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ENERGY RELEASE RATE AND QUASI-STATIC EVOLUTION VIA VANISHING
VISCOSITY IN A FRACTURE MODEL DEPENDING ON THE CRACK
OPENING

STEFANO ArLMmI!

Abstract. In the setting of planar linearized elasticity, we study a fracture model depending on the
crack opening. Assuming that the crack path is known a priori and sufficiently smooth, we prove that
the energy release rate is well defined. Then, we consider the problem of quasi-static evolution for our
model. Thanks to a vanishing viscosity approach, we show the existence of such an evolution satisfying
a weak Griffith’s criterion.
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1. INTRODUCTION

Griffith’s criterion is a well-established principle which predicts in a quasi-static setting whether or not a
pre-existing crack in an elastic body grows for a given external force [15]. If we assume that the fracture evolves
only along a prescribed smooth path Y, so that it can be parametrized by the arc-length s, we are able to state
the Griffith’s criterion in terms of the energy release rate, which is the negative of the right derivative of the
deformation energy with respect to the crack extension, i.e., the parameter s: If the energy release rate is less
than a certain constant related to the toughness of the material, then the crack is stable, otherwise it will grow.
This principle has been studied in several papers, see e.g. [18-20, 26, 28] for the case of prescribed crack path,
and [21,22] for a more general setting in linearized antiplane elasticity. The cited works tackle the problem of
existence of a quasi-static evolution in brittle fracture satisfying a weak form of the Griffith’s criterion.

In this paper, we are interested in the application of the Griffith’s criterion to a problem of quasi-static
cohesive crack growth in the setting of planar linearized elasticity. We consider a linearly elastic body 2, where
2 C R? is an open, bounded, connected set with Lipschitz boundary 942, and a simple C3-curve X which
represents the prescribed crack path. Let L := H(X) and ~: [0, L] — X be its arc-length parametrization. The
admissible fractures are of the form

I's:={v(0): 0<o <s}
for s € [0, L]. We set also 25 := 2\ I.
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The main feature of the Barenblatt’s cohesive model, see e.g. [3,4], is the presence of the so-called cohesive
forces acting on the fracture lips. In the mathematical model, the density of the energy spent by the cohesive
forces is represented by a function ¢: [0,4+00) — [0,4+00) which depends, in its simplest form, only on the
modulus of the jump of the displacement across Y. In general, ¢ satisfies:

QD concave,
©(0) =0, ¢'(0) =p < +oo,

. 1.1)
1 = < R (
(oo #(0) =R < Foo

¢(C) < k.

In our model, we do not need all these hypotheses. Indeed, given 7' > 0, we consider a C'* function : [0, 7] x
R? — R such that ¢(¢,0) = 0 and ¢(t,£) < ¢ (1 + |£[P) for some ¢ > 0 and some p € (1, +0c0), see Section 2 for
the precise assumptions. In particular, ¢ could be time dependent and negative. Thus, with our model we are
able to discuss also the case of an external time dependent force h : [0,7] — R? acting on both the fracture
lips. In this case, ¢(t,&) :== —h(t)-&.

Different from the Barenblatt’s model, we assume, as in [5], that the energy spent by the cohesive forces
is completely reversible. Moreover, we introduce a dissipative surface term proportional to the crack length,
namely Ggs, where Gg is a positive constant related to the physical properties of the material. This additional
contibution can be interpreted as an activation threshold, i.e., as the energy required to break the inter-atomic
bonds along the fracture. For simplicity, we will set Gg := 1.

We stress that the coexistence of a cohesive term and of an activation threshold has been noticed in several
papers related to fracture mechanics: in [12] in the approximation of fracture models wvia I'-convergence of
Ambrosio—Tortorelli type functionals, in [2,10] in the study of the asymptotic behavior of composite materials
through a homogenization procedure, and in [7,17] in the framework of fracture models as I'-limits of damage
models.

We are now ready to introduce the total energy of the system. Let f: [0,T] — L?(£2;R?) and w: [0,T] —
H(£2;R?) denote the volume forces and the Dirichlet boundary datum, respectively. For every t € [0, T], every
s € [0, L], and every displacement u € H'({25;R?), we define

E(t, s,u) ::%/Q (CEu-EudaL‘—/Q f(t)-udx—&—/r o(t, [u]) dH' + s, (1.2)

where C is the usual elasticity tensor, Eu stands for the symmetric part of the gradient of u, and [u] denotes
the jump of u across X.

Hence, the total energy (1.2) is the sum of four terms. The first two volume contributions are the stored elastic
energy and the power spent by the body forces acting on £2, respectively. The third integral in (1.2) represents
the energy spent by the forces acting on the fracture lips, and the last term is the activation threshold of which
we have already discussed.

We now describe the main features of the evolutive problem. For ¢ € [0,7] and s € [0, L], we define the
reduced energy:

Emin(t,s) ;== min {&(t,s,u) : u € H' (24,R?), u = w(t) on 02}. (1.3)

In order to give a definition of quasi-static evolution for our cohesive fracture model via Griffith’s criterion, we
first have to study the differentiability of &y, with respect to the crack length s. To this end, we notice that
because of the non-convexity of (¢, -), the solution to the minimum problem (1.3) is not unique. This will affect
the computation of the derivative of the reduced energy &£y with respect to s. Indeed, in Section 3 we show
that in general &,y is not differentiable in s. However, we can still compute its right and left derivatives 8;“<‘fmin
and 0; Emin, see Theorems 3.1 and 3.2. In particular, we are in a situation different from [19, 28], where the
reduced energy is differentiable and has a continuous derivative, and similar in this aspect to [18,20], where finite-
strain elasticity in brittle fracture is considered. In Proposition 3.11 we prove that the two derivatives 8;“<‘fmin
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and 0; Emin satisfy a semicontinuity property which will play a central role in the proof of existence of a
quasi-static evolution for the cohesive crack growth problem, see Definition 4.7 and the proof of Theorem 4.9.

Let us emphasize the main difference between a quasi-static evolution via global stability, proposed in [13]
for the fracture growth, and an evolution wia Griffith’s principle. Roughly speaking, the former says that an
evolution s(t) has to be globally stable, that is, has to satisfy

Emin(t, s(t)) < Emin(t, s) for every s > s(t) and every t € [0, T]. (1.4)

In particular, condition (1.4) is derivative free. Therefore, it allows for the presence of jump discontinuities: for
instance, s(t) could jump instantaneously from a stable configuration to another passing through an energetic
barrier. This is a typical situation because the function

s+ Emin(t, s)

is non-convex. On the contrary, the definition of quasi-static evolution via Griffith’s principle imposes a condition
on the energy release rate. In our setting, we will have some requirements on 9 Epin and 95 Enin (see Def. 4.7).
Since OF Emin are the right and left derivatives of the reduced energy with respect to the crack length s, the
Griffith’s criterion represents a sort of differential condition on the evolution s(t). Therefore, we should obtain
a more regular solution or, at least, a more physical one, i.e., an evolution which jumps later than a globally
stable one.

In order to get a quasi-static evolution satisfying a weak version of the Griffith’s principle, in Sections 4-7
we tackle the evolutive problem by means of vanishing viscosity. This procedure has been studied for instance
in [1,11,24,25] in an abstract setting. It consists in the perturbation of minimum problems with a viscosity
term driven by a small positive parameter €, enforcing a local minimality of the solutions. Let us briefly discuss
how we exploit this technique. Given a subdivision {t¥}¥_ of the time interval [0, T], we consider, for i > 1, the
incremental minimum problem

kyi—1)2
€ (s —s2 ;
min gmin(tf’ S) + = % oS Z 8?’1_1 s (15)
2t =ty
where s¥771 is a solution of (1.5) at time t¥ | and s%* := s, the initial condition. In (1.5), we are penalizing the

distance between the new and the previous cracks with the viscosity term driven by € > 0. Having constructed
the discrete time solutions for every € > 0, the scheme is to pass to the limit as k — 400, in order to find the
so-called wiscous evolution s. (Thm. 4.6), and, finally, let € tend to zero. In this way, we will obtain a quasi-static
evolution for the cohesive fracture problem (Thm. 4.9).

We notice that this kind of vanishing viscosity approach to the cohesive fracture is a novelty. Indeed, the
cohesive crack growth problem, without activation cost, has been investigated in previous works, see e.g. [5,6,9].
In [6,9], the notion of quasi-static evolution is based on global stability and the proof of existence is addressed via
the time discretization process introduced by Francfort and Marigo in the field of fracture mechanics [13], and
frequently used in the study of rate-independent processes [23]. In [5], following the ideas of [8], the vanishing
viscosity approach is applied with an L?-penalization of the displacement.

The plan of the paper is the following: in Section 2 we discuss the setting of the problem and the notation
which will be used throughout the paper. In Section 3 we compute the right and left derivatives of the reduced
energy Emin With respect to the crack length s, see Theorems 3.1 and 3.2. In Section 4 we give the definitions
of viscous and quasi-static evolutions for the cohesive crack growth problem, see Definitions 4.5 and 4.7, and
state the results of existence of such evolutions in Theorems 4.6 and 4.9. These theorems will be proved in
Sections 5-7.

Finally, in Sections 8 and 9, we generalize the previous results to the case of many non-interacting cracks, in
the spirit of [22]. In order to get the same properties of Definition 4.7, we will use the notion of parametrized
solution introduced in [25].
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2. SETTING OF THE PROBLEM

In this section, we introduce the notation which will be used later on and describe the main features of the
problem we will discuss in the following sections.

We consider a model in planar linearized elasticity. Let 2 C R? be a bounded, connected, open set with
Lipschitz boundary 9¢2. The reference configuration is its closure {2, which represents a linearly elastic body at
rest.

The prescribed crack path is given by a simple C3-curve ¥ C §2 with H'(X) =: L, where H! denotes the
one-dimensional Hausdorff measure. Let v € C3([0, L]; ¥) be its arc-length parametrization and v, T be its
unit normal and unit tangent vectors, respectively. We make the following assumptions on the geometry of the
model:

e 902N X = {7(0),7(L)};
e 2\ X =0"UN, where 2, 2~ are two connected open subsets of R? with Lipschitz boundary, defined
according to the orientation of the normal vector v, with 2T N2~ = (.

By the regularity assumptions on 2, 2%, and 27, the trace operators tr: H'(£2;R?) — H'Y?(002;R?),
troe: H' (2% R?) — HY?(00%;R?) are well defined and continuous. In particular, for every v € H'(2\ ¥;R?)
we can define its jump across X' by

[v] == try (v)|g — tr_(v)|s € HY?(Z;R?).

We recall that the embeddings H'/?(X;R?) « LP(X;R?) are compact for every p € [1, +00).
For simplicity, we assume that the family of admissible fractures is given by the set

(I,: selo, L]}, (2.1)

where, for every s € [0, L], we define
I's :={v(0):0< 0 <s}.

This means that the set in (2.1) can be parametrized by the arc-length s € [0, L]. Moreover, with this choice
of admissible cracks, we are assuming that all possible fractures are closed and connected subsets of X', with a
common starting point v(0) € 9£2. In particular, a crack I'y may extend only from its end point 7(s).

For s € [0, L] we define §2, := 2\ I'; and denote by H!(§2s;R?) the set

{ue HY(2\ 2;R?) : [u] =0 H'-a.e. on X'\ I}

From now on, we will drop the R? in the definition of the function spaces, when it is clear that we are dealing
with vector-valued functions.

The body outside the crack is supposed to be linearly elastic, with elasticity tensor C. In general, C is a
function of the space variable x € 2\ X. For technical reasons, it is assumed to be C! with bounded derivative.
In particular, the linear function C(z): M2,,, — M2, is defined for every € 2\ X, where MZ, is the space
of 2 x 2 symmetric matrices with real coefficients. As usual, we suppose that C is positive definite, uniformly
with respect to x € 2\ X, i.e., there exist 0 < a < f < 400 such that

alF|> < C(z)F-F < g|F)? for every F € Miym and every x € 2\ X, (2.2)

where the dot denotes the scalar product between matrices. We notice that we can also think to C(z) as a tensor
acting on the whole M2, the space of 2 x 2 matrices with real coefficients. Thanks to the symmetries of C, see
e.g. [16], we have

for every F € M? skew-symmetric and every x € 2\ X. For simplicity of notation, from now on we will not
specify the dependence on x € {2 of the elasticity tensor.
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Given T > 0, we consider a function g: [0, 7] x 2 x R? — R with the following properties:

t — g(t,z, &) is continuous for every ¢ € R? and a.e. x € (2;

x> g(t,x,€) is measurable for every t € [0, 7] and every ¢ € R?;
€ g(t,x, &) is CH(R?) for every t € [0,T] and a.e. x € £2;

t +— Deg(t,x,€) is continuous for every £ € R? and a.e. z € (2

x+— Deg(t,x,€) is measurable for every t € [0,7] and every & € R?;
for every € > 0, there exists a. > 0 such that

‘g(taxagﬂ S Qe +€‘£|2 (23)

for a.e. x € §2, every t € [0,T], and every & € R2.
there exists a; > 0 such that

[Deg(t, z,§)| < ar(1+[¢]) (2.4)
for a.e. x € 12, every t € [0,7T], and every & € R?.

