
ESAIM: COCV 23 (2017) 751–771 ESAIM: Control, Optimisation and Calculus of Variations
DOI: 10.1051/cocv/2016012 www.esaim-cocv.org

APPROXIMATE CONTROLLABILITY OF LINEARIZED SHAPE-DEPENDENT
OPERATORS FOR FLOW PROBLEMS

C. Leithäuser1, R. Pinnau2 and R. Feßler3

Abstract. We study the controllability of linearized shape-dependent operators for flow problems.
The first operator is a mapping from the shape of the computational domain to the tangential wall
velocity of the potential flow problem and the second operator maps to the wall shear stress of the
Stokes problem. We derive linearizations of these operators, provide their well-posedness and finally
show approximate controllability. The controllability of the linearization shows in what directions the
observable can be changed by applying infinitesimal shape deformations.
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1. Introduction

We study the controllability of linearized shape-dependent operators for flow problems. The first operator Sp

is a mapping from the shape of the computational domain to the tangential wall velocity of the potential flow
problem and the second operator Ss maps to the wall shear stress of the Stokes problem. On account of the shape
dependence, both operators are highly nonlinear, despite of the underlying linear partial differential equations.
We investigate linearizations dS of these operators, i.e., we study in which directions the observables can by
changed by applying infinitesimal shape deformations. Our ultimate goal is to prove approximate controllability
for these linearized shape-dependent operators. Approximate controllability means that we can find controls for
the operator such that any element from the target space is approximated with arbitrary accuracy. In [11] we
have utilized a conformal pull-back to study the operator Sp directly. However, the approach presented in the
following is more general and can be extended to other flow problems, as we are going to show for the Stokes
operator Ss.

Our study of shape-dependent problems is motivated by the optimal shape design of polymer distributors
used in the production process for filaments and nonwovens [9,10,12]. The goal is to design flow geometries with
specific wall shear stress profiles, similar to the problems considered in [19, 20]. Numerically, we can solve the
regularized inverse problem of finding a flow geometry which approximately realizes a given wall shear stress,
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using methods from shape optimization. However, here we address the theoretical question of what wall shear
stress profiles are in fact attainable. Being able to establish some sort of controllability property, even though
we can only do this for the linearization, suggests that the space of reachable profiles is rather large. For our
application this means that we have a good chance to design polymer distributors, whose properties are close
to our expectations. This agrees with our numerical results presented in [10], where we solve an optimization
problem based on the Stokes operator Ss.

The controllability of shape-dependent operators is rarely covered in the existing literature. Our approach
is inspired by [4] where the authors study the controllability of a shape identification problem based on the
Laplace problem. They show approximate controllability for the linearized operator using an adjoint argument
(cf. [15,16]). The operator studied in [4] is comparable to our operator Sp because both are based on the Laplace
problem. However, the operator in [4] maps to the trace evaluated on an interior curve whereas here Sp maps to
the normal derivative evaluated on the variable wall boundary itself, which poses different technical challenges.

A good introduction to the general theory of shape optimization, the concept of shape derivatives and many
examples can be found in [18,22]. The focus in [13] is more on the application of industrial airfoil design, but it
can also be seen as an excellent access to the general topic. A rigorous treatment of shape derivatives and their
existence theory is provided in [21]. A lot of theory on shape calculus and its application to shape optimization is
given in [5]. Surveys on recent developments are found in [7,14]. While we mostly deal with flow problems, there
are various other fields of application: for instance, see [1, 8, 17] for examples on structural optimization, [6, 13]
for airfoil design and [23] for applications in image processing.

We begin in Section 2 by introducing the geometric setup and give proper definitions for the space of admissible
shapes and the linearized shape operator. In Section 3 we study the potential flow shape operator Sp, derive its
linearization, provide the well-posedness and finally show the approximate controllability. In Section 4 we follow
the same path for the Stokes operator Ss. Finally, we finish with a conclusion. In the Appendix, we state some
basic facts about shape differentiability and the existence and uniqueness of solutions for partial differential
equations (see Appendix A and B). The main results of this article are stated in Theorems 3.2 and 4.2.

2. Geometric setup

For k ∈ N0 let Ω0 ⊂ R
2 be a bounded domain of class Ck+1,1 (see [24]), where the boundary Γ0 decomposes

into the in- and outflow parts Γ in
0 and wall parts Γw

0 , where Γ in
0 is closed and Γw

0 is open. Let n be the outward
pointing unit normal and let τ := (−n2,n1)ᵀ be a tangential vector. We define

Θk = {θ ∈ Ck,1(R2,R2); ‖θ‖Ck,1(R2,R2) < 0.5} (2.1)

to be a ball around zero, where Ck,1(R2,R2) denotes the space of k-times differentiable functions from R
2 to

R
2 with Lipschitz-continuous derivatives up to order k (see [24]). Let Id ∈ Ck,1(R2,R2) denote the identity

mapping. For θ ∈ Θk we consider the map

Id + θ : R
2 → R

2, (2.2)

i.e., (Id+θ)(x) = x+θ(x). If ‖θ‖Ck,1(R2,R2) < 0.5, then θ is a strict contraction and a Neumann series argument
implies that Id + θ is invertable and that it is a (k, 1)-diffeomorphism (see [21]). In order to define the set of
admissible shapes let the space of admissible deformation directions be

Vk := {V ∈ Ck,1(R2,R2);V|Γ in
0

= 0;V|Γ w
0

= vnn; vn ∈ Ck,1(R2)}. (2.3)

Note, that since Ω0 is assumed to be of class Ck+1,1 we have n ∈ Ck,1(Γ0,R
2). Hence, this definition makes

sense. We only consider normal shape deformations, because infinitesimal tangential deformations would shift the
boundary along itself and are therefore no real shape deformations. Let the intersection with Θk be denoted by

Θk
V := Θk ∩ Vk. (2.4)
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Then, the space of admissible shapes is given by

Dk := {Ωθ = (Id + θ)(Ω0); θ ∈ Θk
V}. (2.5)

Thus, Dk is a set of perturbations of the reference domain Ω0 which leave Γ in
0 fixed and which are normal

on Γw
0 .

Definition 2.1. Let

S : Dk → L2(Γw
0 ). (2.6)

be a given shape-dependent operator. Then the corresponding linearized shape operator is defined by

dS : Vk → L2(Γw
0 )

V �→ lim
s↘0

S(ΩsV) − S(Ω0)
s

· (2.7)

Of course the important questions are whether the derivative does exist and how the operator can be eval-
uated. Both will be answered by applying the theory of material and shape derivatives which is provided in
Appendix A.

Our goal is to show approximate controllability for two different linearized shape operators [4]:

Definition 2.2 (Approximate controllability). Let F : X → Y be a linear operator. Then, F is approximately
controllable if and only if imF lies dense in Y .

The definition immediately yields the following lemma which we use to show the property.

Lemma 2.3. Let F : X → Y be a linear operator and let Y be a Hilbert space with scalar product (·, ·)Y . If
and only if

imF⊥ := {y ∈ Y ; (F (x), y)Y = 0 for all x ∈ X} = {0} (2.8)

then F is approximate controllable.

3. Potential flow

We begin our study with a potential flow shape operator which maps from the shape of the domain to the
tangential wall velocity of the potential flow problem. We define the operator and derive its linearization. Then,
we use the implicit function theorem to show the existence of the material derivative (see Def. A.1) which
provides the well-definedness of the linearized shape operator. This also leads to the existence of the shape
derivative (see Def. A.4), which can be computed as the solution of a boundary value problem. We can then
write the linearized shape operator in terms of the shape derivative and use an adjoint argument to show that
it is approximately controllable.

