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Abstract. In this paper, we propose a level set regularization approach combined with a split strat-
egy for the simultaneous identification of piecewise constant diffusion and absorption coefficients from
a finite set of optical tomography data (Neumann-to-Dirichlet data). This problem is a high nonlinear
inverse problem combining together the exponential and mildly ill-posedness of diffusion and absorp-
tion coefficients, respectively. We prove that the parameter-to-measurement map satisfies sufficient
conditions (continuity in the L1 topology) to guarantee regularization properties of the proposed level
set approach. On the other hand, numerical tests considering different configurations bring new ideas
on how to propose a convergent split strategy for the simultaneous identification of the coefficients.
The behavior and performance of the proposed numerical strategy is illustrated with some numerical
examples.
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1. Introduction

Optical tomography has demonstrated to be a powerful technique to obtain relevant physiological information
of tissues in a non-invasive manner. The technique relies on the object under study being at least partially light-
transmitting or translucent, so it works best on soft tissues such as breast and brain tissue [19,24]. By monitoring
spatial-temporal variations in the light absorption and scattering properties of tissue, regional variations in
hemoglobin concentration or blood oxygen saturation can be calculated. For a complete overview on optical
tomography modalities the reader can consult the topical reviews [1, 17] and references therein.

A full description of light propagation in tissue is provided by the radiative transport equation. However, in
this contribution we are interested in the so called static diffuse optical tomography (DOT). In DOT, light in
the near infrared spectral region is used to measure the optical properties of physiological tissue. In this case,
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denoting the photon density by u, the equation to consider is the following:

−∇ · (a(x)∇u) + c(x)u = 0 in Ω (1.1)

a(x)
∂u

∂ν
= g on Γ , (1.2)

where Ω ⊂ RN , N ∈ {2, 3, 4}, is open, bounded and connected with Lipschitz boundary denoted by Γ , the
diffusion and absorption coefficients a(x) and c(x), respectively, are measurable real-valued functions and ν is
the outer-pointing normal vector. Moreover, g ∈ H−1/2(Γ ) is the Neumann boundary data. Such boundary
condition can be interpreted as the exitance on Γ .

It is worth mentioning that equation (1.2) is a simplified way of modeling light fluence boundary condition in
diffuse optical tomography, since a more realistic description is to consider a Robin boundary condition [27,28].
However, we believe that our simplified boundary model already contains the essential aspects for the theoretical
study that we present in this work. Further, this setting agrees with the uniqueness identification result derived
by Harrach in [18]. For more details about boundary conditions in light propagation models we recommend to
consult [27, 28] and references therein.

Since the optical properties within tissue are determined by the values of the diffusion and absorption coeffi-
cients, the problem of interest in DOT is the simultaneous identification of both coefficients from measurements
of near-infrared diffusive light along the tissue boundary.

In this contribution, we proposed a level set regularization approach [7,9,10,15] combined with a split strategy
for the simultaneous identification of piecewise constant diffusion a(x) and absorption c(x) coefficients in (1.1)
and (1.2), from a finite set of available measurements of the photon density h := u|Γ , corresponding to inputs
g ∈ H−1/2(Γ ) in (1.1) and (1.2).

Related works: In [22], a Levenberg–Marquardt method for recovering internal boundaries of piecewise con-
stant coefficients of an elliptic PDE as (1.1) was implemented. The proposed method is based on the series
expansion approximation of the smooth boundaries and on the finite element method. However, in [22], there
is not a theoretical result that guarantees regularizing properties of the iterated approximated solution. Indeed,
as far as the authors are aware, there is not theoretical regularization approaches in the literature for recovering
the pair of coefficients (a, c) in (1.1) from boundary data.

In [31], the authors did a carefully designed experiment aimed to provide solid evidence that both absorption
and scattering images of a heterogeneous scattering media can be reconstructed independently from diffuse
optical tomography data. The authors also discuss the absorption scattering cross-talk issue.

Although it is well known that the identification of a and c simultaneously is not possible in a general case [2],
recently Harrach [18] obtained a uniqueness result for the simultaneous recovery of a and c in (1.1) and (1.2)
assuming that a ≥ a0 > 0 is piecewise constant and c ∈ L∞

+
4 is piecewise analytic. Under this condition both

parameters are simultaneously uniquely determined by knowledge of all possible pairs of Neumann and Dirichlet
boundary values a∂νu|Γ̃ and u|Γ̃ on an arbitrarily small open set Γ̃ of the boundary Γ . The difference between
the work of Harrach [18] and our work is that here we are considering a more practical approach: we only have
access to a finite number of Neumann–Dirichlet pairs.

We also remark that the quantitative photoacoustic tomography problem (QPAT), in the diffusive approach,
also aims to simultaneous recover (a, c) of an elliptic boundary valued problem. See for example [29] and
references therein. However, in the QPAT situation the solution of the “first inverse problem” generate internal
data for the reconstruction. In this sense, the QPAT problem is very different to the identification problem that
we are facing here.

4The subscript ‘+’ denotes positive essential infima.
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Novelties: The novelties of this contribution are divided as follow:

• We prove the continuity of the parameter-to-measurement (forward) map F (defined in (2.1)) in the [L1(Ω)]2

topology. It is done in Theorem 2.5 of Section 2, and it is possible thanks to a generalization of Meyers’
Theorem [23] that prove the regularity of the solution of (1.1) and (1.2) in W 1,p(Ω) for some p > 2 (see
Thm. 2.3). The proof of Theorem 2.3 is presented in detail in the Appendix.
In Section 3, we introduce a level set approach. In contrast to the seminal approach of Santosa on level
set for inverse problems [26], our approach consists in a parametrization of the non-smooth admissible set
of parameters with a pair of H1(Ω) functions concatenated with a restriction of the search space using
nonlinear constraints. Such approach allows us to enforce the desired additional properties on the pair of
parameters (a, c) (namely: (a, c) is a pair of piecewise constant functions describing the high diffusion and
absorption contrast between the optical properties of the object) that are not smooth.
Given the continuity of F in the [L1(Ω)]2 topology, it is now a standard result to prove that the level set
approach is a regularization method as in the classical theory of regularization [7–10]. Therefore, we only
point out the convergence and stability results without a formal proof in Section 3.2.

• Another contribution of the proposed level set approach is related to the numerical implementation presented
in Section 5. It is worth to remind the reader that we aim to simultaneous reconstruct the pair (a, c) of
piecewise constant functions from a finite set of optical measurements. With this aim, we first run several
numerical experiments in order to recover the absorption coefficient c, based on either total or partial
knowledge of a. From this experiments we observed that the level set method for identifying c performs
well, even if a good approximation of the exact value of a is not known. This is presented in Section 5.1.
After that, in Section 5.2 we run another set of experiments but now concerning the identification of the
diffusion coefficient a, based on either total or partial knowledge of c. In this case, we observed that the
level set method for identifying a performs well if a good approximation of the exact value of c is available,
but may generate a sequence ak that does not approximate the exact a if the initial guess for the coefficient
c is far from its exact value. Such features of the identification problems suggested one of the main results
related to the numerical perspective presented in Section 5.3. Given a initial guess (a0, c0), we adopted the
strategy to “freeze” the coefficient ak = a0 during the first iterations, and to iterate the algorithm only
with respect to the coefficient c. We follow this strategy until the iterated sequence ck stagnates. Then, we
freeze the absorption coefficient c = ck and iterate the algorithm only with respect to a until the iterated
sequence ak stagnates. Finally, we iterate both coefficients simultaneously. This numerical strategy has not
only demonstrated that gives very good results but also reduces significantly the computational effort.