Remark 2.1. We point out that the function g is a nonlinear generalization of the power spent by the volume
forces. Indeed, in Section 4 we will set

g(t,l’,g) = f(tax)gv (25)
where f € AC([0,T7]; L*(£2)), the space of absolutely continuous functions from [0, 7] with values in L?(£2). The
function f will represent the body forces applied on (2. In particular, g as in (2.5) satisfies all the properties
previously listed.

Finally, we introduce a function ¢: [0,7] x R? — R such that:

o t— p(t,&) is continuous for every & € R?;

o £ (t, &) is CL(R?) for every t € [0,T7;

e ¢(t,0) =0 for every t € [0, T7;

e there exist p € (1,400) and az > 0 such that

(,O(t,g) < 02(1 + ‘€|p)’

o (2.6)
[Desp(t, §)| < a1+ [EP77)
for every t € [0,7] and every & € R?;
e for every € > 0, there exists b, > 0 such that

for every t € [0,7] and every & € R2.

Remark 2.2. At ¢ fixed, the function ¢(t,-) will represent the density of the energy spent by the inter-atomic
forces on the crack lips. It will be concentrated on Y’ and depend only on the jump of the displacement across ..
This is typical in the model of cohesive fracture, see e.g. ([4], Sect. 2.6). Actually, in the cohesive model the
energy density ¢: R — [0, 4+00) should depend only on the modulus of the jump of the displacement across X.
Moreover, it should be monotone increasing, concave, bounded by a constant x > 0, and satisfy

¢(0) =0,
90/(0) = p < 400,
lim (€)= k.

1€l—+

We notice that, for our purposes, these further hypotheses on ¢ are not needed.

We stress that in our model the function ¢ could be time dependent and negative, see (2.7). This means that
we are able to discuss also the case of a given force h: [0,T] — R? acting on both the fracture lips, namely
o(t, &) := —h(t) - £ Moreover, we anticipate that our results can be generalized with minor changes to the case
of two different forces ht and h~ acting on the two faces of the crack.
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We are now ready to define the total energy of the system which will be considered in the computation of the
energy release rate and, with g as in (2.5), in the problem of quasi-static evolution as limit of viscous evolution
for our cohesive model:
fixed t € [0,T], s € [0, L], and u € H (), we set

E(t,s,u) / CEu- Eudx—/
Q

Hence, the energy is the sum of the stored elastic energy, a term which generalizes the power spent by the volume
forces, a surface term which can be interpreted as the energy spent by the cohesive forces on the fracture I,
and an activation threshold Ggs proportional to the crack length which represents the energy dissipated by the
process of fracture growth. We notice that, as in [5], we assume the cohesive part of the energy to be reversible.
For simplicity, we will set Gg := 1.

Let us now briefly discuss the equilibrium condition of the system. Fix ¢ € [0,7], s € [0, L], and the Dirichlet
boundary datum w € H'(§2) on 0£2. According to the variational principles of linear elasticity, the body, with
energy given by (2.8), is in equilibrium with an assigned crack Iy if the displacement u is a solution of the
minimum problem

g(t,x,u)dz + / o(t, [u]) dH* + Gos. (2.8)

I

s

in E(t,s,u), 2.9
i (t,s,u) (2.9)

where
A(s,w) :={u € H' () : [u]-v >0, u=w on 902} (2.10)

is the set of all admissible displacements associated to the crack I’y and the Dirichlet boundary datum w. In
the previous formula, the inequality [u]-~ > 0, which is assumed to be satisfied H!-almost everywhere on X,
takes into account the non-interpenetration condition, while the equality © = w has to be intended in the trace
sense on 0f2.

We now state a general lemma which proves the lower semicontinuity of £ and will be useful also in next
sections.

Lemma 2.3. Let ty,t € [0,T], sk,s € [0,L], wi,w € HY(2), ux € A(sk,wg) for every k, and u € A(s,w).

) f
Assume that tj, — t, s — s, wx, — w in H'(2), and ux — u weakly in H*(2\ X). Then

E(t,s,u) < hmmf E(ty, sk, ur),

1_ 1
/F@ D) dH hm/ ot [ux]) A, (2.11)

s

/ g(t,z,u)de = hm/ g(te, x,ug) de.
Q. ko Jo

k
If, in addition, we assume that
Et,s,u) = lilgn E(tk, Sk, uk), (2.12)
then uy — u strongly in H(2\ X).

Proof. By compactness, we have that u;, — u strongly in LP({2) and in LP(X) for every p € [1,+00). Up to a
subsequence, we can assume that u; — u pointwise in {2 and on X.
By the continuity properties of ¢ and g, we have the pointwise convergences

o(tk, [ur]) — »(t, [u]) and 9(tk, T, u) — g(t, o, u).

Thanks to the hypotheses (2.3), (2.6), and (2.7), applying the dominated convergence theorem we get the two
equalities in (2.11). Since the stored elastic energy is lower semicontinuous, we obtain also the first inequality
n (2.11).



ENERGY RELEASE RATE AND QUASI-STATIC EVOLUTION IN FRACTURE 797
If we assume (2.12), then, by (2.11), we deduce that

/ CEu-Eudx = lilgn / CEuy, - Eug da.
2,

Hence, we have that uy — u strongly in H(2\ X). O

Thanks to Lemma 2.3, to the hypotheses (2.2)-(2.7), and to the application of Korn’s inequality in 2%,
the minimum problem (2.9) admits a solution u € A(s,w). We notice that, by the lack of convexity of p(t,-)
and ¢(t,x, ), the solution to (2.9) is not unique. For simplicity of notation, we introduce the reduced energy

Emin(t,s,w) ;== min E(t, s, u). (2.13)
u€A(s,w)

The aim of Section 3 is to compute the derivative of the function s +— Enin(t,s,w), for ¢t € [0,T] and
w € H'(£) fixed, in order to find the so-called energy release rate. We will see that, in general, this derivative
does not exist. This is due to the non-uniqueness of solution to the minimum problem (2.9). However, we will
find formulas for the right and left derivatives of the reduced energy &.i, with respect to the crack length s,
see Theorems 3.1 and 3.2. In Sections 4-7 we will see that these two derivatives will play a central role in the
definition of viscous and quasi-static evolution via Griffith’s criterion.

In order to do our computations, we need to slightly move the crack tip along the prescribed curve Y. Hence,
fixed t € [0,T], s € (0,L), and & such that s + 6 € [0, L], we construct a C*-diffeomorphism Fj 5 such that
Fs 5(82s) = 2445, and F; slae = Id|se. Indeed, by our regularity assumption, in a neighborhood of the crack
tip (s) the curve X' can be seen, up to a rotation, as the graph of a C® function, i.e., there exists n > 0 and
¥s € C*((71(s) —n,71(s) + 1)) such that

Y ={(z1,¢s(z1)) : 1 € (11(s) —m,m(s) + )},

where 21 and 7; are the first components of x = (1, z2) € R? and of the arc-length parametrization v = (1, y2),

respectively.
Choose a cut-off function ¥ € C2°(B,,/2(0)) with ¥ = 1 on B,;/3(0). We define Fj 5: R? — R? by
(

( (s +6) =7(s))d(v(s) — ) )
Fs,g(l') =x+
Vs(@1 4 (71(s 4 0) = 11.(s))(v(s) — 2)) — s(z1)

if 2 € B,y/2(v(s)), while F, 5(z) ==z if 2 € R? \ B, /2(7(s)).
In the following lemma, we give some properties of Fy 5 (see e.g. [19]).

(2.14)

Lemma 2.4. For every s € (0, L), there exists 5o > 0 such that:

(a) Fs. € C3((=60,00) x R%;R?) and, for every |§| < &, the map Fss is a C3-diffeomorphism. Moreover,
Fsé(Q ) = Qs+5; Fsé(’y( )) _7(84—5) andFs5(F):Fs+5;

(b) the norms || Fssllcs and ||F, Hles are uniformly bounded with respect to § and there exists c1, ¢z > 0 such
that, for every |§| < 8o and every x € R?, we have ¢; < det VFy 5(x) < co;

(¢) |IId — Fssljc2 — 0 as § — 0;

(d) some derivatives:

(o) = O5(Fus(also = A0 =) (o) )

95 (det VFy 5(x))|s=0 = divps(z), (2.15)
95(VFs5(2))|s=0 = —95(VFs5(x)) 520 = Vps (),
D5 (cof VFs 5)T 520 = —0s(cof VFy 5)~T|s20 = divps lyz — Vs,

where, for every G € M2, cof G stands for the cofactor matriz of G.
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Proof. See [14] for the proof of (a), (b), and (d) in the case of C'™ maps. The same arguments are applicable
with the C? regularity of Fy 5. Property (c) follows immediately from the definition (2.14) of Fj 5. O

Formulas (2.15) will appear in the expressions of the right and left derivatives of the reduced energy Emin
with respect to s, see (3.1), (3.5)—(3.8).

3. ENERGY RELEASE RATE

The purpose of this section is to give precise formulas for the derivative of the energy with respect to the
crack length s. First of all, let us fix some notation. In what follows, for every ¢ € [0,T], every s € [0, L], and
every w € H1(£2), we will denote by u a solution to the minimum problem (2.9) in A(s, w).

Let t € [0,T], s € (0,L), u € H'(£2), and let ¥ be a cut-off function as in (2.14). We set

1
G(t,u,v) :=— 5 /Q (DC ps)Vu-Vudx — /Q CV((Vps — divps Lyz)u) - Vudz

1
+/ C(VuVps) - Vudz — —/ CVu-Vudivp, dz
/ Deg(t,z,u)- [(Vps — divps Lyz2)u — Vu ps| da
/ Deo(t,[u]) - ((Vps — divps ez )u) dH?

_/FS olt, [u])y@gf( ) Vs dH! / u]) divp, dH, (3.1)

where ps has been introduced in Lemma 2.4, v and 7 are the unit normal and unit tangent vectors to X,
respectively, and DC py is a fourth order tensor given by

8Czykl
axm

(D(Cps ijkl = Z Ps = (ps,laps,2)~ (32)

In particular, we notice that G depends on ¢ through the definition of ps, see (2.15).
We introduce the right and left derivatives of £y with respect to the arc-length of the crack s: for every
t € [0,T] and every w € H*(£2) we define

Smin(ta s+ 57 ’U)) - 5min(t> S, U))

te T
03 Emin(t, s,w) : }1{% 5 for every s € [0, L), (3.3)
and Eminlty s + 6,0) — Eminlt
05 Emin(t, s,w) := lim min(f, 8 + 0, w) = Emin(t, 5 ) for every s € (0, L], (3.4)

5,70 é
if the two limits exist.
We are now ready to state the main results of this section.

Theorem 3.1. For every t € [0,T], every s € (0,L), and every w € H(£2), the limit in (3.3) exists and
OF Emin(t, s,w) =1 —GT(t,s,w), (3.5)
where we have set
Gt (t,s,w) := max {G(t,us, V) : us € A(s,w) is a minimizer of £(t,s,-)}, (3.6)

for a given cut-off function ¥ as in (2.14).
Moreover, G (t, s,w) does not depend on the choice of 1.
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Theorem 3.2. For every t € [0,T], every s € (0,L), and every w € H(£2), the limit in (3.4) exists and
05 Emin(t, s, w) =1—G (¢, s,w), (3.7)
where we have set
G (t,s,w) := min {G(t, us, V) : us € A(s,w) is a minimizer of E(t,s,-)}, (3.8)

for a given cut-off function ¥ as in (2.14).
Moreover, G~ (t, s, w) does not depend on the choice of V.

Remark 3.3. We notice that formulas (3.5)—(3.8) say that the function s — Enin(t, s, w) is not differentiable in
the interval (0, L). This is due to the lack of uniqueness of solution to (2.9) and, more in general, to the fact that
a minimizer of £(¢, s, -) might not be approximated by minima of £(¢, s+9,-) as § — 0. The consequences of this
“non-approximability” will be clear in the proofs of Theorems 3.1 and 3.2, and will be stressed in Remark 3.9.

Let us anticipate, as stated in Proposition 3.11 below, that we can not expect to have the continuity of 8;“<‘fmin
and 0; Emin as functions of ¢, s, and w, thus the arguments used in [19,22] have to be modified as in [20] in
order to find a quasi-static evolution as limit of viscous solutions, see Sections 4-7.

