as time discretization step tends to 0, is also bounded by an amount proportional
to a fractional power of the distance to S of the initial point. Furthermore, the robustness of controllability
conditions with respect to a shrinking of S under natural assumptions can be found in [7].

In general it is difficult to describe the set of A -trajectories on which the conditions for STLA must be
checked. But for control-affine systems, i.e., special systems where the dynamics is given by ẋ(t) = f0(x(t)) +
N∑

i=1

ui(t)fi(x(t)), ‖ui‖L∞ ≤ 1, see (2.2), additional information can be provided by studying the Lie algebra

generated by the vector fields {f0 ± fi}i=1,...,N . However, the presence of a nontrivial drift term f breaks the
time-reversal symmetry (which would hold if f0 = 0), which was an essential ingredient for many results obtained
by means of Lie algebraic methods in the 60’s and in the 70’s by Kalman, Hermes, Sussmann, Hörmander and
many other authors. We refer to [11] for a brief history of these results.

All the results of [10,11,13,15] are obtained for systems in which the state space is the whole of R
d. The first

paper investigating the problem of STLA in presence of restriction on the state space was [4], where the authors
extended first-order Petrov’s condition to such kind of systems. To this aim, they assume on the boundary of the
constraint an inward pointing condition. In its simplest form (i.e., the system is autonomous and the constraint
is given by Ω, where Ω is an open bounded subset of R

d), this condition amounts to ask that at every point of
∂Ω there are admissible velocities belonging to the interior of the tangent cone to Ω (see Rem. 3.3 in [4]). It
turns out that even in its full general version this condition implies that ∂Ω is locally Lipschitz continuous (see
Rem. 3.2 in [4]).

The first aim of this paper is to remove the smoothness assumptions on the terms appearing in the expression
of the A -trajectory t 
→ yt,x, as in [15], but without any additional regularity hypothesis on the target set used
in [15], thus fully generalizing the results of [10] also in presence of the additional state constraint y(t) ∈ Ω, where
Ω is an open subset of R

d with Ω \ S �= ∅. This first result, contained in Theorem 2.8, relies on the assumption
of the existence of certain A -trajectories fulfilling suitable properties and respecting the state constraints. The
presence of state constraints would affect only the existence of such curves, which is assumed to be granted. So,
in particular, state constraints do not play explicitly any role in the proof of this first result.

After proving such general STLA results, we turn our attention to control-affine systems in presence of state
constraints, providing an approximate representation formula for the elements of the set of A -trajectory and
thus proving a better sufficient condition for STLA in this case. The presence of state constraints is taken into
account by means of a condition different from the inward pointing condition of [4], assuming some smoothness
of the distance function near to the boundary of the constraint, which in particular allows us to treat systems
with a class of constraints whose boundaries are not necessarily Lipschitz continuous. The main ingredient of
this part is a suitable approximate representation formula for the expansion of the distance function along
the trajectories of control-affine systems with nontrivial drift. The comparison between the inward pointing
condition of [4] and ours is postponed to the end of Section 3.

The paper is structured as follows: in Section 2 we state and prove our general results on STLA with state
constraints, outlining a comparison between the results of [10, 11, 13, 15] and ours. In Section 3 we turn our
attention to control-affine systems, providing some explicit sufficient conditions for STLA. Finally, in Section 4
we give an example illustrating our approach.

2. A general result for small time local attainability

Definition 2.1. Let K be a closed subset of R
d, S ⊂ R

d, x = (x1, . . . , xd) ∈ K, y = (y1, . . . , yd) ∈ R
d, r > 0,

X be a vector space, and f : X → R ∪ {+∞} be a function.
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We denote by:

〈x, y〉 :=
d∑

i=1

xiyi the scalar product in R
d;

‖x‖ :=
√
〈x, x〉 the Euclidean norm in R

d;
∂S, int(S), S the topological boundary,

interior and closure of S;
B(y, r) := {z ∈ R

d : ‖z − y‖ < r} the open ball centered
at y of radius r;

dK(y) := dist(y,K) = min{‖z − y‖ : z ∈ K} the distance of y from K;
πK(y) := {z ∈ K : ‖z − y‖ = dK(y)} the set of projections of y

onto K;
Sc := R

d \ S the complement of S;
Sδ = B(S, δ) := {y ∈ R

d : dS(y) < δ} the δ-neighborhood of S;
IdRd the identity function in R

d.
If πK(y) = {ξ}, i.e., it is a singleton, we will identify it with its unique element and write πK(y) = ξ.

Given an open subset Ω ⊆ R
d and a compact set U ⊆ R

m, we will consider the following state constrained
control system: ⎧⎪⎨

⎪⎩
ẏ(t) = f(y(t), u(t)), for a.e. t > 0,
y(0) = x0 ∈ Ω,

y(t) ∈ Ω, t ≥ 0.
(2.1)

where for every compact K there exists L = LK > 0 such that f : R
d × R

m → R
d satisfies

‖f(x, u) − f(y, u)‖ ≤ LK‖x− y‖, for all x, y ∈ K, u ∈ U,

u(·) ∈ U := {v : [0,+∞[→ U : v is measurable}, and a closed subset S ⊆ R
d (called the target set) with

S ∩Ω �= ∅ is given.
A special case of the above system is given by the following state constrained control-affine system:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẏ(t) = f0(y(t)) +

N∑
i=1

ui(t)fi(y(t)), for a.e. t > 0,

y(0) = x0 ∈ Ω,

y(t) ∈ Ω, t ≥ 0,

(2.2)

where f0, fi ∈ C1,1
loc (Rd), ui ∈ U , with i = 1, . . . , N and

U := {v : [0,+∞[→ [−1, 1] : v is measurable}.

Definition 2.2. Given the system (2.1), we define the state constrained reachable set from x0 ∈ Ω at time
τ ≥ 0:

RΩ
x0

(τ) :=
{
y(τ) : y(·) is a solution of (2.1) defined on [0, τ ]

}
.

The state constrained minimum time function from x0 ∈ Ω is

TΩ(x0) :=

{
+∞, if RΩ

x0
(τ) ∩ S = ∅ for all τ ≥ 0,

inf{τ ≥ 0 : RΩ
x0

(τ) ∩ S �= ∅}, otherwise.

If Ω = R
d, in both cases we will omit the adjective constrained and we will write simply Rx(t) and T (x).
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Remark 2.3 (Estimates on trajectories). Consider the system 2.1. Let x̄ ∈ R
d, δx̄ > 0. Choose

Mx̄ ≥ max{‖f(z, u)‖ : z ∈ B(x̄, δx̄), u ∈ U}.

Then for any 0 < δ′ < δx̄ we have Rx(t) ⊆ B(x̄, δx̄) for all x ∈ B(x̄, δ′) and 0 ≤ t ≤ δx̄ − δ′

Mx̄
. The proof

is classical, and is based on Schauder’s fixed point theorem and Gronwall’s inequality. See e.g. Section 5 in
Chapter III of [2].

The property in which we are interested is the following (see also [10, 11, 15]).

Definition 2.4 (STLA). We say that S is small-time local attainable for the system (2.1) if for any T > 0 there
exists an open neighborhood UT ⊆ R

d of S such that TΩ(x) ≤ T for all x ∈ UT ∩Ω.

Remark 2.5. A sufficient condition for STLA is to be able to bound from above the minimum time function
TΩ(·) in a relative neighborhood of the target by a continuous increasing function of the distance from the
target itself, and vanishing exactly on the target.