This article is organized as follows. In Section 2 we first introduce the parameter-to-measurement (forward)
map F and after that, in Theorem 2.5, the continuity of this forward map is demonstrated. Then, in Section 3
we present the level set approach, we introduce the concept of generalized minimizers for an appropriate energy
functional and we establish the regularization properties. In other words, we prove the well-posedness result and
also convergence results for exact and noisy data. In Section 4, we introduce a smooth functional that is used in
the numerical examples. We prove that the minimizers of such functional converge to a minimizer of the early
energy functional in appropriated topologies. Section 5 is devoted to numerical experiments and a split strategy
is developed. We end this contribution in Section 6 with some conclusions and further developments. In the
Appendix, we give a proof for a generalization of a Meyers’ type theorem (see Thm. 2.3) about the regularity
of the solution of (1.1) and (1.2) that are used in the proof of the continuity of the forward map F .

General Notation.

We denote by RN , N ≥ 2, the N -dimensional Euclidean space endowed with the usual scalar product x · y =∑N
i=1 xiyi and norm |x| =

√
x · x, where x = (xi)N

i=1 and y = (yi)N
i=1. Given two normed vector spaces (X , ‖·‖X )

and (Y, ‖ · ‖Y) we always consider the product space X × Y endowed with the product topology generated by
the norm ‖(x, y)‖ := ‖x‖X + ‖y‖Y (or the equivalent norms

(‖x‖2
X + ‖y‖2

Y
)1/2 or max{‖x‖X , ‖y‖Y}), where

(x, y) ∈ X × Y. We also use the short notation X 2 = X × X .
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2. The parameter to measurement map

We start this section assuming that coefficient a(x) is known for all x ∈ Γ . Then, for each input g ∈ H−1/2(Γ )
in (1.1) and (1.2), we define the parameter-to-measurement (forward) map

F := Fg : D(F ) ⊂ L1(Ω) × L1(Ω) → H1/2(Γ ) (2.1)
(a, c) 	→ h := u|Γ ,

where u = u(g) is the unique solution of (1.1) and (1.2) given the boundary data g and the pair (a, c) in the
parameter space D(F ) defined as:

Definition 2.1. Denote by D(F ) the set of pairs of L1(Ω) functions (a, c) on Ω satisfying the following
condition:

0 < a ≤ a(x) ≤ a, 0 < c ≤ c(x) ≤ c ∀x a.e. in Ω, (2.2)

where a, a, c and c are known positive real numbers.

We now make some comments about Definition 2.1 and the definition of the forward map F . First, it is easy
to check that D(F ) is a convex subset of [L1(Ω)]2. Second, the forward map F is well-defined because for each
(a, c) ∈ D(F ) there exists a unique solution u ∈ H1(Ω) of (1.1) and (1.2) (see [6]). Third, since D(F ) depends
on the scalars a, a, c and c , it turns out that F also depends on the latter scalars. However, we are assuming
that the scalars are known, fixed and independent of each given Neumann data g in (1.2). Fourth, we are not
assuming any smoothness condition on the pair (a, c) ∈ D(F ). In particular the latter fact allow us to consider
solutions of (1.1) and (1.2) corresponding to piecewise constant coefficients.

This section is devoted to prove the continuity of the forward map F in the [L1(Ω)]2 topology. In order to
make such proof easier to understand we will consider the parameter-to-solution map

G := Gg : D(F ) ⊂ [L1(Ω)]2 −→ H1(Ω)
(a, c) 	−→ Gg(a, c) := u , (2.3)

where u = u(g) ∈ H1(Ω) is the unique solution of (1.1) and (1.2) for each input data g ∈ H−1/2(Γ ) and
parameters (a, c) ∈ D(F ). Moreover, we will use the fact that any solution of (1.1) and (1.2) satisfies the
following weak formulation [6]:

∫
Ω

a∇u · ∇ϕdx +
∫

Ω

cuϕdx =
∫

Γ

gϕdσ ∀ϕ ∈ H1(Ω). (2.4)

Remark 2.2. Given the definition of the forward map F in (2.1), and using the map defined in (2.3), we have
that F can be written as

F = γ0 ◦ G, (2.5)

where γ0 : H1(Ω) → H1/2(Γ ) is the trace operator of order zero [6]. Since the operator γ0 is linear and
continuous [6], the continuity of F follows from the continuity of G.

In order to prove the continuity of the operator G defined in (2.3) in the desired topology, we will use the
following generalization of Meyers’ theorem [16] on the regularity of the solution of (1.1) and (1.2). The proof
of Theorem 2.3 is presented in the Appendix.

Theorem 2.3 (Generalized Meyers’ theorem). Let Ω ⊂ R
N , N ∈ {2, 3, 4}, be a connected bounded open set

with a Lipschitz boundary Γ and let (a, c) ∈ D(F ). Then, there exists a real number pM > 2 (depending only
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on Ω, a, a, c and c) such that the following condition hold for every p ∈ (2, pM ): If g ∈ W 1−(1/q),q(Γ )′, where
q := p/(p − 1), then the unique solution u of (1.1) and (1.2) belongs to W 1,p(Ω).

Next, we present a lemma that is used in the main theorem of this section.

Lemma 2.4. Let h be a measurable function such that |h(x)| ≤ M for all x a.e. in Ω, for some constant
M > 0. Then, h ∈ Ls(Ω) for all 1 ≤ s < ∞ and

‖h‖Ls(Ω) ≤ M (s−1)/s‖h‖1/s
L1(Ω).

Proof. Note that

‖h‖s
Ls(Ω) =

∫
Ω

|h(x)||h(x)|s−1 dx ≤ M s−1‖h‖L1(Ω),

which readily implies the desired result. �

In the next theorem we prove the continuity of the parameter-to-solution map G in the [L1(Ω)]2 topology.
Then, by Remark 2.2 we obtain the desired continuity of the parameter-to-measurement map F .

Theorem 2.5. Let p ∈ (2, pM ), where pM > 2 is given by Theorem 2.3, and let q := p/(p − 1). Then, for any
g ∈ W 1−(1/q),q(Γ )′ the operator G defined in (2.3) is continuous in the [L1(Ω)]2 topology.

As a consequence, for any g ∈ W 1−(1/q),q(Γ )′, the forward map F defined in (2.1) is also continuous in the
[L1(Ω)]2 topology.

Proof. Let g ∈ W 1−(1/q),q(Γ )′ and consider the corresponding solutions u′ = u(a′, c′) and u = u(a, c) of (1.1)
and (1.2) with parameters (a′, c′), (a, c) ∈ D(F ), respectively.