We finally notice that the terms G* and G~ appearing in (3.5) and (3.7) are the generalization of the energy
release rate, see e.g. [18,21]. To be consistent with the existent literature dealing with Griffith’s criterion, the
definitions of viscous and quasi-static evolutions will involve GT and G~, see Definitions 4.5 and 4.7.

Remark 3.4. We point out that, to prove Theorems 3.1 and 3.2, we can not apply the abstract results in [19,20],
since we can not ensure that property (E2) of [19,20], that is,

|0sE(t, s+ 0,u)| < ecr(ca+E(t, s+ 6,u)) for || small, u € A(s + 6, w),
holds in our framework. Indeed, we are able to prove that

105E(t, 5 + 0, u)] < c([lullfn + ulfp),

I (3.9)
g(tas + 6a u) Z CHu”Hla

where p € (1,+00) has been fixed in (2.6). However, (3.9) is not sufficient to get (E2) if p > 2.
Moreover, we notice that, with our method, we do not need to assume g to be differentiable with respect to
the space variable © € {2, as it has been done in [20].

In order to compute dFEpiy, for every s € (0, L) and § € (=5, o) (see Lem. 2.4) we need to introduce the
Piola transformation P; s associated to Fj s:

Py su:= (cof VF, 5)TuoF, s for every u € A(s + d, w). (3.10)
We notice that P s is an isomorphism between A(s + d,w) and A(s,w) whose inverse is given by
PS_,; u = ((cof VF,5) Tu)o FS_,; for every u € A(s,w). (3.11)
For simplicity of notation, we also set
u’ = (cof VFy5) Tu = (PS_,(S1 u)o Fy.s. (3.12)

Before starting the proofs of Theorems 3.1 and 3.2, we show some properties concerning the behavior of ug
and iy with respect to time ¢, the parameter s, and the Dirichlet boundary datum w. In the next lemmas, we
prove the continuity of the energy Eniy in [0,77] x (0, L) x H(£2).
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Lemma 3.5. Let s € (0,L) and let us € H (2 \ X). Assume that there exists ug € H'(£2\ X) such that
us — ug in HY(2\ X) as § — 0. Then the sequences uso Fy 5, ug OFST(;l, Ps s5us, and PS_,; us converge to ug
strongly in H*(2\ X) as § — 0.

Proof. Thanks to the properties stated in Lemma 2.4, the lemma can be easily proved by using the changes of
coordinates x = F ) (y) and = = F} 5(y). O

Lemma 3.6. The reduced energy Emin : [0,T] x [0, L] x H(2) — R is lower semicontinuous.

Proof. Let ty,t € [0,T), sg,s € [0,L], wr,w € H'(§2) be such that ¢, — ¢, sp — s, and wy — w in H() as
k — +4o00. For every k, let us fix ux € A(sy,wy) minimizer of £(tx, sk, ). Then, by Korn’s inequality and by the
hypotheses (2.2), (2.3), (2.6), and (2.7), we have, for some £ > 0 small enough and some ¢y, ca > 0,

Cl”Uk”%_Il —ae — be < E(tg, sk, up) < E(tk, sk, wi) < cszkH?{l +a.+ L.

The previous inequality and the convergence wy — w in H'(§2) imply that the sequence uy is bounded in
H(02\ X). Therefore, there exists u € H!(£2\ X) such that, up to a subsequence, uj, — u weakly in H*(£2\ X).
By the compactness of the trace operator, we deduce that u € A(s,w). Moreover, (2.11) holds. Hence

Emin(t, s,w) < E(L,s,u) < limkinf E(tk, Spyuk) = limkinf Emin (s Sky W),

and this concludes the proof. O

Lemma 3.7. Let ty,t € [0,T], sk,s € (0,L), wg,w € H'(2) be such that ty, — t, s — s, and wp — w
in HY(2) as k — +oo. Let up € A(sg,wy) be a sequence of minimizers of €(ty,sk,+). Then, there evists
u € A(s,w) minimizer of E(t,s,-) such that, up to a subsequence, ux — u in H(2\ X).

In particular, the reduced energy Emin is continuous on [0,T] x (0,L) x H(£2).

Proof. As in the proof of Lemma 3.6, we can find u € A(s,w) such that, up to a subsequence, uy — u weakly
in H1(2\ X).

Let us prove that u is a minimizer of £(t, s,-) in A(s,w). Fix us € A(s,w) minimizer of £(t, s, -). Then, by
Lemma 2.4 and by the properties of the Piola transformation (3.10), for k large enough we have Psfslkfs Us +
wy, —w € A(sp, wy). Thanks to Lemma 3.5, P;slk_s us — us in H(2\ ) as k — +o00. Thus, by (2.11) and by
the minimality of uj, we obtain

Emin(t, s,w) < E(L,s,u) < Uminf E(ty, sk, ur) < limsup E(tk, sk, ur)

k—-4o00 k—+oco

< lim  E(tg, Sk, Pjslk_s us +wi, —w) = E(t, s,us) = Emin(t, s, w). (3.13)

k—-4o00 s
From (3.13) we deduce that u is a minimizer of £(¢, s,-) in A(s,w) and

Et,s,u) = Emin(t, s,w) = kEToo Emin (ty Sk, W) = kEI-sI-loog(tk’ Sk, Uk)- (3.14)

Therefore, by Lemma 2.3 we get that ux — u strongly in H'(§2\ X). Moreover, (3.14) implies that &y, is
continuous on [0, 7] x (0,L) x H(2). O

In the proof of Theorem 3.1 we will need the following lemma.

Lemma 3.8. Let 2 C R? be an open, bounded, and connected set with Lipschitz boundary. Let 9 € C°(§2) and
do > 0 be fized as in (2.14) and in Lemma 2.4. Then the following facts hold true:

(a) there exists ¢ = c(9) > 0 such that for every u € H'($):

< ¢(9)]| V| 2. (3.15)

L2

Hchl(uOFS_,él — u)’

Moreover, (5‘1(qu8_’51 —u) — —Vups in L*(2) as § — 0;
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(b) assume that there exist  — 0, |0x| < 0o, and us,,u € H(£2) such that us, — u weakly in H'(2) as
k — +oo. Then 5,;1(u5k —ug, 0 Fy5.) — —Vu ps weakly in L*(£2) as k — +oc.

Proof. We adapt the proof of ([18], Lem. 4.1) to the case of a curved prescribed crack path X.
Let us fix u € H(£2). For |§| < &y we define Ls(u) := 5*1(uo}7‘8_’51 —u) and Lo(u) := —Vu ps. The function
Ls: HY(£2) — L2(£2) is a linear operator for every |§| < dp. We want to prove that they are uniformly bounded.
To this end, for |§] < dp and h € R small enough, we set xp, := E;;+h(y) and z := Fs}l(y) for y € 2. We
compute

. Trp — T
lim .
h—0
By definition of F§ ., we have
1 1 1
0= E(Fs,ém(ffh) — Fs5(z)) = E(Fs,ém(ffh) — Fs54n(z)) + E(Fs,wh(w) — Fs 5(2)). (3.16)

By the mean value theorem, there exists ¢, € (0,1) such that

Fssin(xn) — Fssn(x) = VFs sin(4,)(xn — 2),

where 4, 1= x + tj (x5 — ). Since Fy 544 is a C3-diffeomorphism, for every h there exists (VFs sip (24, )
Hence, (3.16) becomes
Tp — T F z) — Fss(x
0= ==+ (VEusin(ar,)) ! 2 )h 2@), (3.17)
Passing to the limit in (3.17) as h — 0, since =4, — = we get
. Thp — T _
pas(e) = lim Tt = —(VE, 5(2)) " 05 F\5(a). (3.18)
Let now u € C*(£2) be fixed. For every y € £2, by (3.18) we have
1 ! d —1 ! —1 —1
L)) = 5 [ pulFols)ah = [ FulE k) puns(Fly () di. (3.19)

Taking the L? norm of Ls(u) in (3.19) and applying Hélder’s inequality and the change of coordinates y =
F phs(x), we obtain

1
| Ls ()22 S/O /Q\Vups,h5|2detVEg7h5 dz < e(9)||Vul2., (3.20)

for some constant () >0 independent of §. Since C°°(£2) is dense in H({2), we deduce that (3.20) holds for
every u € H'(2), which is exactly (3.15).
Moreover, thanks to (3.19), for every u € C*(£2) we have

1
|Ls(u) — Lo(w)|2 < / /Q Vu(E L)) po s (Fols () + Vs (9) 2 dy . (3.21)

For (h,y) € [0,1] x £ fixed, the integrand in (3.21) converges to 0 pointwise as § — 0, thus, by the dominated
convergence theorem, we get that Ls(u) — Lo(u) strongly in L?(£2) for every u € C*°(£2). By (3.20) and a
density argument, the same is true for u € H*(£2). This concludes the proof of point (a).
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Let us now prove (b). For every v € C2°({2), it holds

/ 521(“% — Us,, © 5,5k)"Ud£L'
(]

— _/Quék - Lg, (v)dz + 6, ! /Quék (o F i )(1—detVF,, )dx

det VF, 5, (F )} (z)) — 1

5,0k

det VF, 5, (F,} (x))

=— /Qu(;k <L, (v)da + ;! /Qu(;k (v OFs_,élk) dz. (3.22)

In the last integral of (3.22) we perform the change of coordinates © = F; s(y), thus we obtain

det VF5 —1
/ 5k_1(u5k — Ugy, OE@,M) vdz = _/ Ug,, 'Lék (U) dw +/ (uﬁk OFsyﬁk) v < 5 L dz. (323)
22 22 2 k

Passing to the limit in (3.22) as k — +o0, taking into account point (a), Lemma 2.4, and the weak convergence
ug,, © Fs 5, — u in H1(£2), we get

lim/ ng(ugk—u(;koFsy(gk)-vdx:/u~vasdx+/u~vdinsdx
k Ja 10 10

:/ u~div(v®ps)dx:—/ v-Vu ps dz, (3.24)
o) Q

where, in the last equality, we have used the divergence theorem.

Since

51;1(%% — Uy, OFSJSI‘:) = L‘Sk (uék © E975k)a

estimate (3.15) and the weak convergence of us, imply that there exists C' > 0 such that for every k
16 (s, = 15, 0 s )2 < C.

Therefore, taking into account the density of C°(£2) in L?(£2), we deduce that (3.24) holds for every v € L?(2),
hence 6, '(us, — us, 0 Fss.) — —Vup, weakly in L2(£2) as k — o0, and the proof of the lemma is thus
concluded. g

We are now ready to prove Theorem 3.1. Here, we follow the steps of ([18], Thm. 3.3). Before starting the
proof, we notice that, with the notation introduced in (3.10) and (3.11), for § > 0 these inequalities hold:

5min(t7 s+ 57 w) - gmin(t, S, U}) < S(tv s+ 5, Ps_,él ’LLS) - S(tv S, US)

g N 0 ’ (3.25)
E(t, s+ 0,usys) — E(t, 8, Psstists) _ Emin(ty s + 9, w) — Emin(t, s, w)

0 0 ’

IN

for every us € A(s,w) and every usy1s € A(s + J,w) minimizers of £(¢,s,-) and E(t,s + ¢, -), respectively.
Estimates (3.25) will be the key point of the following proofs.
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Proof of Theorem 3.1. Fix t € [0,T], s € (0, L), and w € H*(£2). Let us consider the first inequality in (3.25).
Recalling the notation introduced in (3.10), (3.11), and (3.12), for 0 < § < §p we have, by the change of variables
z=F5(y),

E(t,s—i—é,P;;us)—Etsus 1 L
s, ; :—5(/ C(Fss(x )Vu (VF,s)™ Vu (VF“;) det VF; 5 dx

CEu - Eusdx> — 1(/ g(t,x, Py us)dx—/ g(t,x,us)dx>
o\ Ja, ;s 2

— 1+(¢sOF95) 1 1>
+6(/p590(t’[“sn Nz det VF, 5 AH /st(t,[us})dH 11

1 1 1
=0 —=I —Is+1.
5 524-53-1-

(3.26)

Thanks to the properties of F§ 5 stated in Lemma 2.4 and to the regularity of the elasticity tensor C, applying
the dominated convergence theorem we easily get that

1 1
lim = I; = / (DC ps)Vus - Vus do + / (CV((VpS — divps lmz)uq) -Vus dx
5\0 0 2 Q. Q.

