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ENERGY RELEASE RATE AND QUASI-STATIC EVOLUTION VIA VANISHING
VISCOSITY IN A FRACTURE MODEL DEPENDING ON THE CRACK

OPENING

Stefano Almi
1

Abstract. In the setting of planar linearized elasticity, we study a fracture model depending on the
crack opening. Assuming that the crack path is known a priori and sufficiently smooth, we prove that
the energy release rate is well defined. Then, we consider the problem of quasi-static evolution for our
model. Thanks to a vanishing viscosity approach, we show the existence of such an evolution satisfying
a weak Griffith’s criterion.
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1. Introduction

Griffith’s criterion is a well-established principle which predicts in a quasi-static setting whether or not a
pre-existing crack in an elastic body grows for a given external force [15]. If we assume that the fracture evolves
only along a prescribed smooth path Σ, so that it can be parametrized by the arc-length s, we are able to state
the Griffith’s criterion in terms of the energy release rate, which is the negative of the right derivative of the
deformation energy with respect to the crack extension, i.e., the parameter s: If the energy release rate is less
than a certain constant related to the toughness of the material, then the crack is stable, otherwise it will grow.
This principle has been studied in several papers, see e.g. [18–20, 26, 28] for the case of prescribed crack path,
and [21, 22] for a more general setting in linearized antiplane elasticity. The cited works tackle the problem of
existence of a quasi-static evolution in brittle fracture satisfying a weak form of the Griffith’s criterion.

In this paper, we are interested in the application of the Griffith’s criterion to a problem of quasi-static
cohesive crack growth in the setting of planar linearized elasticity. We consider a linearly elastic body Ω, where
Ω ⊆ R2 is an open, bounded, connected set with Lipschitz boundary ∂Ω, and a simple C3-curve Σ which
represents the prescribed crack path. Let L := H1(Σ) and γ : [0, L] → Σ be its arc-length parametrization. The
admissible fractures are of the form

Γs := {γ(σ) : 0 ≤ σ ≤ s}

for s ∈ [0, L]. We set also Ωs := Ω \ Γs.
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The main feature of the Barenblatt’s cohesive model, see e.g. [3, 4], is the presence of the so-called cohesive
forces acting on the fracture lips. In the mathematical model, the density of the energy spent by the cohesive
forces is represented by a function ϕ : [0,+∞) → [0,+∞) which depends, in its simplest form, only on the
modulus of the jump of the displacement across Σ. In general, ϕ satisfies:

ϕ concave,
ϕ(0) = 0, ϕ′(0) = μ < +∞,

lim
ζ→+∞

ϕ(ζ) = κ < +∞,

ϕ(ζ) ≤ κ.

(1.1)

In our model, we do not need all these hypotheses. Indeed, given T > 0, we consider a C1 function ϕ : [0, T ] ×
R2 → R such that ϕ(t, 0) = 0 and ϕ(t, ξ) ≤ c (1 + |ξ|p) for some c > 0 and some p ∈ (1,+∞), see Section 2 for
the precise assumptions. In particular, ϕ could be time dependent and negative. Thus, with our model we are
able to discuss also the case of an external time dependent force h : [0, T ] → R2 acting on both the fracture
lips. In this case, ϕ(t, ξ) := −h(t) · ξ.

Different from the Barenblatt’s model, we assume, as in [5], that the energy spent by the cohesive forces
is completely reversible. Moreover, we introduce a dissipative surface term proportional to the crack length,
namely G0s, where G0 is a positive constant related to the physical properties of the material. This additional
contibution can be interpreted as an activation threshold, i.e., as the energy required to break the inter-atomic
bonds along the fracture. For simplicity, we will set G0 := 1.

We stress that the coexistence of a cohesive term and of an activation threshold has been noticed in several
papers related to fracture mechanics: in [12] in the approximation of fracture models via Γ -convergence of
Ambrosio−Tortorelli type functionals, in [2,10] in the study of the asymptotic behavior of composite materials
through a homogenization procedure, and in [7, 17] in the framework of fracture models as Γ -limits of damage
models.

We are now ready to introduce the total energy of the system. Let f : [0, T ] → L2(Ω; R2) and w : [0, T ] →
H1(Ω; R2) denote the volume forces and the Dirichlet boundary datum, respectively. For every t ∈ [0, T ], every
s ∈ [0, L], and every displacement u ∈ H1(Ωs; R2), we define

E(t, s, u) :=
1
2

∫
Ωs

CEu ·Eu dx−
∫

Ωs

f(t) ·u dx+
∫

Γs

ϕ(t, [u]) dH1 + s, (1.2)

where C is the usual elasticity tensor, Eu stands for the symmetric part of the gradient of u, and [u] denotes
the jump of u across Σ.

Hence, the total energy (1.2) is the sum of four terms. The first two volume contributions are the stored elastic
energy and the power spent by the body forces acting on Ω, respectively. The third integral in (1.2) represents
the energy spent by the forces acting on the fracture lips, and the last term is the activation threshold of which
we have already discussed.

We now describe the main features of the evolutive problem. For t ∈ [0, T ] and s ∈ [0, L], we define the
reduced energy:

Emin(t, s) := min {E(t, s, u) : u ∈ H1(Ωs,R
2), u = w(t) on ∂Ω}. (1.3)

In order to give a definition of quasi-static evolution for our cohesive fracture model via Griffith’s criterion, we
first have to study the differentiability of Emin with respect to the crack length s. To this end, we notice that
because of the non-convexity of ϕ(t, ·), the solution to the minimum problem (1.3) is not unique. This will affect
the computation of the derivative of the reduced energy Emin with respect to s. Indeed, in Section 3 we show
that in general Emin is not differentiable in s. However, we can still compute its right and left derivatives ∂+

s Emin

and ∂−s Emin, see Theorems 3.1 and 3.2. In particular, we are in a situation different from [19, 28], where the
reduced energy is differentiable and has a continuous derivative, and similar in this aspect to [18,20], where finite-
strain elasticity in brittle fracture is considered. In Proposition 3.11 we prove that the two derivatives ∂+

s Emin



ENERGY RELEASE RATE AND QUASI-STATIC EVOLUTION IN FRACTURE 793

and ∂−s Emin satisfy a semicontinuity property which will play a central role in the proof of existence of a
quasi-static evolution for the cohesive crack growth problem, see Definition 4.7 and the proof of Theorem 4.9.

Let us emphasize the main difference between a quasi-static evolution via global stability, proposed in [13]
for the fracture growth, and an evolution via Griffith’s principle. Roughly speaking, the former says that an
evolution s(t) has to be globally stable, that is, has to satisfy

Emin(t, s(t)) ≤ Emin(t, s) for every s ≥ s(t) and every t ∈ [0, T ]. (1.4)

In particular, condition (1.4) is derivative free. Therefore, it allows for the presence of jump discontinuities: for
instance, s(t) could jump instantaneously from a stable configuration to another passing through an energetic
barrier. This is a typical situation because the function

s �→ Emin(t, s)

is non-convex. On the contrary, the definition of quasi-static evolution via Griffith’s principle imposes a condition
on the energy release rate. In our setting, we will have some requirements on ∂+

s Emin and ∂−s Emin (see Def. 4.7).
Since ∂±s Emin are the right and left derivatives of the reduced energy with respect to the crack length s, the
Griffith’s criterion represents a sort of differential condition on the evolution s(t). Therefore, we should obtain
a more regular solution or, at least, a more physical one, i.e., an evolution which jumps later than a globally
stable one.

In order to get a quasi-static evolution satisfying a weak version of the Griffith’s principle, in Sections 4–7
we tackle the evolutive problem by means of vanishing viscosity. This procedure has been studied for instance
in [1, 11, 24, 25] in an abstract setting. It consists in the perturbation of minimum problems with a viscosity
term driven by a small positive parameter ε, enforcing a local minimality of the solutions. Let us briefly discuss
how we exploit this technique. Given a subdivision {tki }k

i=0 of the time interval [0, T ], we consider, for i ≥ 1, the
incremental minimum problem

min
{
Emin(tki , s) +

ε

2
(s− sk,i−1

ε )2

tki − tki−1

: s ≥ sk,i−1
ε

}
, (1.5)

where sk,i−1
ε is a solution of (1.5) at time tki−1 and sk,0

ε := s0, the initial condition. In (1.5), we are penalizing the
distance between the new and the previous cracks with the viscosity term driven by ε > 0. Having constructed
the discrete time solutions for every ε > 0, the scheme is to pass to the limit as k → +∞, in order to find the
so-called viscous evolution sε (Thm. 4.6), and, finally, let ε tend to zero. In this way, we will obtain a quasi-static
evolution for the cohesive fracture problem (Thm. 4.9).

We notice that this kind of vanishing viscosity approach to the cohesive fracture is a novelty. Indeed, the
cohesive crack growth problem, without activation cost, has been investigated in previous works, see e.g. [5,6,9].
In [6,9], the notion of quasi-static evolution is based on global stability and the proof of existence is addressed via
the time discretization process introduced by Francfort and Marigo in the field of fracture mechanics [13], and
frequently used in the study of rate-independent processes [23]. In [5], following the ideas of [8], the vanishing
viscosity approach is applied with an L2-penalization of the displacement.

The plan of the paper is the following: in Section 2 we discuss the setting of the problem and the notation
which will be used throughout the paper. In Section 3 we compute the right and left derivatives of the reduced
energy Emin with respect to the crack length s, see Theorems 3.1 and 3.2. In Section 4 we give the definitions
of viscous and quasi-static evolutions for the cohesive crack growth problem, see Definitions 4.5 and 4.7, and
state the results of existence of such evolutions in Theorems 4.6 and 4.9. These theorems will be proved in
Sections 5–7.

Finally, in Sections 8 and 9, we generalize the previous results to the case of many non-interacting cracks, in
the spirit of [22]. In order to get the same properties of Definition 4.7, we will use the notion of parametrized
solution introduced in [25].
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2. Setting of the problem

In this section, we introduce the notation which will be used later on and describe the main features of the
problem we will discuss in the following sections.

We consider a model in planar linearized elasticity. Let Ω ⊆ R2 be a bounded, connected, open set with
Lipschitz boundary ∂Ω. The reference configuration is its closure Ω, which represents a linearly elastic body at
rest.

The prescribed crack path is given by a simple C3-curve Σ ⊆ Ω with H1(Σ) =: L, where H1 denotes the
one-dimensional Hausdorff measure. Let γ ∈ C3([0, L];Σ) be its arc-length parametrization and ν, τ be its
unit normal and unit tangent vectors, respectively. We make the following assumptions on the geometry of the
model:

• ∂Ω ∩Σ = {γ(0), γ(L)};
• Ω \Σ = Ω+ ∪ Ω−, where Ω+, Ω− are two connected open subsets of R2 with Lipschitz boundary, defined

according to the orientation of the normal vector ν, with Ω+ ∩Ω− = ∅.
By the regularity assumptions on Ω, Ω+, and Ω−, the trace operators tr : H1(Ω; R2) → H1/2(∂Ω; R2),

tr± : H1(Ω±,R2) → H1/2(∂Ω±; R2) are well defined and continuous. In particular, for every v ∈ H1(Ω \Σ; R2)
we can define its jump across Σ by

[v] := tr+(v)|Σ − tr−(v)|Σ ∈ H1/2(Σ; R2).

We recall that the embeddings H1/2(Σ; R2) ↪→ Lp(Σ; R2) are compact for every p ∈ [1,+∞).
For simplicity, we assume that the family of admissible fractures is given by the set

{Γs : s ∈ [0, L]}, (2.1)

where, for every s ∈ [0, L], we define
Γs := {γ(σ) : 0 ≤ σ ≤ s}.

This means that the set in (2.1) can be parametrized by the arc-length s ∈ [0, L]. Moreover, with this choice
of admissible cracks, we are assuming that all possible fractures are closed and connected subsets of Σ, with a
common starting point γ(0) ∈ ∂Ω. In particular, a crack Γs may extend only from its end point γ(s).

For s ∈ [0, L] we define Ωs := Ω \ Γs and denote by H1(Ωs; R2) the set

{u ∈ H1(Ω \Σ; R2) : [u] = 0 H1-a.e. on Σ \ Γs}.

From now on, we will drop the R2 in the definition of the function spaces, when it is clear that we are dealing
with vector-valued functions.

The body outside the crack is supposed to be linearly elastic, with elasticity tensor C. In general, C is a
function of the space variable x ∈ Ω \Σ. For technical reasons, it is assumed to be C1 with bounded derivative.
In particular, the linear function C(x) : M2

sym → M2
sym is defined for every x ∈ Ω \Σ, where M2

sym is the space
of 2× 2 symmetric matrices with real coefficients. As usual, we suppose that C is positive definite, uniformly
with respect to x ∈ Ω \Σ, i.e., there exist 0 < α ≤ β < +∞ such that

α|F|2 ≤ C(x)F ·F ≤ β|F|2 for every F ∈ M
2
sym and every x ∈ Ω \Σ, (2.2)

where the dot denotes the scalar product between matrices. We notice that we can also think to C(x) as a tensor
acting on the whole M2, the space of 2× 2 matrices with real coefficients. Thanks to the symmetries of C, see
e.g. [16], we have

C(x)F = 0M2

for every F ∈ M
2 skew-symmetric and every x ∈ Ω \ Σ. For simplicity of notation, from now on we will not

specify the dependence on x ∈ Ω of the elasticity tensor.
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Given T > 0, we consider a function g : [0, T ]×Ω×R2 → R with the following properties:
• t �→ g(t, x, ξ) is continuous for every ξ ∈ R2 and a.e. x ∈ Ω;
• x �→ g(t, x, ξ) is measurable for every t ∈ [0, T ] and every ξ ∈ R2;
• ξ �→ g(t, x, ξ) is C1(R2) for every t ∈ [0, T ] and a.e. x ∈ Ω;
• t �→ Dξg(t, x, ξ) is continuous for every ξ ∈ R2 and a.e. x ∈ Ω;
• x �→ Dξg(t, x, ξ) is measurable for every t ∈ [0, T ] and every ξ ∈ R

2;
• for every ε > 0, there exists aε > 0 such that

|g(t, x, ξ)| ≤ aε + ε|ξ|2 (2.3)

for a.e. x ∈ Ω, every t ∈ [0, T ], and every ξ ∈ R2.
• there exists a1 > 0 such that

|Dξg(t, x, ξ)| ≤ a1(1 + |ξ|) (2.4)

for a.e. x ∈ Ω, every t ∈ [0, T ], and every ξ ∈ R2.

Remark 2.1. We point out that the function g is a nonlinear generalization of the power spent by the volume
forces. Indeed, in Section 4 we will set

g(t, x, ξ) := f(t, x) · ξ, (2.5)

where f ∈ AC([0, T ];L2(Ω)), the space of absolutely continuous functions from [0, T ] with values in L2(Ω). The
function f will represent the body forces applied on Ω. In particular, g as in (2.5) satisfies all the properties
previously listed.