Since (a′, c′, u′) and (a, c, u) satisfy the identity (2.4) for all ϕ ∈ H1(Ω) we have∫
Ω

(a∇u − a′∇u′) · ∇ϕdx +
∫

Ω

(cu − c′u′)ϕdx = 0 . (2.6)

Defining w := u − u′ ∈ H1(Ω) and using (2.6) with ϕ = w we obtain (after some algebraic manipulations)∫
Ω

(
a − a′)∇u′ · ∇w dx +

∫
Ω

a∇w · ∇w dx +
∫

Ω

(
c − c′

)
u′w dx +

∫
Ω

cww dx = 0,

which in turn is equivalent to∫
Ω

a(x)|∇w|2 dx +
∫

Ω

c(x)|w|2 dx =
∫

Ω

(
a′ − a

)∇u′ · ∇w dx +
∫

Ω

(
c′ − c

)
u′w dx. (2.7)

In view of Theorem 2.3 (for (a′, c′)) we have u′ ∈ W 1,p(Ω). Thus, defining s := 2p/(p − 2), it follows
from (2.7), (2.2), Lemma 2.4 and the Hölder inequality (note that 1/s + 1/p + 1/2 = 1) that

min{a, c}‖w‖2
H1 ≤ ‖a′ − a‖Ls‖∇u′‖

Lp‖∇w‖
L2 + ‖c′ − c‖Ls‖u′‖

Lp‖w‖
L2

≤ (‖a′ − a‖Ls‖∇u′‖Lp + ‖c′ − c‖Ls‖u′‖Lp

) ‖w‖H1

≤ 2 (max{a − a, c − c})(s−1)/s ‖u′‖
W 1,p

(‖a′ − a‖
L1 + ‖c′ − c‖

L1

)1/s ‖w‖
H1 .

The latter inequality combined with the facts that Gg(a′, c′) = u′, Gg(a, c) = u (see (2.3)) and w = u − u′

give

‖Gg(a, c) − Gg(a′, c′)‖
H1 ≤ M̃‖u′‖W 1,p

(‖a − a′‖L1 + ‖c − c′‖L1

)1/s
, (2.8)

which proves the continuity of Gg in the [L1(Ω)]2 topology, where M̃ :=
2 (max{a − a, c − c})(s−1)/s

min{a, c} .

The last statement of the theorem now follows easily from the first one and Remark 2.2. �
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We now make a few comments about Theorem 2.5. First, according to Theorem 2.3, the real number pM > 2
depends on Ω and, in the present setting, on a, a, c and c. Second, since q < 2, it follows that W 1−(1/q),q(Γ )′ ⊂
H−1/2(Γ ). As a consequence of the latter inclusion, we have that the condition on g required in Theorem 2.5 is
stronger than the usual inclusion g ∈ H−1/2(Γ ). Third, condition (2.8) gives that both operators G and F are
(locally) Hölder continuous in the [L1(Ω)]2 topology.

3. The level set framework with a finite number of experiments

It is already known that in diffuse optical tomography the full Neumann-to-Dirichlet map (equivalently,
the boundary data h corresponding to the boundary condition a∂u

∂ν on Γ ) is required to obtain uniqueness of
the parameters (a, c) in (1.1) and (1.2) [18]. However, in real applications, only a finite number of observa-
tions/measurements are available. Therefore, in this work we consider that we only have access to a quantity
	 ∈ N of well-placed experiments. In other words, the inverse problem we tackle consist in given a finite num-
ber of inputs gm = a∂um

∂ν |Γ and corresponding data hm = um|Γ , reconstruct simultaneously the diffusion and
absorption coefficients (a, c). As indicated previously, the photon density um satisfies

∇ · (a∇um) + c um = 0 in Ω,

a
∂um

∂ν
= gm on Γ, m = 1, . . . , 	.

This problem is known in the literature as the inverse problem for the Neumann-to-Dirichlet operator with a
finite number of experiments. In this context, the identification problem can be written in terms of the system
of nonlinear equations

Fm(a, c) = hm , m = 1, . . . , 	 , (3.1)

where Fm := Fgm is defined as in (2.1), for each m ∈ {1, . . . , 	}.
Moreover, given the nature of the measurements, we can not expect that exact data hm ∈ H1/2(Γ ) are

available. Instead, one disposes only an approximate measured data hδ
m ∈ L2(Γ ) satisfying∥∥hδ

m − hm

∥∥
L2(Γ )

≤ δ , for m = 1, . . . , 	 (3.2)

where δ > 0 is the noise level.

Remark 3.1. From Theorem 2.5, we know that each forward map Fm in (3.1) is continuous in the [L1(Ω)]2

topology.

3.1. Modeling the parameter space: The level set framework

In contrast with the previous section, from now on we consider that the pair of parameters (a, c) are piecewise
constant function assuming two distinct values, i.e. a(x) ∈ {a1, a2} and c(x) ∈ {c1, c2} a.e. in Ω ⊂ RN , but
we still consider (a, c) ∈ D(F ). Hence, one can assume the existence of open and mensurable sets A1 ⊂⊂ Ω
and C1 ⊂⊂ Ω with H1(∂A1) < ∞ and H1(∂C1) < ∞5, and such that a(x) = a1 if x ∈ A1 and a(x) = a2 if
x ∈ A2 := Ω −A1; c(x) = c1 if x ∈ C1 and c(x) = c2 if x ∈ C2 := Ω −C1. Consequently, the pair of parameters
can be modeled as

(a(x), c(x)) = (a2 + (a1 − a2)χA1(x), c2 + (c1 − c2)χC1(x)) ,

where χS is the indicator function of the set S.

5Here H1(S) denotes the one-dimensional Hausdorff-measure of the set S.
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Level set framework: In order to model the space of admissible parameters, that is the pair of piecewise
constant functions (a, c), we consider a standard level set (SLS) approach proposed in [7, 9, 10, 15]. In par-
ticular, our analysis of a level set approach for piecewise constant parameters follows essentially from the
techniques derived in [10]. We notice that many other level set approaches are known in the literature, see
for instance [5, 8, 12, 22, 30, 32]. For the case where not only the discontinuities but also the values of a and
c are unknown then one can use the ideas of the level set approach presented in [9]. Recently, in [7, 8, 11],
piecewise constant level set approaches (PCLS) were derived for identification of piecewise constant parameters.
The PCLS approach consists in introducing constraints in the admissible class of level set functions in order
to enforce these level set functions to become piecewise constant. In this context, we do not need to introduce
the Heaviside projector H (see below) to model the parameter space. However, the introduction of constraints
imply different difficulties in the level set regularization analysis [7, 11]. Advantages and disadvantages of SLS
and PCLS approaches were discussed in [7, 11].

According to the SLS representation strategy, level set functions φa, φc : Ω → R, in H1(Ω), are chosen in
such a way that its zero level set Γφa := {x ∈ Ω ; φa(x) = 0} and Γφc := {x ∈ Ω ; φc(x) = 0} define connected
curves within Ω and the discontinuities of the parameters (a, c) are located “along” Γφa and Γφc , respectively.