/ C(VusVps)-Vusde + = / CVus - Vug divps de. (3.27)

We now deal with the term Iy of (3.26). In view of the regularity properties of g, we can apply the mean
value theorem: for a.e. x € 2 there exists (s5(x) € (0,1) such that

90t 3, P (1)~ 9(t, 2,15 (2)) = Deglty 2, Py ()4 Co ) (P s ()~ () - (Pd wol2)—(a)). (3.28)
Let us set 15 := P_ 6 us + G5 (P, 5 us — us), where (s is as in (3.28). We can continue in (3.28), obtaining
g(t,x, P 5 us(x)) — g(t, 2, us(z)) = Deg(t,z,u5(2)) - [(P5 us — us 0 Fy 5) + (us 0 F§ —us)]. (3.29)

By Lemma 3.5, usoF,} 5 and P, 5 us converge to us in H'(2\ X) as § \, 0. Hence, we also have, up to a
subsequence, u5 — us pomtvvlse Thanks to Lemmas 2.4 and 3.8, to condition (2.4) on g, and to the dominated
convergence theorem, we get

%1{1(1) Ig / Deg(t, x,us) - [(Vpg —divps 1y2) us — Vusg ps] dz. (3.30)

We now consider the term I5 in (3.26). We can write it as

/ 2
b= [ et L 0o B Gee v g — 1) dn!

r. V142

T (0o Fua)
+f w(t,[UTi])( e —1)dH1+ /Fs(w(t,[uﬁ])—w(t,[us}))dHl

=L+ Ihs+ 135 (3.31)

s
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For the first two terms in (3.31) it is easy to see that
1 1
lim -1 - I
5{% 518 + <123
wl w/l

11(8)9(y(s) — z) dH!

I, r, 1 +,2

(¢, [us]) divp, dHY + / o(t, [us])
(t, [us))

/ o(t, [us]) divps dH* +/ ot usver <? é) Vps dH . (3.32)
I r

s s

1)
For the last term in (3.31), we exploit again the mean value theorem: for H'-a.e. & € Iy there exists
¢s(x) € (0,1) such that

p(t, [ud](x)) = @(t, [us] () = Dep(t, [u(@) + (@) ([ud)(@) — [us](2))) - ([ul](@) — [us](x))
Arguing as in (3.30) and taking into account hypothesis (2.6) on ¢, we get
hm — 13 3= / Dep(t, [us]) - (Vs — divps Ty Jus) dH'. (3.33)

Collecting (3.25)—(3.27) and (3.30)-(3.33) we deduce

. _ . 5y
limsup Emm(t,s +57 w) Smm(tasaw) S hm 5(t,8 +5, us) S(t,s,us)
50 1) 5N\.0 )

=1-G(t,us V). (3.34)
Since we can repeat the previous argument for every us € A(s, w) minimizer of £(t, s, ), taking the infimum in
the right-hand side of (3.34) we get

hm sup gmin(tv s+ 57 w) - Smin(ta S, ’U})
50 4

< 1—sup{G(t,us,?) : us € A(s,w) is a minimizer of (¢, s,-)}. (3.35)

In particular, since the set of minimizers {us} is bounded in H*(£2;) for every s € (0, L), the supremum in (3.35)
is finite.

To prove the converse inequality for the liminf, we argue in a similar way on the second inequality of (3.25),
taking into account Lemmas 2.4, 3.5, 3.7, and point (b) of Lemma 3.8. Indeed, for every § > 0 we fix us4s €
A(s + 4, w) minimizer of £(t,s + 0,-). By Lemma 3.7, we deduce that there exist a subsequence d; \, 0 and
us € A(s,w) minimizer of £(t, s, -) such that us15, — usin H(£2\X). Lemma 3.5 implies that us 5, 0 Fi.s5, — s
in H1(£y). For simplicity, we set Us 5, := usts, © Fs5, and notice that Ps 5, us1s, = (cof VFs 5, ) Us s, -

We can write

5(t, S+ 5ka us+5k) — 5(t, S, PS,(Sk u5+6k)
Ok

1
= E( / C(Fs.5,(7))VUs 5, (VFs5,) " VU5, (VFs5,) " det Vs 5, dz
025

- / CV(PSJS/Q u3+5k) : V(Psvék u3+5k) dl‘)
P8

1
- (5_</ g(t,w,usJﬂ;k)dw—/ g(t,x,Ps,gkuer(;k)dw)
k \Jo. Q.

s

1 ]- ! S k
+ —(/ o(t,[Us,s.]) (a0 Fs)” det VF, 5, dH'
r,

Ok VARRTA

- / (P(tv [Ps,ék, us+§k,D dH1> +1. (336)
I

s
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Following step by step the proof of (3.34), in view of Lemma 2.4, of point (b) of Lemma 3.8, and of the
previous observations, we can pass to the limit as k — +oo in (3.36) getting

g(t7 S + 6/{1’ us+5k) - g(ta S, PS,(Sk us+5k)
O,
>1—sup{G(t, us,¥) : us € A(s,w) is a minimizer of £(¢, s, -)}. (3.37)

lillcn =1-G(t,us9)

By a contradiction argument, from inequality (3.37) it follows that

hm 1nf 5min(t7 S + 57 w) - gmin(ta S, U})
oN\0 o
>1—sup{G(t,us, ) : us € A(s,w) is a minimizer of (¢, s,-)}. (3.38)

Thus, collecting inequalities (3.35) and (3.38), we get that the limit in (3.3) exists and
OF Emin(t, s,w) =1 — sup {G(t, us,9) : us € A(s,w) is a minimizer of £(¢,s,-)}. (3.39)

It remains to prove that the supremum in (3.39) is attained. Let us consider a sequence of minimizers u” of
E(t,s,-) in A(s,w) such that

lim G(t,ul, ) = sup {G(t,us,9) : us € A(s,w) is a minimizer of £(¢, s,-)}.

Since Lemma 3.7 holds, there exist a subsequence, not relabeled, and a minimizer u € A(s,w) of £(t, s, -) such
that u” — u in H'(§2;). Since G is continuous with respect to the strong convergence in H'(£2\ X), we have

lm G(t,ul,¥) = G(t,u,¥) = sup{G(t, us, V) : us € A(s,w) is a minimizer of (¢, s,-)}.

This concludes the proof of (3.5).
Finally, in view of the definition (3.3) of 9F&min, we notice that G does not depend on the cut-off
function 9. O

Exploiting the arguments of Theorem 3.1, we can also prove Theorem 3.2.

Proof of Theorem 3.2. We just have to follow step by step the proof of Theorem 3.1.
In this case, since we are dealing with ¢ < 0, estimates (3.25) are replaced by

5min(t7 s+ 57 w) - gmin(ta S, w) < g(tv s+ 57 us+6) - S(t, S, Ps,é us+6)

) - ) ’
_ 3.40
E(t,s+0, PS,; us) — E(t, s, us) - Emin(t, s+ J,w) — Emin(t, s,w) ( )
0 - 0 ’

for every us € A(s,w) minimizer of £(¢, s, -) and every us+s € A(s + J, w) minimizer of £(¢, s + 9, -).
The second inequality in (3.40) can be treated as the corresponding one in the first part of the proof of
Theorem 3.1. This time, it leads us to

Smin(ta s+ 57 ’U)) - 5min(t> S, U))

lim inf

>1_
mir > 1 - G(t,us,0). (3.41)

Since (3.41) holds for every us € A(s,w) minimizer of £(¢, s, ), taking the supremum we obtain

lign inf Enmin(t, s+ 0,w) — Emin(t, s,w)

it 5 >1—inf{G(t,us,9) : us € A(s,w) is a minimizer of £(¢,s,-)}. (3.42)
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For the first inequality in (3.40), we argue again as in the proof of (3.38). In this case, we get

lim sup gmin(ta s+ 5, w) - Smin(ta S, ’U})
5.0 o
<1—-inf{G(t,us,9) : us € A(s,w) is a minimizer of £(¢, s, -)}. (3.43)

Collecting the inequalities (3.42) and (3.43), we have that the limit in (3.4) exists. Moreover, recalling the
definition (3.4), we have

05 Emin(t, s, w) =1 —inf {G(t,us, V) : us € A(s,w) is a minimizer of £(¢,s,)}. (3.44)

As in the proof of Theorem 3.1, the infimum in (3.44) is actually a minimum, thus (3.7) is proved. Finally, G~
does not depend on the cut-off function 1. This concludes the proof of Theorem 3.2. O

Remark 3.9. As we have already noticed in Remark 3.3, the general non-existence of the derivative of Epin
with respect to the crack-length s is due to the lack of approximability of the minimizers us, € A(s,w) of
E(t,s,-), that is, it is not true that for every us and every ¢ > 0 there exist usys € A(s + J, w) minimizer of
E(t,s+6,) and us_s € A(s— &, w) minimizer of £(¢,s— 6, ) such that usis,us—s — us in H(2\X) as § \, 0. If
this approximation property were true, then, in the inequalities (3.35), (3.38), (3.42), and (3.43), we could take
both the infimum and the supremum. As a consequence, it would be 8;“<‘fmin = 07 Emin and the reduced energy
would be differentiable with respect to s € (0, L). For instance, this is true if the functions £ — ¢(¢,&) and
& g(t,z, &) are convex. Indeed, in this case the minimum problem (2.9) has a unique solution us € A(s,w)
and the function s — ug is continuous.

Remark 3.10. We briefly notice that if we drop the non-interpenetration condition in the definition (2.10) of
the admissible displacements A(s,w), Theorems 3.1 and 3.2 hold with a simpler formula for G, namely

G(t,u, ) :=— %/

25

1
——/ CVu~Vudivpsdx—/ Deg(t,z,u) - Vups da
2 Ja, Q.

(D(Cps)Vqudw—i—/ C(VuVps)-Vudx
2

—/FS ot [u])vW(?é) -VpsdHl—/ (¢ u]) divps dHL.

I’

The ideas of the proofs present minor changes due to the fact that we do not need the Piola transformation P; s
anymore. Indeed, uwo Fy 5 € A(s,w) for every u € A(s + 0, w) in this case.

Moreover, we stress that a C?-regularity of the curve X is enough, and that we do not need the differentiability
hypothesis on ¢.

Thanks to Theorems 3.1 and 3.2, we are allowed to define the functions
G*.G7:[0,T] x (0,L) x H'(2) — R,

whose expressions are given by (3.6) and (3.8), respectively.
We now state a property of semicontinuity of G* and G~ which will be useful in the next sections.

Proposition 3.11. The following facts hold:
(a) for every t € [0,T), every s € (0, L), and every w € H'(2)

G (t,s,w) 2 G (t,s,w) > 0;
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(b) the function G is upper semicontinuous with respect to the strong topology of R x R x H'(£2);
(c) the function G~ is lower semicontinuous with respect to the strong topology of R x R x H(§2).

Proof. To prove property (a), we just notice that G (¢,s,w) and G~ (¢, s,w) are the negative of the right and
left derivatives of the function
s+ Emin(t, s,w) — s.

Since this function is monotone non-increasing and Theorems 3.1, 3.2 hold, we get (a).

Let us prove (b). We consider a sequence (ty, si,wr) — (t,s,w) in [0,7] x (0,L) x H'(£2) and ¥ a cut-
off function defined as in (2.14). By Theorem 3.1, for every k € N there exists us, € A(Sk,wy) minimizer
of &(tk, sk, ) such that GF(ty, sk, wr) = G(tg,us,,v). By Lemma 3.7, there exists us € A(s,w) minimizer
of £(t, s,-) such that, up to a subsequence, us, — us in H'(£2\ ¥). Formula (3.1), together with the hypotheses
on g and on ¢, implies that

G(t,us,9) = lilgn G(tk, us,,0).

By (3.6), G(t,us,9) < GT(t,s,w), thus we deduce the upper semicontinuity of GT.
In the same way, taking into account (3.8), we obtain the lower semicontinuity of G~, and this concludes the
proof. O

We conclude this section with a proposition which helps us to give an interpretation to G defined in (3.1).
Let t € [0,T],s € (0,L), w € H'(2),u € HY(2\ X), and n > 0. We define

6‘77

ooty s,u) :=1inf {E(t,s,v) : v € A(s,w), [|[v—ulm <n}. (3.45)
By the direct method of the calculus of variations, we can prove that the infimum in (3.45) is attained.

Proposition 3.12. Lett € [0,T], s € (0,L), w € HY(£2), us € A(s,w) a minimizer of E(t,s,-), and let ¥ be a
cut-off function as in (2.14). Then

_en
Gt e, 0) — 1 = lim Timinf S5 Ys) = Eloc(ty 8 40, us)
NN 1)

g t s) — ST, t, 5, S
= lim limsup (F25,4s) = (540, s).
N\O0  5N\0 0

(3.46)

In particular, G(t,us, V) =: G(t,us) does not depend on 9.