Finally, we introduce a function ϕ : [0, T ]×R
2 → R such that:

• t �→ ϕ(t, ξ) is continuous for every ξ ∈ R2;
• ξ �→ ϕ(t, ξ) is C1(R2) for every t ∈ [0, T ];
• ϕ(t, 0) = 0 for every t ∈ [0, T ];
• there exist p ∈ (1,+∞) and a2 > 0 such that

ϕ(t, ξ) ≤ a2(1 + |ξ|p),
|Dξϕ(t, ξ)| ≤ a2(1 + |ξ|p−1)

(2.6)

for every t ∈ [0, T ] and every ξ ∈ R2;
• for every ε > 0, there exists bε > 0 such that

ϕ(t, ξ) ≥ −bε − ε|ξ|2 (2.7)

for every t ∈ [0, T ] and every ξ ∈ R2.

Remark 2.2. At t fixed, the function ϕ(t, ·) will represent the density of the energy spent by the inter-atomic
forces on the crack lips. It will be concentrated on Σ and depend only on the jump of the displacement across Σ.
This is typical in the model of cohesive fracture, see e.g. ([4], Sect. 2.6). Actually, in the cohesive model the
energy density ϕ : R → [0,+∞) should depend only on the modulus of the jump of the displacement across Σ.
Moreover, it should be monotone increasing, concave, bounded by a constant κ > 0, and satisfy

ϕ(0) = 0,
ϕ′(0) = μ < +∞,

lim
|ξ|→+∞

ϕ(|ξ|) = κ.

We notice that, for our purposes, these further hypotheses on ϕ are not needed.
We stress that in our model the function ϕ could be time dependent and negative, see (2.7). This means that

we are able to discuss also the case of a given force h : [0, T ] → R2 acting on both the fracture lips, namely
ϕ(t, ξ) := −h(t) · ξ. Moreover, we anticipate that our results can be generalized with minor changes to the case
of two different forces h+ and h− acting on the two faces of the crack.
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We are now ready to define the total energy of the system which will be considered in the computation of the
energy release rate and, with g as in (2.5), in the problem of quasi-static evolution as limit of viscous evolution
for our cohesive model:
fixed t ∈ [0, T ], s ∈ [0, L], and u ∈ H1(Ωs), we set

E(t, s, u) :=
1
2

∫
Ωs

CEu ·Eu dx−
∫

Ωs

g(t, x, u) dx+
∫

Γs

ϕ(t, [u]) dH1 + G0s. (2.8)

Hence, the energy is the sum of the stored elastic energy, a term which generalizes the power spent by the volume
forces, a surface term which can be interpreted as the energy spent by the cohesive forces on the fracture Γs,
and an activation threshold G0s proportional to the crack length which represents the energy dissipated by the
process of fracture growth. We notice that, as in [5], we assume the cohesive part of the energy to be reversible.
For simplicity, we will set G0 := 1.

Let us now briefly discuss the equilibrium condition of the system. Fix t ∈ [0, T ], s ∈ [0, L], and the Dirichlet
boundary datum w ∈ H1(Ω) on ∂Ω. According to the variational principles of linear elasticity, the body, with
energy given by (2.8), is in equilibrium with an assigned crack Γs if the displacement u is a solution of the
minimum problem

min
u∈A(s,w)

E(t, s, u), (2.9)

where
A(s, w) := {u ∈ H1(Ωs) : [u] · ν ≥ 0, u = w on ∂Ω} (2.10)

is the set of all admissible displacements associated to the crack Γs and the Dirichlet boundary datum w. In
the previous formula, the inequality [u] · ν ≥ 0, which is assumed to be satisfied H1-almost everywhere on Σ,
takes into account the non-interpenetration condition, while the equality u = w has to be intended in the trace
sense on ∂Ω.

We now state a general lemma which proves the lower semicontinuity of E and will be useful also in next
sections.

Lemma 2.3. Let tk, t ∈ [0, T ], sk, s ∈ [0, L], wk, w ∈ H1(Ω), uk ∈ A(sk, wk) for every k, and u ∈ A(s, w).
Assume that tk → t, sk → s, wk → w in H1(Ω), and uk ⇀ u weakly in H1(Ω \Σ). Then

E(t, s, u) ≤ lim inf
k

E(tk, sk, uk),∫
Γs

ϕ(t, [u]) dH1 = lim
k

∫
Γsk

ϕ(tk, [uk]) dH1,∫
Ωs

g(t, x, u) dx = lim
k

∫
Ωsk

g(tk, x, uk) dx.

(2.11)

If, in addition, we assume that
E(t, s, u) = lim

k
E(tk, sk, uk), (2.12)

then uk → u strongly in H1(Ω \Σ).

Proof. By compactness, we have that uk → u strongly in Lp(Ω) and in Lp(Σ) for every p ∈ [1,+∞). Up to a
subsequence, we can assume that uk → u pointwise in Ω and on Σ.

By the continuity properties of ϕ and g, we have the pointwise convergences

ϕ(tk, [uk]) → ϕ(t, [u]) and g(tk, x, uk) → g(t, x, u).

Thanks to the hypotheses (2.3), (2.6), and (2.7), applying the dominated convergence theorem we get the two
equalities in (2.11). Since the stored elastic energy is lower semicontinuous, we obtain also the first inequality
in (2.11).
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If we assume (2.12), then, by (2.11), we deduce that∫
Ωs

CEu ·Eu dx = lim
k

∫
Ωsk

CEuk ·Euk dx.

Hence, we have that uk → u strongly in H1(Ω \Σ). �

Thanks to Lemma 2.3, to the hypotheses (2.2)–(2.7), and to the application of Korn’s inequality in Ω±,
the minimum problem (2.9) admits a solution u ∈ A(s, w). We notice that, by the lack of convexity of ϕ(t, ·)
and g(t, x, ·), the solution to (2.9) is not unique. For simplicity of notation, we introduce the reduced energy

Emin(t, s, w) := min
u∈A(s,w)

E(t, s, u). (2.13)

The aim of Section 3 is to compute the derivative of the function s �→ Emin(t, s, w), for t ∈ [0, T ] and
w ∈ H1(Ω) fixed, in order to find the so-called energy release rate. We will see that, in general, this derivative
does not exist. This is due to the non-uniqueness of solution to the minimum problem (2.9). However, we will
find formulas for the right and left derivatives of the reduced energy Emin with respect to the crack length s,
see Theorems 3.1 and 3.2. In Sections 4–7 we will see that these two derivatives will play a central role in the
definition of viscous and quasi-static evolution via Griffith’s criterion.

In order to do our computations, we need to slightly move the crack tip along the prescribed curve Σ. Hence,
fixed t ∈ [0, T ], s ∈ (0, L), and δ such that s + δ ∈ [0, L], we construct a C3-diffeomorphism Fs,δ such that
Fs,δ(Ωs) = Ωs+δ, and Fs,δ|∂Ω = Id|∂Ω. Indeed, by our regularity assumption, in a neighborhood of the crack
tip γ(s) the curve Σ can be seen, up to a rotation, as the graph of a C3 function, i.e., there exists η > 0 and
ψs ∈ C3((γ1(s) − η, γ1(s) + η)) such that

Σ = {(x1, ψs(x1)) : x1 ∈ (γ1(s) − η, γ1(s) + η)},

where x1 and γ1 are the first components of x = (x1, x2) ∈ R2 and of the arc-length parametrization γ = (γ1, γ2),
respectively.

Choose a cut-off function ϑ ∈ C∞
c (Bη/2(0)) with ϑ = 1 on Bη/3(0). We define Fs,δ : R2 → R2 by

Fs,δ(x) := x+

(
(γ1(s+ δ) − γ1(s))ϑ(γ(s) − x)

ψs(x1 + (γ1(s+ δ) − γ1(s))ϑ(γ(s) − x)) − ψs(x1)

)
(2.14)

if x ∈ Bη/2(γ(s)), while Fs,δ(x) := x if x ∈ R2 \ Bη/2(γ(s)).
In the following lemma, we give some properties of Fs,δ (see e.g. [19]).

Lemma 2.4. For every s ∈ (0, L), there exists δ0 > 0 such that:

(a) Fs,· ∈ C3((−δ0, δ0) × R2; R2) and, for every |δ| < δ0, the map Fs,δ is a C3-diffeomorphism. Moreover,
Fs,δ(Ωs) = Ωs+δ, Fs,δ(γ(s)) = γ(s+ δ), and Fs,δ(Γs) = Γs+δ;

(b) the norms ‖Fs,δ‖C3 and ‖F−1
s,δ ‖C3 are uniformly bounded with respect to δ and there exists c1, c2 > 0 such

that, for every |δ| < δ0 and every x ∈ R2, we have c1 ≤ det∇Fs,δ(x) ≤ c2;
(c) ‖Id − Fs,δ‖C2 → 0 as δ → 0;
(d) some derivatives:

ρs(x) := ∂δ(Fs,δ(x))|δ=0 = γ′1(s)ϑ(γ(s) − x)
(

1
ψ′

s(x1)

)
,

∂δ(det∇Fs,δ(x))|δ=0 = divρs(x),

∂δ(∇Fs,δ(x))|δ=0 = −∂δ(∇Fs,δ(x))−1|δ=0 = ∇ρs(x),

∂δ(cof ∇Fs,δ)T |δ=0 = −∂δ(cof ∇Fs,δ)−T |δ=0 = divρs 1M2 −∇ρs,

(2.15)

where, for every G ∈ M2, cof G stands for the cofactor matrix of G.
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Proof. See [14] for the proof of (a), (b), and (d) in the case of C∞ maps. The same arguments are applicable
with the C3 regularity of Fs,δ. Property (c) follows immediately from the definition (2.14) of Fs,δ. �

Formulas (2.15) will appear in the expressions of the right and left derivatives of the reduced energy Emin

with respect to s, see (3.1), (3.5)–(3.8).

3. Energy release rate

The purpose of this section is to give precise formulas for the derivative of the energy with respect to the
crack length s. First of all, let us fix some notation. In what follows, for every t ∈ [0, T ], every s ∈ [0, L], and
every w ∈ H1(Ω), we will denote by us a solution to the minimum problem (2.9) in A(s, w).

Let t ∈ [0, T ], s ∈ (0, L), u ∈ H1(Ωs), and let ϑ be a cut-off function as in (2.14). We set

G(t, u, ϑ) := − 1
2

∫
Ωs

(DC ρs)∇u · ∇u dx−
∫

Ωs

C∇
(
(∇ρs − divρs 1M2)u

)
· ∇u dx

+
∫

Ωs

C(∇u∇ρs) · ∇u dx− 1
2

∫
Ωs

C∇u ·∇u divρs dx

+
∫

Ωs

Dξg(t, x, u) ·
[
(∇ρs − divρs 1M2)u−∇u ρs

]
dx

−
∫

Γs

Dξϕ(t, [u]) ·
(
(∇ρs − divρs 1M2)u

)
dH1

−
∫

Γs

ϕ(t, [u]) ν ⊗ τ

(
0 1
1 0

)
·∇ρs dH1 −

∫
Γs

ϕ(t, [u]) divρs dH1, (3.1)

where ρs has been introduced in Lemma 2.4, ν and τ are the unit normal and unit tangent vectors to Σ,
respectively, and DC ρs is a fourth order tensor given by

(DC ρs)ijkl :=
2∑

m=1

∂Cijkl

∂xm
ρs,m, ρs = (ρs,1, ρs,2). (3.2)

In particular, we notice that G depends on ϑ through the definition of ρs, see (2.15).
We introduce the right and left derivatives of Emin with respect to the arc-length of the crack s: for every

t ∈ [0, T ] and every w ∈ H1(Ω) we define

∂+
s Emin(t, s, w) := lim

δ↘0

Emin(t, s+ δ, w) − Emin(t, s, w)
δ

for every s ∈ [0, L), (3.3)

and
∂−s Emin(t, s, w) := lim

δ↗0

Emin(t, s+ δ, w) − Emin(t, s, w)
δ

for every s ∈ (0, L], (3.4)

if the two limits exist.
We are now ready to state the main results of this section.

Theorem 3.1. For every t ∈ [0, T ], every s ∈ (0, L), and every w ∈ H1(Ω), the limit in (3.3) exists and

∂+
s Emin(t, s, w) = 1 − G+(t, s, w), (3.5)

where we have set

G+(t, s, w) := max {G(t, us, ϑ) : us ∈ A(s, w) is a minimizer of E(t, s, ·)}, (3.6)

for a given cut-off function ϑ as in (2.14).
Moreover, G+(t, s, w) does not depend on the choice of ϑ.
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Theorem 3.2. For every t ∈ [0, T ], every s ∈ (0, L), and every w ∈ H1(Ω), the limit in (3.4) exists and

∂−s Emin(t, s, w) = 1 − G−(t, s, w), (3.7)

where we have set

G−(t, s, w) := min {G(t, us, ϑ) : us ∈ A(s, w) is a minimizer of E(t, s, ·)}, (3.8)

for a given cut-off function ϑ as in (2.14).
Moreover, G−(t, s, w) does not depend on the choice of ϑ.

Remark 3.3. We notice that formulas (3.5)–(3.8) say that the function s �→ Emin(t, s, w) is not differentiable in
the interval (0, L). This is due to the lack of uniqueness of solution to (2.9) and, more in general, to the fact that
a minimizer of E(t, s, ·) might not be approximated by minima of E(t, s+δ, ·) as δ → 0. The consequences of this
“non-approximability” will be clear in the proofs of Theorems 3.1 and 3.2, and will be stressed in Remark 3.9.

Let us anticipate, as stated in Proposition 3.11 below, that we can not expect to have the continuity of ∂+
s Emin

and ∂−s Emin as functions of t, s, and w, thus the arguments used in [19, 22] have to be modified as in [20] in
order to find a quasi-static evolution as limit of viscous solutions, see Sections 4–7.

We finally notice that the terms G+ and G− appearing in (3.5) and (3.7) are the generalization of the energy
release rate, see e.g. [18, 21]. To be consistent with the existent literature dealing with Griffith’s criterion, the
definitions of viscous and quasi-static evolutions will involve G+ and G−, see Definitions 4.5 and 4.7.

Remark 3.4. We point out that, to prove Theorems 3.1 and 3.2, we can not apply the abstract results in [19,20],
since we can not ensure that property (E2) of [19, 20], that is,

|∂δE(t, s+ δ, u)| ≤ c1(c2 + E(t, s+ δ, u)) for |δ| small, u ∈ A(s+ δ, w),

holds in our framework. Indeed, we are able to prove that

|∂δE(t, s+ δ, u)| ≤ c(‖u‖2
H1 + ‖u‖p

H1),

E(t, s+ δ, u) ≥ c̃‖u‖2
H1 ,

(3.9)

where p ∈ (1,+∞) has been fixed in (2.6). However, (3.9) is not sufficient to get (E2) if p > 2.
Moreover, we notice that, with our method, we do not need to assume g to be differentiable with respect to

the space variable x ∈ Ω, as it has been done in [20].