Introducing the Heaviside projector

H(t) :=

{
1, if t > 0
0, if t ≤ 0

,

the diffusion and absorption parameters can be written as

(a, c) =
(
a2 + (a1 − a2)H(φa), c2 + (c1 − c2)H(φc)

)
=: P (φa, φc). (3.3)

Notice that (a(x), c(x)) = (ai, cj), x ∈ Ai ∩Cj for i, j ∈ {1, 2}, where the sets Ai and Cj are defined by A1 =
{x ∈ Ω : φa(x) ≥ 0}, A2 = {x ∈ Ω : φa(x) < 0}, C1 = {x ∈ Ω : φc(x) ≥ 0} and C2 = {x ∈ Ω : φc(x) < 0}.
Thus, the operator P establishes a straightforward relation between the level sets of φa and φc and the sets Ai

and Cj that characterize the coefficients (a, c).
As already observed in [10], the operator H maps H1(Ω) into the space

V0,1 := {z ∈ L∞(Ω) | z = χS , S ⊂ Ω measurable, H1(∂S) < ∞}.

Therefore, the operator P in (3.3) maps H1(Ω) × H1(Ω) into the admissible class V defined by

V := {(z1, z2) ∈ [L∞(Ω)]2 | (z1, z2) = (a2 + (a1 − a2)χA1 , c
2 + (c1 − c2)χC1) , for some A1, C1 ⊂ Ω} .

Within this framework, the inverse problem in (3.1), with data given as in (3.2), can be written in the form
of the operator equation

Fm(P (φa, φc)) = hδ
m m = 1, . . . , 	. (3.4)

Let us make the following general assumption:

(A1) Equation (3.1) has a solution, i.e. there exists (a∗, c∗) ∈ L∞(Ω) × L∞(Ω) satisfying F (a∗, c∗) = hm, for
m = 1, . . . , 	. Moreover, there exists a pair of functions (φa∗, φc∗) ∈ [H1(Ω)]2 satisfying P (φa∗, φc∗) =
(a∗, c∗), with |∇φa∗| �= 0 and |∇φc∗| �= 0 in a neighborhood of {φa∗ = 0} and {φc∗ = 0} respectively and
such that H(φa∗)=za =χA1 ∈ L∞(Ω), H(φc∗)=zc =χC1 ∈ L∞(Ω).
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3.2. Level set regularization

Since the unknown coefficients (a, c) are piecewise constant functions, a natural alternative to obtain stable
solutions of the operator equation (3.1) is to use a least-square approach combined with a total variation
regularization. This corresponds to a Tikhonov-type regularization [7, 9, 10]. Within the level set framework
presented above, the Tikhonov-type regularization approach for obtaining a regularized solution to the operator
equation (3.4) is based on the minimization of the energy functional

Fα(φa, φc) :=
	∑

m=1

‖Fm(P (φa, φc)) − hδ
m‖2

L2(Γ ) + αR(φa, φc) , (3.5)

where

R(φa, φc) =
(
βa|H(φa)|BV(Ω) + βc|H(φc)|BV(Ω) + ‖φa − φa

0‖2
H1(Ω) + ‖φc − φc

0‖2
H1(Ω)

)
,

α > 0 is the unique regularization parameter and the constants βj play the role of scaling factors. This approach
is based on TV-H1 penalization. The H1-terms act as a regularization for the level set functions on the space
H1(Ω) whereas the BV(Ω)-seminorm terms are well known for penalizing the length of the Hausdorff measure
of the boundary of the sets {x ∈ Ω : φa(x) > 0}, {x ∈ Ω : φc(x) > 0} (see [14]).

In general, variational minimization techniques involve compact embedding arguments on the set of admissible
minimizers and continuity of the operator in such set to guarantee the existence of minimizers. The Tikhonov
functional in (3.5) does not allow such characteristic, since the Heaviside operator H and consequently the
operator P are discontinuous. Therefore, given a minimizing sequence (φa

k, φc
k) for Fα we cannot prove existence

of a (weak-*) convergent subsequence. Consequently, we cannot guarantee the existence of a minimizer in
[H1(Ω)]2. In other words, the graph of Fα is not closed in the desired topology.

To overcome this difficulty in [10,15] was introduced the concept of generalized minimizers were the graph of
Fα becomes closed. It allow us to guarantee the existence of minimizers of the Tikhonov functional (3.5). For
sake of completeness, we present the concept of generalized minimizers below.

The concept of generalized minimizers: For each ε > 0, we define the smooth approximation to H given by:

Hε(t) :=
{

1 + t/ε for t ∈ [−ε, 0]
H(t) for t ∈ R\ [−ε, 0]

and the corresponding operator

Pε(φa, φc) := (a1Hε(φa) + a2(1 − Hε(φa)), c1Hε(φc) + c2(1 − Hε(φc))). (3.6)

Definition 3.2. Let the operators H , P , Hε and Pε be defined as above.

(a) A vector (z1, z2, φa, φc) ∈ [L∞(Ω)]2 × [H1(Ω)]2 is called admissible when there exist sequences {φa
k} and

{φc
k} of H1(Ω)-functions satisfying

lim
k→∞

‖φa
k − φa‖L2(Ω) = 0 , lim

k→∞
‖φc

k − φc‖L2(Ω) = 0,

and there exists a sequence {εk} ∈ R+ converging to zero such that

lim
k→∞

‖Hεk
(φa

k) − z1‖L1(Ω) = 0 and lim
k→∞

‖Hεk
(φc

k) − z2‖L1(Ω) = 0 .



IDENTIFICATION OF PICEWISE CONSTANT COEFFICIENTS IN DOT 671

(b) A generalized minimizer of the Tikhonov functional Fα in (3.5) is considered to be any admissible vector
(z1, z2, φa, φc) minimizing

Gα(z1, z2, φa, φc) :=
	∑

m=1

‖Fm(Q(z1, z2)) − hδ
m‖2

L2(Ω) + αR(z1, z2, φa, φc) (3.7)

over the set of admissible vectors, where

Q : [L∞(Ω)]2 � (z1, z2) 	→ (a1z1 + a2(1 − z1), c1z2 + c2(1 − z2)) ∈ [L∞(Ω)]2 ,

and the functional R is defined by

R(z1, z2, φa, φc) := ρ(z1, z2, φa, φc) ,

with

ρ(z1, z2, φa, φc) := inf
{

lim inf
k→∞

(
βa|Hεk

(φa
k)|BV(Ω) + βc|Hεk

(φc
k)|BV(Ω) + ‖φa

k − φa
0‖2

H1(Ω) + ‖φc
k − φc

0‖2
H1(Ω)

)}
.

Here the infimum is taken over all sequences {εk} and {φa
k, φc

k} characterizing (z1, z2, φa, φc) as an admissible
vector.

3.3. Convergence analysis of the level set approach

In this subsection we present the regularization properties of the proposed level set approach to the inverse
problem of identifying (a, c) in the diffuse optical tomography model (1.1) and (1.2). Since the results follow
straightforward arguments presented in [7, 9, 10] we do not present their proofs here.

Theorem 3.3. The following assertions hold true.

