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OPTIMAL DESIGN PROBLEMS FOR SCHRÖDINGER OPERATORS
WITH NONCOMPACT RESOLVENTS

Guy Bouchitté1 and Giuseppe Buttazzo2

Abstract. We consider optimization problems for cost functionals which depend on the negative
spectrum of Schrödinger operators of the form −Δ + V (x), where V is a potential, with prescribed
compact support, which has to be determined. Under suitable assumptions the existence of an optimal
potential is shown. This can be applied to interesting cases such as costs functions involving finitely
many negative eigenvalues.
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1. Introduction

Optimization problems for spectral functionals are widely studied in the literature; in a general framework
one may consider an admissible class A of operators and the problem is then formulated as

min
{
F
(
σ(A)

)
: A ∈ A} (1.1)

where σ(A) denotes the spectrum of the operator A ∈ A and F is a suitable given cost function that depends
on σ(A).

The most studied case is when the admissible class A of operators consists of the Laplace operator −Δ over
a variable domain Ω, with homogeneous Dirichlet boundary conditions on ∂Ω. If the Lebesgue measure |Ω| is
supposed finite, the resolvent operators are compact and then their spectrum reduces to an increasing sequence
of positive eigenvalues, so that the optimization problem (1.1) takes the form

min
{
F
(
λ1(Ω), λ2(Ω), . . .

)
: Ω ∈ O}

where O indicates the class of admissible domains. We refer to [3, 4] and to the references therein for a survey
on this topic and for the various existence results that are available in this situation.

Optimization problems of the form (1.1) have been also considered in [5] for operators of Schrödinger type
−Δ + V (x), under the assumption V ≥ 0 and on a fixed bounded domain, on the boundary of which the
homogeneous Dirichlet conditions are imposed. Again, the resolvent operators are compact, hence their spectrum
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is discrete and the optimization problem (1.1) takes the form

min
{
F
(
λ1(V ), λ2(V ), . . .

)
: V ∈ V}

where V indicates now the class of admissible potentials. Several existence results for optimal potentials have
been obtained in [5] in this situation.

In the present paper we consider Schrödinger operators −Δ + V (x) where for simplicity the potential V is
assumed to be compactly supported and is allowed to become negative. Thus the resolvent operators are not
any more compact and the spectrum σ(V ), besides its continuous part, may exhibit bound states below the
bottom of the essential spectrum. Such bound states always appear for instance in the context of thin locally
curved quantum waveguides as it is shown in the pionering work [8], where an upper bound to the number of
these bound states was derived.

The aim of this paper is to propose two general classes of optimization problem where the cost functional
depends on an unknown potential V and on the discrete set of bound states associated with operator −Δ+V (x).
For each of them, we establish the existence of optimal potentials under suitable growth conditions (Sect. 2,
Thms. 2.1 and 2.2). In Section 3 we present some examples illustrating the range of possibilities in which our
existence results apply.

Along all the paper, the notation of function spaces L2, H1 and similar, without the indication of the domain
of definition, is used when the domain is the whole R

d. Similarly, the absence of the domain of integration in
an integral means that the integral is made on the whole R

d.

2. Presentation of the problem

The problems we aim to consider are of the form

min
{
F (V ) : V ∈ A} (2.1)

where F is a suitable cost functional and A is a suitable class of admissible potentials defined on R
d. In order

to simplify the presentation, we assume that all the potentials we consider have a support contained in a given
compact set K. The admissible potentials may change sign and indeed their negative parts are mostly important
for our purposes; the class A is then defined as

A =
{
V : R

d → R measurable, sptV ⊂ K
}
.

We consider Schrödinger operators of the form −Δ + V (x) on the Hilbert space L2, with domain {u ∈
L2, −Δu + V (x)u ∈ L2}; we denote by σ(V ) its spectrum and by σdis(V ) its discrete part, consisting of
isolated eigenvalues; finally σ−

dis(V ) will denote the part of σdis(V ) which consists of negative eigenvalues. By
the Cwikel−Lieb−Rosenbljum bound (see for instance [12]) it is known that

#σ−
dis(V ) ≤ Cq,d

∫
|V −|q dx ∀d ≥ 3, ∀q ≥ d/2, (2.2)

where the eigenvalues are counted with their multiplicity. Other important inequalities we will use are the
Lieb−Thirring inequality (see for instance [10, 11]) which is valid in any dimension d

∑
λ∈σ−

dis(V )

|λ|p−d/2 ≤ Lp,d

∫
|V −|p dx ∀p > d/2, (2.3)

and the Keller inequality (see for instance [6])

|λ1|p−d/2 ≤ Kp,d

∫
|V −|p dx ∀p > d/2. (2.4)