In order to compute ∂±Emin, for every s ∈ (0, L) and δ ∈ (−δ0, δ0) (see Lem. 2.4) we need to introduce the
Piola transformation Ps,δ associated to Fs,δ:

Ps,δ u := (cof ∇Fs,δ)Tu ◦Fs,δ for every u ∈ A(s+ δ, w). (3.10)

We notice that Ps,δ is an isomorphism between A(s+ δ, w) and A(s, w) whose inverse is given by

P−1
s,δ u := ((cof ∇Fs,δ)−Tu) ◦F−1

s,δ for every u ∈ A(s, w). (3.11)

For simplicity of notation, we also set

uδ := (cof∇Fs,δ)−Tu = (P−1
s,δ u) ◦Fs,δ. (3.12)

Before starting the proofs of Theorems 3.1 and 3.2, we show some properties concerning the behavior of us

and Emin with respect to time t, the parameter s, and the Dirichlet boundary datum w. In the next lemmas, we
prove the continuity of the energy Emin in [0, T ]× (0, L) ×H1(Ω).
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Lemma 3.5. Let s ∈ (0, L) and let uδ ∈ H1(Ω \ Σ). Assume that there exists u0 ∈ H1(Ω \ Σ) such that
uδ → u0 in H1(Ω \ Σ) as δ → 0. Then the sequences uδ ◦Fs,δ, uδ ◦F−1

s,δ , Ps,δ uδ, and P−1
s,δ uδ converge to u0

strongly in H1(Ω \Σ) as δ → 0.

Proof. Thanks to the properties stated in Lemma 2.4, the lemma can be easily proved by using the changes of
coordinates x = F−1

s,δ (y) and x = Fs,δ(y). �

Lemma 3.6. The reduced energy Emin : [0, T ]× [0, L]×H1(Ω) → R is lower semicontinuous.

Proof. Let tk, t ∈ [0, T ], sk, s ∈ [0, L], wk, w ∈ H1(Ω) be such that tk → t, sk → s, and wk → w in H1(Ω) as
k → +∞. For every k, let us fix uk ∈ A(sk, wk) minimizer of E(tk, sk, ·). Then, by Korn’s inequality and by the
hypotheses (2.2), (2.3), (2.6), and (2.7), we have, for some ε > 0 small enough and some c1, c2 > 0,

c1‖uk‖2
H1 − aε − bε ≤ E(tk, sk, uk) ≤ E(tk, sk, wk) ≤ c2‖wk‖2

H1 + aε + L.

The previous inequality and the convergence wk → w in H1(Ω) imply that the sequence uk is bounded in
H1(Ω \Σ). Therefore, there exists u ∈ H1(Ω \Σ) such that, up to a subsequence, uk ⇀ u weakly in H1(Ω \Σ).
By the compactness of the trace operator, we deduce that u ∈ A(s, w). Moreover, (2.11) holds. Hence

Emin(t, s, w) ≤ E(t, s, u) ≤ lim inf
k

E(tk, sk, uk) = lim inf
k

Emin(tk, sk, wk),

and this concludes the proof. �
Lemma 3.7. Let tk, t ∈ [0, T ], sk, s ∈ (0, L), wk, w ∈ H1(Ω) be such that tk → t, sk → s, and wk → w
in H1(Ω) as k → +∞. Let uk ∈ A(sk, wk) be a sequence of minimizers of E(tk, sk, ·). Then, there exists
u ∈ A(s, w) minimizer of E(t, s, ·) such that, up to a subsequence, uk → u in H1(Ω \Σ).

In particular, the reduced energy Emin is continuous on [0, T ]× (0, L) ×H1(Ω).

Proof. As in the proof of Lemma 3.6, we can find u ∈ A(s, w) such that, up to a subsequence, uk ⇀ u weakly
in H1(Ω \Σ).

Let us prove that u is a minimizer of E(t, s, ·) in A(s, w). Fix us ∈ A(s, w) minimizer of E(t, s, ·). Then, by
Lemma 2.4 and by the properties of the Piola transformation (3.10), for k large enough we have P−1

s,sk−s us +
wk −w ∈ A(sk, wk). Thanks to Lemma 3.5, P−1

s,sk−s us → us in H1(Ω \Σ) as k → +∞. Thus, by (2.11) and by
the minimality of uk, we obtain

Emin(t, s, w) ≤ E(t, s, u) ≤ lim inf
k→+∞

E(tk, sk, uk) ≤ lim sup
k→+∞

E(tk, sk, uk)

≤ lim
k→+∞

E(tk, sk, P
−1
s,sk−s us + wk − w) = E(t, s, us) = Emin(t, s, w). (3.13)

From (3.13) we deduce that u is a minimizer of E(t, s, ·) in A(s, w) and

E(t, s, u) = Emin(t, s, w) = lim
k→+∞

Emin(tk, sk, wk) = lim
k→+∞

E(tk, sk, uk). (3.14)

Therefore, by Lemma 2.3 we get that uk → u strongly in H1(Ω \ Σ). Moreover, (3.14) implies that Emin is
continuous on [0, T ]× (0, L) ×H1(Ω). �

In the proof of Theorem 3.1 we will need the following lemma.

Lemma 3.8. Let Ω ⊆ R2 be an open, bounded, and connected set with Lipschitz boundary. Let ϑ ∈ C∞
c (Ω) and

δ0 > 0 be fixed as in (2.14) and in Lemma 2.4. Then the following facts hold true:

(a) there exists c = c(ϑ) > 0 such that for every u ∈ H1(Ω):∥∥∥δ−1
(
u ◦F−1

s,δ − u
)∥∥∥

L2
≤ c(ϑ)‖∇u‖L2. (3.15)

Moreover, δ−1(u ◦F−1
s,δ − u) → −∇u ρs in L2(Ω) as δ → 0;
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(b) assume that there exist δk → 0, |δk| < δ0, and uδk
, u ∈ H1(Ω) such that uδk

⇀ u weakly in H1(Ω) as
k → +∞. Then δ−1

k (uδk
− uδk

◦Fs,δk
) ⇀ −∇u ρs weakly in L2(Ω) as k → +∞.

Proof. We adapt the proof of ([18], Lem. 4.1) to the case of a curved prescribed crack path Σ.
Let us fix u ∈ H1(Ω). For |δ| < δ0 we define Lδ(u) := δ−1(u ◦F−1

s,δ − u) and L0(u) := −∇u ρs. The function
Lδ : H1(Ω) → L2(Ω) is a linear operator for every |δ| < δ0. We want to prove that they are uniformly bounded.

To this end, for |δ| < δ0 and h ∈ R small enough, we set xh := F−1
s,δ+h(y) and x := F−1

s,δ (y) for y ∈ Ω. We
compute

lim
h→0

xh − x

h
·

By definition of Fs,·, we have

0 =
1
h

(Fs,δ+h(xh) − Fs,δ(x)) =
1
h

(Fs,δ+h(xh) − Fs,δ+h(x)) +
1
h

(Fs,δ+h(x) − Fs,δ(x)). (3.16)

By the mean value theorem, there exists th ∈ (0, 1) such that

Fs,δ+h(xh) − Fs,δ+h(x) = ∇Fs,δ+h(xth
)(xh − x),

where xth
:= x + th(xh − x). Since Fs,δ+h is a C3-diffeomorphism, for every h there exists (∇Fs,δ+h(xth

))−1.
Hence, (3.16) becomes

0 =
xh − x

h
+ (∇Fs,δ+h(xth

))−1 Fs,δ+h(x) − Fs,δ(x)
h

· (3.17)

Passing to the limit in (3.17) as h→ 0, since xth
→ x we get

ρs,δ(x) := lim
h→0

xh − x

h
= −(∇Fs,δ(x))−1∂δFs,δ(x). (3.18)

Let now u ∈ C∞(Ω) be fixed. For every y ∈ Ω, by (3.18) we have

Lδ(u)(y) =
1
δ

∫ 1

0

d
dh
u(F−1

s,hδ(y)) dh =
∫ 1

0

∇u(F−1
s,hδ(y)) ρs,hδ(F−1

s,hδ(y)) dh. (3.19)

Taking the L2 norm of Lδ(u) in (3.19) and applying Hölder’s inequality and the change of coordinates y =
Fs,hδ(x), we obtain

‖Lδ(u)‖2
L2 ≤

∫ 1

0

∫
Ω

|∇u ρs,hδ|2 det∇Fs,hδ dx ≤ c(ϑ)‖∇u‖2
L2 , (3.20)

for some constant c(ϑ)> 0 independent of δ. Since C∞(Ω) is dense in H1(Ω), we deduce that (3.20) holds for
every u ∈ H1(Ω), which is exactly (3.15).

Moreover, thanks to (3.19), for every u ∈ C∞(Ω) we have

‖Lδ(u) − L0(u)‖2
L2 ≤

∫ 1

0

∫
Ω

|∇u(F−1
s,hδ(y))ρs,hδ(F−1

s,hδ(y)) + ∇u ρs(y)|2 dy dh. (3.21)

For (h, y) ∈ [0, 1] × Ω fixed, the integrand in (3.21) converges to 0 pointwise as δ → 0, thus, by the dominated
convergence theorem, we get that Lδ(u) → L0(u) strongly in L2(Ω) for every u ∈ C∞(Ω). By (3.20) and a
density argument, the same is true for u ∈ H1(Ω). This concludes the proof of point (a).
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Let us now prove (b). For every v ∈ C∞
c (Ω), it holds

∫
Ω

δ−1
k (uδk

− uδk
◦Fs,δk

) · v dx

= −
∫

Ω

uδk
·Lδk

(v) dx + δ−1
k

∫
Ω

uδk
· (v ◦F−1

s,δk
)(1 − det∇F−1

s,δk
) dx

= −
∫

Ω

uδk
·Lδk

(v) dx + δ−1
k

∫
Ω

uδk
· (v ◦F−1

s,δk
)

det∇Fs,δk
(F−1

s,δk
(x)) − 1

det∇Fs,δk
(F−1

s,δk
(x))

dx. (3.22)

In the last integral of (3.22) we perform the change of coordinates x = Fs,δ(y), thus we obtain

∫
Ω

δ−1
k (uδk

− uδk
◦Fs,δk

) · v dx = −
∫

Ω

uδk
·Lδk

(v) dx +
∫

Ω

(uδk
◦Fs,δk

) · v det∇Fs,δk
− 1

δk
dx. (3.23)

Passing to the limit in (3.22) as k → +∞, taking into account point (a), Lemma 2.4, and the weak convergence
uδk

◦Fs,δk
⇀ u in H1(Ω), we get

lim
k

∫
Ω

δ−1
k (uδk

− uδk
◦Fs,δk

) · v dx =
∫

Ω

u ·∇v ρs dx+
∫

Ω

u · v divρs dx

=
∫

Ω

u ·div(v ⊗ ρs) dx = −
∫

Ω

v ·∇u ρs dx, (3.24)

where, in the last equality, we have used the divergence theorem.
Since

δ−1
k (uδk

− uδk
◦Fs,δk

) = Lδk
(uδk

◦Fs,δk
),

estimate (3.15) and the weak convergence of uδk
imply that there exists C > 0 such that for every k

‖δ−1
k (uδk

− uδk
◦Fs,δk

)‖L2 ≤ C.

Therefore, taking into account the density of C∞
c (Ω) in L2(Ω), we deduce that (3.24) holds for every v ∈ L2(Ω),

hence δ−1
k (uδk

− uδk
◦Fs,δk

) ⇀ −∇u ρs weakly in L2(Ω) as k → +∞, and the proof of the lemma is thus
concluded. �

We are now ready to prove Theorem 3.1. Here, we follow the steps of ([18], Thm. 3.3). Before starting the
proof, we notice that, with the notation introduced in (3.10) and (3.11), for δ > 0 these inequalities hold:

Emin(t, s+ δ, w) − Emin(t, s, w)
δ

≤
E(t, s+ δ, P−1

s,δ us) − E(t, s, us)
δ

,

E(t, s+ δ, us+δ) − E(t, s, Ps,δ us+δ)
δ

≤ Emin(t, s+ δ, w) − Emin(t, s, w)
δ

,

(3.25)

for every us ∈ A(s, w) and every us+δ ∈ A(s + δ, w) minimizers of E(t, s, ·) and E(t, s + δ, ·), respectively.
Estimates (3.25) will be the key point of the following proofs.
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Proof of Theorem 3.1. Fix t ∈ [0, T ], s ∈ (0, L), and w ∈ H1(Ω). Let us consider the first inequality in (3.25).
Recalling the notation introduced in (3.10), (3.11), and (3.12), for 0 < δ < δ0 we have, by the change of variables
x = F−1

s,δ (y),

E(t, s+ δ, P−1
s,δ us) − E(t, s, us)
δ

=
1
2δ

(∫
Ωs

C(Fs,δ(x))∇uδ
s (∇Fs,δ)−1 · ∇uδ

s (∇Fs,δ)−1 det∇Fs,δ dx

−
∫

Ωs

CEus ·Eus dx
)
− 1
δ

(∫
Ωs+δ

g(t, x, P−1
s,δ us) dx−

∫
Ωs

g(t, x, us) dx
)

+
1
δ

(∫
Γs

ϕ(t, [uδ
s])

√
1+(ψ′

s ◦Fs,δ)2√
1+ψ′2

s

det∇Fs,δ dH1−
∫

Γs

ϕ(t, [us]) dH1

)
+1

=
1
δ
I1 −

1
δ
I2 +

1
δ
I3 + 1.

(3.26)

Thanks to the properties of Fs,δ stated in Lemma 2.4 and to the regularity of the elasticity tensor C, applying
the dominated convergence theorem we easily get that

lim
δ↘0

1
δ
I1 =

1
2

∫
Ωs

(DC ρs)∇us · ∇us dx+
∫

Ωs

C∇
(
(∇ρs − divρs 1M2

)
us) · ∇us dx

−
∫

Ωs

C(∇us∇ρs) · ∇us dx+
1
2

∫
Ωs

C∇us · ∇us divρs dx. (3.27)

We now deal with the term I2 of (3.26). In view of the regularity properties of g, we can apply the mean
value theorem: for a.e. x ∈ Ω there exists ζδ(x) ∈ (0, 1) such that

g(t, x, P−1
s,δ us(x))−g(t, x, us(x)) = Dξg(t, x, P−1

s,δ us(x)+ζδ(x)(P−1
s,δ us(x)−us(x))) · (P−1

s,δ us(x)−us(x)). (3.28)

Let us set ūδ := P−1
s,δ us + ζδ(P−1

s,δ us − us), where ζδ is as in (3.28). We can continue in (3.28), obtaining

g(t, x, P−1
s,δ us(x)) − g(t, x, us(x)) = Dξg(t, x, ūδ(x)) ·

[
(P−1

s,δ us − us ◦F−1
s,δ ) + (us ◦F−1

s,δ − us)
]
. (3.29)

By Lemma 3.5, us ◦F−1
s,δ and P−1

s,δ us converge to us in H1(Ω \ Σ) as δ ↘ 0. Hence, we also have, up to a
subsequence, ūδ → us pointwise. Thanks to Lemmas 2.4 and 3.8, to condition (2.4) on g, and to the dominated
convergence theorem, we get

lim
δ↘0

1
δ
I2 =

∫
Ωs

Dξg(t, x, us) ·
[
(∇ρs − divρs 1M2)us −∇us ρs

]
dx. (3.30)

We now consider the term I3 in (3.26). We can write it as

I3 =
∫

Γs

ϕ(t, [uδ
s])

√
1 + (ψ′

s ◦Fs,δ)2√
1 + ψ′2

s

(det∇Fs,δ − 1) dH1

+
∫

Γs

ϕ(t, [uδ
s])
(√

1 + (ψ′
s ◦Fs,δ)2√

1 + ψ′2
s

− 1
)

dH1 +
∫

Γs

(ϕ(t, [uδ
s]) − ϕ(t, [us])) dH1

= I1,3 + I2,3 + I3,3. (3.31)
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For the first two terms in (3.31) it is easy to see that

lim
δ↘0

1
δ
I1,3 +

1
δ
I2,3

=
∫

Γs

ϕ(t, [us]) divρs dH1 +
∫

Γs

ϕ(t, [us])
ψ′

sψ
′′
s

1 + ψ′ 2
s

γ′1(s)ϑ(γ(s) − x) dH1

=
∫

Γs

ϕ(t, [us]) divρs dH1 +
∫

Γs

ϕ(t, [us]) ν ⊗ τ

(
0 1
1 0

)
· ∇ρs dH1. (3.32)

For the last term in (3.31), we exploit again the mean value theorem: for H1-a.e. x ∈ Γs there exists
ζδ(x) ∈ (0, 1) such that

ϕ(t, [uδ
s](x)) − ϕ(t, [us](x)) = Dξϕ(t, [uδ

s](x) + ζδ(x)([uδ
s](x) − [us](x))) · ([uδ

s](x) − [us](x))

Arguing as in (3.30) and taking into account hypothesis (2.6) on ϕ, we get

lim
δ↘0

1
δ
I3,3 =

∫
Γs

Dξϕ(t, [us]) ·
(
(∇ρs − divρs 1M2)us

)
dH1. (3.33)

Collecting (3.25)–(3.27) and (3.30)–(3.33) we deduce

lim sup
δ↘0

Emin(t, s+ δ, w) − Emin(t, s, w)
δ

≤ lim
δ↘0

E(t, s+ δ, uδ
s) − E(t, s, us)
δ

= 1 −G(t, us, ϑ). (3.34)

Since we can repeat the previous argument for every us ∈ A(s, w) minimizer of E(t, s, ·), taking the infimum in
the right-hand side of (3.34) we get

lim sup
δ↘0

Emin(t, s+ δ, w) − Emin(t, s, w)
δ

≤ 1− sup{G(t, us, ϑ) : us ∈ A(s, w) is a minimizer of E(t, s, ·)}. (3.35)

In particular, since the set of minimizers {us} is bounded in H1(Ωs) for every s ∈ (0, L), the supremum in (3.35)
is finite.