(i) The functional Gα in (3.5) attains minimizers on the set of admissible vectors.
(ii) [Convergence for exact data]. Assume that we have exact data, i.e. hδ = h. For every α > 0 de-

note by (z1
α, z2

α, φa
α, φc

α) a minimizer of Gα on the set of admissible vectors. Then, for every sequence
of positive numbers {αk} converging to zero there exists a subsequence, denoted again by {αk}, such that
(z1

αk
, z2

αk
, φa

αk
, φc

αk
) is strongly convergent in [L1(Ω)]2× [L2(Ω)]2. Moreover, the limit is a solution of (3.1).

(iii) [Convergence for noisy data]. Let α = α(δ) be a function satisfying limδ→0 α(δ) = 0 and limδ→0 δ2α(δ)−1 =
0. Moreover, let {δk} be a sequence of positive numbers converging to zero and {hδk} ∈ L2(Γ ) be correspond-
ing noisy data satisfying (3.2). Then, there exists a subsequence, denoted again by {δk}, and a sequence
{αk := α(δk)} such that (z1

αk
, z2

αk
, φa

αk
, φc

αk
) converges in [L1(Ω)]2 × [L2(Ω)]2 to a solution of (3.4).

Proof. The proof follows the arguments presented in [10], Theorems 6, 8 and 9 respectively and therefore is
omitted. �

4. Numerical realization

In this section we introduce the functional Gε,α, which can be used for the purpose of numerical implemen-
tations. This functional is defined in such a way that it’s minimizers are “close” to the generalized minimizers
of Fα in a sense that will be clear later (see Prop. 4.1). For each ε > 0 we define the functional

Gε,α(φa, φc) :=
	∑

m=1

‖Fm(Pε(φa, φc)) − hδ
m‖2

L2(Γ ) + αRε(φa, φc) , (4.1)
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where

Rε(φa, φc) :=
(
βa|Hε(φa)|BV(Ω) + βc|Hε(φc)|BV(Ω) + ‖φa − φa

0‖2
H1(Ω) + ‖φc − φc

0‖2
H1(Ω)

)
. (4.2)

The next result guarantees that for ε → 0 the functional Gε,α attains a minimizer. Moreover, the minimizers
of Gε,α approximate a generalized minimizer of Fα.

Proposition 4.1.

(i) Given α, βj, ε > 0 and φa
0, φc

0 in H1(Ω), then the functional Gε,α in (4.1) attains a minimizer on [H1(Ω)]2.
(ii) Let α, βj be given. For each ε > 0 denote by (φa

ε,α, φc
ε,α) a minimizer of Gε,α. There exists a sequence of

positive numbers {εk} converging to zero such that (Hεk
(φa

εk,α), Hεk
(φc

εk ,α), φa
εk,α, φc

εk,α) converges strongly
in [L1(Ω)]2 × [L2(Ω)]2 and the limit is a generalized minimizer of Fα in the set of admissible vectors.

Proof. The proof follows from Lemma 10 and Theorem 11 presented in [10]. Therefore, we do not present the
details it in this paper. �

Proposition 4.1 justifies the use of functional Gε,α in order to obtain numerical approximations to the gener-
alized minimizers of Fα. It is worth noticing that, differently from Fα, the minimizers of Gε,α can be actually
computed. In the next subsection we derive the first order optimality conditions for the functional Gε,α, which
will allow us to compute the desired minimizers.

4.1. Optimality conditions for the Tikhonov functional Gε,α

For the numerical purposes we have in mind, it is necessary to derive the first order optimality conditions
for a minimizer of the functional Gε,α. To this end, we consider Gε,α in (4.1) and we look for the Gâteaux
directional derivatives with respect to φa, φc. In order to simplify the presentation, we will assume that the
values a1, a2, c1, c2 are known. Since H ′

ε(ϕ) is self-adjoint6, the optimality conditions for a minimizer of the
functional Gε,α can be written in the form of the system of equations

α(Δ − I)(φa − φa
0) = La

ε,α(φa, φc) , α(Δ − I)(φc − φc
0) = Lc

ε,α(φa, φc) , in Ω (4.3a)
∂

∂ν
(φa − φa

0) = 0 ,
∂

∂ν
(φc − φc

0) = 0 , on Γ (4.3b)

where ν(x) is the external unit normal vector at x ∈ Γ and

La
ε,α(φa, φc) = (a1 − a2)H ′

ε(φ
a)

[
l∑

m=1

(
∂Fm(Pε(φa, φc))

∂φa

)∗
(Fm(Pε(φa, φc)) − hδ

m)

]

−αβa

[
H ′

ε(φ
a)∇·

( ∇Hε(φa)
|∇Hε(φa)|

)]
(4.4a)

Lc
ε,α(φa, φc) = (c1 − c2)H ′

ε(φ
c)

[
l∑

m=1

(
∂Fm(Pε(φa, φc))

∂φc

)∗
(Fm(Pε(φa, φc)) − hδ

m)

]

−αβc

[
H ′

ε(φ
c)∇·

( ∇Hε(φc)
|∇Hε(φc)|

)]
. (4.4b)

Note that, in order to implement the numerical algorithm for solving the optimality conditions, we need to
calculate the adjoint of the derivatives ∂Fm

∂φa and ∂Fm

∂φc .

6Notice that H′
ε(t) =

{
1/ε t ∈ (−ε, 0)

0 else
.
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Remark 4.2. Given the level set functions φa, φc ∈ H1(Ω) and inputs gm ∈ H1/2(Γ ) for m = 1, . . . , 	, denote
the residual rm := Fm(Pε(φa, φc)) − hδ

m ∈ L2(Γ ). Then,(
∂Fm(Pε(φa, φc))

∂φa

)∗
rm = ∇um · ∇wm (4.5)

and (
∂Fm(Pε(φa, φc))

∂φc

)∗
rm = −um wm (4.6)

where um and wm are the unique solutions of the following elliptic boundary problems

−∇(a∇um) + c um = 0 , in Ω (4.7)

a
∂um

∂ν
= gm , on Γ ,

−∇(a∇wm) + c wm = 0 , in Ω (4.8)

a
∂wm

∂ν
= rm , on Γ ,

for m = 1, . . . , 	 respectively.

We have already introduced all the ingredients necessary to implement an algorithm based on the level set
regularization approach to solve the identification problem in diffuse optical tomography (see Tab. 1). The
iterative algorithm consists in minimizing, for k ≥ 1, the functional

G(k)
ε,α(φa, φc) :=

	∑
m=1

‖Fm(Pε(φa, φc)) − hδ
m‖2

L2(Γ ) + αR(k)
ε (φa, φc) , (4.9)

where R
(k)
ε is the functional Rε defined in (4.2) with φj

0 replaced by φj
k−1. The minimizer of each functional can

be computed solving the formal optimality conditions (4.3) with φj
0 replaced by φj

k−1.
Each iteration of the proposed algorithm consists in the next five steps:
• In the first step the residual vector [rk,m]	m=1 ∈ [L2(Γ )]	, corresponding to the kth iteration (φa

k, φc
k), is

evaluated. This requires the solution of 	 elliptic BVP’s given by (4.7).
• The second step consists in computing the adjoint of the partial derivatives of Fm applied to the residuals. This
is done by solving 	 elliptic BVP given by (4.8) to get the solutions [wk,m]	m=1 ∈ [H1(Ω)]	 and then computing
the products given by Remark 4.2.
• In the third step, the terms La

ε,α(φa
k, φc

k) and Lc
ε,α(φa

k, φc
k) given by equations (4.4a) and (4.4b) are calculated.