3.1. Definition of the shape operator and problem statement

Let Ω0 ⊂ R
2 be a bounded domain of class C3,1 and let g ∈ H

5
2 (Γ0) be given with ∂τ g|Γ w

0
= 0, where

∂τ denotes the derivative in tangential and ∂n the derivative in normal direction. Note that g is constant on
every connected component of the wall boundary by definition. This implies (see (3.3)) that the normal velocity
vanishes at these boundary parts and thus that there is no flow through the wall. For θ ∈ Θ2 let the stream
function Ψ(θ) ∈ H2(Ωθ) be the solution of

ΔΨ(θ) = 0 in Ωθ

Ψ(θ) = g ◦ (Id + θ)−1 on Γθ.
(3.1)



754 C. LEITHÄUSER ET AL.

Remark 3.1. The stream function Ψ(θ) is interpreted as the solution of a flow problem by defining the velocity
u(θ) through

u(θ) :=
(
∂2Ψ(θ)
−∂1Ψ(θ)

)
in Ωθ. (3.2)

In that case the normal wall velocity is

n · u(θ) = ∂τΨ(θ) = ∂τ (g ◦ (Id + θ)−1) on Γθ (3.3)

and especially n · u(θ)|Γ w
θ

= 0 by definition of g. The tangential wall velocity is

τ · u(θ) = −∂nΨ(θ) on Γθ (3.4)

and we are going to define the operator Sp as a map to this tangential velocity.

We define the potential flow shape operator Sp by

Sp : D2 → L2(Γw
0 )

Ωθ �→ −(∂nΨ(θ)|Γ w
θ

) ◦ (Id + θ).
(3.5)

Note, that ∂nΨ(θ)|Γ w
θ

is a function of L2(Γw
θ ). To get a well-defined operator where the target space is inde-

pendent of Ωθ we use the map (Id + θ) : Ω0 → Ωθ to pull-back this function to the space L2(Γw
0 ).

We are going to show that the linearized shape operator dSp is well-defined and given by

dSp : V2 → L2(Γw
0 )

V �→ −∂nΨ ′(Ω0;V)|Γ w
0
− κSp(0)(n ·V),

(3.6)

where Ψ ′(Ω0;V) is the solution of

ΔΨ ′(Ω0;V) = 0 in Ω0

Ψ ′(Ω0;V) = 0 on Γ in
0

Ψ ′(Ω0;V) = −(n ·V)∂nΨ(0) on Γw
0 .

(3.7)

In the rest of this section we establish the existence of dSp and prove the following result about the approximate
controllability of the linearized shape operator:

Theorem 3.2. Assume that Sp(0) 	= 0 a.e. on Γw
0 and suppose that the curvature κ := divΓ n ∈ C0(Γ0) is non

negative κ ≥ 0 on Γw
0 . Then, dSp is approximately controllable.

Remark 3.3. Especially the curvature condition is fulfilled if the wall boundaries are convex. Note, that the
statement still holds for curvature κ ≥ −δ for a sufficiently small constant δ ≥ 0. The constant δ must be small
enough such that the bilinear form corresponding to (3.30) is still elliptic (see Def. B.1). Otherwise we can show
that the bilinear form is coercive (see Def. B.2) and prove a result similar to the upcoming theorem 4.2.

3.2. Existence of the material derivative

One crucial point is to show the existence of the material derivative for the solution of (3.1), because it gives
rise to the well-definedness of the linearized shape operator as well as the existence of the shape derivative. Let
us define

z(sV) := ∂nΨ(sV)|ΓsV (3.8)
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for V ∈ C2,1(R2,R2) and s ≥ 0 sufficiently small. Assume that the material derivative ż(Γ0;V) exists for
V ∈ V2 (see Def. A.2), then by Definition 2.1

dSp(V) =
d(Sp(ΩsV))

ds

∣∣∣∣
s=0

= − d(z(sV) ◦ (Id + sV))
ds

∣∣∣∣
s=0

= −ż(Γ0;V)|Γ w
0
. (3.9)

Therefore, to get a well-defined operator dSp we need to show that the material derivative ż(Γ0;V) exists. First
we show the existence of the material derivative Ψ̇(Ω0;V) using the implicit function theorem. We need the
following regularity result for (3.1):

Lemma 3.4. Let Ω0 be of class C3,1 and assume that g ∈ H
5
2 (Γ0). Then, there exists a unique Ψ(θ) ∈ H2(Ωθ)

for every θ ∈ Θ2. Furthermore, Ψ(0) ∈ H3(Ω0).

Proof. For θ ∈ Θ2, Ωθ is of class C2,1 and g ◦ (Id + θ)−1 ∈ H
3
2 (Γθ). Then, Lemma B.5 yields Ψ(θ) ∈ H2(Ωθ).

Furthermore, Ω0 is of class C3,1 and g ∈ H
5
2 (Γ0) which yields Ψ(0) ∈ H3(Ω0). �

To apply the implicit function theorem we require that the Laplace operator induces an isomorphism:

Lemma 3.5. The Laplace operator Δ : H2(Ω0) ∩ H1
0 (Ω0) → L2(Ω0) is an isomorphism between the given

spaces.

Proof. The operator is clearly linear. Let f ∈ H2(Ω0) ∩ H1
0 (Ω0) then Δf ∈ L2(Ω0). On the other hand let

h ∈ L2(Ω0), then there exists a unique solution f ∈ H2(Ω0) ∩H1
0 (Ω0) of Δf = h (see [24]). �

Now, we can show the existence of the material derivative Ψ̇(Ω0;V) of Ψ(θ). The proof relies on the implicit
function theorem and the idea can be found in [21, 22].

Lemma 3.6. Suppose that for the solution of problem (3.1), Ψ(θ) ∈ H2(Ωθ) holds for θ ∈ Θ2. Then, the
material derivative Ψ̇(Ω0;V) ∈ H2(Ω0) exists for all directions V ∈ C2,1(R2,R2).

Proof. Let g̃ ∈ H3(Ω0) be a continuation with g̃|Γ0 = g which exists due to ([24], Prop. 8.8). Let us define the
function

F : Θ2 ×H2(Ω0) ∩H1
0 (Ω0) → L2(Ω0)
(θ, u) �→ Δθu+Δθ g̃.

(3.10)

See Lemma A.7 for the definition of the pulled-back Laplacian Δθ.
Let θ ∈ Θ2. Then,

ΔΨ(θ) = 0 in Ωθ = (Id + θ)(Ω0) (3.11)

and thus

(ΔΨ(θ)) ◦ (Id + θ) = 0 in Ω0. (3.12)

Using Lemma A.7 this implies

Δθ(Ψ(θ) ◦ (Id + θ)) = 0 in Ω0, (3.13)

where Ψ(θ) ◦ (Id + θ) − g̃ ∈ H2(Ω0) ∩H1
0 (Ω0) and thus

F (θ, Ψ(θ) ◦ (Id + θ) − g̃) = 0. (3.14)

Let u0 := Ψ(0) − g̃ ∈ H2(Ω0) ∩H1
0 (Ω0). Then, F (0, u0) = 0 and

D2F (0, u0) = Δ : H2(Ω0) ∩H1
0 (Ω0) → L2(Ω) (3.15)



756 C. LEITHÄUSER ET AL.

is an isomorphism by Lemma 3.5. Furthermore, from ([21], (1.3)) we know that the operator Δθ is differentiable
with respect to θ at θ = 0 and thus that F is differentiable at θ = 0.