To prove the converse inequality for the lim inf, we argue in a similar way on the second inequality of (3.25),
taking into account Lemmas 2.4, 3.5, 3.7, and point (b) of Lemma 3.8. Indeed, for every δ > 0 we fix us+δ ∈
A(s + δ, w) minimizer of E(t, s + δ, ·). By Lemma 3.7, we deduce that there exist a subsequence δk ↘ 0 and
us ∈ A(s, w) minimizer of E(t, s, ·) such that us+δk

→ us inH1(Ω\Σ). Lemma 3.5 implies that us+δk
◦Fs,δk

→ us

in H1(Ωs). For simplicity, we set Us,δk
:= us+δk

◦Fs,δk
and notice that Ps,δk

us+δk
= (cof∇Fs,δk

)TUs,δk
.

We can write

E(t, s+ δk, us+δk
) − E(t, s, Ps,δk

us+δk
)

δk

=
1

2δk

(∫
Ωs

C(Fs,δk
(x))∇Us,δk

(∇Fs,δk
)−1 · ∇Us,δk

(∇Fs,δk
)−1 det∇Fs,δk

dx

−
∫

Ωs

C∇(Ps,δk
us+δk

) · ∇(Ps,δk
us+δk

) dx
)

− 1
δk

(∫
Ωs

g(t, x, us+δk
) dx−

∫
Ωs

g(t, x, Ps,δk
us+δk

) dx
)

+
1
δk

(∫
Γs

ϕ(t, [Us,δk
])

√
1 + (ψ′

s ◦Fs,δk
)2√

1 + ψ′2
s

det∇Fs,δk
dH1

−
∫

Γs

ϕ(t, [Ps,δk
us+δk

]) dH1

)
+ 1. (3.36)
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Following step by step the proof of (3.34), in view of Lemma 2.4, of point (b) of Lemma 3.8, and of the
previous observations, we can pass to the limit as k → +∞ in (3.36) getting

lim
k

E(t, s+ δk, us+δk
) − E(t, s, Ps,δk

us+δk
)

δk
= 1 −G(t, us, ϑ)

≥ 1 − sup {G(t, us, ϑ) : us ∈ A(s, w) is a minimizer of E(t, s, ·)}. (3.37)

By a contradiction argument, from inequality (3.37) it follows that

lim inf
δ↘0

Emin(t, s+ δ, w) − Emin(t, s, w)
δ

≥ 1 − sup {G(t, us, ϑ) : us ∈ A(s, w) is a minimizer of E(t, s, ·)}. (3.38)

Thus, collecting inequalities (3.35) and (3.38), we get that the limit in (3.3) exists and

∂+
s Emin(t, s, w) = 1 − sup {G(t, us, ϑ) : us ∈ A(s, w) is a minimizer of E(t, s, ·)}. (3.39)

It remains to prove that the supremum in (3.39) is attained. Let us consider a sequence of minimizers un
s of

E(t, s, ·) in A(s, w) such that

lim
n
G(t, un

s , ϑ) = sup {G(t, us, ϑ) : us ∈ A(s, w) is a minimizer of E(t, s, ·)}.

Since Lemma 3.7 holds, there exist a subsequence, not relabeled, and a minimizer u ∈ A(s, w) of E(t, s, ·) such
that un

s → u in H1(Ωs). Since G is continuous with respect to the strong convergence in H1(Ω \Σ), we have

lim
n
G(t, un

s , ϑ) = G(t, u, ϑ) = sup {G(t, us, ϑ) : us ∈ A(s, w) is a minimizer of E(t, s, ·)}.

This concludes the proof of (3.5).
Finally, in view of the definition (3.3) of ∂+

s Emin, we notice that G+ does not depend on the cut-off
function ϑ. �

Exploiting the arguments of Theorem 3.1, we can also prove Theorem 3.2.

Proof of Theorem 3.2. We just have to follow step by step the proof of Theorem 3.1.
In this case, since we are dealing with δ < 0, estimates (3.25) are replaced by

Emin(t, s+ δ, w) − Emin(t, s, w)
δ

≤ E(t, s+ δ, us+δ) − E(t, s, Ps,δ us+δ)
δ

,

E(t, s+ δ, P−1
s,δ us) − E(t, s, us)
δ

≤ Emin(t, s+ δ, w) − Emin(t, s, w)
δ

,

(3.40)

for every us ∈ A(s, w) minimizer of E(t, s, ·) and every us+δ ∈ A(s+ δ, w) minimizer of E(t, s+ δ, ·).
The second inequality in (3.40) can be treated as the corresponding one in the first part of the proof of

Theorem 3.1. This time, it leads us to

lim inf
δ↗0

Emin(t, s+ δ, w) − Emin(t, s, w)
δ

≥ 1 −G(t, us, ϑ). (3.41)

Since (3.41) holds for every us ∈ A(s, w) minimizer of E(t, s, ·), taking the supremum we obtain

lim inf
δ↗0

Emin(t, s+ δ, w) − Emin(t, s, w)
δ

≥ 1 − inf {G(t, us, ϑ) : us ∈ A(s, w) is a minimizer of E(t, s, ·)}. (3.42)
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For the first inequality in (3.40), we argue again as in the proof of (3.38). In this case, we get

lim sup
δ↗0

Emin(t, s+ δ, w) − Emin(t, s, w)
δ

≤ 1 − inf {G(t, us, ϑ) : us ∈ A(s, w) is a minimizer of E(t, s, ·)}. (3.43)

Collecting the inequalities (3.42) and (3.43), we have that the limit in (3.4) exists. Moreover, recalling the
definition (3.4), we have

∂−s Emin(t, s, w) = 1 − inf {G(t, us, ϑ) : us ∈ A(s, w) is a minimizer of E(t, s, ·)}. (3.44)

As in the proof of Theorem 3.1, the infimum in (3.44) is actually a minimum, thus (3.7) is proved. Finally, G−

does not depend on the cut-off function ϑ. This concludes the proof of Theorem 3.2. �

Remark 3.9. As we have already noticed in Remark 3.3, the general non-existence of the derivative of Emin

with respect to the crack-length s is due to the lack of approximability of the minimizers us ∈ A(s, w) of
E(t, s, ·), that is, it is not true that for every us and every δ > 0 there exist us+δ ∈ A(s + δ, w) minimizer of
E(t, s+δ, ·) and us−δ ∈ A(s−δ, w) minimizer of E(t, s−δ, ·) such that us+δ, us−δ → us in H1(Ω \Σ) as δ ↘ 0. If
this approximation property were true, then, in the inequalities (3.35), (3.38), (3.42), and (3.43), we could take
both the infimum and the supremum. As a consequence, it would be ∂+

s Emin = ∂−s Emin and the reduced energy
would be differentiable with respect to s ∈ (0, L). For instance, this is true if the functions ξ �→ ϕ(t, ξ) and
ξ �→ g(t, x, ξ) are convex. Indeed, in this case the minimum problem (2.9) has a unique solution us ∈ A(s, w)
and the function s �→ us is continuous.

Remark 3.10. We briefly notice that if we drop the non-interpenetration condition in the definition (2.10) of
the admissible displacements A(s, w), Theorems 3.1 and 3.2 hold with a simpler formula for G, namely

G(t, u, ϑ) := − 1
2

∫
Ωs

(DC ρs)∇u · ∇u dx+
∫

Ωs

C(∇u∇ρs) · ∇u dx

− 1
2

∫
Ωs

C∇u · ∇u divρs dx−
∫

Ωs

Dξg(t, x, u) · ∇u ρs dx

−
∫

Γs

ϕ(t, [u]) ν ⊗ τ

(
0 1
1 0

)
· ∇ρs dH1 −

∫
Γs

ϕ(t, [u]) divρs dH1.

The ideas of the proofs present minor changes due to the fact that we do not need the Piola transformation Ps,δ

anymore. Indeed, u ◦Fs,δ ∈ A(s, w) for every u ∈ A(s+ δ, w) in this case.
Moreover, we stress that a C2-regularity of the curveΣ is enough, and that we do not need the differentiability

hypothesis on ϕ.

Thanks to Theorems 3.1 and 3.2, we are allowed to define the functions

G+,G− : [0, T ]× (0, L) ×H1(Ω) → R,

whose expressions are given by (3.6) and (3.8), respectively.
We now state a property of semicontinuity of G+ and G− which will be useful in the next sections.

Proposition 3.11. The following facts hold:

(a) for every t ∈ [0, T ], every s ∈ (0, L), and every w ∈ H1(Ω)

G+(t, s, w) ≥ G−(t, s, w) ≥ 0 ;
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(b) the function G+ is upper semicontinuous with respect to the strong topology of R × R ×H1(Ω);
(c) the function G− is lower semicontinuous with respect to the strong topology of R × R ×H1(Ω).

Proof. To prove property (a), we just notice that G+(t, s, w) and G−(t, s, w) are the negative of the right and
left derivatives of the function

s �→ Emin(t, s, w) − s.

Since this function is monotone non-increasing and Theorems 3.1, 3.2 hold, we get (a).
Let us prove (b). We consider a sequence (tk, sk, wk) → (t, s, w) in [0, T ] × (0, L) × H1(Ω) and ϑ a cut-

off function defined as in (2.14). By Theorem 3.1, for every k ∈ N there exists usk
∈ A(sk, wk) minimizer

of E(tk, sk, ·) such that G+(tk, sk, wk) = G(tk, usk
, ϑ). By Lemma 3.7, there exists us ∈ A(s, w) minimizer

of E(t, s, ·) such that, up to a subsequence, usk
→ us in H1(Ω \Σ). Formula (3.1), together with the hypotheses

on g and on ϕ, implies that
G(t, us, ϑ) = lim

k
G(tk, usk

, ϑ).

By (3.6), G(t, us, ϑ) ≤ G+(t, s, w), thus we deduce the upper semicontinuity of G+.
In the same way, taking into account (3.8), we obtain the lower semicontinuity of G−, and this concludes the

proof. �

We conclude this section with a proposition which helps us to give an interpretation to G defined in (3.1).
Let t ∈ [0, T ], s ∈ (0, L), w ∈ H1(Ω), u ∈ H1(Ω \Σ), and η > 0. We define

Eη
loc(t, s, u) := inf {E(t, s, v) : v ∈ A(s, w), ‖v − u‖H1 ≤ η}. (3.45)

By the direct method of the calculus of variations, we can prove that the infimum in (3.45) is attained.

Proposition 3.12. Let t ∈ [0, T ], s ∈ (0, L), w ∈ H1(Ω), us ∈ A(s, w) a minimizer of E(t, s, ·), and let ϑ be a
cut-off function as in (2.14). Then

G(t, us, ϑ) − 1 = lim
η↘0

lim inf
δ↘0

E(t, s, us) − Eη
loc(t, s+ δ, us)
δ

= lim
η↘0

lim sup
δ↘0

E(t, s, us) − Eη
loc(t, s+ δ, us)
δ

· (3.46)

In particular, G(t, us, ϑ) =: G(t, us) does not depend on ϑ.

Proof. Let t, s, w, and us be as in the statement of the proposition. Let η > 0 be fixed. With the notation
introduced in Lemma 3.8, for δ > 0 small enough we have P−1

s,δ us ∈ A(s+ δ, w) and, by Lemma 3.5, ‖P−1
s,δ us −

us‖H1 ≤ η. Thus, the following estimate from below holds:

E(t, s, us) − E(t, s+ δ, P−1
s,δ us)

δ
≤ E(t, s, us) − Eη

loc(t, s+ δ, us)
δ

· (3.47)

Therefore, as in the proof of Theorem 3.1, passing to the lim inf as δ ↘ 0 in (3.47) we get

G(t, us, ϑ) − 1 ≤ lim inf
δ↘0

E(t, s, us) − Eη
loc(t, s+ δ, us)
δ

· (3.48)

We now prove that

lim sup
δ↘0

E(t, s, us) − Eη
loc(t, s+ δ, us)
δ

≤ sup {G(t, uη, ϑ) : uη ∈ A(s, w) is a minimizer of Eη
loc(t, s, us)} − 1.

(3.49)
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Let us fix a sequence δk ↘ 0. Since, for every k, Eη+1/k
loc (t, s+ δk, us) ≤ Eη

loc(t, s+ δk, us), the following chain
of inequalities holds:

E(t, s, us) − Eη
loc(t, s+ δk, us)
δk

≤ E(t, s, us) − Eη+1/k
loc (t, s+ δk, us)
δk

=
E(t, s, us) − E(t, s+ δk, u

k
η)

δk
, (3.50)

where we denote by uk
η ∈ A(s + δk, w) a minimizer of Eη+1/k

loc (t, s+ δk, us). Since E(t, s, us) = Emin(t, s, w) and
Ps,δk

uk
η ∈ A(s, w), we can continue in (3.50) getting

E(t, s, us) − Eη
loc(t, s+ δk, us)
δk

≤
E(t, s, Ps,δk

uk
η) − E(t, s+ δk, u

k
η)

δk
· (3.51)

Up to a subsequence, we can assume that

lim sup
k

E(t, s, Ps,δk
uk

η) − E(t, s+ δk, u
k
η)

δk
= lim

k

E(t, s, Ps,δk
uk

η) − E(t, s+ δk, u
k
η)

δk
·

By construction, we have that uk
η is bounded in H1(Ω \Σ). Thus, we may assume that, up to a subsequence,

uk
η ⇀ u weakly in H1(Ω \ Σ) as k → +∞ for some u ∈ H1(Ω \ Σ). By the compactness of the trace operator

and by the lower semicontinuity of the H1-norm, we have u ∈ A(s, w) and ‖u− us‖H1 ≤ η.
Let us prove that u is a minimizer of Eη

loc(t, s, us): given vη ∈ A(s, w) a minimum of Eη
loc(t, s, us), thanks

to Lemma 3.5 we can find a sequence εk such that 0 < εk < δk, εk+1 < εk, and ‖P−1
s,εk

vη − vη‖H1 ≤ 1/k for
every k ∈ N. Therefore, by the triangle inequality we get

‖P−1
s,εk

vη − us‖H1 ≤ η + 1/k.