• The fourth step consists in computing the updates δφa
k, δφc

k ∈ H1(Ω) for the level-set functions φa and φc.
This corresponds to solving two non-coupled elliptic BVP’s, namely (4.3a) and (4.3b).
• Finally, update the level set functions and go to step 1 until a stopping criteria is reached.

A similar algorithm was successfully implemented in [10, 15] to solve the inverse potential problem under the
framework of level sets and multiple level sets respectively. Regarding our coefficient identification problem in
diffuse optical tomography the algorithm outlined above also seems to be effective (see next Section), but in
this case, it has the disadvantage that in each iteration step one has to solve 2	 + 2 elliptic BVP’s. Then, if the
number 	 of experiments is large the computational cost will be high.
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Table 1. An explicit algorithm based on the iterative regularization method for solving the
identification problem in diffuse optical tomography.

1. Evaluate the residual [rk,m]�m=1 := [Fm(Pε(φ
a
k, φc

k)) − hδ
m]�m=1 = [uk,m|Γ − hδ

m]�m=1, where [uk,m]�m=1 ∈
[H1(Ω)]� and each function solves (4.7).

2. Evaluate
[(

∂Fm(Pε(φa
k,φc

k))

∂φa
k

)∗
rk,m

]�

m=1
= [∇wk,m ·∇uk,m]�m=1 ∈ [L2(Ω)]�, and

[(
∂Fm(Pε(φa

k,φc
k))

∂φc
k

)∗
rk,m

]�

m=1
=

−[wk,m uk,m]�m=1 ∈ [L2(Ω)]�, where [uk,m]�m=1 are the functions computed in Step 1 and [wk,m]�m=1 ∈
[H1(Ω)]� solve (4.8).

3. Calculate La
ε,α(φa

k, φc
k) and Lc

ε,α(φa
k, φc

k) given by equations (4.4a) and (4.4b).
4. Evaluate the updates δφa

k, δφc
k ∈ H1(Ω) by solving

(Δ − I)δφj
k = Lj

ε,α(φa
k, φc

k) , in Ω ;
∂δφ

j
k

∂ν
= 0 , on Γ .

5. Update the level set functions φa
k+1 = φa

k + 1
α

δφa
k, φc

k+1 = φc
k + 1

α
δφc

k.

5. Numerical experiments

In this section we implement a numerical algorithm based on the level set approach derived in the previous
sections for identifying the coefficient pair (a, c) in (1.1) and (1.2). First, the identification of the absorption
coefficient c, based on either total or partial knowledge of a, is considered in Section 5.1. Then, the separate
identification of the diffusion coefficient a, based on either total or partial knowledge of c, is considered in
Section 5.2. Finally, the simultaneous identification of the pair (a, c) is investigated in Section 5.3.

In all the numerical experiments of this Section we considered Ω = (0, 1) × (0, 1) and four (	 = 4) different
inputs gm ∈ L2(Γ ) were applied as Neumann boundary conditions in order to compute the corresponding
Dirichlet data hm. Each of these functions is supported at one of the four sides of Γ , for instance

g1(x) =
{

1 , if x ∈ (1
4 , 3

4 ) × {0}
0 , else ,

and g2, g3 and g4 are defined in a similar way. All boundary value problems were solved using a Galerkin Finite
Element method in an uniform grid with 50 nodes at each boundary side. We used a custom implementation
using MATLAB.

5.1. Identification of the absorption coefficient

In what follows we consider the identification of the absorption coefficient c, based on either total or partial
knowledge of a. The values assumed for these coefficients were (see Fig. 1):

a∗(x) =
{

10 , inside blue inclusion
1 , elsewhere , c∗(x) =

{
10 , inside red inclusion
1 , elsewhere.

As initial guess for the level set method we have chosen distinct piecewise constant functions c0, whose supports
are shown in Figure 1b. It is worth noting that each c0 corresponds to a level set function φc

0 ∈ H1(Ω). In all
cases the initial level set function φc

0 was a paraboloid but with different minima.
The constant values assumed by the exact solution c∗ are supposed to be known, as well as the exact diffusion

coefficient a∗. Moreover, exact data was considered for the reconstruction (i.e., δ = 0) and we tested the iterative
level set regularization without the penalizing term |Hε(φj)|BV(Ω), i.e., βj = 0 (see [15], Rem. 5.1).

In this and in all the following computed experiments of this Section, we considered the operator Pε defined
in (3.6) with ε = 1/10. This election was motivated by the fact that as ε increases, the supports of the functions
appearing on the right-hand side of (4.3a) and (4.3b) become larger (due to the term Hε). Consequently, the
updates δφa

k, δφc
k ∈ H1(Ω) given by these equations have large values. If ε becomes too large, the level set
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(a) (b) (c) (d)

Figure 1. (a) Exact coefficients for the first experiments in Sections 5.1 and 5.2. (b) Number of
iterations needed for the identification of the absorption coefficient c∗, starting from distinct initial
guesses c0 (a∗ is given; see Sect. 5.1). (c) Number of iterations needed for the identification of the
diffusion coefficient a∗, starting from distinct initial guesses a0 (c∗ is given; see Sect. 5.2). (d) Exact
coefficients for the second experiments in Sections 5.1 and 5.2.

method becomes unstable. Therefore, ε was chosen to match the mesh size considered to solve the boundary
problems.

The inverse problem we tackle here reduces to a shape identification problem for the absorption coefficient.

Notice that, for each initial guess c0 in Figure 1b, a corresponding number of steps is plotted. It stands for
the number of iterations needed to compute an approximation of c∗ (starting from the corresponding c0) with
a precision of 10−2 in the L2-norm.

This experiment allow us to determine the computational effort necessary for the reconstruction of c∗ with
respect to distinct choices of c0. The identification problem for the absorption coefficient is known to be mildly
ill-posed [13, 21]. This fact is in agreement with the values plotted in Figure 1b, in the sense that the number
of iterations necessary to achieve a good quality reconstruction do not strongly oscillate with the initial guess.

We conduct yet another experiment for identifying only the absorption coefficient. This time, we assume the
exact solution of problem (1.1) and (1.2) to be given by the coefficient pair (a∗, c∗) in Figure 1d. The setup of
the inverse problem remains the same (domain, available data, parameter to output operator, etc.).

On the first run of the algorithm, see Figures 2a–2c, the diffusion coefficient a∗ is assumed to be exactly
known. In this situation, the level set method is able to identify the absorption coefficient (see Fig. 2a for the
evolution of the iteration error), and the iteration stagnates after that. The corresponding differences between
the exact solution c∗ and the initial guess c0 and between the exact solution c∗ and the final iterate c2500 are
plotted in pictures (b) and (c) respectively.