Then, because of the Implicit Function Theorem A.10 there exists a unique G : Θ2 → H2(Ω0) ∩ H1
0 (Ω0)

which is differentiable at θ = 0. Then (3.14) implies

G(θ) = Ψ(θ) ◦ (Id + θ) − g̃ (3.16)

for θ ∈ Θ2 and

Ψ(θ) ◦ (Id + θ) = G(θ) + g̃ (3.17)

is differentiable with respect to θ at θ = 0 and the derivative lies in H2(Ω0). Thus the material derivative
Ψ̇(Ω0;V) ∈ H2(Ω0) exists for V ∈ C2,1(R2,R2). �

This yields the well-definedness of the linearized shape operator:

Lemma 3.7. The material derivative ż(Γ0;V) ∈ H
1
2 (Γ0) exists for every V ∈ C2,1(R2,R2). Thus the operator

dSp is well-defined.

Proof. Let V ∈ C2,1(R2,R2). We know from Lemma 3.6 that Ψ̇(Ω0;V) ∈ H2(Ω0) which implies the existence
of ż(Γ0;V) ∈ H

1
2 (Γ0) (see [10]). For V ∈ V2 we have dSp(V) = −ż(Γ0;V) ∈ L2(Γw

0 ) and the operator is
well-defined. �

3.3. Existence of the shape derivative

Computing the operator dSp in an explicit way can be done via the shape derivative. The existence of the
shape derivative can be derived from the existence of the material derivative and the following Lemma gives an
explicit form for Ψ ′(Ω0;V).

Lemma 3.8. For θ ∈ Θ2 let Ψ(θ) ∈ H2(Ωθ) be the solution of (3.1), then for V ∈ C2,1(R2,R2) the shape
derivative Ψ ′(Ω0;V) ∈ H2(Ω0) exists and can be computed as the solution of

ΔΨ ′(Ω0;V) = 0 in Ω0

Ψ ′(Ω0;V) = 0 on Γ in
0

Ψ ′(Ω0;V) = −(n · V)∂nΨ(0) on Γw
0 .

(3.18)

Proof. By Lemma 3.4, Ψ(0) ∈ H3(Ω0) and by Lemma 3.6 the material derivative Ψ̇(Ω0;V) ∈ H2(Ω0) exists for
V ∈ C2,1(R2,R2). Then, by Definition A.4 the shape derivative Ψ ′(Ω0;V) ∈ H2(Ω0) exists. Furthermore, ([22],
Prop. 3.1) yields that Ψ ′(Ω0;V) solves (3.18). �

Lemma 3.9. For V ∈ C2,1(R2,R2) and s ≥ 0 sufficiently small it holds that z(sV) = ∂nΨ(sV)|ΓsV ∈
H

1
2 (ΓsV). The shape derivative z′(Γ0;V) ∈ H

1
2 (Γ0) exists and is given on the wall boundaries by

z′(Γ0;V) = ∂nΨ
′(Ω0;V)|Γ w

0
− κz(0)(n ·V) on Γw

0 . (3.19)

Proof. Let V ∈ C2,1(R2,R2). We have shown in Lemma 3.7 that the material derivative ż(Γ0;V) ∈ H
1
2 (Γ0)

exists. Furthermore, we know that Ψ(0) ∈ H3(Ω0) and thus z(0) ∈ H
3
2 (Γ0) by the trace theorem (see [24]).

Then, Definition A.5 yields the existence of z′(Γ0;V) ∈ H
1
2 (Γ0).

Next, we show that the shape derivative has the given form on the wall boundaries. Therefore, let V ∈
C2,1(R2,R2) be given. Let the smooth test function

φ ∈ {φ ∈ C∞(R2); ∂nφ = 0 on Γ0; φ = 0 on Γ in
0 } (3.20)
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be arbitrary. For s ≥ 0 and sufficiently small, integration by parts yields

0 =
∫

ΩsV

ΔΨ(sV)φdx

= −
∫

ΩsV

∇Ψ(sV) · ∇φdx+
∫

ΓsV

z(sV)φds.
(3.21)

Using Lemmas A.8 and A.9 to differentiate with respect to s yields

−
∫

Ω0

∇Ψ ′(Ω0;V)·∇φdx−
∫

Γ0

∇Ψ(0)·∇φ (n·V) ds+
∫

Γ0

(z′(Γ0;V)φ+(z(0) ∂nφ︸︷︷︸
=0

+κz(0)φ) (n·V)) ds = 0. (3.22)

By Lemma 3.8 we have ΔΨ ′(Ω0;V) = 0 in Ω0 and integration by parts yields∫
Ω0

∇Ψ ′(Ω0;V) · ∇φdx =
∫

Γ w
0

∂nΨ
′(Ω0;V)φds. (3.23)

On the other hand, it holds∫
Γ0

∇Ψ(0) · ∇φ (n ·V) ds =
∫

Γ w
0

∂nΨ(0) ∂nφ (n ·V) ds+
∫

Γ w
0

∂τΨ(0) ∂τφ (n · V) ds

=0, (3.24)

where we have used n ·V = 0 on Γ in
0 and ∂nφ = 0, ∂τΨ(0) = ∂τ g = 0 on Γw

0 . Then, plugging (3.23) and (3.24)
into (3.22) and using that φ vanishes on Γ in

0 yields∫
Γ w

0

(−∂nΨ ′(Ω0;V) + z′(Γ0;V) + κz(0)(n · V))φds = 0. (3.25)

Finally since φ|Γ w
0

is arbitrary in C∞
0 (Γw

0 ) and since C∞
0 (Γw

0 ) is dense in L2(Γw
0 ) we conclude

z′(Γ0;V) = ∂nΨ
′(Ω0;V)|Γ w

0
− κz(0)(n · V) on Γw

0 . (3.26)

�

Lemma 3.10. The linearized shape operator dSp is well-defined and given by

dSp : V2 → L2(Γw
0 )

V �→ −∂nΨ ′(Ω0;V)|Γ w
0

+ κz(0)(n · V),
(3.27)

where Ψ ′(Ω0;V) is the solution of

ΔΨ ′(Ω0;V) = 0 in Ω0

Ψ ′(Ω0;V) = 0 on Γ in
0

Ψ ′(Ω0;V) = −(n · V)∂nΨ(0) on Γw
0 .

(3.28)

Proof. We have shown in Lemma 3.7 that the material derivative of z exists and thus that the operator is
well-defined. Let V ∈ V2. Remember that by definition V is normal on Γ0. We conclude using Definition A.5
and Lemma 3.9

dSp(V) = −ż(Γ0;V) = −z′(Γ0;V) + ∂τ z(0)(τ · V) (3.29)
= −∂nΨ ′(Ω0;V)|Γ w

0
+ κz(0)(n ·V). �
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3.4. Approximate controllability

We have derived the linearized potential flow shape operator and use it to show our approximate controllability
result. To do this we need the following uniqueness lemma:

Lemma 3.11. Assume that the curvature κ ∈ C0(Γ0) is nonnegative, i.e., κ ≥ 0 on Γw
0 . If φ ∈ H2(Ω0) solves

Δφ = 0 in Ω0

φ = 0 on Γ in
0

∂nφ+ κφ = 0 on Γw
0

(3.30)

then φ = 0.

Proof. Define the space V := {y ∈ H1(Ω0); y|Γ in
0

= 0}. Let φ ∈ H2(Ω0) solve (3.30). Testing the equation with
φ yields after integration by parts

0 = −
∫

Ω0

Δφφdx

=
∫

Ω0

‖∇φ‖2 dx+
∫

Γ w
0

κφ2 ds.
(3.31)

Due to κ ≥ 0 this implies φ ≡ const a.e. in Ω0 and the Dirichlet condition yields φ ≡ 0 a.e. in Ω0. �

Finally, we have everything at hand to show the approximate controllability for dSp using an adjoint argument.