Moreover, by our choice of εk, P−1
s,εk

vη ∈ A(s + εk, w) ⊆ A(s + δk, w). Hence, in view of (2.11) in Lemma 2.3
and of the definition of vη, we obtain

E(t, s, vη) = Eη
loc(t, s, us) ≤ E(t, s, u) ≤ lim inf

k
E(t, s+ δk, u

k
η)

≤ lim sup
k

E(t, s+ δk, u
k
η) ≤ lim

k
E(t, s+ δk, P

−1
s,εk

vη) = E(t, s, vη). (3.52)

where, in the last equality, we have used the strong convergence of P−1
s,εk

vη to vη in H1(Ω \ Σ) as k → +∞.
The chain of inequalities (3.52) implies that u ∈ A(s, w) is a minimizer of Eη

loc(t, s, us) and that

E(t, s, u) = lim
k

E(t, s+ δk, u
k
η).

Thus, by Lemma 2.3 we get that uk
η → u strongly in H1(Ω \ Σ) as k → +∞. By Lemma 3.5, we also have

Ps,δk
uk

η → u in H1(Ω \Σ).
Passing to the lim sup in (3.51) as k → +∞ and taking into account the previous convergences, we get, as in

the proofs of Theorems 3.1 and 3.2,

lim sup
k

E(t, s, us) − Eη
loc(t, s+ δk, us)
δk

≤ lim
k

E(t, s, Ps,δk
uk

η) − E(t, s+ δk, u
k
η)

δk
= G(t, u, ϑ) − 1. (3.53)
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Taking the supremum in (3.53) among all the functions u minimizer of Eη
loc(t, s, us), we deduce that

lim sup
k

E(t, s, us) − Eη
loc(t, s+ δk, us)
δk

≤ sup {G(t, uη, ϑ) : uη ∈ A(s, w) is a minimizer of Eη
loc(t, s, us)} − 1.

(3.54)
By a contradiction argument, (3.54) implies (3.49). It is easy to see that, as in Theorem 3.1, the supremum

in (3.49) is actually a maximum.
Finally, passing to the limit in inequalities (3.48) and (3.49) as η ↘ 0, we get (3.46), and the proof is thus

concluded. �

Remark 3.13. In view of Proposition 3.12, we can interpret G(t, us) as a “local” energy release rate, in the
sense that it takes into account only deformations which are close to us in the H1-norm, while G± are “global”
energy release rates.

Since we have explicit formulas for the right and left derivatives of the reduced energy Emin in terms of the
generalized energy release rates G+ and G−, we are now in a position to study the problem of existence of a
quasi-static solution of our cohesive fracture model with an activation threshold. Following the ideas of [20], we
look for an evolution satisfying a weak form of Griffith’s criterion.

4. Quasi-static evolution

We provide a notion of quasi-static evolution based on the technique of vanishing viscosity. The solution is
defined through a process of time discretization: we first solve some incremental problems and then pass to the
limit as the time step vanishes. This is a typical procedure in the study of fracture mechanics, see e.g. [13],
and of other rate-independent processes [23]. In order to enforce local minimality, the incremental problems are
perturbed with a viscous parameter ε > 0 which tends to zero more slowly than the time step. This approach
was employed in [1, 11, 24, 25] in an abstract setting and in [19, 20, 22, 28] for the problem of crack growth.

First of all, let us fix some notation which will be used from now on: the reference configuration is described
by Ω, where Ω ⊆ R2 is an open, bounded, connected set with Lipschitz boundary. The crack path is given by
the C3-curve Σ ⊆ Ω. See Section 2 for the properties of Ω and Σ and (2.1) for the definition of admissible
cracks. Given T > 0, we consider

w ∈ AC([0, T ];H1(Ω)) and f ∈ AC([0, T ];L2(Ω)) (4.1)

which represent the Dirichlet boundary datum and the volume forces applied to Ω, respectively. In particu-
lar, f(t, x) · ξ will substitute the function g(t, x, ξ) defined in Section 2. For simplicity of notation, we will not
indicate the dependence of f and w on the space variable x.

Finally, we assume that the function ϕ : [0, T ] × R2 → R satisfies a further property of differentiability: we
suppose that ϕ(·, ξ) ∈ AC([0, T ]; R) for every ξ ∈ R2 and that there exist p ∈ (1,+∞) and a3 ∈ L1([0, T ]) with
a3 ≥ 0 such that

|Dtϕ(t, ξ)| ≤ a3(t)(1 + |ξ|p) for a.e. t ∈ [0, T ] and every ξ ∈ R
2. (4.2)

Fixed s ∈ [0, L] and t ∈ [0, T ], the energy of the system is, similar to (2.8),

E(t, s, u) :=
1
2

∫
Ωs

CEu ·Eu dx−
∫

Ωs

f(t) ·u dx+
∫

Γs

ϕ(t, [u]) dH1 + s, (4.3)

for every u ∈ A(s, w(t)), the set of admissible displacements at time t, defined as in (2.10). We recall that,
different from the Barenblatt’s model, we assume the cohesive part of the energy to be completely reversible,
while the dissipative term of the energy is given by the length of the crack s.
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Since the boundary datum is a function of t ∈ [0, T ], we slightly change the notation for the reduced en-
ergy Emin and for the energy release rates: for every s ∈ [0, L] and every t ∈ [0, T ], we define, similar to (2.13),

Emin(t, s) := min
u∈A(s,w(t))

E(t, s, u). (4.4)

Remark 4.1. By (4.1), all the results about Emin proved in Section 3 hold: by Lemmas 3.6 and 3.7 the reduced
energy Emin is lower semicontinuous on [0, T ]× [0, L] and continuous on [0, T ]× (0, L). By Theorems 3.1 and 3.2,
it has right and left derivatives with respect to the crack length s which are now denoted by ∂+

s Emin(t, s) and
∂−s Emin(t, s) for every (t, s) ∈ [0, T ]× (0, L). Moreover,

∂+
s Emin(t, s) = 1 − G+(t, s, w(t)),
∂−s Emin(t, s) = 1 − G−(t, s, w(t)),

where G± are defined as in (3.6) and in (3.8).

With an abuse of notation, we now set

G±(t, s) := G±(t, s, w(t)),

where, in the formulas (3.1), (3.6), and (3.8) for G±(t, s, w(t)), the function g(t, x, u) is replaced by f(t, x) · u
for an admissible displacement u.

Remark 4.2. Since w and f are continuous in time, a simple application of Proposition 3.11 shows that G+ is
upper semicontinuous and G− is lower semicontinuous on [0, T ]× (0, L).

We now discuss briefly the time incremental minimum problems and then give our definitions of viscous and
quasi-static evolutions.

For every k ∈ N we fix a subdivision {tki }k
i=0 of the time interval [0, T ] with tki := iτk and τk := T/k.

Given ε > 0, we define recursively the solution sk,i
ε to incremental minimum problems: let sk,0

ε := s0, where
s0 ∈ (0, L) is the initial condition, and, for i ≥ 1, let sk,i

ε be a solution to

min
{
Emin(tki , s) +

ε

2
(s− sk,i−1

ε )2

τk
: s ∈ [sk,i−1

ε , L]
}
. (4.5)

We postpone the proof of existence of a solution to (4.5) to the next section, see Proposition 5.1, to comment
briefly on the function which appears in (4.5). This function is the sum of two terms: the reduced energy Emin

defined by (4.4), which represents the energy of the system at the equilibrium for a fixed s ∈ [0, L], and a
perturbation term driven by ε > 0 which enforces a local minimization of the energy with respect to s. This
kind of approximation should guarantee that the evolution in the limit follows “local minimizers” of the energy
(see [8, 11, 20, 22, 24, 25, 27] for further discussions and applications).

The passage to the limit will be performed in two steps: we let first k → +∞ and find a viscous evolution for
every ε > 0, and, finally, we obtain a quasi-static evolution as the parameter ε tends to zero.

We introduce the concept of failure time and of jump set, important from now on.

Definition 4.3. Let a, b > 0 and let s : [0, a] → [0, b] be a monotone non-decreasing function. We define

• the failure time T (s) of s
T (s) := sup {t ∈ [0, a] : s(t) < b} ;

• the jump set J(s) of s
J(s) := {t ∈ [0, a] : s is discontinuous at t}.
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Remark 4.4. We notice that T is lower semicontinuous with respect to the pointwise convergence, that is, if
sk → s pointwise, then

T (s) ≤ lim inf
k

T (sk).

Of course, from now on we will consider only monotone non-decreasing functions from [0, T ] with values in
[0, L].

We now give a definition of viscous evolution and quasi-static evolution for the cohesive crack growth problem.

Definition 4.5. Let ε > 0 and s0 ∈ (0, L). We say that a monotone non-decreasing function sε ∈ H1([0, T ])
is a viscous evolution for the cohesive crack growth problem with sε(0) = s0 if it satisfies the following rate-
dependent Griffith’s criterion:
for a.e. t ∈ [0, T (sε))

(1) ṡε(t) ≥ 0;
(2) G−(t, sε(t)) − 1 − εṡε(t) ≤ 0;
(3) (G+(t, sε(t)) − 1 − εṡε(t)) ṡε(t) ≥ 0.

In Section 6 we will prove the following existence theorem.

Theorem 4.6. Let ε > 0, f ∈ AC([0, T ];L2(Ω)), and w ∈ AC([0, T ];H1(Ω)). Then, for every s0 ∈ (0, L) there
exists a viscous evolution sε ∈ H1([0, T ]) for the cohesive crack growth problem with sε(0) = s0.

Definition 4.7. Let s0 ∈ (0, L). We say that a monotone non-decreasing function s ∈ BV ([0, T ]) is a quasi-
static evolution for the cohesive crack growth problem with s(0) = s0 if it satisfies:

(1) for every t ∈ [0, T (s)) \ J(s):
G−(t, s(t)) ≤ 1 ;

(2) for every t ∈ [0, T (s)) ∩ J(s):

G+(t, σ) ≥ 1 for every σ ∈ [s(t−), s(t+)] ;

(3) if t ∈ [0, T (s)) and G+(t, s(t)) < 1, then s is differentiable at t and ṡ(t) = 0.

Remark 4.8. We notice that in ([20], Def. 2.1) the evolution given in Definition 4.7 is called local energetic
solution. It generalizes the definition of local energetic solution in ([19], Def. 2.3) to the case of a non-differentiable
reduced energy Emin.

We can now state the main theorem of this paper.

Theorem 4.9. Let f ∈ AC([0, T ];L2(Ω)) and w ∈ AC([0, T ];H1(Ω)). Then, for every s0 ∈ (0, L) there exists
a quasi-static evolution s ∈ BV ([0, T ]) for the cohesive crack growth problem with s(0) = s0.

Remark 4.10. Theorem 4.9 is proved in Section 7. Its proof follows the ideas of ([20], Thm. 4.2). The main
difference is that, starting from the discrete solutions to (4.5), we first construct a viscous evolution as the
parameter k tends to +∞ (see Theorem 4.6) and then, passing to the limit as ε ↘ 0, we obtain a quasi-static
evolution according to Definition 4.7, while in [20] these steps are carried out simultaneously working with a
parameter k = k(ε).

Finally, we remark that in the proof of Theorem 4.9 we also show that if {sε}ε>0 is a sequence of viscous
evolutions for the cohesive crack growth problem with sε(0) = s0, then, up to a subsequence, sε converges
pointwise to a quasi-static evolution s ∈ BV ([0, T ]).
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5. The discrete-time problems

We now discuss the properties of the discrete-time solutions sk,i
ε introduced in Section 4. First of all, we have

to prove that they are well defined.

Proposition 5.1. For every ε > 0, k ∈ N, and i = 1, . . . , k, there exists a solution to (4.5).

Proof. We exploit the direct method of the calculus of variations. Let ε > 0, k ∈ N, and i = 1, . . . , k be fixed.
Let sj ∈ [sk,i−1

ε , L] be a minimizing sequence for the minimum problem (4.5). Up to a subsequence, we may
assume that there exists s ∈ [sk,i−1

ε , L] such that sj → s. Taking into account Lemma 3.6, we have that

Emin(tki , s) ≤ lim inf
j

Emin(tki , sj),

hence s is a solution to (4.5). �

We now provide some a priori bounds on the incremental solutions. In what follows, wk
i := w(tki ) and

fk
i := f(tki ).

Proposition 5.2. There exists C > 0 such that, for every k ∈ N and every ε > 0, the following inequality holds

ε

2

k∑
j=1

(sk,j
ε − sk,j−1

ε )2

τk
≤ C. (5.1)

Proof. During the proof of this proposition, we will denote by uk
i a minimizer of E(tki , s

k,i
ε , ·) in A(sk,i

ε , wk
i ) and

by Ωk
i , Γ

k
i the sets Ωsk,i

ε
, Γsk,i

ε
, respectively.

First, let us prove that the minimizers uk
i are bounded in H1(Ω \ Σ) uniformly with respect to k ∈ N,

i = 1, . . . , k, and ε > 0. Indeed, wk
i ∈ A(sk,i

ε , wk
i ) and, by (2.2), (2.6), the hypothesis ϕ(tki , 0) = 0, and Hölder’s

inequality, we get

E(tki , s
k,i
ε , uk

i ) = Emin(tki , s
k,i
ε ) ≤ E(tki , s

k,i
ε , wk

i ) ≤ β

2
‖wk

i ‖2
H1 + ‖fk

i ‖L2‖wk
i ‖H1 + L. (5.2)

From (4.1) and (5.2), we deduce that, for some c > 0,

Emin(tki , s
k,i
ε ) = E(tki , s

k,i
ε , uk

i ) ≤ c. (5.3)

Therefore, since (2.2) holds and ϕ satisfies (2.7) uniformly in t, applying Hölder’s and Korn’s inequalities to (5.3)
we obtain

c1‖uk
i ‖2

H1 − ‖fk
i ‖L2‖uk

i ‖H1 − c2 ≤ Emin(tki , s
k,i
ε ) ≤ c (5.4)

for some c1, c2 > 0. By the absolute continuity of f and by Young’s inequality, from (5.4) it follows that there
exists M > 0 such that for every k, every i = 1, . . . , k, and every ε > 0:

‖uk
i ‖H1 ≤M and Emin(tki , s

k,i
ε ) ≥ −M. (5.5)
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Let k ∈ N, i = 1, . . . , k, and ε > 0 be fixed. Since uk
i−1 + wk

i − wk
i−1 ∈ A(sk,i−1

ε , wk
i ), we have, by definition

of sk,i
ε and of the reduced energy Emin,

Emin(tki , s
k,i
ε ) +

ε

2
(sk,i

ε − sk,i−1
ε )2

τk
≤ Emin(tki , s

k,i−1
ε )

≤ E(tki , s
k,i−1
ε , uk

i−1 + wk
i − wk

i−1)

= Emin(tki−1, s
k,i−1
ε ) +

∫
Ωk

i−1

CEuk
i−1 ·E(wk

i − wk
i−1) dx

+
1
2

∫
Ω

CE(wk
i − wk

i−1) ·E(wk
i − wk

i−1) dx−
∫

Ωk
i−1

(fk
i − fk

i−1) ·uk
i−1 dx

−
∫

Ω

fk
i · (wk

i − wk
i−1) dx+

∫ tk
i

tk
i−1

∫
Γ k

i−1

Dtϕ(τ, [uk
i−1]) dH1 dτ. (5.6)

Thanks to (4.1), (4.2), (5.5), to Hölder’s inequality, and to the continuity of the trace operator, (5.6) becomes

Emin(tki , s
k,i
ε ) +

ε

2
(sk,i

ε − sk,i−1
ε )2

τk
≤ Emin(tki−1, s

k,i−1
ε ) + βM

∫ tk
i

tk
i−1

‖ẇ(τ)‖H1 dτ + βWk

∫ tk
i

tk
i−1

‖ẇ(τ)‖H1 dτ

+M

∫ tk
i

tk
i−1

‖ḟ(τ)‖L2 dτ + F

∫ tk
i

tk
i−1

‖ẇ(τ)‖H1 dτ + (L + CMp)
∫ tk

i

tk
i−1

a3(τ) dτ,

(5.7)

where L = H1(Σ), C is a positive constant independent of k, and

Wk :=
1
2

sup
j=1,...,k

‖wk
j − wk

j−1‖H1 ,

F := sup
t∈[0,T ]

‖f(t)‖L2.