On the second run, see Figures 2d–2f, we use the approximation a(x) ≡ 1 for diffusion coefficient a∗ and
iterate to recover c∗. In this case, the level set method is still able to identify the absorption coefficient, however
with a poorer accuracy. Once again, the iteration stagnates after the numerical convergence is reached (see
Fig. 2d for the evolution of the error). The corresponding differences for the initial guess c0 and for the final
iterate c2500 are plotted in pictures (e) and (f) respectively.

Notice that the number of iteration steps needed to recover c∗ (approximately 2000 in both runs) is much
larger than in the previous experiment. This can be explained by the complexity of the geometry of the support
of c∗ in this experiment [15]. This complexity and non smooth geometry also influence the quality of the
reconstruction.
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Figure 2. Section 5.1, 2nd example. (a)–(c) Identification of c∗ from exact knowledge of a∗.
(a) Evolution of the L2 error. (b) Difference between the initial guess c0 and c∗. (c) Difference
between c2500 and c∗. (d)–(f) Identification of c∗ from partial knowledge of a∗. (d) Evolution
of the L2 error. (e) Difference between the initial guess c0 and c∗. (f) Difference between c2500

and c∗.

5.2. Identification of the diffusion coefficient

In what follows we consider the identification of the diffusion coefficient a, based on either total or partial
knowledge of c. In the first set of experiments, we consider problems (1.1) and (1.2) in the unit square with four
pairs of NtD experiments, and the same exact solution (a∗, c∗) as in Section 5.1 (see Fig. 1a).

As initial guess for the level set method we choose distinct piecewise constant functions a0, whose supports
are shown in Figure 1c. Analogous as in Section 5.1, the constant values of the exact solution a∗ are assumed
to be known, as well as the exact absorption coefficient c∗. Moreover, exact data are used for the reconstruction
(i.e., δ = 0) and the scaling factors βj = 0.

This time, the inverse problem reduces to a shape identification problem for the diffusion coefficient. Once
again we plot, for each initial guess a0, a corresponding number of steps (see Fig. 1c). It stands for the number
of iterations needed to compute an approximation of a∗ (starting from the corresponding a0) with a precision
of 10−2 in the L2-norm.

This experiment allow us to determine the computational effort necessary for the reconstruction of a∗ with
respect to distinct choices of a0. The identification problem for the diffusion coefficient is known to be exponen-
tially ill-posed [13,20]. This fact is in agreement with the values plotted in Figure 1c, meaning that the number
of iterations necessary to achieve a good quality reconstruction does strongly oscillate with the initial guess.



IDENTIFICATION OF PICEWISE CONSTANT COEFFICIENTS IN DOT 677

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Iteration k

L 2 e
rr

or

|| a* − a
k
 ||

L
2

 

X

Y

Difference  a* − a
k
  −−  Iteration k = 0

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

X

Y

Difference  a* − a
k
  −−  Iteration k = 5000

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(a) (b) (c)

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iteration k

L 2 e
rr

or

|| a* − a
k
 ||

L
2

 

X

Y

Difference  a* − a
k
  −−  Iteration k = 0

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

X

Y

Difference  a* − a
k
  −−  Iteration k = 5000

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(d) (e) (f)

Figure 3. Section 5.2, 2nd example. (a)–(c) Identification of a∗ from exact knowledge of c∗.
(a) Evolution of the L2 error. (b) Difference between the initial guess a0 and a∗. (c) Difference
between a5000 and a∗. (d)–(f) Identification of a∗ from partial knowledge of c∗. (d) Evolution
of the L2 error. (e) Difference between the initial guess a0 and a∗. (f) Difference between a5000

and a∗.

We conduct yet another experiment for identifying only the diffusion coefficient. This time, we assume the
exact solution of problem (1.1) and (1.2) to be given by the coefficient pair (a∗, c∗) in Figure 1d. The setup of
the inverse problem remains the same (domain, available data, parameter to output operator, etc.).

On the first run of the algorithm, see Figures 3a–3c, the absorption coefficient c∗ is assumed to be exactly
known. In this situation, the level set method is able to identify the diffusion coefficient (see Fig. 3a for the
evolution of the iteration error), and the iteration stagnates after that. The corresponding differences between
the exact solution a∗ and the initial guess a0 and between the exact solution a∗ and the final iterate a5000 are
plotted in pictures (b) and (c) respectively.

On the second run, see Figures 3d–3f, we considered the approximation (̧x) ≡ 1 for the absorption coefficient c∗

and iterate to recover a∗. In this case, the level set method is no longer able to identify the diffusion coefficient.
The iteration once again stagnates, but this time at some configuration far from the exact solution (see Fig. 3d
for the evolution of the L2 error). The corresponding differences for the initial guess a0 and for the final iterate
a5000 are plotted in pictures (e) and (f) respectively.

5.3. Identification of both diffusion and absorption coefficients

In this last set of experiments we consider the level set algorithm for the simultaneous identification of
the coefficient pair (a, c) in (1.1)–(1.2). Three examples are considered and the corresponding exact solutions
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(a) (b) (c)

Figure 4. Section 5.3. (a)–(c) Exact solution for the first, second and third example.

are shown in Figure 4. The setup of the inverse problem is the same as in Sections 5.1 and 5.2 (domain, available
data, parameter to output operator, . . . ).

In the first example, the solution pair (a∗, c∗) is the one shown in Figure 4a. In order to devise an efficient
iteration strategy for the simultaneous identification of both coefficients, we must take some facts into account:

(F1) From the 2nd example in Section 5.1, we have learned that the method for identifying c∗ performs well,
even if a good approximation for a∗ is not known (see Figs. 2d–2f).

(F2) On the other hand, from the 2nd example in Section 5.2, we have learned that the level set method for
identifying a∗ performs well if a good approximation for c∗ is available, but may generate a sequence ak

that does not approximate a∗ if a good approximation to c∗ is not known.
(F3) In the first run of the level set algorithm for the simultaneous identification of (a∗, c∗) we updated both

coefficients (ak, ck) in every step and observed that the iteration error ‖ck − c∗‖ decreases from the very
first iteration. However, the iteration error ‖ak − a∗‖ only starts improving when ‖ck − c∗‖ is sufficiently
small.

Thus, in order to save computational effort, we adopted the strategy to “freeze” the coefficient ak(x) = a0(x) ≡ 1
during the first iterations, and to iterate only with respect to ck. We follow this strategy until the sequence
ck stagnates (this is an indication that the iteration error ‖ck − c∗‖ is small). In Figures 5a and 5e this stage
corresponds to the first k1 = 250 iterative steps (notice that ‖ak − a∗‖ remains constant for k = 0, . . . , k1, while
the difference ck1 − c∗ is plotted in (g)).

After this first iteration stage, we freeze ck = ck1 and iterate only with respect to ak. This characterizes the
second stage of the method. A natural question at this point would be: Why not to iterate with respect to both
(ak, ck) for k ≥ k1? We tried to proceed in this way, but what we observed is that: as long as ‖ak − a∗‖ does
not significantly improve, the iterates ck stagnate with ‖ck − ck1‖ almost constant.

This second stage of the iteration can be observed in Figures 5a and 5e. Notice that ‖ak − a∗‖ decreases
significantly, while ‖ck − c∗‖ remains constant for k = k1, . . . , k2 = 750 (the difference ak2 − a∗ is plotted in
Figure 5c).