OPTIMAL DESIGN PROBLEMS FOR SCHRÖDINGER OPERATORS WITH NONCOMPACT RESOLVENTS 629

Along all the paper, we consider a given real number p > d/2 and we denote by G : Lp(Rd) �→] −∞,+∞] any
weakly lower semicontinuous functional such that for suitable constants k > 0, C ≥ 0:

G(V ) ≥ k

∫
|V |p dx − C ∀V ∈ Lp. (2.5)

Accordingly, the cost functionals we consider are defined on Lp and belong to the following two classes:

F (V ) =
∑

λ∈σ−
dis(V )

mV (λ)h(λ) + G(V ) ∀V ∈ Lp (2.6)

F (V ) = g
(
Φ(σ−

dis(V ))
)

+ G(V ) ∀V ∈ Lp. (2.7)

In definition (2.6), mV (λ) denotes the multiplicity of the eigenvalue λ and the function h : R →] −∞,+∞]
is a given lower semicontinuous function.

In definition (2.7), we denoted by Φ the map which sends σ−
dis(V ) into the space c0(R−) of vanishing sequences

of negative real numbers, defined as follows: let λ1 ≤ λ2 ≤ λ3 . . . be an enumeration of the elements of σ−
dis(V )

in increasing order and repeated according to their multiplicity; then we set

Φ(σ−
dis(V )) :=

{
{λ1, . . . , λN , 0, 0, . . .} if #σ−

dis(V ) = N

{λ1, λ2, . . .} if #σ−
dis(V ) = +∞.

Note that, since we assumed p > d/2, by the Lieb−Thirring inequality (2.3) Φ(σ−
dis(V )) is actually a vanishing

sequence of negative real numbers. The function g is a given function on c0(R−) with values in ] −∞,+∞].
Our main results are the existence of optimal potentials for the minimization problem (2.1), as precised in

the following Theorems.

Theorem 2.1. Let F be a cost functional as in (2.6). We assume that the function h : R →] − ∞,+∞] is a
given lower semicontinuous function satisfying

h(0) ≥ 0 (2.8)

and the following growth condition:

h−(t) ≤M + c|t|p−d/2 ∀t < 0 if d ≥ 3
h−(t) ≤ c|t|p−1 ∀t < 0 if d = 2 (2.9)

for suitable positive constants M, c with c < k/Lp,d. Then the minimization problem

min
{
F (V ) : sptV ⊂ K, V ∈ Lp

}
admits a solution provided the infimum is finite.

Theorem 2.2. Let F be a cost functional as in (2.7). We assume that the function g is lower semicontinuous
on c0(R−) (i.e. for the componentwise convergence) and satisfies the following coercivity condition:

g−(λ) ≤M + c|λ1|p−d/2 ∀λ ∈ c0(R−) (2.10)

for suitable positive constants M, c with c < k/Kp,d. Then the minimization problem

min
{
F (V ) : sptV ⊂ K, V ∈ Lp

}
admits a solution provided the infimum is finite.
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Remark 2.3. We stress that in the definition (2.6) of the cost functional F , the multiplicity m(λ) appears.
However it is easy to check that Theorems 2.1 and 2.2 still hold if that coefficient m(λ) is removed, providing we
assume the sub-additivity of the function h (i.e. h(s+ t) ≤ h(s)+h(t)). On the other hand the assumption (2.8)
will be important for the existence issue in order to penalize negative eigenvalues close to 0. Note that for d ≥ 3,
thanks to the Cwikel−Lieb−Rosenbljum bound (2.2), the sum in (2.6) is a finite sum, which is not true for
d = 2.

Remark 2.4. As a functional G satisfying (2.5), we can consider the indicator function of any bounded closed
convex subset C of Lp(Rd)

G(V ) =

{
0 if V ∈ C
+∞ otherwise.

This includes for instance the case of constrained optimization problems of the kind

min
{
F (V ) : sptV ⊂ K, |V | ≤ 1

}
.

Notice that in the case above, one checks easily that we may drop the coercivity assumptions (2.9) or (2.10).

3. Some examples of application

Our Theorems 2.1 and 2.2 require very few assumptions and therefore can be applied to a lot of different
situations. In this section we just pick up some of them.

Example 3.1. Let us consider a compact set E ⊂ ]−∞, 0[ and the function

h(t) = −1E(t) =

{
−1 if x ∈ E

0 if x /∈ E.