Adding to both sides of (5.7) the term ε
2

(sk,i−1
ε −sk,i−2

ε )2

τk
and iterating the previous argument, we get

Emin(tki , s
k,i
ε ) +

ε

2

i∑
j=1

(sk,j
ε − sk,j−1

ε )2

τk
≤ Emin(0, s0) + (βM + βWk + F )

∫ T

0

‖ẇ(t)‖H1 dt

+M

∫ T

0

‖ḟ(t)‖L2 dt+ (L+ CMp)
∫ T

0

a3(t) dt. (5.8)

By (4.1), F < +∞ and Wk → 0 as k → +∞, so (5.5) and (5.8) imply (5.1), and the proof is thus
concluded. �

For every k and every ε > 0, let us define the piecewise constant interpolations t̄k(t) := tki and s̄k
ε(t) := sk

i

for t ∈ (tki−1, t
k
i ], and the piecewise affine interpolation function

sk
ε(t) := sk,i−1

ε +
sk,i

ε − sk,i−1
ε

τk
(t− tki−1) for t ∈ (tki−1, t

k
i ].

The next proposition is the equivalent of the Griffith’s criterion in the discrete setting.
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Proposition 5.3. For every k ∈ N, every ε > 0, and every t ∈ [0, T (s̄k
ε)) we have:

(a) ṡk
ε(t) ≥ 0;

(b) G+(t̄k(t), s̄k
ε(t)) − 1 − εṡk

ε(t) ≤ 0;
(c) (G+(t̄k(t), s̄k

ε(t)) − 1 − εṡk
ε(t)) ṡk

ε(t) = 0.

Proof. Property (a) follows immediately from the definition of sk
ε .

Let us prove (b). Fix t ∈ (tki−1, t
k
i ] such that t < T (s̄k

ε). By construction, for every σ ≥ sk,i−1
ε we have

Emin(tki , s
k,i
ε ) +

ε

2
(sk,i

ε − sk,i−1
ε )2

τk
≤ Emin(tki , σ) +

ε

2
(σ − sk,i−1

ε )2

τk
· (5.9)

If σ > sk,i
ε , dividing (5.9) by σ − sk,i

ε , we obtain

Emin(tki , s
k,i
ε ) − Emin(tki , σ)

σ − sk,i
ε

− ε

2τk
(σ − sk,i−1

ε )2 − (sk,i
ε − sk,i−1

ε )2

σ − sk,i
ε

≤ 0,

so, passing to the limit as σ ↘ sk,i
ε and taking into account Theorem 3.1, we get (b).

If ṡk
ε(t) = 0, then (c) is clearly satisfied. Otherwise, sk,i

ε > sk,i−1
ε , hence we can consider (5.9) with σ ∈

(sk,i−1
ε , sk,i

ε ). Dividing by σ − sk,i
ε and passing to the limit as σ ↗ sk,i

ε , from Theorem 3.2 it follows that

G−(tki , s̄
k
ε(t)) − 1 − εṡk

ε(t) ≥ 0. (5.10)

Thanks to point (a) of Proposition 3.11 and to the previous step, we deduce that

G+(tki , s̄
k
ε(t)) = G−(tki , s̄

k
ε(t)),

hence (c) holds. �

6. Viscous evolution

This section is devoted to the proof of Theorem 4.6. For every ε > 0, we pass to the limit as k → +∞, in
order to find a viscous evolution.

Let us prove the following compactness result.

Proposition 6.1. For every ε > 0, there exists sε ∈ H1([0, T ]) such that

(a) up to a subsequence, sk
ε ⇀ sε weakly in H1([0, T ]) and sk

ε , s̄
k
ε → sε uniformly in [0, T ];

(b) sε is monotone non-decreasing;
(c) sε(0) = s0;
(d) ε‖ṡε‖2

L2 is uniformly bounded with respect to ε > 0.

Proof. Proposition 5.2 implies that ε‖ṡk
ε‖2

L2 is uniformly bounded with respect to k ∈ N and ε > 0, thus the
sequence (sk

ε)k is bounded in H1([0, T ]). Therefore, for every ε > 0 there exists sε ∈ H1([0, T ]) such that, up
to a subsequence, sk

ε ⇀ sε weakly in H1([0, T ]). In particular, by (5.1) and by the lower semicontinuity of
the L2-norm, property (d) holds.

Applying the Ascoli–Arzelà theorem, up to a further subsequence we can assume that sk
ε → sε uniformly in

[0, T ] as k → +∞. Since, by (5.1),

|sk
ε(t) − s̄k

ε(t)| ≤
∣∣∣∣sk,i

ε − sk,i−1
ε

τk
(t− tki−1)

∣∣∣∣+ |sk,i
ε − sk,i−1

ε | ≤ C
√
τk

for some C > 0, we deduce that s̄k
ε → sε uniformly in [0, T ], hence (a) is proved.

Since, by construction, sk
ε(0) = s0 for every k, it follows that sε(0) = s0. Finally, from the monotonicity of s̄k

ε

and the uniform convergence proved in (a), we deduce that sε is monotone non-decreasing. �



ENERGY RELEASE RATE AND QUASI-STATIC EVOLUTION IN FRACTURE 815

We are now ready to prove Theorem 4.6

Proof of Theorem 4.6. Fix ε > 0. Let us prove that sε ∈ H1([0, T ]) found in Proposition 6.1 is a viscous
evolution for the cohesive crack growth with sε(0) = s0.

Since sε ∈ H1([0, T ]), its derivative ṡε exists a.e. in [0, T ] and is nonnegative by monotonicity (see (b) of
Prop. 6.1).

To prove properties (2) and (3) of Definition 4.5, in view of Remark 4.4 we have to distinguish between two
possibilities:

T (sε) = lim
k

T (s̄k
ε) or T (sε) < lim sup

k
T (s̄k

ε). (6.1)

Let us consider the first case. By properties (a) of Proposition 3.11 and (b) of Proposition 5.3, for every
ψ ∈ L2([0, T ]) with ψ ≥ 0 we have∫ T (s̄k

ε )

0

(εṡk
ε(t) + 1 − G−(t̄k(t), s̄k

ε(t)))ψ(t) dt ≥ 0. (6.2)

By the weak convergence sk
ε ⇀ sε in H1([0, T ]), taking the lim sup as k → +∞ in (6.2) we get∫ T (sε)

0

(εṡε(t) + 1)ψ(t) dt− lim inf
k

∫ T

0

G−(t̄k(t), s̄k
ε(t))ψ(t)1[0,T (s̄k

ε ))(t) dt ≥ 0, (6.3)

where we denote by 1E the characteristic function of the set E. By Proposition 3.11,

G−(t̄k(t), s̄k
ε(t))ψ(t)1[0,T (s̄k

ε ))(t) ≥ 0 for a.e. t ∈ [0, T ].

Therefore, applying Fatou’s lemma to the last term in (6.3), taking into account (a) of Proposition 6.1, the
convergence t̄k(t) → t for every t ∈ [0, T ], and the lower semicontinuity of G−, we deduce that∫ T (sε)

0

(εṡε(t) + 1 − G−(t, sε(t)))ψ(t) dt ≥ 0. (6.4)

Inequality (6.4) holds for every ψ ∈ L2([0, T ]), ψ ≥ 0, hence we have proved property (2) of Definition 4.5.
In order to prove condition (3), we first notice that, thanks to the bound (5.5), to the definition of G+

(see (3.1) and (3.6)), and to the hypotheses (2.2), (2.6), and (4.1), there exists C > 0 such that

G+(t̄k(t), s̄k
ε(t)) ≤ C (6.5)

uniformly with respect to k ∈ N, ε > 0, and t ∈ [0, T (s̄k
ε)).

Integrating (c) of Proposition 5.3 over the interval [0, T (s̄k
ε)), we obtain∫ T (s̄k

ε )

0

(G+(t̄k(t), s̄k
ε(t)) − 1 − εṡk

ε(t)) ṡk
ε (t) dt = 0. (6.6)

Passing to the lim sup in (6.6) as k → +∞, by Proposition 6.1 and the lower semicontinuity of the L2-norm, we
get

0 = lim sup
k

∫ T (s̄k
ε )

0

(G+(t̄k(t), s̄k
ε (t)) − 1 − εṡk

ε(t)) ṡk
ε (t) dt

≤ lim sup
k

∫ T (s̄k
ε )

0

G+(t̄k(t), s̄k
ε(t)) ṡk

ε (t) dt−
∫ T (sε)

0

ṡε(t) dt− ε lim inf
k

‖ṡk
ε1[0,T (s̄k

ε ))‖2
L2

≤ lim sup
k

∫ T

0

G+(t̄k(t), s̄k
ε(t)) ṡk

ε (t)1[0,T (s̄k
ε ))(t) dt−

∫ T (sε)

0

(1 + εṡε(t)) ṡε(t) dt. (6.7)
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By property (a) of Proposition 5.3, we can continue the chain of inequalities (6.7), obtaining

0 ≤ lim sup
k

∫ T

0

(
sup
h≥k

G+(t̄h(t), s̄h
ε (t))1[0,T (s̄h

ε ))(t)
)
ṡk

ε(t) dt−
∫ T (sε)

0

(1 + εṡε(t)) ṡε(t) dt

= lim sup
k

∫ T

0

Fk(t) ṡk
ε(t) dt−

∫ T (sε)

0

(1 + εṡε(t)) ṡε(t) dt, (6.8)

where we have set
Fk(t) := sup

h≥k
G+(t̄h(t), s̄h

ε (t))1[0,T (s̄h
ε ))(t)

for every t ∈ [0, T ] and every k ∈ N.
By definition, Fk(t) converges pointwise to

F (t) := lim sup
k

G+(t̄k(t), s̄k
ε(t))1[0,T (s̄k

ε ))(t) = lim sup
k

G+(t̄k(t), s̄k
ε(t))1[0,T (sε))(t).

By estimate (6.5) and the dominated convergence theorem, Fk → F strongly in L2([0, T ]). Therefore, by
Proposition 6.1, (6.8) becomes ∫ T (sε)

0

(F (t) − 1 − εṡε(t)) ṡε(t) dt ≥ 0.

Finally, by Proposition 3.11, we deduce that F (t) ≤ G+(t, sε(t))1[0,T (sε))(t), hence, thanks to the nonnegativity
of ṡε, we obtain ∫ T (sε)

0

(G+(t, sε(t)) − 1 − εṡε(t)) ṡε(t) dt ≥ 0. (6.9)

With the same argument, we can prove that (6.9) holds on every I ⊆ [0, T (sε)) measurable. This implies
property (3) of Definition 4.5.

For the second case in (6.1), we can assume, up to a further subsequence, that T (sε) < T (s̄k
ε) for every k.

Therefore, we just have to replace T (s̄k
ε) with T (sε) in (6.2) and (6.6) and repeat the previous arguments. This

concludes the proof of the theorem. �

7. The quasi-static evolution

We now pass to the limit as the parameter ε tends to zero. This allows us to prove the existence of a
quasi-static evolution of the cohesive crack growth problem in the sense of Definition 4.7.

In order to prove the properties of Definition 4.7, we need the following technical lemma.

Lemma 7.1. Let z, zk : [0, T ] → R be non-decreasing monotone functions such that zk(t) → z(t) for every
t ∈ [0, T ]. Let z be continuous at t̂ ∈ [0, T ]. Then, for every tk → t̂ in [0, T ] it is zk(tk) → z(t̂).

Proof. Fix η > 0. By continuity, there exists δ > 0 such that |z(t̂) − z(t)| < η for every |t− t̂| < 2δ, t ∈ [0, T ].
Since tk → t̂, there exists k̄ ∈ N such that |tk − t̂| < δ for every k ≥ k̄, so that

|z(tk) − z(t̂)| < η

for every k ≥ k̄. By monotonicity, z(t̂− δ) ≤ z(tk) ≤ z(t̂+ δ) for every k ≥ k̄.
Pointwise convergence implies that, up to a redefinition of k̄,

|zk(t̂− δ) − z(t̂− δ)| < η and |zk(t̂+ δ) − z(t̂+ δ)| < η

for every k ≥ k̄.
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By continuity of z and the choice of δ, we have |z(t̂) − z(t̂± δ)| < η. Then, by monotonicity and the above
inequalities, we get

z(t̂) − 2η < z(t̂− δ) − η < zk(t̂− δ) ≤ zk(tk) ≤ zk(t̂+ δ) < z(t̂+ δ) + η < z(t̂) + 2η

for k ≥ k̄. Being η > 0 arbitrary, the thesis follows. �

We are now ready to prove Theorem 4.9.

Proof of Theorem 4.9. Let εk ↘ 0 and let sεk
be a sequence of viscous evolutions for the cohesive crack growth

problem. Since sεk
are monotone non-decreasing and uniformly bounded in time, by Helly’s theorem there exists

s ∈ BV ([0, T ]) monotone non-decreasing such that, up to a subsequence, sεk
→ s pointwise in [0, T ]. Let us

prove that s is a quasi-static evolution of the cohesive crack growth problem with s(0) = s0.
Since sεk

(0) = s0, of course s(0) = s0. We already know that s is monotone non-decreasing, thus it remains
to prove that s satisfies the weak Griffith’s principle, that is, properties (1), (2), and (3) of Definition 4.7.