Proof. Let t, s, w, and us be as in the statement of the proposition. Let n > 0 be fixed. With the notation
introduced in Lemma 3.8, for 4 > 0 small enough we have PS_’; us € A(s + 0, w) and, by Lemma 3.5, ||Ps_,51 Us —

sl gt < m. Thus, the following estimate from below holds:

~1
Et,s,us) —E(t, s+ 6, P 5 us) < E(t,s,us) — & (t,s+0, us) (3.47)
1 1
Therefore, as in the proof of Theorem 3.1, passing to the liminf as § \, 0 in (3.47) we get
5 t s) 577 ta 67 s
G(t,us, ) ~ 1 < limint (t,5,us) (1504 s+9us) (3.48)

We now prove that

Et — &l (t,s+0
lim sup (t; 5, o) :SOC( 8+ 0 us) < sup{G(t,uy,9) : u, € A(s,w) is a minimizer of & (¢, s, us)} — 1.
N0

(3.49)
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Let us fix a sequence 0 \, 0. Since, for every k, Sﬁil/k(t, s+ 0, us) < & (t,s4 0k, us), the following chain
of inequalities holds:

E(t,5,us) = ERe(t,s + 0k, us) _ E(tys,us) — Expe (85 + Ok, )
5 - Ok
_Eltsus) - i(m + 5kvufi)’ (3.50)
k

where we denote by ug € A(s + 0k, w) a minimizer of Efz)tl/k(t, S+ Ok, us). Since E(t, s,us) = Emin(t, s, w) and
Ps 5, uf; € A(s,w), we can continue in (3.50) getting

E(t,s,us) — & (t, 5+ O, us) - E(t, s, Psg, ul) —E(t, s + 0p, ul)
5k B 5k

: (3.51)

Up to a subsequence, we can assume that

) E(t,s, Py s, ul) —S(t,s—i—ék,ug) . E(t,s, Ps s, uf]) —E(t, s+ Op, ul)
lim sup = lim .

k 6k k 5k:

By construction, we have that uf] is bounded in H!(§2\ X). Thus, we may assume that, up to a subsequence,
ufl — u weakly in H}(£2\ X)) as k — +oo for some u € H(2\ X). By the compactness of the trace operator
and by the lower semicontinuity of the H!-norm, we have u € A(s,w) and ||u — us| g1 < 7.

Let us prove that u is a minimizer of & (t,s,us): given v, € A(s,w) a minimum of & (¢,s,us), thanks
to Lemma 3.5 we can find a sequence &) such that 0 < e < 0k, ep41 < €k, and [|P;} vy — vyllgn < 1/k for
every k € N. Therefore, by the triangle inequality we get

| Pt vy — usllg <n+1/k.

5,€k

Moreover, by our choice of g, P, } v, € A(s + e, w) C A(s + 6, w). Hence, in view of (2.11) in Lemma 2.3

5,€k
and of the definition of v,, we obtain

E(t,s,v) =&

loc

(t,s,us) < E(t,s,u) < limkinf E(t,s+ Jk,ug)

< limsup &(t, s + 5k,uf1) < 111131 Et, s+ 0k, P vy) = E(L, s,0y). (3.52)
k

where, in the last equality, we have used the strong convergence of P;} v, to v, in H'(£2\ ) as k — +oo0.
The chain of inequalities (3.52) implies that u € A(s, w) is a minimizer of £ (¢, s, us) and that

E(t,s,u) = lilgn E(t,s+ 5k,u’f]).

Thus, by Lemma 2.3 we get that uf — u strongly in H'(£2\ ¥) as k — +oo. By Lemma 3.5, we also have
P, s, upy —uin H'(2\ X).

Passing to the limsup in (3.51) as kK — 400 and taking into account the previous convergences, we get, as in
the proofs of Theorems 3.1 and 3.2,

_gn E(t, s, Pss, uF) — E(t, s+ 0p, uF
limsup 250 5306@’”5’““5) < lim (t, 5 Py u")5 (b + O uy) _ Gltu,9)— 1. (3.53)
k k k
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Taking the supremum in (3.53) among all the functions « minimizer of £ (¢, s, us), we deduce that

E(t,s,us) — & (t, 5+ Op, us
limksup (t; s, ) :5(;:( s + O, us) < sup{G(t,uy,9) : uy € A(s,w) is a minimizer of & (¢, s, us)} — 1.

(3.54)

By a contradiction argument, (3.54) implies (3.49). It is easy to see that, as in Theorem 3.1, the supremum
in (3.49) is actually a maximum.

Finally, passing to the limit in inequalities (3.48) and (3.49) as n \, 0, we get (3.46), and the proof is thus

concluded. O

Remark 3.13. In view of Proposition 3.12, we can interpret G(t,us) as a “local” energy release rate, in the
sense that it takes into account only deformations which are close to us in the H'-norm, while G* are “global”
energy release rates.

Since we have explicit formulas for the right and left derivatives of the reduced energy &y in terms of the
generalized energy release rates G and G, we are now in a position to study the problem of existence of a
quasi-static solution of our cohesive fracture model with an activation threshold. Following the ideas of [20], we
look for an evolution satisfying a weak form of Griffith’s criterion.

4. QUASI-STATIC EVOLUTION

We provide a notion of quasi-static evolution based on the technique of vanishing viscosity. The solution is
defined through a process of time discretization: we first solve some incremental problems and then pass to the
limit as the time step vanishes. This is a typical procedure in the study of fracture mechanics, see e.g. [13],
and of other rate-independent processes [23]. In order to enforce local minimality, the incremental problems are
perturbed with a viscous parameter € > 0 which tends to zero more slowly than the time step. This approach
was employed in [1,11,24,25] in an abstract setting and in [19, 20,22, 28] for the problem of crack growth.

First of all, let us fix some notation which will be used from now on: the reference configuration is described
by 2, where £2 C R? is an open, bounded, connected set with Lipschitz boundary. The crack path is given by
the C3-curve ¥ C 2. See Section 2 for the properties of £2 and X and (2.1) for the definition of admissible
cracks. Given T > 0, we consider

we AC([0,T); HY(2)) and  f € AC([0,T); L*(2)) (4.1)

which represent the Dirichlet boundary datum and the volume forces applied to 2, respectively. In particu-
lar, f(t,x)- & will substitute the function g(¢,z, &) defined in Section 2. For simplicity of notation, we will not
indicate the dependence of f and w on the space variable x.

Finally, we assume that the function ¢: [0,T] x R? — R satisfies a further property of differentiability: we
suppose that ¢(-,€) € AC([0, T]; R) for every £ € R? and that there exist p € (1, +00) and az € L1([0,T]) with
a3 > 0 such that

|Dio(t, &) < as(t)(1+ |€|P) for a.e. t € [0,T] and every & € R%. (4.2)

Fixed s € [0, L] and ¢ € [0,T], the energy of the system is, similar to (2.8),

E(t,s,u) ::%/Q (CEu-Euda:—/Q f(t)-udx+/ o(t, [u]) dH* + s, (4.3)

s

for every u € A(s,w(t)), the set of admissible displacements at time ¢, defined as in (2.10). We recall that,
different from the Barenblatt’s model, we assume the cohesive part of the energy to be completely reversible,
while the dissipative term of the energy is given by the length of the crack s.
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Since the boundary datum is a function of ¢ € [0,7], we slightly change the notation for the reduced en-
ergy Emin and for the energy release rates: for every s € [0, L] and every ¢ € [0, 7], we define, similar to (2.13),

Emin(t, s) := E(t, s,u). (4.4)

min
uEA(s,w(t))
Remark 4.1. By (4.1), all the results about i, proved in Section 3 hold: by Lemmas 3.6 and 3.7 the reduced
energy Emin is lower semicontinuous on [0, 7] x [0, L] and continuous on [0, 7] x (0, L). By Theorems 3.1 and 3.2,

it has right and left derivatives with respect to the crack length s which are now denoted by 9} Emin(t, s) and
05 Emin(t, s) for every (¢,s) € [0,T] x (0, L). Moreover,

OF Emin(t,s) =1 —GT(t,s,w(t)),
0y Emin(t,s) =1—G (¢, s,w(t)),

where G* are defined as in (3.6) and in (3.8).
With an abuse of notation, we now set
G*(t,5) = G (t,5,w(t)),

where, in the formulas (3.1), (3.6), and (3.8) for G*(¢,s,w(t)), the function g(t,x,u) is replaced by f(t,z) u
for an admissible displacement .

Remark 4.2. Since w and f are continuous in time, a simple application of Proposition 3.11 shows that G is
upper semicontinuous and G~ is lower semicontinuous on [0, 7] x (0, L).

We now discuss briefly the time incremental minimum problems and then give our definitions of viscous and
quasi-static evolutions.

For every k € N we fix a subdivision {t¥}¥_, of the time interval [0,7] with t¥ := i, and 7, := T/k.
Given ¢ > 0, we define recursively the solution s*? to incremental minimum problems: let s50 := sy, where
sg € (0, L) is the initial condition, and, for i > 1, let s be a solution to

o ki—1y2 _
min {Emin(tf, s)+ % (szsem ) i S € [s’;”l,L]}. (4.5)
Tk

We postpone the proof of existence of a solution to (4.5) to the next section, see Proposition 5.1, to comment
briefly on the function which appears in (4.5). This function is the sum of two terms: the reduced energy Enin
defined by (4.4), which represents the energy of the system at the equilibrium for a fixed s € [0, L], and a
perturbation term driven by € > 0 which enforces a local minimization of the energy with respect to s. This
kind of approximation should guarantee that the evolution in the limit follows “local minimizers” of the energy
(see [8,11,20,22,24,25,27] for further discussions and applications).

The passage to the limit will be performed in two steps: we let first & — 400 and find a viscous evolution for
every ¢ > 0, and, finally, we obtain a quasi-static evolution as the parameter ¢ tends to zero.

We introduce the concept of failure time and of jump set, important from now on.

Definition 4.3. Let a, b > 0 and let s: [0,a] — [0,b] be a monotone non-decreasing function. We define

e the failure time 7T (s) of s
T (s) :==sup{t €[0,a] : s(t) < b};

o the jump set J(s) of s
J(s) :={t €[0,a] : s is discontinuous at t}.
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Remark 4.4. We notice that 7 is lower semicontinuous with respect to the pointwise convergence, that is, if
s — s pointwise, then
T(s) < limkinf T (sk).

Of course, from now on we will consider only monotone non-decreasing functions from [0, 7] with values in
[0, L].

We now give a definition of viscous evolution and quasi-static evolution for the cohesive crack growth problem.

Definition 4.5. Let ¢ > 0 and sp € (0, L). We say that a monotone non-decreasing function s. € H'([0,77])
is a viscous evolution for the cohesive crack growth problem with s.(0) = so if it satisfies the following rate-
dependent Griffith’s criterion:

for a.e. t €[0,7(s.))

(1) 5€(t) > 05

(2) G~ (ts.(t)) — 1 — es.(t) < 0:
(3) (GF(t,5:(8)) — 1 — £5(8)) 5.(t) > 0.

In Section 6 we will prove the following existence theorem.

Theorem 4.6. Letc >0, f € AC([0,T]; L*(R2)), and w € AC([0,T); H'(£2)). Then, for every so € (0, L) there
exists a viscous evolution s. € H'([0,T]) for the cohesive crack growth problem with s.(0) = sq.

Definition 4.7. Let so € (0, L). We say that a monotone non-decreasing function s € BV([0,T]) is a quasi-
static evolution for the cohesive crack growth problem with s(0) = s¢ if it satisfies:

(1) for every t € [0,7(s)) \ J(s):
gi(ta s(t)) <1,;

(2) for every t € [0,7(s)) N J(s):
Gt(t,o)>1 for every o € [s(t7),s(t)];
(3) ift €1]0,7(s)) and Gt (¢,s(t)) < 1, then s is differentiable at ¢ and 3(¢) = 0.

Remark 4.8. We notice that in ([20], Def. 2.1) the evolution given in Definition 4.7 is called local energetic
solution. It generalizes the definition of local energetic solution in ([19], Def. 2.3) to the case of a non-differentiable
reduced energy Enin-

We can now state the main theorem of this paper.

Theorem 4.9. Let f € AC([0,T]); L*(£2)) and w € AC([0,T]; H*(£2)). Then, for every so € (0, L) there exists
a quasi-static evolution s € BV ([0,T]) for the cohesive crack growth problem with s(0) = sq.

Remark 4.10. Theorem 4.9 is proved in Section 7. Its proof follows the ideas of ([20], Thm. 4.2). The main
difference is that, starting from the discrete solutions to (4.5), we first construct a viscous evolution as the
parameter k tends to +o0o (see Theorem 4.6) and then, passing to the limit as € N\, 0, we obtain a quasi-static
evolution according to Definition 4.7, while in [20] these steps are carried out simultaneously working with a
parameter k = k(e).