Proof of Theorem 3.2. Define

H
3
2
i=0(Γ0) = {μ ∈ H

3
2 (Γ0);μ = 0 on Γ in

0 } (3.32)

and for μ ∈ H
3
2
i=0(Γ0) let φ(μ) ∈ H2(Ω0) be the unique solution of the adjoint problem

Δφ(μ) = 0 in Ω0

φ(μ) = μ on Γ0,
(3.33)

where uniqueness and regularity follow from Lemma B.5. For (V, μ) ∈ V2×H 3
2
i=0(Γ0) integration by parts yields

0 =
∫

Ω0

ΔΨ ′(Ω0;V)φ(μ) dx

=
∫

Ω0

Ψ ′(Ω0;V)Δφ(μ) dx +
∫

Γ w
0

∂nΨ
′(Ω0;V)φ(μ) ds −

∫
Γ w

0

Ψ ′(Ω0;V)∂nφ(μ) ds
(3.34)

and therefore ∫
Γ w

0

∂nΨ
′(Ω0;V)μ ds = −

∫
Γ w

0

(n ·V)∂nΨ(0)∂nφ(μ) ds. (3.35)

Now, assume that μ ∈ H
3
2
i=0(Γ0) is arbitrary where∫

Γ w
0

dSp(V)μ ds = 0 for all V ∈ V2 (3.36)
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holds. Then, we conclude using (3.29) and (3.35)

0 =
∫

Γ w
0

dSp(V)μ ds

= −
∫

Γ w
0

∂nΨ
′(Ω0;V)μ ds+

∫
Γ w

0

κ∂nΨ(0)(n · V)μ ds

=
∫

Γ w
0

(n ·V)∂nΨ(0) ∂nφ(μ) ds+
∫

Γ w
0

(n ·V)∂nΨ(0)κφ(μ) ds

=
∫

Γ w
0

(n ·V)∂nΨ(0)
(
∂nφ(μ) + κφ(μ)

)
ds.

(3.37)

Now, by assumption ∂nΨ(0) = −Sp(0) 	= 0 a.e. on Γw
0 , therefore,

{(n · V)(∂nΨ(0))|Γ w
0

;V ∈ V2} (3.38)

is dense in L2(Γw
0 ) and we conclude

∂nφ(μ) + κφ(μ) = 0 on Γw
0 . (3.39)

This leads to a problem independent of μ:

Δφ(μ) = 0 in Ω0

φ(μ) = 0 on Γ in
0

∂nφ(μ) + κφ(μ) = 0 on Γw
0 .

(3.40)

Lemma 3.11 yields that φ(μ) = 0 is the only solution which implies μ = φ(μ)|Γ0 = 0. Thus we have shown that

Hp :=

{
μ ∈ H

3
2
i=0(Γ

w
0 );

∫
Γ w

0

dSp(V)μ ds = 0 for all V ∈ V2

}
⊂ {0} (3.41)

with H
3
2
i=0(Γ

w
0 ) := H

3
2
i=0(Γ0)|Γ w

0
.

Now, by definiton

im(dSp)⊥ =

{
μ ∈ L2(Γw

0 );
∫

Γ w
0

dSp(V)μ ds = 0 for all V ∈ V2

}
(3.42)

holds. We know that C∞
0 (Γw

0 ) ⊂ H
3
2
i=0(Γ

w
0 ) ⊂ L2(Γw

0 ) and that C∞
0 (Γw

0 ) is dense in L2(Γw
0 ) (see [24]). Thus

H
3
2
i=0(Γ

w
0 ) is also dense in L2(Γw

0 ). Therefore, if μ ∈ im(dSp)⊥ there exists a sequence μi ∈ Hp which converges
to μ and because Hp is closed μ ∈ Hp. Thus

im(dSp)⊥ ⊂ Hp ⊂ {0} (3.43)

and hence im(dSp)⊥ = {0}. Finally Lemma 2.3 yields that dSp is approximately controllable. �

Thus, we have shown that the linearized shape operator of this potential flow problem is approximately
controllable.
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4. Stokes flow

We want to continue with an operator based on the Stokes equation, which maps to the wall shear stress. This
operator is motivated by our application of designing optimal distributor geometries for polymer spin packs.
We want to generate a better understanding on the inverse problem of finding a flow geometry with a certain
wall shear stress profile. Especially, we want to explore whether the space of reachable profiles is rather large or
small. We show that the operator dSs is approximate controllable in the sense of Theorem 4.2. This backs our
expectations on the numerics and we can hope to design distributor geometries with a wall shear stress close to
the desired target stress.

4.1. Definition of the shape operator and problem statement

Let Ω0 ⊂ R
2 be a bounded domain of class C6,1 and let g ∈ H5+ 1

2 (Γ0) be given with ∂τ g|Γ w
0

= 0. See
Remark 4.3 for a justification of the high regularity requirement. We define the Stokes flow shape operator Ss by

Ss : D4 → L2(Γw
0 )

Ωθ �→ (ω(θ)|Γ w
θ

) ◦ (Id + θ).
(4.1)

For Θ4 the stream function Ψ(θ) and vorticity ω(θ) are the solutions of

ΔΨ(θ) = −ω(θ) in Ωθ

Δω(θ) = 0 in Ωθ

Ψ(θ) = g ◦ (Id + θ)−1 on Γθ

∂nΨ(θ) = 0 on Γθ

(4.2)

where the existence and regularity is shown in Lemma 4.4.

Remark 4.1. The flow velocity is given by

u(θ) =
(
∂2Ψ(θ)
−∂1Ψ(θ)

)
(4.3)

and u(θ) solves Stokes equation (see [3])

−Δu(θ) + ∇p = 0 in Ωθ

div u(θ) = 0 in Ωθ

(4.4)

with boundary conditions

τ · u(θ) = −∂nΨ(θ) = 0 on Γθ

n · u(θ) = ∂τΨ(θ) = ∂τ (g ◦ (Id + θ)−1) on Γθ

(4.5)

and especially n ·u(θ)|Γ w
θ

= 0 by definition of g. Furthermore, Ss maps to the wall shear stress σ(θ) = ω(θ)|Γ w
θ

.

We show that the linearized shape operator dSs is well-defined and given by

dSs : V4 → L2(Γw
0 )

V �→ ω′(Ω0;V)|Γ w
0

+ ∂nω(0)(n ·V),
(4.6)
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where Ψ ′(Ω0;V) and ω′(Ω0;V) are the solution (see Lem. 4.8) of

ΔΨ ′(Ω0;V) = −ω′(Ω0;V) in Ω0

Δω′(Ω0;V) = 0 in Ω0

Ψ ′(Ω0;V) = 0 on Γ0

∂nΨ
′(Ω0;V) = 0 on Γ in

0

∂nΨ
′(Ω0;V) = (n ·V)ω(0) on Γw

0 .

(4.7)

In the rest of this section we establish the existence of dSs and prove the following result about the approximate
controllability of the linearized shape operator:

Theorem 4.2. Let Ω0 be bounded and of class C6,1 and assume that Ss(0) 	= 0 on Γw
0 . Then, the op-

erator dSs : V4 → L2(Γw
0 )/Z∂n is approximately controllable. Here Z∂n = {∂nφ|Γ w

0
∈ L2(Γw

0 );φ ∈
H4(Ω0) solution of (4.28)} is a finite dimensional subspace of L2(Γw

0 ).

Remark 4.3. The assumptions of this section include a very high regularity requirement of C6,1 for the refer-
ence domain Ω0. For the well-definedness of the operator Ss itself, C4,1 would suffice, because this would provide
the existence of the trace of ω(θ). It is also true that in many parts of this section the regularity assumptions
can be relaxed by applying arguments for the weak formulation. However, a key part for the final proof is
the coercivity (see Def. B.2) of the bilinear form (4.32), which due to [24] does require c11 ∈ C1(Ω̄0) for the
coefficient of the boundary form. And by definition of that coefficient this requires C6,1 for Ω0 (cf. Lem. 4.12).