Lemma 2.6 (Localization). Consider system (2.1) with closed target S ⊆ R
d. Assume that for every x̄ ∈ ∂S∩Ω

there exists a continuous increasing function ωx̄ : [0,+∞[→ [0,+∞[ and 0 < δx̄ < +∞ such that

(1) ωx̄(p) = 0 if and only if p = 0,
(2) TΩ(x) ≤ ωx̄(dS(x)) for all x ∈ B(x̄, δx̄) ∩Ω.

Then STLA holds. If moreover ∂S ∩Ω is compact, then ωx̄(·) and δx̄ can be chosen independently on x̄.

Proof. Let T > 0 be fixed. For any x̄ ∈ ∂S ∩ Ω there exists rx̄ > 0 such that ωx̄(s) ≤ T for all s ∈ [0, rx̄]. Set
Ux̄ := B(x̄, δx̄) ∩ Srx̄ , and notice that, in particular, if x ∈ Ux̄ ∩Ω we have TΩ(x) ≤ ωx̄(dS(x̄)) ≤ T . Moreover,
trivially, we have TΩ(x) ≤ T for all x ∈ S. Defined

UT :=

⎛
⎝ ⋃

x̄∈∂S∩Ω

Ux̄ ∪ S
⎞
⎠ ,

we have that UT ∩Ω is an open neighborhood of S in the topology of Ω and, by construction, we have TΩ(x) ≤ T
for all x ∈ UT ∩Ω. So STLA holds.

In the compact case, we can cover ∂S∩Ω by finitely many balls {B(x̄i, δx̄i) : i = 1 . . . , N}, where x̄i ∈ ∂S∩Ω
and δx̄i > 0, thus we can set ω(p) = max

i=1,...,N
ωx̄i(p) and δ = min

i=1,...,N
δx̄i . �

The following simple result will be extensively used in our analysis.

Lemma 2.7. Let δ > 0 be a constant, λ : [0,+∞[×[0,+∞[→ R, θ : [0,+∞[→ [0,+∞[ be continuous functions
such that

(1) r 
→ θ(r)
λ(θ(r), r)

is bounded from above by a nonincreasing nonnegative function β(·) ∈ L1(]0, δ[);

(2) λ(θ(r), r) > 0 for 0 < r < δ, and λ(0, r) = 0 for r > 0.

Consider any sequence {ri}i∈N in [0, δ] satisfying for all i ∈ N:

(S1) ri+1 − ri ≤ −λ(θ(ri), ri).
(S2) θ(ri) �= 0 implies ri �= 0.
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Then we have

(a) ri → 0,

(b)
∞∑

i=0

θ(ri) ≤
∫ r0

0

β(r) dr.

Proof. According to (S1), the sequence {ri}i∈N is monotonically decreasing and bounded from below, thus it
admits a limit. Let r∞ = lim

i→+∞
ri, it is evident that 0 ≤ r∞ < δ. Now we would like to show that r∞ = 0.

Assume, by contradiction, r∞ > 0. By passing to the limit for i → +∞ in (S1) and recalling that λ(·, ·) is a
continuous function and λ(θ(ri), ri) ≥ 0, we obtain that 0 = λ(θ(r∞), r∞) and this contradicts the fact that

λ(θ(r), r) > 0 for any 0 < r < δ, thus r∞ = 0. Since if θ(ri) �= 0 we have ri �= 0 and
ri − ri+1

λ(θ(ri), ri)
≥ 1, we obtain

∞∑
i=0

θ(ri) =
∞∑

i=0
θ(ri) �=0

θ(ri) ≤
∞∑

i=0
θ(ri) �=0

θ(ri)
λ(θ(ri), ri)

(ri − ri+1)

≤
∞∑

i=0
θ(ri) �=0

β(ri)(ri − ri+1) ≤
∫ r0

0

β(r)dr,

recalling the monotonicity property of r 
→ β(r). �

We will apply this Lemma to the following situation: take a sequence of points {xi}i∈N, define ri = d2
S(xi) for all

i ∈ N, and assume that the time needed to reach xi+1 from xi is θ(ri). Then we can bound from above
∞∑

i=0

θ(ri),

and thus the time needed to steer x0 to S, provided that we are able to construct λ(·) fulfilling the assumptions
of Lemma 2.7. If the bound is locally uniform in a neighborhood of S, STLA follows from Remark 2.5.

The map λ(t, r) will measure the decreasing of the squared distance from the target starting from a point
that is at distance r from the target after having followed a particular admissible trajectory for time t. Roughly
speaking, if the decreasing of the distance is too slow, we will not be able to reach the target in finite time, so we
need a quantitive bound of the ratio between the time passed and the amount of the decreasing of the distance.

It is clear that, in the above discussion, we can replace the squared distance d2
S(·) with a general locally

Lipschitz continuous function ΦS : R
d → R, satisfying some extra regularity assumptions, and such that

S = {x ∈ R
d : ΦS(x) ≤ 0}. More precisely, we will assume that ΦS(·) is a semiconcave function of constant K:

i.e. for every p ∈ ∂P v(x) we have

ΦS(y) − ΦS(x) ≤ 〈p, y − x〉 +K‖y − x‖2,

for any x, y and p ∈ ∂PΦS(x) (the superdifferential of ΦS at x). For further details on semiconcave functions
and the explanation of the notation, we refer to the monograph [3]. A function f is called semiconvex if −f is
semiconcave. We recall here that in general d2

S(·) is semiconcave on the whole of R
d with constant 2, while to

have semiconcavity of dS(·) further regularity assumptions are needed (see Prop. 2.2.1 p. 36 in [3]).
We state and prove now a first general result on STLA in the spirit of Remark 2.5.

Theorem 2.8 (General attainability). Consider the system (2.1). Let x̄ ∈ ∂S ∩Ω, δx̄ > 0 and assume that

S ∩B(x̄, δx̄) := {x ∈ B(x̄, δx̄) : ΦS(x) ≤ 0},
where ΦS : R

d → R is a locally Lipschitz function. Set Φx̄ = max
x∈B(x̄,δx̄)

{ΦS(x)}, denote by L(r) > 0

a Lipschitz constant of ΦS(·) on B(x̄, δx̄) ∩ {x : ΦS(x) ≤ r}, and let Mx̄ = max
v∈U

z∈B(x̄,δx̄)

{‖f(z, v)‖}. Let
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σ, δ, μ, χ : [0,+∞[×[0,+∞[→ [0,+∞[, and τ, θ : [0,+∞[→ [0,+∞[ be continuous function. We assume that:

(1) τ(r) = 0 iff r = 0, 0 < θ(r) ≤ τ(r) for every 0 < r < Φx̄;
(2) for any x ∈ (B(x̄, δx̄) ∩Ω) \ S and 0 < t ≤ τ(ΦS(x)) the following holds

(2a) [RΩ
x (t)]δ(t,ΦS(x)) ∩ S2δx̄ �= {x},

(2b) if RΩ
x (t) ∩ S = ∅, there exists yt,x ∈ [RΩ

x (t)]δ(t,ΦS(x)) ∩B(x, χ(t, r)) with

min
ζ∈∂P ΦS(x)

〈ζ, yt,x − x〉 +K‖yt,x − x‖2 ≤ −μ(t, ΦS(x)) + σ(t, ΦS(x));

(2c) ΦS(·) is semiconcave on B(x̄, δx̄) with semiconcavity constant K = Kx̄ > 0.
(3) the continuous function λ : [0,+∞[×[0,+∞[→ R, defined as

λ(t, r) := μ(t, r) − σ(t, r) − (L(r) +Kδ(t, r) + 2Kχ(t, r)) δ(t, r),

satisfies the following properties:
(3a) 0 < λ(θ(r), r) < r, λ(0, r) = 0 for all 0 < r < Φx̄;

(3b) r 
→ θ(r)
λ(θ(r), r)

is bounded from above by a nonincreasing nonnegative function β(·) ∈ L1(]0, Φx̄[).