Finally, we remark that in the proof of Theorem 4.9 we also show that if {s.}.>¢ is a sequence of viscous
evolutions for the cohesive crack growth problem with s.(0) = sg, then, up to a subsequence, s. converges
pointwise to a quasi-static evolution s € BV ([0, T).
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5. THE DISCRETE-TIME PROBLEMS

We now discuss the properties of the discrete-time solutions s’s“i introduced in Section 4. First of all, we have
to prove that they are well defined.

Proposition 5.1. For everye >0, k €N, and i = 1,...,k, there exists a solution to (4.5).

Proof. We exploit the direct method of the calculus of variations. Let ¢ > 0, k € N, and i = 1,...,k be fixed.
Let s; € [s®"~1 L] be a minimizing sequence for the minimum problem (4.5). Up to a subsequence, we may
assume that there exists s € [s¥~1, L] such that s; — s. Taking into account Lemma 3.6, we have that

Emin (tf’ s) < limjinf Emin (tf, 55)5

hence s is a solution to (4.5). O
We now provide some a priori bounds on the incremental solutions. In what follows, w! = w(tF) and
fE = 1)

Proposition 5.2. There exists C > 0 such that, for every k € N and every € > 0, the following inequality holds
k j i—1)2
€N~ (827 —s0)
eyl P g (1)

Proof. During the proof of this proposition, we will denote by u¥ a minimizer of £(t¥, s%7 ) in A(s%?, wk) and
by Qf, Fik the sets 2 ki, I'x.:, respectively.

First, let us prove that the minimizers uf are bounded in H(£2 \ ¥) uniformly with respect to k € N,
i=1,...,k and € > 0. Indeed, w¥ € A(s* wk) and, by (2.2), (2.6), the hypothesis p(t¥,0) = 0, and Holder’s

inequality, we get

B

E(tF, s, uf) = Emin(t], 887) < E(tF, s wyf) < §wa\|§11 + 2w || e+ L (5.2)
From (4.1) and (5.2), we deduce that, for some ¢ > 0,
gmill(ti’g’ Slgc,z) = g(tfv S§7i7 uf) <ec (53)

Therefore, since (2.2) holds and ¢ satisfies (2.7) uniformly in ¢, applying Holder’s and Korn’s inequalities to (5.3)
we obtain

cerlluf 1z = 1 e luf = c2 < Emin(tf, s27) < ¢ (5-4)

for some ¢1, c2 > 0. By the absolute continuity of f and by Young’s inequality, from (5.4) it follows that there
exists M > 0 such that for every k, every i = 1,... k, and every € > 0:

ufllp <M and  Ewn(tF, s5') > —M. (5.5)
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Let k€ N,i=1,...,k and € > 0 be fixed. Since u¥ | +wF — wF | € A(sP"~1 wk), we have, by definition
of 515“ and of the reduced energy Enin,

gmin(tfv 5572) + 5 S gmin(ti‘ca Slgc’i_l)

Tk

ko ki—1  k k k
<E(, s ui g wi —wiy)

= Euinltf 1,58 + [ CBuE Bk -l ) do
QF

1
+3 [ CBGut — ) Bl —wk o= [ (1= pE )k o
1

k
i—

i
_ / £k — k) da + / Dyl [uk_]) dH! dr. (5.6)
N t

k k
i—1 Fi—l

Thanks to (4.1), (4.2), (5.5), to Holder’s inequality, and to the continuity of the trace operator, (5.6) becomes

_ c (Sk,i . Sk,zq)z _ th th
Euin(th, o) + 5 U2 b st oM [ o) a4 W [l dr
th_ th_
th 1t§' 1 th
M [N dr 4 F [ o) dr+ (0 OM7) [ aa(r)ar,
oy oy oy
(5.7)
where L = H'(X), C is a positive constant independent of k, and
1 k k
Wy = ij:sll}?,k |w] —wi_ || m,
Fo= sup [f()lze
t€[0,T]
Adding to both sides of (5.7) the term § W and iterating the previous argument, we get
e sk k12 T
Emin(t!, 58 +5 % < Emin(0,50) + (BM + Wy, + F)/ [r(£)]| g1 dt
, & 0
j=1
T T
—|—M/ 1) 2 dt+(L+CMP)/ as(t) dt. (5.8)
0 0

By (4.1), F < +o0 and W), — 0 as k — 400, so (5.5) and (5.8) imply (5.1), and the proof is thus

concluded. 0

For every k and every ¢ > 0, let us define the piecewise constant interpolations #(t) := t¥ and 5%(t) := s¥

for t € (t¥_,,t¥], and the piecewise affine interpolation function

. _ ghii _ ghi—1

F) = st I b ) forte (8],

Tk

The next proposition is the equivalent of the Griffith’s criterion in the discrete setting.
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Proposition 5.3. For every k € N, every € > 0, and every t € [0,7(5%)) we have:

(a) sE(t) > 0;
(b) G*(tk(t), 55(t
(©) (G* (1 (1), 55

Proof. Property (a) follows 1mmed1ately from the definition of s*
Let us prove (b). Fix t € (t#_,,¥] such that t < 7(s%). By constructlon for every o > s¥"~1 we have

)~ 1 - es(1) < 0;
1) — 1 - e38(1)) 85(t) = .

ki hyi—1)2 k=12
ko k, € (s —s2") k e(0—s")
Emin(tF, s57) + 2 e Tka < Eminty,0) + 5 72 (5.9)
If o > sk dividing (5.9) by o — s%%, we obtain
Emin(t], 857) = Emin(t,0) & (0= s271)? = (sE1 -5
o — skt 27y, o — skt -
ki

S0, passmg to the limit as o N\, s2* and taking into account Theorem 3.1, we get (b).
If $5(t) = 0, then (c) is clearly satisfied. Otherwise, s > s%i~1 hence we can consider (5.9) with o €
(shi= 1 sM1). Dividing by o — k ¢ and passing to the limit as o /" sk from Theorem 3.2 it follows that

Se
G (th,88(t) — 1 —esf(t) > 0. (5.10)
Thanks to point (a) of Proposition 3.11 and to the previous step, we deduce that
GH(tf,5E(t) = G (17, 55 (1)),
hence (c) holds. O

6. VISCOUS EVOLUTION

This section is devoted to the proof of Theorem 4.6. For every € > 0, we pass to the limit as £k — 400, in
order to find a viscous evolution.
Let us prove the following compactness result.

Proposition 6.1. For every e > 0, there exists s. € H'([0,T]) such that

gk

(a) up to a subsequence, s¥ — s. weakly in H'([0,T]) and s, s*

(b) s is monotone non-decreasing;
(¢) 5(0) = so;
)

(d) €l[sc||32 is uniformly bounded with respect to e > 0.

Proof. Proposition 5.2 implies that €||S§HL2 is uniformly bounded with respect to k € N and € > 0, thus the
sequence (s¥);, is bounded in H'([0,T]). Therefore, for every ¢ > 0 there exists s. € H'([0,7]) such that, up
to a subsequence, s — s. weakly in H'([0,T]). In particular, by (5.1) and by the lower semicontinuity of
the L2-norm, property (d) holds.

Applying the Ascoli-Arzeld theorem, up to a further subsequence we can assume that s* — s. uniformly in
[0,T] as k — +o0. Since, by (5.1),

— e uniformly in [0,T];

kyi—1 ‘ _
$5(0) — 50| < | T (k)| b - B < Oy
k
for some C' > 0, we deduce that 5% — s. uniformly in [0, 7], hence (a) is proved.
Since, by construction, s¥(0) = sq for every k, it follows that s.(0) = so. Finally, from the monotonicity of 5%
and the uniform convergence proved in (a), we deduce that s. is monotone non-decreasing. O
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We are now ready to prove Theorem 4.6

Proof of Theorem 4.6. Fix ¢ > 0. Let us prove that s. € H'([0,T]) found in Proposition 6.1 is a viscous
evolution for the cohesive crack growth with s.(0) = so.
Since s. € H'([0,T)), its derivative $. exists a.e. in [0,7] and is nonnegative by monotonicity (see (b) of
Prop. 6.1).
To prove properties (2) and (3) of Definition 4.5, in view of Remark 4.4 we have to distinguish between two
possibilities:
T(s:) = lilgn T(5%) or T (se) < limksup T(5%). (6.1)

Let us consider the first case. By properties (a) of Proposition 3.11 and (b) of Proposition 5.3, for every
¥ € L2([0,T]) with ¢ > 0 we have

(55)
/T (e85(t) +1— G (t(1), 55(1))) (1) dt > 0. (6.2)
0

By the weak convergence s¥ — s. in H'([0,T]), taking the limsup as k — +oo in (6.2) we get

T (se) T B
| s+ Do e —timint [ 67 (000550 00 Lo s (0t > 0 (6.3)
0 0
where we denote by 1g the characteristic function of the set E. By Proposition 3.11,
G (L (1), SE(1) (1) Ljg (s (t) >0 for ae. t € [0,7].

Therefore, applying Fatou’s lemma to the last term in (6.3), taking into account (a) of Proposition 6.1, the
convergence t(t) — t for every t € [0,7], and the lower semicontinuity of G~, we deduce that

T(Sa)
/ (e6.(t) + 1 — G (£, 5-(1))) () dt > 0. (6.4)
0

Inequality (6.4) holds for every ¢ € L2([0,T]), 1 > 0, hence we have proved property (2) of Definition 4.5.
In order to prove condition (3), we first notice that, thanks to the bound (5.5), to the definition of GT
(see (3.1) and (3.6)), and to the hypotheses (2.2), (2.6), and (4.1), there exists C' > 0 such that

G*(Ir(t),55() < C (6.5)

uniformly with respect to k € N, € > 0, and t € [0, 7 (5%)).
Integrating (c) of Proposition 5.3 over the interval [0, 7 (5%)), we obtain

[ e o) -1ty a=o o
0

Passing to the limsup in (6.6) as k — -+o0, by Proposition 6.1 and the lower semicontinuity of the L?-norm, we
get

TG
0=timsup [ (0" (1) 5£(0) 1~ k(1) (0

k
T(glg) T (se)
< lim sup/ G (te(t),5%(t)) % () dt — / Se(t) dt — €limkinf Héfl[oj(gk)) 122
k 0 0 :

T(se)

T —
ghmksup /O G (Tk(t), SE(1)) S5 (1) Lo, 7(s0)) (1) dt — /0 (1+e8-(t)) 5.(t) dt. (6.7)
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By property (a) of Proposition 5.3, we can continue the chain of inequalities (6.7), obtaining

T T(se)
0 < limsup / (sup G (En(t), 5(1)) 1[0,T(sg>><t>) s (t) dt — / (14 e4e (1)) 4 (1) dt

k h>k
T T(ss)
— limsup / Fi(t) s5() dt — / (1+ (1)) 5. (1) dt, (6.8)
k 0 0

where we have set

Fio(t) := sup GF (£ (t), 52 (1)) Lo, 7(sn)) (1)
>k

for every t € [0, T] and every k € N.

By definition, F(t) converges pointwise to

F(t) = limksup G (Ek (), (1)) Lo, 750y (1) = limksup G (Tk(t), 55 () Ljo,7(s.)) ().

By estimate (6.5) and the dominated convergence theorem, Fj, — F strongly in L?([0,7]). Therefore, by
Proposition 6.1, (6.8) becomes

7 (se)
/ (F(t) = 1 — £4.(1)) 5. (£) dt > 0.
0

Finally, by Proposition 3.11, we deduce that F'(t) < G (t,5.(t)) 1jo,7(s.))(t), hence, thanks to the nonnegativity
of $., we obtain

7 (se)
| @ st~ 1 @) st ez (6.9)
0

With the same argument, we can prove that (6.9) holds on every I C [0,7 (s.)) measurable. This implies
property (3) of Definition 4.5.

For the second case in (6.1), we can assume, up to a further subsequence, that 7 (s.) < 7 (%) for every k.
Therefore, we just have to replace 7 (%) with 7 (s.) in (6.2) and (6.6) and repeat the previous arguments. This
concludes the proof of the theorem. O

7. THE QUASI-STATIC EVOLUTION

We now pass to the limit as the parameter £ tends to zero. This allows us to prove the existence of a
quasi-static evolution of the cohesive crack growth problem in the sense of Definition 4.7.
In order to prove the properties of Definition 4.7, we need the following technical lemma.

Lemma 7.1. Let z,z; : [0,T] — R be non-decreasing monotone functions such that zi(t) — z(t) for every
t €[0,T). Let z be continuous at t € [0,T]. Then, for every ty — t in [0,T)] it is zy(tx) — ().

Proof. Fix n > 0. By continuity, there exists § > 0 such that |z(f) — z(t)| < n for every |t — | < 25, t € [0,T].