Let us prove condition (1). We argue as in the proof of Theorem 4.6. By Remark 4.4, we distinguish between
the two possibilities

T (s) = lim
k

T (sεk
) or T (s) < lim sup

k
T (sεk

). (7.1)

In the first case, by property (2) of Definition 4.5 we have, for every ψ ∈ L2([0, T ]) with ψ ≥ 0,∫ T (sεk
)

0

(1 + εkṡεk
(t) − G−(t, sεk

(t)))ψ(t) dt ≥ 0. (7.2)

Thanks to (d) of Proposition 6.1, we deduce that εkṡεk
→ 0 in L2([0, T ]) as k → +∞. Therefore, passing to the

lim sup as k → +∞ in (7.2), we get

0 ≤ lim sup
k

∫ T (sεk
)

0

(1 + εkṡεk
(t) − G−(t, sεk

(t)))ψ(t) dt

=
∫ T (s)

0

ψ(t) dt− lim inf
k

∫ T

0

G−(t, sεk
(t))ψ(t)1[0,T (sεk

))(t) dt. (7.3)

Applying Fatou’s lemma to (7.3), taking into account the lower semicontinuity of G− and the convergence
T (sεk

) → T (s), we obtain ∫ T (s)

0

(1 − G−(t, s(t)))ψ(t) dt ≥ 0

for every ψ ∈ L2([0, T ]) with ψ ≥ 0, hence

G−(t, s(t)) ≤ 1 for a.e. t ∈ [0, T (s)). (7.4)

In particular, (7.4) is true for every t ∈ [0, T (s))\J(s).
For the second case of (7.1), we may assume, up to a subsequence, that T (s) < T (sεk

) for every k. Then, we
have to replace T (sεk

) with T (s) in (7.2) and repeat the previous argument. Thus, property (1) of Definition 4.7
holds.

We now prove property (2). Let t ∈ [0, T (s)) ∩ J(s) be a jump point of s. Since sεk
→ s pointwise, we may

suppose that t < T (sεk
). By the monotonicity of s, s(t−)<s(t+). For every s(t−) ≤ a < b ≤ s(t+), there exist

two sequences tak, t
b
k → t such that sεk

(tak) = a and sεk
(tbk) = b for every k ∈ N. For every ψ ∈ L2([s0, L]) with

ψ ≥ 0, we have, by (3) of Definition 4.5,∫ tb
k

ta
k

(G+(τ, sεk
(τ)) − 1 − εkṡεk

(τ))ψ(sεk
(τ)) ṡεk

(τ) dτ ≥ 0. (7.5)
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Since ṡεk
≥ 0 a.e. in [0, T ], from (7.5) we deduce that∫ tb

k

ta
k

(G+(τ, sεk
(τ)) − 1)ψ(sεk

(τ)) ṡεk
(τ) dτ ≥ 0. (7.6)

We perform a change of variable setting σ := sεk
(τ) and

t̂k(σ) := min {τ ∈ [tak, t
b
k] : sεk

(τ) = σ},

so that (7.6) becomes ∫ b

a

(G+(t̂k(σ), σ) − 1)ψ(σ) dσ ≥ 0. (7.7)

Passing to the lim sup in (7.7) as k → +∞, applying Fatou’s lemma and recalling Proposition 3.11, we get∫ b

a

(G+(t, σ) − 1)ψ(σ) dσ ≥ 0. (7.8)

Since (7.8) holds for every ψ ∈ L2([s0, L]), ψ ≥ 0, and every a < b in [s(t−), s(t+)], then

G+(t, σ) ≥ 1 for every σ ∈ [s(t−), s(t+)].

It remains to prove property (3) of Definition 4.7. Let t ∈ [0, T (s)) be such that G+(t, s(t)) < 1. By the
previous step, t /∈ J(s). Let us prove that s is constant in a neighborhood of t. To this end, we first prove that
there exists δ > 0 such that, for k large enough,

G+(τ, sεk
(τ)) < 1 for every τ ∈ (t− δ, t+ δ). (7.9)

Assume by contradiction that this is not the case. From the pointwise convergence sεk
→ s, we deduce that,

for k large enough, t ∈ [0, T (sεk
)). Therefore, we may assume that there exist a subsequence εkh

↘ 0 and a
sequence δh ↘ 0 such that (7.9) is not satisfied in the interval (t−δh, t+δh), i.e., we can find th ∈ (t−δh, t+δh)
such that, for every h,

G+(th, sεkh
(th)) ≥ 1. (7.10)

Since th → t and t /∈ J(s), by Lemma 7.1 we have sεkh
(th) → s(t) as h → +∞. By the upper semicontinuity

of G+ we get, passing to the lim sup in (7.10) as h→ +∞, G+(t, s(t)) ≥ 1, which is a contradiction.
Combining (7.9) and properties (1) and (3) of Definition 4.5, we deduce that, for k large enough, ṡεk

(τ) = 0
for every τ ∈ (t − δ, t + δ), thus sεk

is constant in this interval. Since sεk
→ s pointwise in [0, T ] as k → +∞,

we get that s is constant in the same interval. Therefore, s is differentiable in t and ṡ(t) = 0. This concludes
the proof of the theorem. �

We conclude this section with a remark on the energy balance.

Remark 7.2. At this stage, we do not have any energy balance. This is due to the fact that we can not ensure
that along a quasi-static evolution s ∈ BV ([0, T ]) the generalized energy release rates G+ and G− coincide.

We give the hypotheses on the energy functional (4.3) which guarantee, applying the abstract results in [20],
the existence of a special quasi-static evolution satisfying an energy balance and a more restrictive Griffith’s
criterion. Let C be C1,1, Σ be a simple C3,1 curve, and let ϕ ∈ C1,1([0, T ]×R2; R) be such that (2.6) and (4.2)
hold with p = 2. Moreover, let f ∈ C1,1([0, T ]×Ω; R2) and w ∈ C1,1([0, T ];H1(Ω)). Then, with the arguments
used in ([20], Sects. 3.1, 3.2), it is possible to show that for every t ∈ (0, T ) and every s ∈ (0, L) there exists the
left derivative ∂−t Emin of the reduced energy with respect to time. In particular,

∂−t Emin(t, s) = min{H(t, s, u) : u ∈ A(t, s) is a minimizer of E(t, s, w(t))},
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where we have set

H(t, s, u) :=
∫

Ω

CEu ·Eẇ(t) dx−
∫

Ω

ḟ(t) ·u dx−
∫

Ω

f(t) · ẇ(t) dx +
∫

Γs

Dtϕ(t, [u]) dH1.

Applying the results in ([20], Sect. 5.2), we can also prove that for every s0 ∈ (0, L) there exists a quasi-static
evolution s ∈ BV ([0, T ]) for the cohesive crack growth problem with s(0) = s0, which satisfies a refined Griffith’s
criterion: condition (1) in Definition 4.7 is replaced by

(1’) for every t ∈ [0, T (s)) \ J(s):
G+(t, s(t)) ≤ 1.

Moreover, we have the following energy balance:
for every t ∈ (0, T (s))

Emin(t, s(t)) + s(t−) − s(0+) +
∫ s(0+)

s0

G+(0, σ) dσ +
∫ s(t)

s(t−)

G+(t, σ) dσ

+
∑

τ∈(0,t)∩J(s)

(
s(τ−) − s(τ+) +

∫ s(τ+)

s(τ−)

G+(τ, σ) dσ
)

= Emin(0, s0) +
∫ t

0

∂−t Emin(τ, s(τ)) dτ.

In [20], such an evolution is called special local energetic solution.

8. The case of many curves

In this section we address the study of the evolution of multiple non-interacting cracks.
We assume that the fractures grow along a prescribed number of pairwise disjoint simple C3-curves

Σ1, . . . , ΣM with H1(Σm) =: Lm. The assumptions on every Σm are the same of Section 2. For m = 1, . . . ,M ,
we denote by γm : [0, Lm] → R2 the arc-length parametrization of the m-th curve Σm and by νm, τm the unit
normal and unit tangent vectors to Σm, respectively.

We define Λ := [0, L1] × . . .× [0, LM ] ⊆ RM . For every s = (s1, . . . , sM ) ∈ Λ, we set

Γs := Γ 1
s1

∪ . . . ∪ ΓM
sM

and Ωs := Ω \ Γs,

where Γm
sm

⊆ Σm is as in (2.1). Then, the set of admissible fractures is given by

{Γs : s ∈ Λ}. (8.1)

In this setting, we generalize the activation threshold considered in the energy (2.8) with the norm defined by

|s|1 :=
M∑

m=1

|sm| for every s ∈ R
M .

Therefore, for every t ∈ [0, T ], s ∈ Λ, and u ∈ H1(Ωs), the total energy of the system is

E(t, s, u) :=
1
2

∫
Ωs

CEu ·Eu dx−
∫

Ωs

g(t, x, u) dx+
∫

Γs

ϕ(t, [u]) dH1 + |s|1,

where C, ϕ, and g have the usual hypotheses stated in Section 2 and 4. Given the Dirichlet boundary datum
w ∈ H1(Ω), we define A(s, w) and the reduced energy Emin(t, s, w) as in (2.10) and in (2.13), respectively.
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We now show how to extend the results of Section 3 to this setting. In particular, we are interested in the
analogous of the energy release rates. For m = 1, . . . ,M , let us define

Λm := [0, L1] × . . .× [0, Lm−1] × (0, Lm) × [0, Lm+1] × . . .× [0, LM ].

Let m = 1, . . . ,M and s ∈ Λm be fixed. By hypothesis, there exists η > 0 such that the curve Σm is the graph
of a C3 function ψm

s on (γ1
m(sm)− η, γ1

m(sm) + η), where γ1
m is the first component of γm = (γ1

m, γ
2
m). We may

also assume that d(γm(sm), Σl) ≥ 2η for every l �= m, where d(·, E) denotes the distance function from a set E.
Given δ ∈ R such that sm + δ ∈ [0, Lm] and a cut-off function ϑ ∈ C∞

c (Bη/2(0)) with ϑ = 1 in Bη/3(0), we
define, as in (2.14), Fm

s,δ : R2 → R2 by

Fm
s,δ(x) := x+

(
(γ1

m(sm + δ) − γ1
m(sm))ϑ(γm(sm) − x)

ψm
s (x1 + (γ1

m(sm + δ) − γ1
m(sm))ϑ(γm(sm) − x)) − ψm

s (x1)

)
(8.2)

if x = (x1, x2) ∈ Bη/2(γm(sm)), while Fm
s,δ(x) := x for x ∈ R2 \ Bη/2(γm(sm)).

The equivalent to Lemma 2.4 holds in this setting.

Lemma 8.1. There exists δ0 > 0 such that the following facts hold:

(a) Fm
s,· ∈ C3((−δ0, δ0) × R2; R2) and, for every |δ| < δ0, the map Fm

s,δ is a C3-diffeomorphism. Moreover,
Fm

s,δ(γm(sm)) = γm(sm + δ), Fm
s,δ(Γ

m
sm

) = Γm
sm+δ, and Fm

s,δ(Γ
l
sl

) = Γ l
sl

for l �= m;
(b) the norms ‖Fm

s,δ‖C3 and ‖(Fm
s,δ)

−1‖C3 are uniformly bounded with respect to δ and there exists c1, c2 > 0
such that, for every |δ| < δ0 and every x ∈ R2, we have c1 ≤ det∇Fm

s,δ(x) ≤ c2;
(c) ‖Id − Fm

s,δ‖C2 → 0 as δ → 0;
(d) some derivatives

ρs(x) := ∂δ(Fm
s,δ(x))|δ=0, ∂δ(det∇Fm

s,δ(x))|δ=0 = divρm
s (x),

∂δ(∇Fm
s,δ(x))|δ=0 = −∂δ(∇Fm

s,δ(x))
−1|δ=0 = ∇ρm

s (x),

∂δ(cof ∇Fm
s,δ)

T |δ=0 = −∂δ(cof ∇Fm
s,δ)

−T |δ=0 = divρm
s 1M2 −∇ρm

s .

Similar to (3.1), for m = 1, . . . ,M , t ∈ [0, T ], s ∈ Λm, w ∈ H1(Ω), and u ∈ A(s, w), we set

Gm(t, u, ϑ) := − 1
2

∫
Ωs

(DC ρm
s )∇u · ∇u dx−

∫
Ωs

C∇
(
(∇ρm

s − divρm
s 1M2)u

)
· ∇u dx

+
∫

Ωs

C(∇u∇ρm
s ) · ∇u dx− 1

2

∫
Ωs

C∇u · ∇u divρm
s dx

+
∫

Ωs

Dξg(t, x, u) ·
[
(∇ρm

s − divρm
s 1M2)u −∇u ρm

s

]
dx

−
∫

Γs

Dξϕ(t, [u]) ·
(
(∇ρm

s − divρm
s 1M2)u

)
dH1

−
∫

Γs

ϕ(t, [u]) ν ⊗ τ

(
0 1
1 0

)
· ∇ρm

s dH1 −
∫

Γs

ϕ(t, [u]) divρm
s dH1, (8.3)

where ϑ is as in (8.2) and DC ρm
s is as in (3.2).

Moreover, we define

∂+
s,mEmin(t, s, w) := lim

δ↘0

Emin(t, s+ δem, w) − Emin(t, s, w)
δ

, (8.4)

∂−s,mEmin(t, s, w) := lim
δ↗0

Emin(t, s+ δem, w) − Emin(t, s, w)
δ

, (8.5)
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where {e1, . . . , eM} is the canonical basis of RM . With the same techniques used in Theorems 3.1, 3.2, and in
Proposition 3.11, we can prove that the limits in (8.4) and (8.5) exist and have explicit formulas similar to (3.5)
and (3.7).

Theorem 8.2. For every t ∈ [0, T ], every m = 1, . . . ,M , every s ∈ Λm, and every w ∈ H1(Ω), the limits
in (8.4) and (8.5) exist and

∂+
s,mEmin(t, s, w) = 1 − G+

m(t, s, w),
∂−s,mEmin(t, s, w) = 1 − G−

m(t, s, w),
(8.6)

where we have set

G+
m(t, s, w) := max {Gm(t, us, ϑ) : us ∈ A(s, w) is a minimizer of E(t, s, ·)},

G−
m(t, s, w) := min {Gm(t, us, ϑ) : us ∈ A(s, w) is a minimizer of E(t, s, ·)}

(8.7)

for a given cut-off function ϑ as in (8.2). In particular, G+
m and G−

m do not depend on the choice of ϑ.
Moreover, G+

m,G−
m : [0, T ]×Λm×H1(Ω) → [0,+∞) are upper and lower semicontinuous on [0, T ]×Λ̊×H1(Ω),

respectively.

Remark 8.3. The functions G+
m and G−

m introduced in Theorem 8.2 can be interpreted as partial energy release
rates, in the sense that they characterize the partial derivatives with respect to the variable sm ∈ [0, Lm] of the
reduced energy Emin.

Also in this setting, the notion of quasi-static evolution will be related to the properties of G±
m, see

Theorems 8.7 and 9.1.

We now deal with the construction of a quasi-static evolution. As in Section 4, we replace g with the power
spent by the body forces f ∈ AC([0, T ];L2(Ω)). Given a boundary datum w ∈ AC([0, T ];H1(Ω)), we redefine
the reduced energy Emin : [0, T ]× Λ→ R and the energy release rates G±

m : [0, T ]× Λm → [0,+∞) by

Emin(t, s) := Emin(t, s, w(t)) and G±
m(t, s) := G±

m(t, s, w(t)).

We notice again that Emin is continuous on [0, T ]× Λ̊, while, for every m = 1, . . . ,M , G+
m and G−

m are upper and
lower semicontinuous, respectively.