The function h above satisfies the assumptions of the existence Theorem 2.1, and therefore according to Re-
mark 2.4 the optimization problem

max

⎧⎨
⎩

∑
λ∈E∩σ−

dis(V )

mV (λ) : sptV ⊂ K, |V | ≤ 1

⎫⎬
⎭

admits a solution. This solution is then a potential V that, among the ones supported by K and with values in
[−1, 1], has the maximum number of negative discrete eigenvalues in E, counted with their multiplicity.

Example 3.2. Consider now a number p > d/2 and the function

h(t) = −|t|p−d/2.

The function h above satisfies the assumptions of the existence Theorem 2.1, and therefore, also using the
Remark 2.4, the optimization problem

max

⎧⎨
⎩

∑
λ∈σ−

dis(V )

mV (λ)|λ|p−d/2 : sptV ⊂ K, V ≤ 0,
∫

|V |p dx ≤ 1

⎫⎬
⎭

admits a solution. Notice that this provides, among negative potentials V supported by K, the best potential
for the Lieb−Thirring inequality (2.3).



OPTIMAL DESIGN PROBLEMS FOR SCHRÖDINGER OPERATORS WITH NONCOMPACT RESOLVENTS 631

Example 3.3. Consider a fixed natural number N and a lower semicontinuous function g : R
N →]−∞,+∞].

For instance we may take
g(λ) = λj

in which we look for the lowest possible jth negative eigenvalue, or

g(λ) = λ1 − λ2

where we look for the maximal gap between λ2 and λ1 (under the convention that we take λ2 = 0 whenever λ1

is the only element of σ−
dis(V )). By the existence Theorem 2.2 and Remark 2.4, we deduce that the optimization

problem
min

{
g
(
λ1(V ), . . . , λN (V )

)
: sptV ⊂ K, −1 ≤ V ≤ 0

}
admits a solution.

Example 3.4. Let us consider a waveguide in R
2 which is described by a thin tube Ωε of thickness ε around an

infinite central curve γ(s) regular enough and parametrized by its curvilinear abscissa. It is well known (see [7])
that the essential spectrum of the Dirichlet Laplacian Ωε is [π2/ε2,+∞) and that if the curvature of γ is not
indentically zero, it exists at least an eigenvalue below π2/ε2. Moreover if the curvature κ of γ is compactly
supported, we have the following asymptotic formula for the first eigenvalue λε

1

λε
1 =

π2

ε2
+ μ1 + o(1) ,

where μ1 is the first eigenvalue of the one dimensional operator

−v′′(s) + Vγ(s)v on R, Vγ(s) := −|γ′′|2(s)
4

· (3.1)

Our aim is to find a curve γ which maximizes μ1 among a suitable class of admissible curves. This μ1 represents
the limit as ε→ 0 of the Hausdorff distance between the full spectrum on Ωε and its essential part.

If A,B are fixed positions in R
2 and C,D are fixed unit tangent vectors, we consider the admissible class of

curves represented by functions γ of the curvilinear abscissa

ΓL,M :=
{
γ ∈ C1,1(R; R2) : |γ′(s)| = 1, |γ′′(s)| ≤M, ∃
 ≤ L s.t.

γ(0) = A, γ′(s) = C ∀s ≤ 0
γ(
) = B, γ′(s) = D ∀s ≥ 


}
,

where L,M are given numbers. We take L,M large enough in order that the class above is not empty. Denoting
μ1(γ) the first eigenvalue of (3.1), the optimization problem reads

max {μ1(γ) : γ ∈ ΓL,M} .

Our claim is that an optimal curve does exist. To prove that let {γn} be a maximizing sequence; thanks
to the bounds appearing in the admissible class ΓL,M , we may assume that γn tends to a curve γ weakly-
* in W 2,∞(0, L). It is easy to check that γ still belongs to the class ΓL,M . Then, up to a subsequence, the
corresponding potentials Vn = −|γ′′n|2/4 weakly-* converge to a negative function W such that W ≤ Vγ . By
Theorem 2.2 (see also Step 2 in the Proof of Thm. 2.1), we have: μ1(Vγn) → μ1(W ) ≤ μ1(Vγ). The last inequality
shows that γ represents an optimal curve. We conjecture that optimal curves do not depend on M for M large
enough.

Remark 3.5. The previous example can be easily generalized by using the same argument to the optimization
problem

min{F (Vγ) : γ ∈ ΓL,M} ,
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provided the cost functional F (V ) is weakly-* continuous in L∞ and decreasing in the sense that

F (W ) ≤ F (V ) whenever W ≥ V .

For instance we may take F (V ) as in Theorem 2.2 with g continuous and decreasing in c0(R−).