Since t, — t, there exists k € N such that |t; — | < § for every k > k, so that
|2(te) — (D) <

for every k > k. By monotonicity, z(f — 6) < z(ty) < z(t + 6) for every k > k.
Pointwise convergence implies that, up to a redefinition of k,

|ze(t —6) — 2(t — 8)| <7 and |ze(t+6) — 2(t+6)| <7

for every k > k.
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By continuity of z and the choice of &, we have |z(f) — z(f + §)| < 1. Then, by monotonicity and the above
inequalities, we get

z(t) —2n < z2(t—0) —n <zt —0) < z(ty) < zp(t+6) < z(E+0) +n < z(£) + 27
for k > k. Being 1 > 0 arbitrary, the thesis follows. O
We are now ready to prove Theorem 4.9.

Proof of Theorem 4.9. Let ¢, ™\, 0 and let s., be a sequence of viscous evolutions for the cohesive crack growth
problem. Since s., are monotone non-decreasing and uniformly bounded in time, by Helly’s theorem there exists
s € BV([0,T]) monotone non-decreasing such that, up to a subsequence, s., — s pointwise in [0,T]. Let us
prove that s is a quasi-static evolution of the cohesive crack growth problem with s(0) = sq.

Since s¢, (0) = s, of course s(0) = so. We already know that s is monotone non-decreasing, thus it remains
to prove that s satisfies the weak Griffith’s principle, that is, properties (1), (2), and (3) of Definition 4.7.

Let us prove condition (1). We argue as in the proof of Theorem 4.6. By Remark 4.4, we distinguish between

the two possibilities

T(s)= lilgn 7T (s¢,) or T(s) < limksup T (8¢,)- (7.1)

In the first case, by property (2) of Definition 4.5 we have, for every v € L%([0,T]) with ¢ > 0,

T(sgk)
/0 (1+ eben (t) — G (£, 500 (£))) () dt > 0. (7.2)

Thanks to (d) of Proposition 6.1, we deduce that es., — 0 in L?([0,7]) as k — ~+oo. Therefore, passing to the
limsup as k — +oo in (7.2), we get

T(sgk)

0 < limsup / (1+ erdey (1) — G (b 50, (1)) (2)

’Zlf(s) ’ T
— [ - tmint [ 0 (e ()60 Loz, (). (7.3)
0 0

Applying Fatou’s lemma to (7.3), taking into account the lower semicontinuity of G~ and the convergence
7 (se,) — T (s), we obtain

T (s)
| a-g st umar=o
for every ¢ € L?([0,T]) with 1 > 0, hence
G (t,s(t) <1 for a.e. t € [0,7(s)). (7.4)

In particular, (7.4) is true for every t € [0,7 (s))\J(s).

For the second case of (7.1), we may assume, up to a subsequence, that 7 (s) < 7 (s, ) for every k. Then, we
have to replace 7 (sc, ) with 7 (s) in (7.2) and repeat the previous argument. Thus, property (1) of Definition 4.7
holds.

We now prove property (2). Let ¢t € [0,7(s)) NJ(s) be a jump point of s. Since s., — s pointwise, we may
suppose that ¢ < 7 (s., ). By the monotonicity of s, s(t7) < s(t1). For every s(t7) < a < b < s(t"), there exist
two sequences t¢,t% — ¢ such that s., (t¢) = a and s, (t2) = b for every k € N. For every 1 € L?([so, L]) with
¥ >0, we have, by (3) of Definition 4.5,

/t ¢t S, (7)) =1 = €r8e, (7)) ¥ (56, (7)) Se, (7) AT 2 0. (7.5)

a
k
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Since $¢, > 0 a.e. in [0, T, from (7.5) we deduce that

G a7 = 1) s (7)) 8 () dr > 0 (76)

k

We perform a change of variable setting o := s, (7) and

tp(0) == min {r € [t} 2] : 5., (1) = o},
so that (7.6) becomes
b
/ (Gt (tr(0),0) — 1) (o) do > 0. (7.7)

Passing to the limsup in (7.7) as k — 400, applying Fatou’s lemma and recalling Proposition 3.11, we get

b
/ (G (t,0) — 1) (o) do > 0. (7.8)

Since (7.8) holds for every v € L?([sq, L]), ¥ > 0, and every a < b in [s(t7), s(t7)], then
Gt(t,o) > 1 for every o € [s(t7), s(tT)].

It remains to prove property (3) of Definition 4.7. Let ¢ € [0,7(s)) be such that G (¢,s(t)) < 1. By the
previous step, t ¢ J(s). Let us prove that s is constant in a neighborhood of ¢. To this end, we first prove that
there exists § > 0 such that, for k large enough,

G (1, 8.,.(1)) <1 for every 7 € (t — 6,t + 9). (7.9)

Assume by contradiction that this is not the case. From the pointwise convergence s., — s, we deduce that,
for k large enough, ¢t € [0,7 (s¢,)). Therefore, we may assume that there exist a subsequence e, \, 0 and a
sequence Jdp, \, 0 such that (7.9) is not satisfied in the interval (¢t — 0y, t+dp), i.e., we can find tp, € (t —p, t+0p)
such that, for every h,

GF(th, sey, (tn)) > 1. (7.10)

Since t, — t and ¢ ¢ J(s), by Lemma 7.1 we have s, (tn) — s(t) as h — +o00. By the upper semicontinuity
of G we get, passing to the limsup in (7.10) as h — +oo, G (¢, s(t)) > 1, which is a contradiction.
Combining (7.9) and properties (1) and (3) of Definition 4.5, we deduce that, for k large enough, s, (7) =0
for every 7 € (t — d,t + ), thus s, is constant in this interval. Since s., — s pointwise in [0,T] as k — +o0,
we get that s is constant in the same interval. Therefore, s is differentiable in ¢ and $(¢) = 0. This concludes
the proof of the theorem. a

We conclude this section with a remark on the energy balance.

Remark 7.2. At this stage, we do not have any energy balance. This is due to the fact that we can not ensure
that along a quasi-static evolution s € BV ([0, T]) the generalized energy release rates G and G~ coincide.

We give the hypotheses on the energy functional (4.3) which guarantee, applying the abstract results in [20],
the existence of a special quasi-static evolution satisfying an energy balance and a more restrictive Griffith’s
criterion. Let C be C1'1) 3 be a simple C*! curve, and let p € C11([0,T] x R%; R) be such that (2.6) and (4.2)
hold with p = 2. Moreover, let f € C*1([0,T] x 2;R?) and w € C*1([0, T]; H(§2)). Then, with the arguments
used in ([20], Sects. 3.1, 3.2), it is possible to show that for every ¢ € (0,7") and every s € (0, L) there exists the
left derivative 0; Emin of the reduced energy with respect to time. In particular,

Oy Emin(t,s) = min{H (¢, s,u) : u € A(t,s) is a minimizer of (¢, s, w(t))},
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where we have set
H(t,s,u) ::/ (CEu-Eu')(t)dx—/ f(t)~udx—/ f(t)~u';(t)dac+/ Dl [u]) dH?.
0 N 0 I’s

Applying the results in ([20], Sect. 5.2), we can also prove that for every so € (0, L) there exists a quasi-static
evolution s € BV ([0, T]) for the cohesive crack growth problem with s(0) = sq, which satisfies a refined Griffith’s
criterion: condition (1) in Definition 4.7 is replaced by

(17) for every t € [0,7(s)) \ J(s):
gH(t,s(t) <1.

Moreover, we have the following energy balance:
for every t € (0,7 (s))

s(0T) s(t)
Emin(t, s(t)) +s(t7) —s(07) + / G7(0,0)do + / Gt (t,o)do

S0 S(t_)

Y (8(7’)—5(T+)—|—/:(T+)g+(7',a)da)

T€(0,t)NJ(s)
t
- gmin(ov SO) + / at_gmin(’ra S(T)) dT’
0
In [20], such an evolution is called special local energetic solution.

8. THE CASE OF MANY CURVES

In this section we address the study of the evolution of multiple non-interacting cracks.

We assume that the fractures grow along a prescribed number of pairwise disjoint simple C3-curves
Xq,..., Yy with Hl(Z‘m) =: L,,. The assumptions on every X, are the same of Section 2. For m =1,..., M,
we denote by Yy, : [0, Ly,] — R? the arc-length parametrization of the m-th curve X, and by vy,, 7, the unit
normal and unit tangent vectors to X, respectively.

We define A := [0, L] x ... x [0, Ly/] € RM. For every s = (s1,...,51) € A, we set

ro=rtuvu..urM

S1 SM

and 025 := 02\ T,
where I C X, is as in (2.1). Then, the set of admissible fractures is given by
{Is: se€ A} (8.1)

In this setting, we generalize the activation threshold considered in the energy (2.8) with the norm defined by
M
Is|1 = Z [Sim| for every s € RM.
m=1

Therefore, for every t € [0,T], s € A, and u € H'(£2;), the total energy of the system is
1
E(t,s,u) == —/ (CEu-Eudac—/ g(t, z,u) dx—l—/ o(t, [u]) dH' + |s]1,
2 Ja, 2. r,

where C, ¢, and g have the usual hypotheses stated in Section 2 and 4. Given the Dirichlet boundary datum
w € H(2), we define A(s,w) and the reduced energy Emin(t, s,w) as in (2.10) and in (2.13), respectively.
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We now show how to extend the results of Section 3 to this setting. In particular, we are interested in the
analogous of the energy release rates. For m = 1,..., M, let us define

Ay :=10,L1] X ... %X [0, Lyy—1] X (0, Ly,) X [0, Lypg1] X ... % [0, Lag].

Let m=1,...,M and s € A, be fixed. By hypothesis, there exists n > 0 such that the curve X, is the graph
of a C3 function ¥™ on (v}, (sm) — 0,72, (8m) +n), where .}, is the first component of v, = (7,,72,). We may
also assume that d(v, (sm ), X1) > 2n for every | # m, where d(-, E') denotes the distance function from a set E.
Given § € R such that sy, + 0 € [0, Ly,,] and a cut-off function ¥ € C2°(B,,/2(0)) with ¥ = 1 in B, ;3(0), we
define, as in (2.14), FTs: R? — R? by

(s +8) = 2l (m) — 2) ) )

55(@) ::x+<¢;"(x1+(%(sm+5)—v (5m))0 (Y (sm) — @) — ¥ (x1)

if £ = (21,22) € Byj2(Ym(sm)), while F's(x) := x for x € R%\ B, /2(ym(sm)).
The equivalent to Lemma 2.4 holds in this setting.

Lemma 8.1. There exists 69 > 0 such that the following facts hold:
(a) FI" € C*((—do,00) x R%R?) and, for every |5 < b, the map FTs is a C3-diffeomorphism. Moreover,

FU5(Ym(sm)) = Ym(sm +0), FIS(I0) =TT (5, and FIS(I3) = I, for L # m;
(b) the norms || F's|lcs and H(FS”%) Yles are uniformly bounded with respect to 6 and there exists c¢i,co > 0

such that, for every |§| < do and every x € R?, we have c¢; < det VFS%(J;) < o
(¢) [[d = Fl%llcz2 — 0 as § — 0;
(d) some derivatives

ps(@) := 05 (F5(x))]s=0,  Os(det VFT5(x))ls=0 = divp{(z),
05 (VE5(x))ls=0 = —0s(VF5(x)) " s=0 = Vi (),
05 (cof VF%)T|5:0 = —0s(cof VF%)*T\(;:O = divpl” 1y2 — VoI
Similar to (3.1), form =1,..., M, t € [0,T], s € Ay, w € HY(2), and u € A(s,w), we set

1
G (t,u,9) :=— 5 /Q (DC pl)Vu - Vudz — /Q CV((Vpl" — divpl* 1yz)u) - Vuda

/ C(VuVpl') - Vudx — —/ CVu - Vudivpl dz
/ Deg(t, @, u)- [(Vpl' — divpl* 1yz)u — Vu pl'] dz
/ Deo(t, [u]) - (VoI — divpl 1y )u) dH!

_/Fs olt, [u})z/@T(‘fé) .Vp;"dHl—/Fs o(t, [u]) divp!™ dHL, (8.3)

where 9 is as in (8.2) and DC p?" is as in (3.2).
Moreover, we define

Smin(ta S+ 5€m7 U)) - 5min(tv S, U))

+ . — i
asﬂngmln(ta S, ’U)) . %1{‘% 5 ’ (84)
O Evint, 5,w) o= lim £min(lr 8T 06m; ©) = Ewinf 5, w) (8.5)

5,70 ) ’
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where {e1,...,en} is the canonical basis of RM. With the same techniques used in Theorems 3.1, 3.2, and in
Proposition 3.11, we can prove that the limits in (8.4) and (8.5) exist and have explicit formulas similar to (3.5)
and (3.7).