4.2. Existence of the material derivative

To prove the well-posedness of the linearized shape operator dSs let us define

z(sV) := ω(sV)|ΓsV = ΔΨ(sV)|ΓsV (4.8)

for V ∈ C4,1(R2,R2) and s ≥ 0 sufficiently small. Again, our first task is to show the existence of the material
derivative Ψ̇(Ω0;V) of the stream function as the solution of the biharmonic problem

ΔΔΨ(θ) = 0 in Ωθ

Ψ(θ) = g ◦ (Id + θ)−1 on Γθ

∂nΨ(θ) = 0 on Γθ.

(4.9)

We start by stating the standard regularity result:

Lemma 4.4. For θ ∈ Θ4 let Ψ(θ) be the solution of problem (4.9), then Ψ(θ) ∈ H4(Ωθ). Furthermore, Ψ(0) ∈
H6(Ω0).

Proof. Let θ ∈ Θ4, then Ωθ ∈ C4,1 and g ◦ (Id + θ)−1 ∈ H5+ 1
2 (Γθ). Then, Lemma B.6 implies Ψ(θ) ∈ H4(Ωθ).

Furthermore, since Ω0 is of class C6,1 and g ∈ H5+ 1
2 (Γ0) Lemma B.6 implies Ψ(0) ∈ H6(Ω0). �

In the same way as for the Laplace operator (cf. Lem. 3.5) the elliptic existence and regularity theory yields:

Lemma 4.5. The biharmonic operator ΔΔ : H4(Ω0)∩H2
0 (Ω0) → L2(Ω0) is an isomorphism between the given

spaces.

Again, we use the implicit function theorem to show the existence of the material derivative (cf. [21, 22]).

Lemma 4.6. Suppose that the solution of (4.2) fulfills Ψ(θ) ∈ H4(Ωθ) for θ ∈ Θ4. Then, the material derivative
Ψ̇(Ω0;V) ∈ H4(Ω0) exists for all directions V ∈ C4,1(R2,R2).
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Proof. Let g̃ ∈ H6(Ω0) be a continuation with g̃|Γ0 = g and ∂ng̃|Γ0 = 0 which exists due to ([24], Prop. 8.8).
Define the function

F : Θ4 ×H4(Ω0) ∩H2
0 (Ω0) → L2(Ω0)
(θ, u) �→ ΔθΔθu+ΔθΔθg̃.

(4.10)

Let θ ∈ Θ4. Then, it holds

ΔΔΨ(θ) = 0 in Ωθ = (Id + θ)(Ω0) (4.11)

and thus

(ΔΔΨ(θ)) ◦ (Id + θ) = 0 in Ω0. (4.12)

Using Lemma A.7 this implies

ΔθΔθ(Ψ(θ) ◦ (Id + θ)) = 0 in Ω0, (4.13)

where Ψ(θ) ◦ (Id + θ) − g̃ ∈ H4(Ω0) ∩H2
0 (Ω0) and thus

F (θ, Ψ(θ) ◦ (Id + θ) − g̃) = 0. (4.14)

Let u0 := Ψ(0) − g̃ ∈ H4(Ω0) ∩H2
0 (Ω0). Then, F (0, u0) = 0 and

D2F (0, u0) = ΔΔ : H4(Ω0) ∩H2
0 (Ω0) → L2(Ω) (4.15)

is an isomorphism by Lemma 4.5. Furthermore, from ([21], (1.3)) we conclude that the operator F is differentiable
at θ = 0.

Then, because of the Implicit Function Theorem A.10 there exists a unique G : Θ4 → H4(Ω0) ∩ H2
0 (Ω0)

which is also differentiable at θ = 0. Then equation (4.14) implies

G(θ) = Ψ(θ) ◦ (Id + θ) − g̃ (4.16)

for θ ∈ Θ4 and

Ψ(θ) ◦ (Id + θ) = G(θ) + g̃ (4.17)

is differentiable with respect to θ at θ = 0 where the derivative lies in H4(Ω0). Thus, the material derivative
Ψ̇(Ω0;V) ∈ H4(Ω0) exists for V ∈ C4,1(R2,R2). �

Since we have established the existence of Ψ̇(Ω0;V), the existence of ω̇(Ω0;V) and ż(Γ0;V) with z(sV) =
ω(sV)|ΓsV follow directly:

Lemma 4.7. The material derivative ω̇(Ω0;V) ∈ H2(Ω0) exists for every V ∈ C4,1(R2,R2). Let z(sV) =
ω(sV)|ΓsV for all s ≥ 0 sufficiently small. Then, the material derivative ż(Γ0;V) ∈ H

3
2 (Γ0) exists for V ∈

C4,1(R2,R2). Thus the operator dSs is well-defined.

Proof. Let V ∈ C4,1(R2,R2). By Lemma 4.6, Ψ̇(Ω0;V) ∈ H4(Ω0) which implies ω̇(Ω0;V) ∈ H2(Ω0) and thus
ż(Γ0;V) ∈ H

3
2 (Γ0) by Lemma A.3. �



APPROXIMATE CONTROLLABILITY OF LINEARIZED SHAPE-DEPENDENT OPERATORS FOR FLOW PROBLEMS 763

4.3. Existence of the shape derivative

Since we have shown the existence of the material derivatives we get the following result for the shape
derivatives.

Lemma 4.8. For V ∈ C4,1(R2,R2) the shape derivatives Ψ ′(Ω0;V) ∈ H4(Ω0) and ω′(Ω0;V) ∈ H2(Ω0) exist.
Furthermore, for V ∈ V4 it is given as the solution of

ΔΨ ′(Ω0;V) = −ω′(Ω0;V) in Ω0

Δω′(Ω0;V) = 0 in Ω0

Ψ ′(Ω0;V) = 0 on Γ0

∂nΨ
′(Ω0;V) = 0 on Γ in

0

∂nΨ
′(Ω0;V) = (n · V)ω(0) on Γw

0 .

(4.18)

Proof. Let V ∈ C4,1(R2,R2). We have shown that (Ψ̇ (Ω0;V), ω̇(Ω0;V)) ∈ H4(Ω0) × H2(Ω0) exists and
that (Ψ(0), ω(0)) ∈ H6(Ω0) × H4(Ω0) by Lemma 4.4. Therefore, by Definition A.5 the shape derivative
(Ψ ′(Ω0;V), ω′(Ω0;V)) ∈ H4(Ω0) ×H2(Ω0) exists.

Now, let V ∈ V4. Then from ([22], Prop. 3.1) we conclude

ΔΨ ′(Ω0;V) = −ω′(Ω0;V) in Ω0 (4.19)

and

Δω′(Ω0;V) = 0 in Ω0. (4.20)

For θ ∈ Θ4 we have Ψ(θ) ◦ (Id + θ) = g on Γ0 and thus by definition of the material derivative

Ψ̇(Ω0;V)|Γ0 = 0. (4.21)

Then,

Ψ ′(Ω0;V)|Γ0 = Ψ̇(Ω0;V)|Γ0 − (∇Ψ(0) ·V)|Γ0

= −(∂nΨ(0)(n ·V))|Γ0

= 0,

(4.22)

because V ∈ V4 is normal and ∂nΨ(0) = 0 on Γ0. Finally, we deduce from ([22], (3.12))

∂nΨ
′(Ω0;V) = ∂τ ((n · V)∂τΨ(0)) + (n ·V)ω(0). (4.23)

Then, ∂τ ((n ·V)∂τΨ(0)) vanishes because V = 0 on Γ in
0 and ∂τΨ(0) = 0 on Γw

0 . We get

∂nΨ
′(Ω0;V) = 0 on Γ in

0

∂nΨ
′(Ω0;V) = (n · V)ω(0) on Γw

0 .
(4.24)