For every k ∈ N, we consider a time discretization {tki }k
i=0 of the form tki := iτk, where τk := T/k. Fixed ε > 0,

we define recursively sk,i
ε ∈ Λ: sk,0

ε := s0 ∈ Λ̊, the initial condition, and, for i ≥ 1, we set sk,i
ε to be a solution of

the incremental minimum problem

min
{
Emin(tki , s) +

ε

2
|s− sk,i−1

ε |22
τk

: s ∈ Λ, sm ≥ (sk,i−1
ε )m for m = 1, . . . ,M

}
, (8.8)

where

|s|2 :=
( M∑

m=1

s2m

)1/2

for every s ∈ R
M .

The proof of existence of solution to (8.8) is similar to the proof of Proposition 5.1.
We introduce the interpolation functions: for every t ∈ (tki−1, t

k
i ] we set

t̄k(t) := tki ,

s̄k
ε,m(t) := (sk,i

ε )m, s̄k
ε(t) := (s̄k

ε,1(t), . . . , s̄
k
ε,M (t)),

sk
ε,m(t) := (sk,i−1

ε )m +
(sk,i

ε )m − (sk,i−1
ε )m

τk
(t− tki−1), sk

ε(t) := (sk
ε,1(t), . . . , s

k
ε,M (t)).
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In particular, as in Proposition 5.2, we get

ε

∫ T

0

|ṡk
ε(t)|22 dt ≤ C (8.9)

uniformly in ε and k, where ṡk
ε(t) := (ṡk

ε,1(t), . . . , ṡ
k
ε,M (t)).

As in Proposition 5.3, we have a discrete Griffith’s criterion.

Proposition 8.4. For every ε > 0, every k ∈ N, every m = 1, . . . ,M , and every t ∈ [0, T ((s̄k
ε )m)) we have

(a) ṡk
ε,m(t) ≥ 0;

(b) G+
m(t̄k(t), s̄k

ε(t)) − 1 − ε ṡk
ε,m(t) ≤ 0;

(c) (G+
m(t̄k(t), s̄k

ε(t)) − 1 − ε ṡk
ε,m(t)) ṡk

ε,m(t) = 0.

Proof. It is sufficient to repeat the argument of Proposition 5.3 componentwise. �

We define the failure time and the jump set for a vector valued function whose components are monotone
non-decreasing.

Definition 8.5. Let a, b1, . . . , bM > 0 and let sm : [0, a] → [0, bm] be a monotone non-decreasing function for
m = 1, . . . ,M . Let s = (s1, . . . , sM ). We define:

• the failure time of s as
T (s) := min

m=1,...,M
T (sm),

where T (sm) is as in Definition 4.3;
• the jump set of s as

J(s) :=
M⋃

m=1

J(sm),

where J(sm) is as in Definition 4.3.

We can now pass to the limit as k → +∞. As in Proposition 6.1, for fixed ε > 0, we find sε ∈ H1([0, T ]) such
that, up to a subsequence, sk

ε converges to sε weakly in H1([0, T ]) and uniformly in [0, T ]. Moreover, s̄k
ε → sε

uniformly. By (8.9) and the lower semicontinuity of the L2-norm, there exists C > 0 such that for every ε > 0

ε

∫ T

0

|ṡε(t)|22 dt ≤ C, (8.10)

where ṡε(t) := (ṡ1ε(t), . . . , ṡM
ε (t)).

The map t �→ sε(t) is a viscous evolution with sε(0) = s0, see Definition 4.5. Indeed, taking into account
Proposition 3.11, the following result holds.

Proposition 8.6. For every ε > 0, every m = 1, . . . ,M , and a.e. t ∈ [0, T (sε)):

(a) ṡm
ε (t) ≥ 0;

(b) G−
m(t, sε(t)) − 1 − εṡm

ε (t) ≤ 0;
(c) (G+

m(t, sε(t)) − 1 − εṡm
ε (t)) ṡm

ε (t) ≥ 0.

Proof. Argue componentwise as in Theorem 4.6. �

As in the proof of Theorem 4.9, there exist a subsequence εk → 0 and a function s ∈ BV ([0, T ], Λ) such that
sεk

→ s pointwise. Moreover, every component sm is monotone non-decreasing in [0, T ].
Repeating componentwise the argument of Theorem 4.9, we can prove a Griffith’s criterion in the continuity

points of s.
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Theorem 8.7. The following facts hold:

(a) sm is monotone non-decreasing for every m = 1, . . . ,M ;
(b) for every m = 1, . . . ,M and every t ∈ [0, T (s)) \ J(s), G−

m(t, s(t)) ≤ 1;
(c) if t ∈ [0, T (s))\J(s) and G+

m(t, s(t)) < 1 for some m = 1, . . . ,M , then sm is differentiable in t and ṡm(t) = 0.

However, in this setting it is difficult to state the properties of G±
m in the jump points: in particular, we do

not have the equivalent to condition (2) of Definition 4.7. Therefore, following the steps of [19,22,25], we define
a reparametrization that shall give some information on the behavior of the cracks at the jump points.

9. Parametrized solutions

We perform a change of variable which transforms the lengths in absolutely continuous functions. Roughly
speaking, this is done by a parametrization of time on the jump points of the viscous solution sε.

For ε > 0 and t ∈ [0, T ], we set

σε(t) := t+ |sε(t)|1 − |s0|1 = t+
M∑

m=1

(sm
ε (t) − sm

0 ). (9.1)

Thanks to the properties of sε, see Proposition 8.6, σε is strictly increasing, continuous, and σ̇ε(t) ≥ 1 for every
ε > 0 and a.e. t ∈ [0, T ], hence we can find its inverse σ �→ t̃ε(σ) for 0 ≤ σ ≤ Sε := σε(T ). We deduce that t̃ε is
strictly increasing, continuous, and 0 < t̃′ε(σ) ≤ 1 for every ε > 0 and a.e. σ ∈ [0, Sε] (from now on, the symbol
′ denotes the derivative with respect to σ).

For m = 1, . . . ,M and σ ∈ [0, Sε], we set

s̃m
ε (σ) := sm

ε (t̃ε(σ)), s̃ε(σ) := (s̃1ε(σ), . . . , s̃M
ε (σ)),

s̃′ε(σ) := ((s̃1ε)
′(σ), . . . , (s̃M

ε )′(σ)).

By (9.1), we have σ = t̃ε(σ) + |s̃ε(σ)|1 − |s0|1. Deriving this relation, we obtain

t̃′ε(σ) + |s̃′ε(σ)|1 = 1 (9.2)

for every ε > 0 and a.e. σ ∈ [0, Sε]. By (9.2) and the monotonicity of s̃m
ε , we get 0 ≤ (s̃m

ε )′(σ) ≤ 1 for every
ε > 0, every m = 1, . . . ,M , and a.e. σ ∈ [0, Sε]. Moreover, in view of (9.2), t̃ε and s̃ε are Lipschitz functions.

We define G̃±
m,ε(σ) := G±

m(t̃ε(σ), s̃ε(σ)) for σ ∈ [0, T (s̃ε)) and S̄ := supε>0 Sε, which is bounded by a constant
depending on T and on the lengths Lm. Since in the limit ε↘ 0 it will be useful to deal with functions defined
on the same interval, we extend the functions t̃ε, s̃ε, t̃′ε, and s̃′ε on (Sε, S̄] by t̃ε(σ) := t̃ε(Sε), s̃ε(σ) := s̃ε(Sε),
t̃′ε(σ) := 0, and s̃′ε(σ) := 0. In the sequel, we will also need T̃ (s̃ε) := min{Sε, T (s̃ε)}.

Recalling that t̃′ε(σ) > 0 on [0, Sε], the Griffith’s criterion stated in Proposition 8.6 reads in the new vari-
ables as

(s̃m
ε )′(σ) ≥ 0, (9.3)

G̃−
m,ε(σ) t̃′ε(σ) − t̃′ε(σ) − ε(s̃m

ε )′(σ) ≤ 0, (9.4)

(
G̃+

m,ε(σ) t̃′ε(σ) − t̃′ε(σ) − ε(s̃m
ε )′(σ)

)
(s̃m

ε )′(σ) ≥ 0 (9.5)

for every m, every ε, and a.e. σ ∈ [0, T̃ (s̃ε)).
We now pass to the limit along a subsquence εk ↘ 0. Since t̃εk

, s̃εk
are bounded in W 1,∞([0, S̄]), up to

a further subsequence we have that t̃εk
and s̃εk

converge weakly* in W 1,∞([0, S̄]) to some functions t̃ and s̃,
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respectively. We can also assume that Sεk
→ S and t̃, s̃ ∈ W 1,∞([0, S]). In particular, writing (9.2) in an integral

form and passing to the limit, we deduce that for a.e. σ ∈ [0, S]

t̃′(σ) + |s̃′(σ)|1 = 1. (9.6)

We set T̃ (s̃) := min{S, T (s̃)} and, for m = 1 . . . ,M and σ ∈ [0, T̃ (s̃)),

G̃±
m(σ) := G±

m(t̃(σ), s̃(σ)).

As in Remark 4.4, we have
T̃ (s̃) ≤ lim inf

k
T̃ (s̃εk

). (9.7)

Finally, we observe that (8.10) gives

εk

∫ Sεk

0

|s̃′εk
(σ)|22 dσ = εk

∫ Sεk

0

|ṡεk
(t̃εk

(σ))|22(t̃′εk
)2(σ) dσ

≤ εk

∫ Sεk

0

|ṡεk
(t̃εk

(σ))|22 t̃′εk
(σ) dσ = εk

∫ T

0

|ṡεk
(t)|22 dt ≤ C (9.8)

uniformly in k. Therefore, εks̃
′
εk

1[0,Sεk
] → 0 in L2([0, S̄]).

Passing to the limit as k → +∞, we are now able to show that the parametrized solution s̃ satisfies a Griffith’s
criterion involving also the jump points of s̃. This is the aim of the following theorem.

Theorem 9.1. The Lipschitz continuous functions t̃ and s̃ satisfy for a.e. σ ∈ [0, T̃ (s̃)):

(a) t̃′(σ) ≥ 0 and s̃′m(σ) ≥ 0 for m = 1, . . . ,M ;
(b) if t̃′(σ) > 0, then G̃−

m(σ) ≤ 1 for m = 1, . . . ,M ;
(c) if t̃′(σ) > 0 and s̃′m(σ) > 0 for some m ∈ {1, . . . ,M}, then G̃+

m(σ) ≥ 1;
(d) if t̃′(σ) = 0, then there exists m ∈ {1, . . . ,M} such that s̃′m(σ) > 0. Moreover, G̃+

m(σ) ≥ 1 for such m.

Proof. By the monotonicity of t̃ and s̃, we have t̃′(σ) ≥ 0 and s̃′m(σ) ≥ 0 for every m and a.e. σ ∈ [0, S].
Moreover, by (9.6) they can not be simultaneously zero.

As in the proofs of Theorems 4.6 and 4.9, we have to distinguish between two possibilities:

T̃ (s̃) = lim
k

T̃ (s̃εk
) or T̃ (s̃) < lim sup

k
T̃ (s̃εk

). (9.9)

Let us consider the first case. Let us fix m = 1, . . . ,M and ψ ∈ L2([0, S̄]) with ψ ≥ 0. Thanks to (9.4), for
every k we have ∫ T̃ (s̃εk

)

0

(t̃′εk
(σ) − G̃−

m,εk
(σ)t̃′εk

(σ) + εk(s̃m
εk

)′(σ))ψ(σ) dσ ≥ 0, (9.10)

where εk is the subsequence previously fixed.
Since T̃ (s̃εk

) → T̃ (s̃), t̃′εk
converges to t̃′ weakly* in L∞([0, S̄]), and εks̃

′
εk

1[0,Sεk
] → 0 in L2([0, S̄]), passing

to the lim sup in (9.10) as k → +∞ we get

0 ≤ lim sup
k

∫ T̃ (s̃εk
)

0

(t̃′εk
(σ) − G̃−

m,εk
(σ)t̃′εk

(σ) + εk(s̃m
εk

)′(σ))ψ(σ) dσ

=
∫ T̃ (s̃)

0

t̃′(σ)ψ(σ) dσ − lim inf
k

∫ S̄

0

G̃−
m,εk

(σ)t̃′εk
(σ)1[0,T̃ (s̃εk

)) ψ(σ) dσ. (9.11)
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By the monotonicity of t̃ε, we can continue the chain of inequalities in (9.11)

0 ≤
∫ T̃ (s̃)

0

t̃′(σ)ψ(σ) dσ − lim inf
k

∫ S̄

0

(
inf
h≥k

G̃−
m,εh

(σ)1[0,T̃ (s̃εh
))(σ)

)
t̃′εk

(σ)ψ(σ) dσ

=
∫ T̃ (s̃)

0

t̃′(σ)ψ(σ) dσ − lim inf
k

∫ S̄

0

Fk(σ) t̃′εk
(σ)ψ(σ) dσ, (9.12)

where we have set
Fk(σ) := inf

h≥k
G̃−

m,εh
(σ)1[0,T̃ (s̃εh

))(σ).

The sequence Fk is uniformly bounded and converges pointwise to

F (σ) := lim inf
k

G̃−
m,εk

(σ)1[0,T̃ (s̃εk
))(σ) = lim inf

k
G̃−

m,εk
(σ)1[0,T̃ (s̃))(σ).

Therefore, applying the dominated convergence theorem, we get Fk → F in L2 and∫ T̃ (s̃)

0

(t̃′(σ) − F (σ) t̃′(σ))ψ(σ) dσ ≥ 0. (9.13)

By Proposition 3.11, we deduce that F (σ) ≥ G̃−
m(σ). Hence, in view of property (a), (9.13) becomes∫ T̃ (s̃)

0

(t̃′(σ) − G̃−
m(σ) t̃′(σ))ψ(σ) dσ ≥ 0,

which proves (b) by the arbitrariness of ψ.
For the second case of (9.9), we may assume, up to a subsequence, that T̃ (s̃) < T̃ (s̃εk

), hence it is sufficient
to replace T̃ (s̃εk

) with T̃ (s̃) in (9.10) and repeat the previous argument. Thus property (b) is proved.
We notice that if (a), (b) and (9.6) hold, then (c) and (d) are equivalent to the following property:

if G̃+
m(σ̄) < 1 for some m and some σ̄ ∈ [0, T̃ (s̃)), then s̃m is locally constant around σ̄. Let us assume

that G̃+
m(σ̄) < 1. Then, arguing as in the proof of Theorem 4.9, there exist k̄ ∈ N and δ > 0 such that

G̃+
m,εk

(σ) < 1 for every σ ∈ (σ̄ − δ, σ̄ + δ) and every k ≥ k̄. From (9.5) we deduce that s̃m
εk

is constant in
(σ̄ − δ, σ̄ + δ). Since s̃m

εk
converges to s̃m weakly* in W 1,∞([0, S̄]), we get that s̃m is locally constant around σ̄,

and this concludes the proof of the theorem. �

Remark 9.2. As usual in these cases, since the reduced energy Emin is continuous only on [0, T ]× Λ̊ and, as a
consequence, G±

m are not upper and lower semicontinuous on the whole [0, T ]×Λ, the evolution we described is
meaningful up to the failure time T̃ (s̃).
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