Remark 3.6. If the waveguide is in R
3, the situation is more complicated because as shown in [1] and [2], the

potential Vγ depends not only on the curvature of γ but also on the twist of the cross section in case it is not
circular.

4. Proof of the results

We start by two useful lemmas.

Lemma 4.1 (Coercivity). Let p > d/2 and G satisfy (2.5). Then the functional F in (2.6) is coercive in Lp

for every h satisfying (2.9).

Proof. Let (Vn) be such that F (Vn) ≤ C. Then, by Lieb−Thirring inequality

C ≥F (Vn) ≥ k

∫
|Vn|p dx−

∑
λ∈σ−

dis(Vn)

mVn(λ)h−(λ)

≥k
∫

|Vn|p dx−
∑

λ∈σ−
dis(Vn)

mVn(λ)(M + c|λ|p−d/2)

≥(k − cLp,d)
∫

|Vn|p dx−M#σ−
dis(Vn)

being M = 0 if d = 2. The conclusion is straightforward if d = 2 whereas, if d ≥ 3, it follows from the CLR
inequality (2.2) with exponent q = d/2. �

Lemma 4.2. Let Vn be a sequence of potentials converging to a potential V weakly in Lp with p > d/2. Then we
have Rn → R strongly in L2 (i.e. ‖Rn(f) −R(f)‖L2 → 0 for every f ∈ L2), where Rn and R are the resolvent
operators corresponding to Vn and V respectively.

Proof. By the Lieb−Thirring inequality (2.3) all the negative eigenvalues of −Δ + Vn and of −Δ + V are
uniformly bounded from below; let us take α > 0 such that

α+ λ1(Vn) ≥ 1 ∀n ∈ N.

If f ∈ L2 let us denote by un, u ∈ H1 the solutions of

−Δun + (Vn + α)un = f, −Δu+ (V + α)u = f. (4.1)

Since α+ λ1(Vn) ≥ 1 we have ∫
u2

n dx ≤
∫

|∇un|2 + (Vn + α)u2
n dx =

∫
fun dx

from which we deduce that un is bounded in L2. We show now that un is bounded in H1. By the equality above
we obtain ∫

|∇un|2 dx ≤ C +
∫
V −

n u2
n dx. (4.2)
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We fix now a constant A > 0; we have∫
V −

n u2
n dx ≤ A

∫
{V −

n ≤A}
u2

n dx+
∫
{V −

n >A}
V −

n u2
n dx

≤ CA+
(∫

|un|2∗
dx
)2/2∗ (∫

{V −
n >A}

|V −
n |d/2

)2/d

≤ CA+ C

(∫
|∇un|2 dx

)
‖V −

n ‖Lp |{V −
n > A}|(2p−d)/pd. (4.3)

Since

|{V −
n > A}| ≤

∫
{V −

n >A}

V −
n

A
dx ≤ 1

A
‖V −

n ‖Lp |{V −
n > A}|(p−1)/p,

we obtain
|{V −

n > A}| ≤ CA−p,

and from (4.3) ∫
V −

n u2
n dx ≤ CA+

C

A(2p−d)/d

∫
|∇un|2 dx.

Taking A such that A(2p−d)/d = 2C, from (4.2) we deduce that
∫ |∇un|2 dx is bounded.

Then we have that un converges (up to a subsequence) to u in L2
loc. Moreover, we can deduce from Hölder

inequality that

lim
n→∞

∫
Vn|un|2 dx =

∫
V |u|2 dx. (4.4)

Indeed |un|2 → |u|2 a.e. and by the Sobolev continuous embedding theorem H1 ⊂ L2∗
we have

∫
|un|2p′+ε dx =

∫
|un|2∗

dx ≤ C

(∫
|∇un|2

)2∗/2

,

being ε = 2∗ − 2p′. Then it follows from Vitali’s convergence Theorem that |un|2 → |u|2 strongly in Lp′
(K)

(again up a subsequence) and so (4.4) follows.
To finish the proof we need only to check that un → u strongly in L2. By (4.1), we have∫

|∇un|2 dx+
∫

(Vn + α)|un|2 dx =
∫
fun dx ,∫

|∇u|2 dx+
∫

(V + α)|u|2 dx =
∫
fu dx .

By the weak L2 lower semicontinuity of the H1-norm and (4.4) and recalling that α > 0, we deduce that

lim sup
n

∫
|un|2 dx ≤

∫
|u|2 dx,

hence the conclusion. The strong convergence of resolvents follows by the classical argument that it is enough
to check it for only one value outside the spectra. �

We are now in a position to prove the result of Theorem 2.1.
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Proof of Theorem 2.1. We divide the proof in three steps.