Then, if we set

ω(r0) :=
∫ r0

0

β(r) dr,

we have that there exists δ ′̄x > 0 such that TΩ(x) ≤ ω(ΦS(x)) for any x ∈ B(x̄, δ ′̄x) ∩Ω \ S.

Before the proof of Theorem 2.8, we make some comment on the assumptions.

(i) Assumption (1) is just technical, and fix an upper bound τ(ΦS(x)) on time sampling, depending only on
the level set of ΦS(·) to which the considered starting point x belongs.

(ii) Assumption (2a) states that sufficiently near to the target there are no points where the unique admissible
trajectory is the constant one. This is quite reasonable since if x̄ would be one of such points, we would
have T (x̄) = +∞, so STLA could not hold.

(iii) Assumption (2b) provides a quantitative estimate of the variation of the ΦS between two sampling times
in the case that we are not able to reach the target in the sampling time τ(ΦS(x)).

(iv) Assumption (2c) gives the technical assumptions on ΦS(·) (see also Rem. 2.9).
(v) Assumption (3) ensures that between two sampling times the function ΦS actually decreases with a de-

creasing rate fast enough to reach the target in finite time, thanks to Lemma 2.7.

Proof. If Φx̄ = 0 then B(x̄, δx̄) ⊆ S, and so TΩ(x) = 0 for all x ∈ B(x̄, δx̄) ∩ Ω, and there is nothing to prove.
We suppose now Φx̄ > 0. Since f is bounded on B(x̄, δx̄), by Remark 2.3 we can choose 0 < δ ′̄x <

δx̄

2 such that,
if we set

Tδ′̄
x

= max
x∈B(x̄,δ′̄

x)\S

∫ ΦS(x)

0

β(s) ds,

we have Rx(t) ⊆ B(x̄, δx̄) for all 0 < t ≤ Tδ′̄
x

and x ∈ B(x̄, δ ′̄x). Recalling that, by continuity of ΦS(·), by
the definition of S, and by the fact that β ∈ L1, we have Tδ′̄

x
→ 0+ as δ ′̄x → 0+. Moreover, we have also

Rx(t) ⊆ B(x,Mx̄t) for all 0 < t ≤ Tδ′̄
x
. We define a sequence of points and times {(xi, ti, ri)}i∈N by induction

as follows. We choose x0 ∈ (B(x̄, δ ′̄x) ∩ Ω) \ S, and set r0 = ΦS(x0), t0 = θ(r0). Suppose to have defined xi, ti,
ri. We distinguish the following cases:

(1) if xi ∈ S, we define xi+1 = xi, ti+1 = 0, ri+1 = 0.
(2) if xi /∈ S
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if RΩ
xi

(ti) ∩ S �= ∅, take xi+1 ∈ RΩ
xi

(ti) ∩ S and define ri+1 = 0, ti+1 = 0.
if RΩ

xi
(ti) ∩ S = ∅, we choose yi ∈ [RΩ

xi
(ti)]δ(ti,ri) ∩B(xi, χ(xi, ri)) such that

min
ζxi

∈∂P ΦS(xi)
〈ζxi , yi − xi〉 + ‖yi − xi‖2 ≤ −μ(ti, ri) + σ(ti, ri).

We select xi+1 ∈ RΩ
xi

(ti) such that ‖yi − xi+1‖ ≤ δ(ti, ri), and define ri+1 = ΦS(xi+1), ti+1 = θ(ri+1).
According to the semiconcavity of ΦS(·) (with semiconcavity constant K), we have that there exists
ζxi ∈ ∂ΦS(xi) such that

ri+1 − ri ≤ 〈ζxi , xi+1 − xi〉 +K‖xi+1 − xi‖2

≤ 〈ζxi , xi+1 − yi + yi − xi〉 +K‖(xi+1 − yi) + (yi − xi)‖2

≤ 〈ζxi , xi+1 − yi + yi − xi〉 +K‖xi+1 − yi‖2

+ 2K‖xi+1 − yi‖‖yi − xi‖ +K‖yi − xi‖2.

By recalling that by assumption (2b) and the selection of xi+1, we have ‖yi − xi‖ ≤ χ(ti, xi) and
‖xi+1 − yi‖ ≤ δ(ti, xi). Therefore

ri+1 − ri ≤ 〈ζxi , xi+1 − yi〉 + 〈ζxi , yi − xi〉 +Kδ2(ti, xi) (2.3)

+ 2Kδ(ti, xi)χ(ti, xi) +K‖yi − xi‖2

≤ L(ri)δ(ti, ri) +
(〈ζxi , yi − xi〉 +K‖yi − xi‖2

)
+Kδ2(ti, xi) + 2Kδ(ti, xi)χ(ti, xi)

≤ L(ri)δ(ti, ri) − μ(ti, ri) + σ(ti, ri) +Kδ2(ti, xi) + 2Kδ(ti, xi)χ(ti, xi)
≤ (L(ri) +Kδ(ti, ri) + 2Kχ(ti, ri)) δ(ti, ri) − μ(ti, ri) + σ(ti, ri) = −λ(ti, ri),

recalling that ‖ζxi‖ ≤ L(ri) by definition of L(·). We notice that in this case xi+1 /∈ S since xi+1 ∈ RΩ
xi

(ti)
and RΩ

xi
(ti) ∩ S = ∅, thus ti+1 > 0 and ri+1 > 0.

The assumptions of Lemma 2.7 are satisfied:

(1) ri+1 − ri ≤ −λ(θ(ri), ri),
(2) it is obvious that θ(ri) �= 0 implies ri �= 0. Indeed, assume that ri = 0. Since 0 ≤ θ(r) ≤ τ(r), and τ(r) = 0

iff r = 0, we have θ(0) = 0.

(3) By assumption, there exists β ∈ L1(]0, δ0[) such that
θ(s)

λ(θ(s), s)
≤ β(r).

Applying Lemma 2.7, we have that

(a) ri → 0,

(b)
∞∑

i=0

θ(ri) ≤
∫ r0

0

β(r) dr.

Since
∞∑

i=0

ti ≤
∞∑

i=0

θ(si), we have
∞∑

i=0

ti ≤
∫ r0

0

β(r) dr ≤ Tδ′
x
.

Noticing that {xi}i∈N ⊆ Rx

( ∞∑
i=0

ti

)
and

∞∑
i=0

ti ≤ Tδ′ , we have that {xi}i∈N ⊆ B(x̄, δx̄), thus is bounded.

Up to subsequence, still denoted by {xi}i∈N, we have that there exists x∞ ∈ R
d such that xi → x∞. Since

ΦS(xi) → 0, we have x∞ ∈ S and so TΩ(x0) ≤
∞∑

i=0

ti ≤ ω(ΦS(x0)). �
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Remark 2.9. Recalling the properties of semiconcave functions, for every general closed set S we can take
ΦS(·) = d2

S(·) with K = 2 and L(r) = 2
√
r. In this case, given x /∈ S, we have ζ ∈ ∂Pd2

S(x) if and only if
ζ = 2dS(x)ξ with ξ ∈ ∂PdS(x). If S satisfies the ρ-internal sphere condition, we can take ΦS(·) = dS(·) with
K = 1/ρ, L(r) ≡ 1.