�

Lemma 4.9. For V ∈ C4(R2,R2) let z(sV) = ω(sV)|ΓsV for all s ≥ 0 sufficiently small. Then, the shape
derivative z′(Γ0;V) ∈ H

1
2 (Γ0) exists and is given by

z′(Γ0;V) = ω′(Ω0;V)|Γ0 + ∂nω(0)(n · V). (4.25)

Proof. This is a direct consequence of Lemma A.6. �
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Lemma 4.10. The linearized shape operator dSs is well-defined and given by

dSs : V4 → L2(Γw
0 )

V �→ ω′(Ω0;V)|Γ w
0

+ ∂nω(0)(n ·V).
(4.26)

Proof. We have shown in Lemma 4.7 that the operator is well-defined. Let V ∈ V4. Remember that by definition
V is normal on Γ0. We conclude using Definition A.5 and Lemma 4.9

dSs(V) = ż(Γ0;V) = z′(Γ0;V) + ∂τ z(0)(τ · V) = ω′(Ω0;V)|Γ w
0

+ ∂nω(0)(n · V). (4.27)

�

4.4. Approximate controllability

The approximate controllability of the operator dSs depends on the uniqueness question addressed in the
following lemma. However, we can only show that the corresponding bilinear form is coercive but not that it
is elliptic. Therefore, we have to rely on the weaker argument of Theorem B.4, which states that the homoge-
neous solutions form a finite dimensional subspace. In the case that zero is no eigenvalue of the corresponding
representation operator, this subspace is trivial. There is no way to tell whether zero is an eigenvalue or not.
We know that there are only countably many eigenvalues which do not accumulate in a finite region (see [24]).

Lemma 4.11. Assume that Ω0 is bounded and of class C4,1 and c11 ∈ C1(Ω̄0). We consider

ΔΔφ = 0 in Ω0

φ = 0 on Γ0

∂nφ = 0 on Γ in
0

Δφ+ c11∂nφ = 0 on Γw
0

(4.28)

and define Z := {φ ∈ H4(Ω0);φ solves (4.28)}. Then, Z is a finite dimensional subspace of H4(Ω0).

Proof. Define V := {u ∈ H2(Ω0);u|Γ0 = 0; ∂nu|Γ in
0

= 0}. Let φ ∈ Z and let η ∈ V be a test function. Then,

0 =
∫

Ω0

ΔΔφη dx

=
∫

Ω0

ΔφΔη dx+
∫

Γ0

∂nΔφη ds−
∫

Γ0

Δφ∂nη ds

=
∫

Ω0

ΔφΔη dx+
∫

Γ w
0

c11∂nφ∂nη ds.

(4.29)

We define the bilinear form

a(ϕ, η) :=
∫

Ω0

ΔϕΔη dx (4.30)

and the boundary form

c(ϕ, η) :=
∫

Γ w
0

c11∂nϕ∂nη ds. (4.31)

The space V is a closed subspace of H2(Ω0) with H2
0 (Ω0) ⊂ V ⊂ H2(Ω) and a(ϕ, η) is V -coercive (cf. Def. B.2

and [24]). Because of c11 ∈ C1(Ω̄0) the bilinear form a(ϕ, η)+c(ϕ, η) is also V -coercive (see [24]). The embedding
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V ↪→ L2(Ω0) ↪→ V ′ is a Gelfand triple and V ↪→ L2(Ω0) is compact (see [24]). Thus, the assumptions of
Theorem B.4 hold for the weak formulation:

Find ϕ ∈ V such that

a(ϕ, η) + c(ϕ, η) = 0 for all η ∈ V . (4.32)

From Theorem B.4 we conclude that Z̃ := {ϕ ∈ V ;ϕ solves (4.32)} is finite dimensional. Because of (4.29) we
know that every φ ∈ Z solves (4.32) and thus we conclude

Z = Z̃ ∩H4(Ω0) (4.33)

which yields the result. �

The next lemma shows the regularity of the coefficient appearing in the approximate controllability proof.

Lemma 4.12. Assume that ω(0) 	= 0 on Γw
0 . Then,

c11 := −∂nω(0)
ω(0)

∈ C1(Γw
0 ). (4.34)

Proof. We have shown that Ψ(0) ∈ H6(Ω0) and thus ω(0) ∈ H4(Ω0). Then, ω|Γ0 ∈ H5+ 1
2 (Γ0) and ∂nω|Γ0 ∈

H
5
2 (Γ0). By the Lemma of Sobolev (see [24]) we have ω|Γ0 ∈ C1(Γ0) and ∂nω|Γ0 ∈ C1(Γ0) and since ω is

non-zero on Γw
0 , c11 ∈ C1(Γw

0 ) holds. �

Finally, we are prepared to show the main result for the operator dSs.

Proof of Theorem 4.2. Define

H
5
2
i=0(Γ0) = {μ ∈ H

5
2 (Γ0);μ = 0 on Γ in

0 } (4.35)

and for μ ∈ H
5
2
i=0(Γ0) let φ(μ) ∈ H4(Ω0) be the solution of the adjoint problem

ΔΔφ(μ) = 0 in Ω0

φ(μ) = 0 on Γ0

∂nφ(μ) = μ on Γ0

(4.36)

where the existence and regularity follows from Lemma B.6. For (V, μ) ∈ V4 ×H
5
2
i=0(Γ0) integration by parts

yields

0 =
∫

Ω0

ΔΔΨ ′(Ω0;V)φ(μ) dx

=
∫

Ω0

ΔΨ ′(Ω0;V)Δφ(μ) dx −
∫

Γ0

ΔΨ ′(Ω0;V)∂nφ(μ) ds

=
∫

Ω0

Ψ ′(Ω0;V)ΔΔφ(μ)︸ ︷︷ ︸
=0

dx−
∫

Γ0

ΔΨ ′(Ω0;V)︸ ︷︷ ︸
=−ω′(Ω0;V)

∂nφ(μ)︸ ︷︷ ︸
=μ

ds

+
∫

Γ0

∂nΨ
′(Ω0;V)︸ ︷︷ ︸

(n·V)ω(0)

Δφ(μ) ds

(4.37)



766 C. LEITHÄUSER ET AL.

and we get the identity

−
∫

Γ w
0

ω′(Ω0;V)μ ds =
∫

Γ w
0

(n · V)ω(0)Δφ(μ) ds. (4.38)

Now, assume that μ ∈ H
5
2
i=0(Γ0) is arbitrary with∫

Γ w
0

dSs(V)μ ds = 0 for all V ∈ V4. (4.39)

We conclude

0 =
∫

Γ w
0

dSs(V)μ ds

=
∫

Γ w
0

ω′(Ω0;V)μ ds+
∫

Γ w
0

∂nω(0)(n · V)μ ds

=
∫

Γ w
0

(n · V)(−ω(0)Δφ(μ) + ∂nω(0)∂nφ(μ)) ds.

(4.40)

Since {n · V;V ∈ V4} is dense in L2(Γw
0 ) we derive

−ω(0)Δφ(μ) + ∂nω(0)∂nφ(μ) = 0 on Γw
0 . (4.41)

Because of ω(0) = Ss(0) 	= 0 on Γw
0 , we can define

c11 := −∂nω(0)
ω(0)

∈ C1(Γw
0 ), (4.42)

where the regularity follows from Lemma 4.12. This yields the uniqueness problem

ΔΔφ(μ) = 0 in Ω0

φ(μ) = 0 on Γ0

∂nφ(μ) = 0 on Γ in
0

Δφ(μ) + c11∂nφ(μ) = 0 on Γw
0 .