Step. 1 Consider a minimizing sequence (Vn); thanks to the coercivity Lemma 4.1, the sequence (Vn) is bounded
in Lp and so we may assume, up to extracting a subsequence, that it converges weakly to some function V ∈ Lp.

Step 2. Since Vn converges weakly to V , by Lemma 4.2 we have the strong convergence of resolvent operators
and hence that of the principal eigenvalues λ1(Vn) → λ1(V ). In addition, the spectral measures En related to
the self-adjoint operators −Δ+Vn weakly converge to the spectral measure E of −Δ+V (see for instance [9]).
In other words, for every λ which does not belong to the spectrum of −Δ+ V we have

〈En(λ)φ, ψ〉 → 〈E(λ)φ, ψ〉 ∀φ, ψ ∈ L2. (4.5)

Since σ−
dis(V ) is finite, we have

dEn

∣∣
]−∞,λ[

=
∑

t∈σ−
dis(Vn)

δt PXn(t) (4.6)

where δt is the Dirac mass at t and PXn(t) is the orthogonal projector on the finite dimensional eigenspace
Xn(t) associated to the eigenvalue t. From (4.5) and (4.6) we deduce that for any λ < 0, with λ /∈ σ−

dis(V ),
dEn

∣∣
]−∞,λ[

→ dE
∣∣
]−∞,λ[

weakly in the sense of operators of finite rank and hence strongly. In particular, taking
the trace on both sides, we deduce that

μn

∣∣
]−∞,λ[

→ μ
∣∣
]−∞,λ[

∀λ ∈ R
− \ σ−

dis(V ) , (4.7)

where the convergence is intended in the weak* convergence of measures and the nonnegative measures μn, μ
are defined by

μn :=
∑

t∈σ−
dis(Vn)

mVn(t) δt , μ :=
∑

t∈σ−
dis(V )

mV (t) δt . (4.8)

Step 3. With the notations introduced in (4.8), we may write

F (Vn) =
∫
h(t) dμn(t) + k

∫
|Vn|P dx, F (V ) =

∫
h(t) dμ(t) + k

∫
|V |P dx .

In view of Steps 1 and 2, and recalling that Vn → V weakly in Lp, the existence of an optimal potential will be
achieved as soon as we show the lower semicontinuity of F which reduces to the inequality

lim inf
n

∫
h(t) dμn(t) ≥

∫
h(t) dμ(t) . (4.9)

We start with the case d ≥ 3. By (2.2), it holds
∫

dμn ≤ C for a suitable constant C. Let ε > 0 be such that
−ε /∈ σ−

dis(V ). Then ∫
h(t) dμn(t) ≥

∫
]−∞,−ε[

h(t) dμn − C sup
[−ε,0]

h− .

By (4.7) and by the lower semicontinuity of h we obtain

lim inf
n

∫
h(t) dμn(t) ≥

∫
]−∞,−ε[

h(t) dμ− C sup
[−ε,0]

h−.

The conclusion (4.9) follows by the assumption h(0) ≥ 0 letting ε→ 0.
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Let us now consider the case d = 2 in which the measures μn can be unbounded in the vicinity of zero. By
the assumption (2.9), we have∫

h(t) dμn(t) ≥
∫

]−∞,−ε[

h(t) dμn − c

∫
]−ε,0[

|t|p−1 dμn .

Let r such that 0 < r < p− 1. Thanks to the Lieb−Thirring inequality (2.3) with exponent p− r, we have∫
]−ε,0[

|t|p−1 dμn ≤ εr

∫
]−ε,0[

|t|p−1−r dμn ≤ εr Lp−r,2

∫
|V −

n |p−r dx ≤ C εr ,

and similarly for μ. Therefore as n→ ∞, we obtain

lim inf
n

∫
h(t) dμn(t) ≥

∫
]−∞,−ε[

h(t) dμ− cCεr ≥
∫
h(t) dμ− 2cCεr ,

thus the conclusion (4.9) as ε→ 0. �

Proof of Theorem 2.2. The proof follows the same scheme as the one of Theorem 2.1. The coercivity of F can
be obtained as in Lemma 4.1 using the inequality (2.4). Step 2 remains unchanged and so the only difference
is in Step 3. It is enough to observe that, thanks to the convergence of resolvents of spectral measures proved
in Step 2, we have the convergence Φ

(
σ−

dis(Vn)
) → Φ

(
σ−

dis(V )
)

in c0(R−) hence the conclusion by the lower
semicontinuity of g. �
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