Remark 2.10. In order to compare our result with Theorem 3.1 of [10], which generalized the classical Petrov’s
Condition, the Theorem 3.1 of [11], and the results of [13], it is enough to take ΦS(·) = d2

S(·) and define the
functions appearing in the statement of Theorem 2.8 as suitable ones of (sum of) powers of r, t.

In Example 5.21 of [15] is presented a situation where Theorem 3.1 of [10] cannot be used, since the require-
ment of Lipschitz continuity of the essential leading term A(·) of the A-trajectory (see Def. 3.1) prevents the
choice of λ. This requirement was essential in the proof of Theorem 3.1 in [10]. The first main result of [15],
i.e., Theorem 5.10 in [15], used a different argument which does not require that Lipschitz condition. It works
only under the additional assumption which is the internal sphere condition of the target S (see Example 5.21
in [15]). Observe that Theorem 2.8 requires neither Lipschitz continuity on the essential leading term A(x), nor
the internal sphere condition (which will lead to the semiconcavity of dS(·) in R

d \ intS), thus generalizing also
Theorem 5.10 of [15].

However, the second main result of [15] which exploits also generalized curvature of the target S – which is
supposed to be sufficiently smooth such that dS is at least of class C1,1 in a neighborhood of S – is still not
covered by Theorem 2.8, as shown by Example 5.22 in [15], where Theorem 5.10 of [15] fails even if the target
S is smooth, since the exploitation of its curvature properties is also of essence in order to obtain STLA.

3. Attainability conditions for control-affine systems

We turn now our attention to control-affine systems described in (2.2). For such kind of systems it turns out
that it is possible to construct explicit approximations of RΩ

x (t), on which we are going to check the conditions
of Theorem 2.8.

We first recall this following definition.

Definition 3.1 (A Ω-trajectory). Let x̄ ∈ R
d, T > 0. We say that a continuous curve yx̄ : [0, T ] → R

d is an
A Ω-trajectory starting from x̄ if we have yx̄(0) = x̄ and yx̄(t) ∈ RΩ

x̄ (t) for any t ∈ [0, T ] (see also Sect. 3.1
in [11]). If Ω = R

d we will omit it.

Our aim is to provide for these system conditions on the data of problem (i.e., on vector fields fj, on S and
on Ω as appear in (2.2)) ensuring the applicability of Theorem 2.8 for a given system.

The problem can be split in two parts:

(1) construct suitable approximated A -trajectories of the systems approaching the target sufficiently fast;
(2) among the previous trajectories, select the ones along which it is possible to provide a suitable lower bound

of the distance from Ωc, thus granting the fulfillment of the state constraints.

The first issue is strictly related to the possibility of providing a description at least of some suitable subsets of
Rx(t) for any x ∈ R

d near to the target and t > 0 sufficiently small.
The second issue amounts to provide a quantitative estimate of the variation of the (squared) distance function

from Ωc along the A -trajectories, in a very similar way as it was done with the (squared) distance function
from the target S, or, more generally, of ΦS(·). While in the latter case we provided an upper estimate by
means of a semiconcavity inequality satisfied by ΦS , in the first case we will need the reversed inequality, i.e., a
semiconvexity inequality to bound the (squared) distance function from below. Without any extra smoothness
hypothesis, the (squared) distance from a set is not semiconvex, thus, while for the upper bound we do not put
any smoothness assumption on S, for the lower bound we will need some regularity hypothesis on Ωc.

We recall the following definition, referring the reader to [1] for further details.
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Definition 3.2 (Vector fields on manifolds). Given a real smooth d-dimensional manifold M , it is well known
that the set Vec(M) of vector fields onM can be defined as the set of all maps V : M → L(C1(M ; R), C0(M ; R)),
where L(C1(M ; R), C0(M ; R)) is the vector space of the linear maps from C1(M ; R) to C0(M ; R), such that
Leibniz’s Rule holds:

V (q)(fg) = V (q)(f)g(q) + f(q)V (q)(g)

for all f, g ∈ C1(M), q ∈M . If we fix a coordinate system ψ : M → R
d around q ∈M , such that ψ(q′) = x ∈ R

d

for every q′ sufficiently near to q, given V ∈ Vec(M) we have that there exists a unique map Ṽ : R
d → R

d such
that Ṽ (x) = (V1(x), . . . , Vd(x)) and

V (q′)ϕ = 〈∇(ϕ ◦ ψ−1)(x), Ṽ (x)〉 =
d∑

i=1

∂(ϕ ◦ ψ−1)
∂xi

(x)Ṽi(x), for all ϕ ∈ C1(Rd; R),

conversely, given a map Ṽ : R
d → R

d, Ṽ (x) = (Ṽ1(x), . . . , Ṽd(x)), we can define an element V ∈ Vec(M) by

mean of the above formula. In this case, we will say that V (q′) is represented in the chart ψ by
∑d

i=1 Ṽi(x)
∂

∂xi
.

The set TqM := {V (q) : V ∈ Vec(M)} is the tangent space to M at q. The disjoint union of all TqM for q ∈M
is the tangent bundle TM to M . With some abuse of notation, we will write (V ϕ)(q) in place of V (q)ϕ. A
vector field V is of class Ck,α

loc , i.e. k-times differentiable with Hölder continuous kth differential of exponent α,
if the corresponding representation in local charts Ṽ : R

d → R
d is of class Ck,α

loc (Rd; Rd). When V,W ∈ Vec(M),
W ∈ C1(M) we can define VW : C2(M) → C0(M) by setting (VW )ϕ = V (Wϕ), for all ϕ ∈ C2, since
Wϕ ∈ C1(M). More generally, if V1, . . . , Vm are of class Cm−1 and ϕ ∈ Cm, we can define (V1 . . . Vm)ϕ by
induction setting (V1 . . . Vm)ϕ = (V1 . . . Vm−1)(Vmϕ). If M = R

d, we can take ψ to be equal to the identity IdRd

and ϕ = πh ∈ C∞ to be the hth coordinate function πh ◦ ψ(q) = xh if ψ(q) = (x1, . . . , xd), thus identifying V
and Ṽ . In this case we write also

V1V2(x) = ((V1V2)π1(x), . . . , (V1V2)πd(x), ) = (∇(∇πi(x) · V2(x)) · V1(x))i=1,...,d

=
(
∇V (i)

2 (x) · V1(x)
)

i=1,...,d
= ∇V2(x) · V1(x),

where ∇V2(x) is the Jacobian matrix of V2 at x, moreover this construction can be iterated by induction to
define V1V2 . . . Vm(x). Finally, we define the first order Lie bracket of the vector fields g1, g2 to be the differential
operator

[g1, g2]ϕ(q) := (g1g2ϕ)(q) − (g2g1ϕ)(q), for all ϕ ∈ C∞(M).

When M = R
d, we have

[g1, g2](x) = (g1g2 − g2g1)(x) = ∇g2(x) · g1(x) −∇g1(x) · g2(x).