(4.43)

Define

Z := {φ(μ) ∈ H4(Ω0);φ(μ) is solution of (4.43)} (4.44)

and

Z∂n := {μ = ∂nφ|Γ w
0

;φ ∈ Z}. (4.45)

By Lemma 4.11 we know that Z is a finite dimensional subspace of H4(Ω0). Then, Z∂n is a finite dimensional

subspace of H
5
2
i=0(Γ

w
0 ) := H

5
2
i=0(Γ0)|Γ w

0
and thus of L2(Γw

0 ). Thus we have shown that

Hs :=

{
μ ∈ H

5
2
i=0(Γ

w
0 );

∫
Γ w

0

dSs(V)μ ds = 0 for all V ∈ V4

}
⊂ Z∂n . (4.46)

Now, by definiton

im(dSs)⊥ =

{
μ ∈ L2(Γw

0 )/Z∂n ;
∫

Γ w
0

dSs(V)μ ds = 0 for all V ∈ V4

}
(4.47)
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holds. We know that C∞
0 (Γw

0 ) ⊂ H
5
2
i=0(Γ

w
0 ) ⊂ L2(Γw

0 ) and that C∞
0 (Γw

0 ) is dense in L2(Γw
0 ) (see [24]). Thus

H
5
2
i=0(Γ

w
0 ) is also dense in L2(Γw

0 ). Therefore, if μ ∈ im(dSs)⊥, there exists a sequence μi ∈ Hs/Z∂n which
converges to μ and because Hs/Z∂n is closed μ ∈ Hs/Z∂n . Thus

im(dSs)⊥ ⊂ Hs/Z∂n ⊂ Z∂n/Z∂n = {0} (4.48)

and hence im(dSs)⊥ = {0}. Finally Lemma 2.3 yields that dSs is approximately controllable.
Using Lemma 2.3 we conclude that dSs is approximately controllable as a mapping to L2(Γw

0 )/Z∂n . Further-
more we have shown that Z∂n is a finite dimensional subspace of L2(Γw

0 ). �

5. Conclusion

We have studied the controllability of two shape-dependent operators based on flow problems. We were able
to prove approximate controllability for linearizations of these operators using an adjoint argument. For the
Stokes operator we have to note that a small subspace remains which is not reachable, but this subspace is finite
dimensional. Even though we have studied linearizations, we can draw conclusions for the actual operators.
Having the approximate controllability property for the linearization means that we can change the observable
into almost every direction by applying infinitesimal shape perturbations. Our application in view is the design
of polymer distributors with specific wall shear stress profiles. Theorem 4.2 does suggest that the space of
reachable wall shear stress profiles is rather large. Therefore, we can expect a good performance of the shape
optimization algorithm, meaning that the optimal stress profiles lie close to the desired target stress in the
L∞-sense, even though we are only using L2 shape optimization. This statement does agree with our numerical
experience form [10], where we have solved an optimization problem based on the Stokes operator.

On the other hand it remains an open challenge to proof a kind of controllability property for the nonlinear
operator S in a mathematical rigorous way. One could certainly make use of our results for the linearization dS.
However, one drawback of the shape deformation approach considered here is that the perturbation decreases
the regularity of the shape. Therefore, the regularity requirements which were valid for Ω0 are not fulfilled
for Ωθ = (Id + θ)Ω0. One could either try to increase the regularity of the perturbations even further or one
could use a different characterization of the shape variations: A promising approach would certainly be the
characterization through distance functions, which is described in [5].

Appendix A. Shape differentiation

We provide the concepts of material and shape derivatives and cite the essential theory on the differentiation
of shape-dependent integrals. Further details can be found in [22].

Definition A.1 (Material derivative). For V ∈ Ck,1(R2,R2) let y(sV) ∈ Hm(ΩsV) hold for all s ≥ 0 suffi-
ciently small. Then, ẏ(Ω0;V) is called material derivative of y in direction V if and only if the limit

ẏ(Ω0;V) = lim
s↘0

1
s

(
y(sV) ◦ (Id + sV) − y(0)

) ∈ Hm(Ω0) (A.1)

exists.

The material derivative of a boundary function is defined in a similar way:

Definition A.2 (Boundary material derivative). For V ∈ Ck,1(R2,R2) let z(sV) ∈ Hr(ΓsV) hold for all s ≥ 0
sufficiently small. Then, ż(Γ0;V) is called material derivative in direction of V if and only if the limit

ż(Γ0;V) = lim
s↘0

1
s

(
z(sV) ◦ (Id + sV) − z(0)

) ∈ Hr(Γ0) (A.2)

exists.
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The following relation holds between the material derivatives and the boundary material derivative:

Lemma A.3 (from [22]). Let k ≥ m ≥ 1. For V ∈ Ck,1(R2,R2) let y(sV) ∈ Hm(ΩsV) and let
z(sV) = y(sV)|ΓsV ∈ Hm− 1

2 (ΓsV) for all s ≥ 0 sufficiently small. Suppose that the material derivative
ẏ(Ω0;V) ∈ Hm(Ω0) exists. Then, the material derivative of the boundary function exists and is given by
ż(Γ0;V) = ẏ(Ω0;V)|Γ0 ∈ Hm− 1

2 (Γ0)

Next, we define the shape derivative. The difference between material and shape derivative is that the first is
the derivative of y(θ)◦(Id+θ) and the second the derivative of just y(θ) without the pull-back. It is convenient to
derive the definition of the shape derivative from the material derivative by just subtracting the part originating
from differentiating the map (Id + θ). This way, we can directly derive the existence from the existence of the
material derivative.

Definition A.4 (Shape derivative). Let y(0) ∈ Hm(Ω0) and assume that the material derivative ẏ(Ω0;V) ∈
Hm(Ω0) exists for V ∈ Ck,1(R2,R2). Then, the shape derivative in direction V is defined by

y′(Ω0;V) := ẏ(Ω0;V) −∇y(0) ·V ∈ Hm−1(Ω0). (A.3)

Furthermore, we can see directly from the definition that y(0) ∈ Hm+1(Ω0) implies y′(Ω0;V) ∈ Hm(Ω0).

On the boundary we define the shape derivative in the following way:

Definition A.5 (Boundary shape derivative). For a V ∈ Ck,1(R2,R2) let z(sV) ∈ Hr(ΓsV) for all s ≥ 0
sufficiently small and assume that the material derivative ż(Γ0;V) ∈ Hr(Γ0) exists. Then, the shape derivative
in direction V is defined by

z′(Γ0;V) := ż(Γ0;V) − ∂τ z(0) τ · V ∈ Hr−1(Γ0). (A.4)

Furthermore, if z(0) ∈ Hr+1(Γ0), then z′(Γ0;V) ∈ Hr(Γ0).

The following lemma draws a connection between shape derivatives on the domain and the boundary:

Lemma A.6 (from [22]). Let k ≥ m ≥ 1. For V ∈ Ck,1(R2,R2) and s ≥ 0 sufficiently small let y(sV) ∈
Hm(ΩsV) and z(sV) = y(sV)|ΓsV ∈ Hm− 1

2 (ΓsV). Suppose that y(0) ∈ Hm+1(Ω0) and that y′(Ω0;V) ∈
Hm(Ω0) exists. Then,

z′(Γ0;V) = y′(Ω0;V)|Γ0 + ∂ny(0)(V · n) ∈ Hm− 1
2 (Γ0). (A.5)

For the pull-back of the Laplacian the following holds:

Lemma A.7 (from [21]). For k ≥ m ≥ 2 let θ ∈ Θk. Then

(Δf) ◦ (Id + θ) = Δθ(f ◦ (Id + θ)) (A.6)

for all f ∈ Hm(Ωθ), where Δθ : Hm(Ω0) → Hm−2(Ω0) is defined by

Δθf :=
d∑

i,j,l=1

Mij(θ)
∂

∂xj

(
Mil(θ)

∂f

∂xl

)
(A.7)

with M(θ) :=
[
(D(Id + θ))−1

]T .
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The following results provide the derivatives of integral expressions:

Lemma A.8 (Differentiation of domain integrals, see [22]). Let k ≥ 1. For V ∈ Ck(R2,R2) let y(tV) ∈
H1(ΩtV) for all t ≥ 0 sufficiently small. Let f ∈ H1(R2), assume that the shape derivative y′(Ω0;V) ∈ H1(Ω0)
exists and let

J(tV) :=
∫

ΩtV

y(tV)f dx. (A.8)

Then, the derivative of J in direction V is given by

dJ(V) :=
dJ(tV)

dt

∣∣∣∣
t=0

=
∫

Ω0

y′(Ω0;V)f dx+
∫

Γ0

y(0)f(V · n) ds. (A.9)

Lemma A.9 (Differentiation of boundary integrals, see [22]). Let k ≥ 2. For V ∈ Ck(R2,R2) let z(tV) ∈
H

3
2 (ΓtV) for all t ≥ 0 sufficiently small. Assume that the shape derivative z′(Γ0;V) ∈ H

3
2 (Γ0) exits and let

f ∈ H2(R2). Define

J(tV) =
∫

ΓtV

z(tV)f ds. (A.10)

Then, the derivative of J in direction V is given by

dJ(V) :=
dJ(tV)

dt

∣∣∣∣
t=0

=
∫

Γ0

z′(Γ0;V)f + (z(0)∂nf + κz(0)f)(V · n) ds. (A.11)

In particular if z(tV) = y(tV)|ΓtV with y′(Ω0;V) ∈ H2(Ω0) we have

dJ(V) =
∫

Γ0

y′(Ω0;V)f + (∂ny(0)f + z(0)∂nf + κz(0)f)(V · n) ds. (A.12)

Proof. From [22] we know that

dJ(V) =
∫

Γ0

(zf)′(Γ0;V) + κz(0)f(V · n) ds (A.13)

=
∫

Γ0

z′(Γ0;V)f + z(0)f ′(Γ0;V) + κz(0)f(V · n) ds. (A.14)

Since f ∈ H2(R2) is independent of the shape its derivative simplifies to f ′(Γ0;V) = ∂nf (V · n). Plugging this
in yields (A.11) and making use of Lemma A.6 yields (A.12). �

The existence proofs for the material derivatives rely on the implicit function theorem:

Theorem A.10 (Implicit function Theorem, from [2]). Let E1, E2, F be Banach spaces, let W be open in
E1 × E2 and let f ∈ Cq(W,F ). Suppose that (x0, y0) ∈ W such that f(x0, y0) = 0 and

D2f(x0, y0) : E2 → F (A.15)

is an isomorphism. Then, there are open neighborhoods U ⊂ W of (x0, y0) and V ⊂ E1 of x0 and a unique
G ∈ Cq(V,E2) such that

((x, y) ∈ U and f(x, y) = 0) ⇔ (x ∈ V and y = G(x)). (A.16)
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Appendix B. Existence and uniqueness of solutions for PDE

Based on the notation of [24] we introduce elliptic and coercive bilinear forms which give rise to usual existence
existence results for partial differential equations.

Definition B.1 (V -Elliptic). Let m ≥ 1 and let V be a closed subspace equipped with the Hm(Ω)-norm
between Hm

0 (Ω) ⊂ V ⊂ Hm(Ω). We call a bilinear form a : Hm(Ω) ×Hm(Ω) → R V -elliptic if and only if

(1) |a(ψ, φ)| ≤ c1 ‖ψ‖Hm(Ω) ‖φ‖Hm(Ω), for all ψ, φ ∈ Hm(Ω);

(2) a(ψ, ψ) ≥ c2 ‖ψ‖2
Hm(Ω), for all ψ ∈ V ;

where c1, c2 > 0 are independent of ψ and φ.

Definition B.2 (V -Coercive). Let m ≥ 1 and let V be a closed subspace equipped with the Hm(Ω)-norm
between Hm

0 (Ω) ⊂ V ⊂ Hm(Ω). We call a bilinear form a : Hm(Ω) ×Hm(Ω) → R V -coercive if and only if

(1) |a(ψ, φ)| ≤ c1 ‖ψ‖Hm(Ω) ‖φ‖Hm(Ω), for all ψ, φ ∈ Hm(Ω);

(2) a(ψ, ψ) + k ‖ψ‖2
L2(Ω) ≥ c2 ‖ψ‖2

Hm(Ω), for all ψ ∈ V ;
where c1, c2 > 0 and k ∈ R are constants independent of ψ and φ.

For V -elliptic problems we can apply the Lax−Milgram lemma to provide the existence of a unique solution.

Theorem B.3 (Lax−Milgram, from [24]). Let a(ψ, φ) be V -elliptic and let f ∈ V ′. Then there exists a unique
ψ ∈ V such that

a(ψ, φ) = 〈f, φ〉V ′,V (B.1)

for all φ ∈ V .

A key part in our line of proof is the uniqueness question addressed in Lemma 4.11. However, since the corre-
sponding bilinear form is only V -coercive we rely on the following theorem, which does not provide uniqueness,
but states that the space of homogeneous solutions is finite dimensional.

Theorem B.4 (from [24]). Let V ↪→ L2(Ω) ↪→ V ′ be a Gelfand triple and let the embedding V ↪→ L2(Ω) be
compact. Let a(ψ, φ) be V -coercive, then

Z = {ψ ∈ V ; a(ψ, φ) = 0 for all φ ∈ V } (B.2)

is a finite dimensional subspace of V . Furthermore, if 0 is no eigenvalue of the corresponding representation
operator then Z = {0} holds.

Lemma B.5. For l ∈ N let Ω be a domain of class C2+l,1. Let g0 ∈ H
3
2+l(Γ0). Then, for

ΔΨ = 0 in Ω

Ψ = g0 on Γ
(B.3)

there exists a unique solution Ψ ∈ H2+l(Ω).

Proof. Making use of the inverse trace theorem from ([24], Prop. 8.8) there exist a continuation g ∈ H2+l(Ω)
with g|Γ = g0. Using Φ = Ψ − g we can reformulate and derive the following weak problem: find Φ ∈ H1

0 (Ω)
with ∫

Ω

∇Φ · ∇ξdx =
∫

Ω

Δg ξdx for all ξ ∈ H1
0 (Ω). (B.4)

Finally, Theorem B.3 yields the existence of a unique solution Φ ∈ H1
0 (Ω). And ([24], Prop. 20.4) yields the

regularity Φ ∈ H2+l(Ω) and thus Ψ ∈ H2+l(Ω). �



APPROXIMATE CONTROLLABILITY OF LINEARIZED SHAPE-DEPENDENT OPERATORS FOR FLOW PROBLEMS 771

Lemma B.6. For l ∈ N let Ω be a domain of class C4+l,1. Let g0 ∈ H2+ 3
2+l(Γ0) and g1 ∈ H2+ 1

2+l(Γ0).
Then, for

ΔΔΨ = 0 in Ω

Ψ = g0 on Γ

∂nΨ = g1 on Γ

(B.5)

there exists a unique solution Ψ ∈ H4+l(Ω).

Proof. Making use of the inverse trace theorem from ([24], Prop. 8.8) there exist a continuation g ∈ H4+l(Ω)
with g|Γ = g0 and ∂ng|Γ = g1. Using Φ = Ψ − g we can reformulate and derive the following weak problem: find
Φ ∈ H2

0 (Ω) with ∫
Ω

ΔΦΔξdx = −
∫

Ω

ΔΔg ξdx for all ξ ∈ H2
0 (Ω). (B.6)

Finally, Theorem B.3 yields the existence of a unique solution Φ ∈ H2
0 (Ω). And ([24], Prop. 20.4) yields the

regularity Φ ∈ H4+l(Ω) and thus Ψ ∈ H4+l(Ω). �
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