Theorem 8.2. For every t € [0,T], every m = 1,...,M, every s € A, and every w € H(Q), the limits
in (8.4) and (8.5) exist and
Of Emin(t, s,w) =1 =G (t,s,w),

8s_,m5min(ta S, w) =1- Q;l(t, S,w), (8-6)

where we have set

G (t, s,w) = max {G,,(t,us,9) : us € A(s,w) is a minimizer of £(t,s,-)}, (87)
Gty s,w) :=min {Gp, (¢, us, V) : us € A(s,w) is a minimizer of E(t,s,-)} '
for a given cut-off function 9 as in (8.2). In particular, G\, and G, do not depend on the choice 0f1:}.

Moreover, G, G, [0, T) x Ay, x HY(§2) — [0, +00) are upper and lower semicontinuous on [0, T] x Ax H'(£2),
respectively.

Remark 8.3. The functions G, and G, introduced in Theorem 8.2 can be interpreted as partial energy release
rates, in the sense that they characterize the partial derivatives with respect to the variable s,, € [0, Ly,] of the
reduced energy Enin-

Also in this setting, the notion of quasi-static evolution will be related to the properties of G, see
Theorems 8.7 and 9.1.

We now deal with the construction of a quasi-static evolution. As in Section 4, we replace g with the power
spent by the body forces f € AC([0,T]; L*(£2)). Given a boundary datum w € AC([0,T]; H*(£2)), we redefine
the reduced energy Emin: [0,7] x A — R and the energy release rates G : [0,T] x A, — [0, 400) by

Enmin(t, s) := Emin(t, s, w(t)) and gi(t, s) = Qi(t, s,w(t)).

We notice again that Epyiy is continuous on [0, 7] x /i, while, for every m =1,..., M, G and G, are upper and
lower semicontinuous, respectively.

For every k € N, we consider a time discretization {t!}¥_; of the form t¥ := i, where 7, := T'/k. Fixed £ > 0,
we define recursively s%% € A: s50 .= 5y € /i, the initial condition, and, for i > 1, we set 5% to be a solution of
the incremental minimum problem

. 4k els — s ki1 _
min Emm(ti,s)—i—iTi. SEA sy > (s ) form=1,..., M}, (8.8)
k

where
M 1/2
[s]2 := < Z sfn> for every s € RM.
m=1
The proof of existence of solution to (8.8) is similar to the proof of Proposition 5.1.

We introduce the interpolation functions: for every t € (t¥_,, t*] we set

ti(t) == tf,

() = (58 )m,  8E() = (5£,(8),- - 5 (1)),

(5§’i)m - (5§’i_1)m
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In particular, as in Proposition 5.2, we get

T
s/)wgw@agcr (8.9)
0

uniformly in e and k, where $£(t) := (3% ,(2),.. ., s’E“M(t))

As in Proposition 5.3, we have a discrete Griffith’s criterion.

Proposition 8.4. For every e >0, every k € N, everym=1,..., M, and every t € [0,7((5"),.)) we have
(a) &, (t) = 0;

e,m

(b) Gih(E(1), 5E(t) — 1 —e 8L, () < 0;
(€) (G (E(1), 5E(1)) — 1 — e 5L, (1)) 5E . (t) = 0.

Proof. Tt is sufficient to repeat the argument of Proposition 5.3 componentwise. O

We define the failure time and the jump set for a vector valued function whose components are monotone
non-decreasing.

Definition 8.5. Let a,by,...,byr > 0 and let sy, : [0,a] — [0, by,] be a monotone non-decreasing function for
m=1,...,M. Let s = (s1,...,sn). We define:

e the failure time of s as

where 7 (s,,) is as in Definition 4.3;
e the jump set of s as

where J(sp,) is as in Definition 4.3.

We can now pass to the limit as k — +o00. As in Proposition 6.1, for fixed ¢ > 0, we find s. € H*([0, T]) such
that, up to a subsequence, s¥ converges to s. weakly in H'([0,7]) and uniformly in [0,7]. Moreover, 8¥ — s.

uniformly. By (8.9) and the lower semicontinuity of the L?-norm, there exists C' > 0 such that for every & > 0

T
5/ |5-(t)[2dt < C, (8.10)
0

where $.(t) := (5L(t), ..., M (t)).

The map t — s-(t) is a viscous evolution with s.(0) = sg, see Definition 4.5. Indeed, taking into account
Proposition 3.11, the following result holds.

Proposition 8.6. For everye >0, everym =1,...,M, and a.e. t € [0,7 (s¢)):

(a) 82(t) = 0;
(b) Gt sc(t)) — 1 —es"(t) <0;
(€) (Gm(t;se(t)) — 1 —es"(1) $7°(t) = 0.

Proof. Argue componentwise as in Theorem 4.6. O

As in the proof of Theorem 4.9, there exist a subsequence e, — 0 and a function s € BV (][0, T], A) such that
Se, — § pointwise. Moreover, every component s, is monotone non-decreasing in [0, 7.

Repeating componentwise the argument of Theorem 4.9, we can prove a Griffith’s criterion in the continuity
points of s.
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Theorem 8.7. The following facts hold:

(a) sm is monotone non-decreasing for every m =1,...,M;

(b) for everym =1,...,M and every t € [0,7(s)) \ J(s), G,,,(t,s(t)) < 1;
(c) ift €0,7(s)\J(s) and G\ (t,s(t)) < 1 for somem = 1,..., M, then s, is differentiable int and $,,(t) = 0.

However, in this setting it is difficult to state the properties of G in the jump points: in particular, we do
not have the equivalent to condition (2) of Definition 4.7. Therefore, following the steps of [19,22,25], we define
a reparametrization that shall give some information on the behavior of the cracks at the jump points.

9. PARAMETRIZED SOLUTIONS

We perform a change of variable which transforms the lengths in absolutely continuous functions. Roughly
speaking, this is done by a parametrization of time on the jump points of the viscous solution s..
For e > 0 and t € [0, T, we set

M
oe(t) =t +[sc(t) —[soh =t + > _ (sV'(t) — s§") (9.1)

m=1

Thanks to the properties of s., see Proposition 8.6, 0. is strictly increasing, continuous, and 6. (t) > 1 for every
e >0and a.e. t € [0,7], hence we can find its inverse o — t_(c) for 0 < o < S. := 0.(T). We deduce that #. is
strictly increasing, continuous, and 0 < #.(c) < 1 for every & > 0 and a.e. o € [0,5.] (from now on, the symbol
" denotes the derivative with respect to o).

Form=1,...,M and o € [0, 5], we set

By (9.1), we have o = t.(0) 4 [3:(0)|1 — |so|1. Deriving this relation, we obtain

te(o) +[3L(a)[1 =1 (9.2)

for every e > 0 and a.e. o € [0,5:]. By (9.2) and the monotonicity of 5%, we get 0 < (8")'(0) < 1 for every
e>0,everym=1,...,M, and a.e. o € [0, S.]. Moreover, in view of (9.2), t. and . are Lipschitz functions.

We define gﬁe(a) = GE(t-(0),3.(0)) for o € [0,7(3:)) and S := sup,. Se, which is bounded by a constant
depending on T and on the lengths L,,. Since in the limit € \ 0 it will be useful to deal with functions defined
on the same interval, we extend the functions ., ., ., and 3. on (S., S] by t.(0) := 1.(S.), 5:(c) := 5.(S.),
() := 0, and §.(0) := 0. In the sequel, we will also need 7 (5.) := min{S., 7 (3.)}.

Recalling that (o) > 0 on [0, S.], the Griffith’s criterion stated in Proposition 8.6 reads in the new vari-
ables as

(87') (o) > 0, (9.3)
G e (0) EL(0) = TL(0) — (37 (0) <0, (9.4)
(Gh (@) E(0) = (o) — (3 (0)) (B1") (0) > 0 (9.5)

for every m, every e, and a.e. o € [0, T(5.)).
We now pass to the limit along a subsquence &5 N\, 0. Since f.,, 5., are bounded in W ([0, S]), up to
a further subsequence we have that f., and 3., converge weakly* in W1°°([0, S]) to some functions ¢ and 3,
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respectively. We can also assume that S., — S and £, 5 € W1°°([0, S]). In particular, writing (9.2) in an integral
form and passing to the limit, we deduce that for a.e. o € [0, 5]

t'(0) + |5 (o)) = 1. (9.6)
We set 7(3) := min{S,7(3)} and, for m = 1..., M and o € [0,7(5)),
Gin(0) = G(l(0),5(0)).

As in Remark 4.4, we have
T35 < limkinf T (5¢,). (9.7

Finally, we observe that (8.10) gives
e 2 e 2071 2
~/ . ~ ~
o [ @B = e [ i G @)BE ) do

ka, B N T
< e / ey (e ()BT, (0) dor = &4 / G (D2 dt < © 9.8)
0 0

uniformly in k. Therefore, €k§/sk1[0,55k] — 0 in L2([0, S)).
Passing to the limit as K — 400, we are now able to show that the parametrized solution § satisfies a Griffith’s
criterion involving also the jump points of §. This is the aim of the following theorem.

Theorem 9.1. The Lipschitz continuous functions t and 5 satisfy for a.e. o € [0, ’ZN'(§))

(a) (o) >0 and 3,(0) >0 form=1,...,M;

(b) if t'(0) >0, then G, (o) <1 form =1,...,M;

(c) if (o) > 0 and &,,(0) > 0 for some m € {1,..., M}, then G (c) > 1;

(d) if (o) = 0, then there exists m € {1,..., M} such that 3, (c) > 0. Moreover, G\.(c) > 1 for such m.

(o2
(o2

Proof. By the monotonicity of £ and §, we have #'(0) > 0 and 3§/, () > 0 for every m and a.e. o € [0,5].
Moreover, by (9.6) they can not be simultaneously zero.
As in the proofs of Theorems 4.6 and 4.9, we have to distinguish between two possibilities:

’i’(é):li]gn T(3.,) or %(§)<1imksup T(5.,). (9.9)

Let us consider the first case. Let us fix m = 1,..., M and ¢ € L?([0,5]) with ¢ > 0. Thanks to (9.4), for
every k we have

T(5:,) N )
/O (12, (0) = Gpe, (O)EL, (0) + €1 (3L)) () ¥(0) do > 0, (9.10)

where ¢4, is the subsequence previously fixed.
Since 7 (5., ) — 7(8), t., converges to ' weakly* in L>([0, S]), and €kde, lpo,s.,) — 0in L3([0, S]), passing
to the limsup in (9.10) as k — 400 we get

T(5,) ~ ~
0 < limsup / (T (0) = G e (0)L, () + €4(321) (0)) (o) dor
k 0

T(5) 5 _ ~
= / t'(0) (o) do — limkinf/ Grmep (0L, (0) Lo.7(.. ) (o) do. (9.11)
0 0 k
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By the monotonicity of ., we can continue the chain of inequalities in (9.11)

o= [ to) teyar gt [ (18 G, ) L5, ) () 000

= /%(5)?(0) (o) do — lim inf/ Fy(o)t. (o)(o)do (9.12)
0 k- Jo o ’

where we have set

Fi(©) i= inf G 2, (0) Lo 75., ) (©)-

The sequence F}, is uniformly bounded and converges pointwise to

F(o):= hmlnf gm o )1[0’%(55 ))( o) = hmlnf gm o lo )1[0’%(5))(0).

k

Therefore, applying the dominated convergence theorem, we get Fy, — F in L? and

T(35) ~
/0 (7(0) — F(0) ¥ (0)) (o) do > 0. (9.13)

By Proposition 3.11, we deduce that F(c) > G, (o). Hence, in view of property (a), (9.13) becomes

7() o
/0 (7(0) — G (0) 7(0)) (o) do >0,

which proves (b) by the arbitrariness of .

For the second case of (9.9), we may assume, up to a subsequence, that %(5) < %(égk), hence it is sufficient
to replace 7 (3., ) with 7(5) in (9.10) and repeat the previous argument. Thus property (b) is proved.

We notice that if (a), (b) and (9.6) hold, then (c¢) and (d) are equivalent to the following property:
if GF(3) < 1 for some m and some & € [0,7(5)), then 5, is locally constant around &. Let us assume
that G (5) < 1. Then, arguing as in the proof of Theorem 4.9, there exist & € N and § > 0 such that
@‘%’Sk (o) < 1 for every o € (6 — 0,5 + ) and every k > k. From (9.5) we deduce that §7 is constant in
(7 — 6,0+ 6). Since 8" converges to &, weakly* in W'°([0, S]), we get that §,, is locally constant around &,
and this concludes the proof of the theorem. O

Remark 9.2. As usual in these cases, since the reduced energy &y, is continuous only on [0, 7] x A and, as a
consequence, G- are not upper and lower semicontinuous on the whole [0, 7] x A, the evolution we described is
meaningful up to the failure time 7(3).
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