Definition 3.3 (Characters, alphabet and words). We consider a nonempty finite set of symbols X :=
{x0, . . . , xN}, called the alphabet. The elements of X will be called characters. A word on X is any finite
sequence of characters w = xi1xi2 . . . xiM , where ij ∈ {0, . . . , N} for all j ∈ {0, . . . ,M}. In this case, |w| = M
is called the length of the word. The empty word is the unique word of length 0 and will be denoted by
Λ. If w = xi1xi2 . . . xiM �= Λ, we will define I = (i1, . . . , iM ) ∈ N

M and write w = xI . Given two words
xI = xi1 . . . xiM and xJ = xj1 . . . xjH , we define their concatenation xIJ = xIxJ = xi1 . . . xiMxj1 . . . xjH . We
have clearly xIΛ = ΛxI = xI for all words xI . The set Σ(X) of all words on X together with the operation of
concatenation is a monoid, since this operation is associative (but in general noncommutative) with Λ as the
identity element. Given k ∈ N, we will denote by Σk(X) the subset of Σ(X) made of words of length less or
equal than k.
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Definition 3.4 (Free Lie algebras). Given an alphabet X and the set of words Σ(X), we can consider the free

module on R generated by Σ(X), i.e., the set of all formal finite linear combinations of words
P∑

h=1

chwh, where

wh ∈ Σ(X) and ch ∈ R, with the usual identifications: i.e., if c = 1 then cw = w for all w ∈ Σ(X), and for all

w1, . . . , wP ∈ Σ(X), c1, . . . , cP ∈ R, we have
P∑

h=1

chwh =
P∑

h=1
h �=j

chwh if cj = 0. The free module on R generated by

Σ(X) together with the operation of concatenation is the free algebra A(X) generated by Σ(X), namely, the
product of two words is given by (c1xI)(c2xJ) = c1c2xIJ for all c1, c2 ∈ R and xI , xJ ∈ Σ(X). On A(X)×A(X),
we define the Lie bracket (or commutator) by setting [w, z] = wz − zw ∈ A(X) for every w, z ∈ Σ(X), where
wz is the concatenation of w and z; and then extending it on the whole of A(X) by linearity. The Lie bracket
operation gives to A(X) the structure of a Lie algebra. Given k ∈ N, we will denote by Ak(X) the subset of
A(X) made of all finite linear combinations of words in Σk(X) with real coefficients.

Definition 3.5 (Chen−Fliess series). Given the alphabet X := {x0, . . . , xN}, consider now the following
Cauchy problem in A(X) ⎧⎪⎪⎨

⎪⎪⎩
Ṡ(t) = S(t) ·

⎛
⎝ N∑

j=0

uj(t)xj

⎞
⎠ , t¿0,

S(0) = Λ,

(3.1)

where the maps uj ∈ U for any j = 0, . . . , N and · denotes here the concatenation operation. Given u(·) =
(u0(·), . . . , uN(·)) ∈ U N+1, t > 0, we set

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ΥΛ(t, u) = 1,

Υxj (t, u) =
∫ t

0

uj(s) ds, for j = 0, . . . , N,

Υwxj(t, u) =
∫ t

0

Υw(s, u)uj(s) ds, for w ∈ Σ(X), j = 0, . . . , N.

This defines by recurrence a map Υ : Σ(X)× [0,+∞[×U N+1 → R, which can be extended by linearity to a map
Υ : A(X) × [0,+∞[×U N+1 → R. With this definition, the explicit solution of (3.1) is given by Chen−Fliess
series

S(t) =
∑
n∈N

∑
w∈Σ(X)
|w|=n

Υw(t, u)w.

Remark 3.6. The number of terms appearing in
∑

w∈Σ(X)
|w|=n

Υw(t, u)w increases very rapidly with n. Since many

terms turn out to be repeated or can collected into terms involving possibly nested commutators of lower-length
words w′, w′′, this motivates the need of finding alternative description for the Chen−Fliess series, exploiting as
much as possible the symmetries in the iterated products and factorizing the words w appearing in the sum with
respect to suitable Lie algebra basis (e.g. Hall–Viennot basis) for which the terms can be computed efficiently.

We want to link now the above abstract setting to the original control-affine system (2.2). We will give an
idea of this connection, referring the reader to [12] for the details.
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Definition 3.7. Consider the system (2.2), and let X = {x0, . . . , xN}. Assume that f0, . . . , fN are of class Ck,1

for some k ≥ 1. Define a map ψ on Σk(X) by setting for all j = 0, . . . , N , w ∈ Σk−1(X) and ϕ ∈ C∞(M)⎧⎪⎨
⎪⎩
ψ(Λ)ϕ = ϕ,

ψ(xj)ϕ = fjϕ,

ψ(wxj)ϕ = ψ(w)(fjϕ),

where fjϕ is the usual action of the vector field fj on M as a differential operator on the function ϕ. By linearity,
we can extend ψ by linearity on the whole of Ak(X).

Remark 3.8. Fixed a coordinate system around x0 on the d-dimensional manifold M , and choosen ϕh as the
hth coordinate function, it has been proved by Sussmann that, when all the vector fields are analytic, the
vector-valued series

(ψ(S(t))ϕ)(x0) := ((ψ(S(t))ϕ1)(x0), . . . , (ψ(S(t))ϕd)(x0))

converges exactly to the solution of (2.2) (we set u0 ≡ 1). When the vector fields are not analytic, we cannot
expect convergence of this series in any sense, not even if they are C∞, however its truncation yields an
approximation of the solution.

When we consider M = R
d, we can take the coordinate functions ϕ = (ϕ1, . . . , ϕd) to be the identity

function. In this case, we can identify a differential operator acting on ϕ with a map from R
d to R

d. We will
use systematically this identification for systems in R

d.

Lemma 3.9. Consider the system (2.2) in R
d, and let X = {x0, . . . , xN}. Assume that f0, . . . , fN are of class

Ck,1
loc (Rd) for some k ≥ 1. Consider the mth partial sum with 0 ≤ m ≤ k

Sm(t) =
∑

w∈Σm(X)

Υw(t, u)w.

Then for each compact neighborhood K of x, there exists tK > 0 and CK > 0 such that

‖yx(t) − ψ(Sm(t))(x)‖ ≤ CK t
m+1, for any 0 < t < tK ,

where yx(·) is the solution of (2.2) satisfying yx(0) = x. Thus, in particular, we have that⎧⎨
⎩

∑
w∈Σm(X )

Υw(t, u)ψ(w)(x) : 0 < t < tK , u(·) = (1, u1(·), . . . , uN (·)) ∈ U N+1

⎫⎬
⎭ ⊆ [Rx(t)]CKtm+1 .

Proof. The result is a special case in R
d of equation (2.13) of Section 2.4.4 in [1] obtained by choosing ϕ = IdRd

and the identification for any w ∈ Σm(X) of the differential operator ψ(w) acting on ϕ with a map ψ(w)(·)
from R

d to R
d. �

Remark 3.10. Of course, in Lemma 3.9 we can choose convenient subsets C of U N+1 to obtain similar
inclusions. For instance, we can restrict ourselves to use only piecewise constant controls in order to simplify the
computation of the iterated integrals appearing in Υw(t, u). This will give a tool to check in practice condition
(2b) of Theorem 2.8.

Lemma 3.11. Fix t > 0, a partition 0 = t0 < . . . < tN = t of [0, t], {λi}i=1,...,N ∈ R. Define Ii = [ti−1, ti],
�i = ti − ti−1 for i = 1, . . . , N and u(·) = (u1(·), . . . , uN (·)) with ui(τ) = λiχIi(τ) (where χIi(·) is the map
assuming value 1 on Ii and 0 otherwise) for all τ ∈ [0, t], i = 1, . . . , N . Let X = {x1, . . . , xN} and consider
w ∈ Σ(X) \ {Λ}. Then

(1) if Υw(τ, u) �= 0 with w = xj1 . . . xjn , the sequence {jh}n
h=1 must be nondecreasing;
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(2) if w = xα1
h1
xα2

h2
. . . xαm

hm
, with αi ∈ N \ {0} and h1 < . . . < hm, then

Υw(t, u) =
m∏

h=1

(λjh
�jh

)αh

αh!
·

Proof. With the above choice of u(·), given w = xj1 . . . xjn ∈ Σ(X), and according to the definition of Υw(τ, u),
we have

Υw(τ, u) = λj1 · · ·λjn

∫
. . .

∫
0≤sn≤...≤s1≤τ

χIj1
(sn) . . . χIjn

(s1) dsn . . . ds1

d
dτ
Υwxj (τ, u) = λjχIj (τ)Υw(τ, u), for all τ ∈ [0, t] \ {tj−1, tj}.

In particular, Υwxj (τ, u) = Υwxj (tj , u) for all tj ≤ τ ≤ t. Similarly, if 0 ≤ τ ≤ tjn−1 we have Υw(τ, u) =
Υw(0, u) = 0.

(1) Consider Υvxixj (τ, u) with a given v ∈ Σ(X). If j < i, Υvxi(τ, u) = 0 for τ ∈]tj−1, tj [ since tj ≤ ti−1. Then

d
dτ
Υvxixj (τ, u) = λjχIj (τ)Υvxi (τ, u) = 0, for all τ ∈]tj−1, tj [.

Due to absolute continuity of Υvxixj (·, u), Υvxixj (·, u) is constant in ]tj−1, tj [ and hence on the whole of [0, t].
Thus Υvxixj (τ, u) = Υvxixj (0, u) = 0. If we consider now Υvxixjxk

(τ, u), we have that its derivative w.r.t. τ
vanishes in [0, t] \ {tk−1, tk}, and so Υvxixjxk

(τ, u) = Υvxixjxk
(0, u) = 0 in [0, t]. Iterating this argument adding

new letters, this implies that if j < i we have Υvxixjv′(τ, u) = 0 for all τ ∈ [0, t] and v′ ∈ Σ(X), and thus if
Υw(τ, u) �= 0 then the sequence {jh}n

h=1 must be nondecreasing.

(2) Assume now w = xα1
h1
xα2

h2
. . . xαm

hm
, with αi ∈ N \ {0} and 0 < h1 < . . . < hm. Recall that Υw(τ, u) = 0 for

0 ≤ τ ≤ thm−1 and Υw(τ, u) = Υw(thm , u) for thm ≤ τ ≤ t. Given τ ∈]thm−1, thm [, we have for all 0 < α ≤ αm

dα

dτα
Υw(τ, u) = λα

j Υw′xαm−α
hm

(τ, u),

where w′ = xα1
h1
xα2

h2
. . . x

αm−1
hm−1

. In particular, recalling the smoothness of Υw(·, u), we have

lim
τ→t+hm−1

dα

dτα
Υw(τ, u) =

⎧⎪⎨
⎪⎩

0, for 0 < α < αm,

λαm

j Υw′(thm−1 , u), for α = αm,

0, for α > αm.

The third case is obtained since τ ∈]thm−1, thm [, which has an empty intersection with Ihm−1 by the assumption
hm > hm−1, and Υw′(τ, u) is constant if τ /∈ Ihm−1 . This implies

Υw(τ, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if 0 ≤ τ ≤ tjm−1,
(λ(τ − tjm−1))αm

αm!
Υw′(τ, u), if tjm−1 ≤ τ ≤ tjm ,

(λjm�jm)αm

αm!
Υw′(τ, u), if tjm ≤ τ ≤ t.

The assertion now follows by repeating the argument on w′ (which is a product of m− 1 powers of letters) and
choosing τ = t, recalling that ΥΛ(t, u) = 1. �

The following result allows us to construct the desired approximation of Rx(t) using Lemma 3.11.
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Lemma 3.12. Consider the system (2.2) in R
d with f0, fi ∈ Ck,1

loc (Rd), i = 1, . . . , N , 0 < m ≤ k.
Let M > 0, X := {x1, . . . , xM}, σ = (σ1, . . . , σM ) ∈ {1, . . . , N}M , � = (�1, . . . , �M ) ∈]0, 1]M such that∑M
j=1 �j = 1, λ = (λ1, . . . , λM ) ∈ [−1, 1]M . Define g = (g1, . . . , gM ) by setting gi = f0 + λifσi , i = 1, . . . ,M .
Given a word v ∈ Σk(X), define

ψ̃v(t) =

⎧⎪⎪⎨
⎪⎪⎩
t|α| (�i)

α

α!
(gi)α, if i1 < i2 < . . . < ih,

IdRd , if v = Λ,

0, otherwise,

where if v �= Λ we wrote it in a unique way as v = xα1
i1
. . . xαh

ih
with ij ∈ {1, . . . ,M}, αj ∈ N \ {0} and ij �= ij+1

for all j = 1, . . . , h− 1, and we have denoted (�i)α = �i1
α1 . . . �ih

αh, and (gi)α = gα1
i1
. . . . . . gαh

ih
.

Then, if we set Pm,M,�,λ,σ
x (t) := x +

∑
w∈Σm\{Λ}

ψ̃w(t)(x), for any compact neighborhood K of x there exists

tK > 0 and CK > 0 such that Pm,M,�,λ,σ
x (t) ∈ [Rx(t)]CK tm+1 for all 0 < t < tK .

Proof. Indeed, for each t > 0 we consider the partition t0 = 0 < t1 < . . . < tM = t, where ti − ti−1 = �it.
We set Ii = [ti−1, ti], and define uσi(s) = λiχIi(s) for i = 1, . . . ,M . This is equivalent to consider the system
ẋ(s) =

∑M
i=1 μi(s)gi(x(s)), where μσi(s) = χIi(s) for i = 1, . . . ,M . According to Lemma 3.11, in this case

the mth order truncation of the Chen−Fliess series is Pm,M,�,λ,σ
x (t) and, together with the error estimate of

Lemma 3.9, this concludes the proof. �

Remark 3.13. Pm,M,�,λ,σ
x (t) is the approximation at mth order of the point reached at time t by an admissible

trajectory using piecewise constant controls activating at each time only one controlled vector field and with total
amount of switchings equal toM . Some variants are possible, for example we may consider λ ∈ MatM×N ([−1, 1]),
where MatM×N ([−1, 1]) is the set ofM×N matrices with entries in [−1, 1], σ ∈ MatM×N ({1, . . . , N}) and define
accordingly gi = f +

∑N
j=1 λijfσij , i = 1, . . . ,M , keeping inalterate the definitions of ψ̃v and of Pm,M,�,λ,σ

x (t).
The result still holds exactly with the same proof, and in this way we drop the restriction to use only one
controlled vector field at each time.

Definition 3.14. Consider the system (2.2) in R
d with f0, fi ∈ Ck,1

loc (Rd), i = 1, . . . , N , 0 < m ≤ k. Define

T m
x :=

{
Pm,M,�,λ,σ

x (·) − x : M > 0, σ ∈ {1, . . . , N}M , � ∈]0, 1]M with

M∑
j=1

�j = 1, λ ∈ [−1, 1]M
}
.

According to Lemma 3.12, given Px(·) ∈ T m
x , for any compact neighborhood K of x there exists tK > 0 and

CK > 0 such that x+ Px(t) ∈ [Rx(t)]CK tm+1 for all 0 < t < tK .

Now we state the second main result of the paper, concerning sufficient conditions for STLA in the control-
affine case (2.2).

Theorem 3.15 (Local STLA for constrained control-affine systems). Consider the system (2.2) with
f0, f1, . . . , fN ∈ Ck,1

loc (Rd; Rd). Fix x̄ ∈ ∂S ∩Ω, δx̄ > 0, and assume that

S ∩B(x̄, δx̄) ∩Ω := {x : ΦS(x) ≤ 0},
B(x̄, δx̄) ∩Ωc := {x : ΨΩc(x) ≤ 0},

for suitable locally Lipschitz functions ΦS , ΨΩc : R
d → R. Let Cx̄ > 0, τx̄ > 0 be the constants appearing in

Definition 3.14 by taking B(x̄, δx̄) as a compact neighborhood of x̄.
Assume that ΦS(·) is semiconcave on B(x̄, δx̄) with semiconcavity constant Kx̄ > 0. Define Φx̄, L(·) > 0, Mx̄,

K = Kx̄, σ, μ, χ, τ, θ, β as in Theorem 2.8. If x̄ ∈ ∂S ∩ ∂Ω, suppose that ΨΩc is semiconvex on B(x̄, δx̄).
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Let ε :]0,+∞[×]0,+∞[→ R be a continuous function such that lim
t→0+

ε(t, r)
t2

= +∞, uniformly w.r.t. r ∈
]0, max

z∈B(x̄,δx̄)
{ΨΩc(z)}].

Assume that for every x ∈ Ω ∩ B(x̄, δx̄) \ S there exist 0 < kx ≤ k, Px(·) ∈ T kx
x , and ζx ∈ ∂PΦS(x),

θx ∈ ∂PΨΩc satisfying for all 0 ≤ t ≤ τ(ΦS(x)):

(App) approaching condition:

〈ζx, Px(t)〉 +K‖Px(t)‖2 ≤ −μ(t, ΦS(x)) + σ(t, ΦS(x)),

(Con) constraint condition: if x̄ ∈ ∂Ω we require also that

〈θx, Px(t)〉 > ε(t, ΨΩc(x)), for all x ∈ Ω ∩B(x̄, δx̄) \ S.

Moreover, set δ(t, r) = Cx̄t
k and suppose that (1), (3) in Theorem 2.8 are satisfied. Then there exists 0 < δ′′̄x <

δx̄

2
and a continuous increasing function ωx̄ : [0,+∞[→ [0,+∞[ such that ωx̄(0) = 0 and TΩ(x) ≤ ωx̄(ΦS(x)) for
every x ∈ B(x̄, δ′′x̄) ∩Ω.

Before proving the theorem, we make some comments on the assumptions.

(1) We are considering the approximation of Rx(t) provided by all the truncation of Chen−Fliess series obtained
by using piecewise constant controls, this gives a family of A -trajectories, among which we assume to be
able to apply Theorem 2.8, ignoring for the moment any state constraint.

(2) The semiconvexity assumption on ΨΩc together with Assumption (Con) yields a quantitative estimate of
the variation of Ψc(·) along the A -trajectory.

(3) The assumptions on ε(·) will prevent the vanishing of Ψc(·), thus implying that the unconstrained A -
trajectory will satisfy also the state constraint, and so that it is actually an A Ω-trajectory.

Proof. Without loss of generality, we may assume that if x̄ ∈ ∂S ∩ Ω we have B(x̄, δx̄) ∩ Ωc = ∅ and∫ Φx̄

0

β(r) dr < 1. As in the proof of Theorem 2.8, we can choose 0 < δ ′̄x <
δx̄
2

such that Rx(t) ⊆ B(x̄, δx̄)

for all x ∈ B(x̄, δ ′̄x) and 0 ≤ t ≤ max
x∈B(x̄,δ′̄

x)\S

∫ ΦS(x)

0

β(r) dr, where β(·) ∈ L1 is a function as in Theorem 2.8.

Given Px(·) ∈ T kx
x as in the statement, we can find P ′

x(·) ∈ T k
x such that ‖P ′

x(t) − Px(t)‖ = o(tkx). We
set yt,x = x + P ′

x(t). Then we apply Theorem 2.8 ignoring the state constaint to obtain the upper bound

T (x) ≤
∫ ΦS(x)

0

β(r) dr.

If x̄ ∈ ∂S ∩ Ω the proof is concluded, recalling that in this case Rx(t) = RΩ
x (t) for all 0 ≤ t ≤ T (x), and so

T (x) = TΩ(x).
Assume that x̄ ∈ ∂Ω∩∂S, and take x ∈ B(x̄, δ′x̄)∩Ω \S. Let C, τC > 0 and yx(·) be an admissible trajectory

for the unconstrained system such that ‖yx(t)− (x+Px(t))‖ ≤ Ct2 for 0 < t ≤ τC . By taking 0 < δ′′x̄ < δ′x̄ such

that
∫ ΦS(x)

0

β(r) dr < τC for all x ∈ B(x̄, δ′′̄x) ∩Ω, we will show that yx(t) ∈ Ω for all 0 ≤ t ≤ T (x).

We denote by Ψx̄ the semiconvexity constant of ΦΩc on B(x̄, δx̄). For 0 < t < T (x), there exists θx ∈ ∂PΨΩc(x)
such that

ΨΩc(yx(t)) ≥ ΨΩc(x) + 〈θx, yx(t) − x〉 − Ψx̄‖yx(t) − x‖2

≥ ΨΩc(x) + 〈θx, Px(t)〉 − ‖θx‖Ct2 − Ψx̄(‖Px(t)‖2 + 2Ct2‖Px(t)‖ + C2t4).
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Since ΨΩc(·) is locally Lipschitz continuous, we have that ‖θx̄‖ is uniformly bounded in B(x̄, δ′′̄x), furthermore,

by the smoothness of the vector fields, we have that
‖Px(t)‖

t
is uniformly bounded for all x ∈ B(x̄, δ′′̄x) and

t ∈]0, T (x)]. In particular, there exists D > 0 and τD > 0 such that for all 0 < t < τD we have

ΨΩc(yx(t)) ≥ ΨΩc(x) + ε(t, ΨΩc(x)) −Dt2 ≥ ΨΩc(x) > 0,

recalling the fact that given D > 0 there exists τD > 0 such that ε(t, ΦS(x)) −Dt2 ≥ 0 for all x ∈ B(x̄, δ′′̄x) and

0 < t < τD, due to the assumptions of ε(·). Thus we take 0 < δ′′x̄ < δ′x̄ such that
∫ ΦS(x)

0

β(r) dr < min{τC , τD}
for all x ∈ B(x̄, δ′′̄x) ∩Ω.

This implies that xi and xi+1, constructed as in the proof of Theorem 2.8 for the unconstrained system
starting from x ∈ B(x̄, δ′′̄x) ∩ Ω, are actually connected by an admissible trajectory also for the constrained
system for every i ∈ N, since ΨΩc is nondecreasing, and so in particular it remains strictly positive. Thus also
in this case we have

TΩ(x) ≤
∫ ΦS(x)

0

β(r) dr,

for all x ∈ B(x̄, δ′′̄x) ∩Ω.
Finally, assume that x̄ ∈ ∂Ω ∩ ∂S, and take x ∈ B(x̄, δ′′x̄) ∩ ∂Ω \ S. We can find a sequence of points

{zi}i∈N ⊆ B(x̄, δ′′x̄) ∩ Ω \ S, a sequence of admissible trajectories {yzi(·)}i∈N and a sequence of times{Ti}i∈N,

such that yzi(0) = zi, yzi(t) ∈ Ω ∩B(x̄, δx̄) for all 0 ≤ t ≤ Ti, yzi(Ti) ∈ S, and Ti ≤
∫ ΦΩ(zi)

0

β(s) ds.

It is well known that up to passing to a subsequence, we have that Ti → T∞ and {yzi(·)}i∈N uniformly
converges to an admissible trajectory yx(·) satisfying yx(0) = x. Since the constraint and the target set are
closed, we have also yx(t) ∈ Ω ∩B(x̄, δ′′̄x) for all 0 ≤ t ≤ T∞ and yx(T∞) ∈ S. Thus

TΩ(x) ≤ T∞ ≤ lim
i→∞

∫ ΦS(zi)

0

β(r) dr =
∫ ΦS(x)

0

β(r) dr. �

Applying Lemma 2.6, we can give a global STLA estimate.

Corollary 3.16 (Global STLA for constrained control-affine systems). Consider the system (2.2). Assume that
at every x̄ ∈ ∂S ∩ Ω the assumptions of Theorem 3.15 are satisfied, then STLA holds. Moreover, if ∂S ∩ Ω is
compact we have that there exists δS > 0 and a continuous function ω : [0,+∞[→ [0,+∞[ such that ω(0) = 0
and TΩ(x) ≤ ω(dS(x)) for every x ∈ SδS ∩Ω.

Proof. It is a straightforward application of Lemma 2.6. �

As already said, if we want to take ΨΩc = dΩc , we have to assume some smoothness property on the
constraint Ω. In particular, if Ωc belongs to the class of locally positive reach sets, there exists a neighborhood
V of Ωc where dΩc ∈ C1,1(V \Ωc), thus it is both semiconcave and semiconvex. This class of sets was introduced
in [8], and has been extensively studied by many authors both in finite and infinite dimensions. We refer the
reader to [5, 6, 14] for further details and extension of such kind of results.

We end this section by comparing the inward pointing condition of [4] and ours. Indeed, [4] deals with
constraints satisfying the so-called wedgedness property, i.e. the nonemptiness of the Clarke’s tangent cone (see
Rem. 3.2 of [4] for further details). However it is easy to show that the classes of wedged sets and of sets whose
complement has locally positive reach are distinct (even if smooth C1,1 sets belong to both of them), thus the
results are not directly comparable.
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4. An example

In this section we present an example illustrating our approach.

Example 4.1. In R
3 we consider the control-affine system (2.2) with N = 2, and set S :=

B(0, 1/2), f0(x1, x2, x3) =
1
8
(−x2, x1, 0), f1(x1, x2, x3) = (x1x3, x2x3, 0), f2(x1, x2, x3) = (0, 0, 1), Ω :={

(x1, x2, x3) ∈ R
3 : x2

1 + x2
2 >

1
16

}
.

We take ΦS(x) = ‖x‖ − 1/2. This map agrees with dS(·) on Rd \ S and is smooth on R
d \ {0}. We have

∇ΦS(x) =
x

‖x‖ for all x �= 0. Moreover, ∂PΦS(x) = { x

‖x‖} for all x �= 0, and ΦS(·) is semiconcave of constant

K = Kx̄ = 2 in every ball B(x̄, δx̄) with x̄ ∈ ∂S and δx̄ ≤ 1/4. Finally, we have L(r) = 1 by 1-Lipschitz continuity
of ΦS(·). Notice that the constraint has positive reach, thus we take ΨΩc(x) = dΩc(x) =

√
x2

1 + x2
2 − 1

4 .
We consider now the unconstrained problem.
We notice that at every point (x1, x2, x3) ∈ ∂S we have

〈∇ΦS(x), (f0(x) + u1f1(x) + u2f2(x)〉 = 2x3((x2
1 + x2

2)u1 + u2) (4.1)

For any x̄ ∈ D := ∂S ∩ Ω \ {x3 = 0}, there exists δx̄ > 0 such that Petrov’s condition for any x ∈ B(x̄, δx̄):
indeed, by choosing u2(s) = −sign(x3), −1 ≤ u1 ≤ 1, we have that 4.1 is continuous and strictly negative on D
thus every point of D possesses a neighborhood where the above expression remains bounded away from 0.

Given t > 0, we consider the following choice of controls:

u1(s) =

⎧⎪⎨
⎪⎩

1, if 8s/t ∈ [0, 1] ∪ [6, 7],
−1, if 8s/t ∈ [2, 3] ∪ [4, 5],
0, elsewhere,

u2(s) = u1(s− t/8).

Given x ∈ R
3, in this case Chen−Fliess series yields an A -trajectory of the form

ỹx(t) = x+ tf0(x) +
t2

32
(16f0f0 + [f1, f2])(x) + o(t2)

and, by the smoothness of the vector fields, there exists L > 0 such that ‖o(t2)‖ ≤ Lt3 for every x ∈ B(0, 1) ⊃ S.

Set Px(t) = tf0(x) +
t2

32
(16f0f0 + [f1, f2])(x). We notice that, by the smoothness of the vector fields, the map

x 
→ Px(t) is continuous. Given x = (x1, x2, 0) ∈ ∂S, we have

〈∇ΦS(x), Px(t)〉 + 2‖Px(t)‖2 =
t2(−128 + 64(x1 + x2))

16384
+ o(t2) ≤ −t2

256
+ o(t2).

In particular, there exist τ, C > 0 such that for 0 ≤ t ≤ τ and every x = (x1, x2, 0) ∈ ∂S

〈∇ΦS(x), Px(t)〉 + 2‖Px(t)‖2 < −2Ct2.

Thus every point x̄ ∈ ∂S ∩ {x3 = 0} possesses a neighborhood Vx̄ such that 〈∇ΦS(x), Px(t)〉 + 2‖Px(t)‖2 <
−Ct2, and so we can define kx = 2, μ(t, r) = Ct2, δ(t, r) = Lt3, σ(t, r) = 0, χ(t, r) = 1, τ(r) = θ(r) =

min{τ, 1
L
,

1
2C

√
r}. Condition (App) thus holds at these points, and by Theorem 3.15 and Corollary 3.16, we

obtain that there exists C′ > 0 such that T (x) ≤ C′d1/2
S (x) on a suitable neighborhood of S.

Now we pass to consider the constraints. Since ∂S ∩ Ω ∩ {x3 = 0} = ∅, for any x̄ ∈ ∂S ∩ Ω there exists
δx̄ > 0 such that Petrov’s condition holds at every x ∈ B(x̄, δx̄) \ S by taking u2 = −sign(x3) and −1 ≤ u1 ≤ 1.
Moreover, for all x ∈ Ω ∩B(x̄, δx̄) \ S we have

〈∇ΨΩc(x1, x2, x3), f0(x1, x2, x3) + u1f1(x1, x2, x3) − sign(x3)f2(x1, x2, x3)〉 = u1

√
x2

1 + x2
2 x3 ≥ u1x3

4
·
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By taking u1 = sign(x3) we have that the above expression is strictly positive at any point of Ω ∩ B(x̄, δx̄) \S,
thus both (App) and the constraint condition are fulfilled, so TΩ(x) ≤ C′d1/2

S (x) on a suitable neighborhood of
S in Ω by Theorem 3.15 and Corollary 3.16.
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