After the conclusion of the second iteration stage, the pair (ak, ck) is already a good approximation for
(a∗, c∗) (see Figs. 5c and 5g). As a matter of fact, this approximation is so good that, proceeding with the
iteration simultaneously with respect to both (ak, ck), the iteration errors ‖ak −a∗‖ and ‖ck − c∗‖ are monotone
decreasing. However, having in mind the convergence of the diffusion coefficient ak to the correct solution a∗

takes more iterations than the absorption coefficient ck, in this third stage we decided that each iteration step
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Figure 5. Section 5.3, 1st example. (a)–(d) Iterative reconstruction of a∗. (a) Evolution of
the L2 error. (b) Difference a0 − a∗. (c) Difference a750 − a∗. (d) Difference a2500 − a∗. (e)–(h)
Iterative reconstruction of c∗. (e) Evolution of the L2 error. (f) Difference c0−c∗. (g) Difference
c250 − c∗. (h) Difference c2500 − c∗.

consists in one iteration with respect to the absorption coefficient ck and two iterations with respect to the
diffusion coefficient ak (see Figs. 5a and 5e for k ≥ k2).

The introduction of this 3-stage iteration is motivated by the above mentioned facts (F1)–(F3). The calcula-
tion of optimal transition indexes k1, k2 between the three stages is a difficult task. However, since the degree
of ill-posedness of the separate inverse problems for a and c is very distinct from each other it’s not hard to
get approximate values for k1 and k2 that will lead to a large gain in computational effort by using this 3-stage
strategy.

The following second and third examples in this section do belong together. The corresponding exact solutions
are shown in Figures 4b and 4c respectively. Our goal is to investigate how the distance between the supports of
the exact solution pair (a∗, c∗) may interfere with the quality of the reconstruction of each single coefficient. In
the second example there is a positive distance between the supports, while in the third example both supports
overlap.

Although the distance between supp(a∗) and supp(c∗) in example 2 is smaller than in example 1 above, the
3-stage iteration behaves similarly in both examples. The 1st-stage is ended after k1 = 250 iterations, when the
error ‖ck−c∗‖ has decreased considerably (see Fig. 6e). The 2nd-stage corresponds to k1 ≤ k ≤ k2 = 750; at this
point the difference between the exact solution a∗ and the iteration a750 has visibly decreased (see Fig. 6c). The
3rd-stage of the iteration corresponds to k ≥ k2. In this final stage, each iteration step consists in two iterations
with respect to the diffusion coefficient ak and one iteration with respect to the absorption coefficient ck. The
final results can be observed in Figures 6d and 6h respectively.

The third and last example reveled itself as the most difficult identification problem among all three considered
in this section. The solution pair (a∗, c∗) is chosen such that the supports of a∗ and c∗ intersect (see Fig. 4c). We
start the iteration once again keeping ak constant during the first stage. This part of the method is successful,
since after k1 = 500 iterations ck1 delivers a good approximation for the exact solution c∗ (Fig. 7g). After
that, we start iterating with respect to ak. After k2 = 750 iterations we observe that the error‖ak − a∗‖ has
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Figure 6. Section 5.3, 2nd example. (a)–(d) Iterative reconstruction of a∗. (a) Evolution of
the L2 error. (b) Difference a0 − a∗. (c) Difference a750 − a∗. (d) Difference a1500 − a∗. (e)–(h)
Iterative reconstruction of c∗. (e) Evolution of the L2 error. (f) Difference c0−c∗. (g) Difference
c250 − c∗. (h) Difference c1500 − c∗.

decreased considerably (Fig. 7a). Finally, we start with 3rd-stage of the algorithm and this is the point where the
difficulties arise. No matter how many iterations we compute with respect to ck, the approximation does not get
better than the one plotted in Figure 7g, which is computed after k1 = 250 steps. After 1500 steps, no significant
improvement can be observed in the reconstruction of the absorption coefficient (compare Fig. 7g and 7h). In
this last example, the reconstruction of the diffusion coefficient is very precise, but the approximation obtained
for the absorption coefficient is not so good.

It is worth noticing that the poor reconstruction of c∗ is not due to non-stable behavior of our 3-stage
algorithm. The particular exact solution (a∗, c∗) in this example (with intersecting supports) leads to a very
hard identification problem already reported in [3, 22, 31].

It is worth mentioning that all problems presented in this Section were solved using the standard level set
method described in Section 3.2, i.e., updating both (ak, ck) in every iterative step (and neglecting the 3-stage
strategy). The final results of these iterations were basically the same as the ones presented here. However, the
computational effort involved in the computation was by far much larger.

6. Conclusions

In this paper, we develop a level set regularization approach for simultaneous reconstruction of the piecewise
constant coefficients (a, c) from a finite set of boundary measurements of optical tomography in the diffusive
regime. From the theoretical point of view, we prove that the forward map F is continuous in the [L1(Ω)]2

topology. Hence, following standard arguments presented by the authors in previous papers (see [10]) we get
that the proposed level set strategy is a regularization method. The main result behind the continuity of F is
a generalization of Meyers’ theorem for our particular case.

On the other hand, we propose a numerical algorithm to reconstruct simultaneously the diffusion and ab-
sorption coefficients. Both coefficients are computed by minimizing a regularized energy functional. Motivated
by the fact that the reconstruction of the absorption coefficient c is a mildly ill-posed inverse problem whereas
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Figure 7. Section 5.3, 3rd example. a)–d) Iterative reconstruction of a∗. (a) Evolution of the
L2 error. (b) Difference a0−a∗. (c) Difference a750−a∗. (d) Difference a1500−a∗. (e)–h) Iterative
reconstruction of c∗. (a) Evolution of the L2 error. (f) Difference c0−c∗. (g) Difference c250−c∗.
(h) Difference c1500 − c∗.

the reconstruction of the diffusion coefficient a is exponentially ill-posed, we present a split strategy that consists
in freezing a = a0 and first iterate with respect to c until the iteration stagnate. Then, keep c = ck and start
to iterate with respect to a until stagnation of the iteration. Finally, iterate both coefficient. This numerical
strategy has not only demonstrated that gives very good results but also reduces significantly the computational
effort.

The situation of non-convergence of the level set algorithm, that is when coefficients (a, c) have a crossing
section (as in Sect. 5.3) is not an easy problem and it has already been reported in [3,22,31]. We conjecture that
the level set algorithm will improve its performance if enough pairs of Neumann-to-Dirichlet data are available.
Since the situation with many measurements is numerically demanding, a strategy like the one proposed in [25]
could be more appropriated. We let this problem for future and careful investigation.

Appendix A. Proof of Theorem 2.3

The main purpose of this appendix is to show that under mild assumptions on the boundary (Neumann)
data g the solution u of (1.1) and (1.2) belongs to W 1,p(Ω) for some p > 2 (therefore better than the standard
regularity u ∈ H1(Ω)).

As far as we know, this type of regularity, namely u ∈ W 1,p(Ω) for p > 2, goes back to the pioneering
work of Meyers [23], for elliptic BVPs with Dirichlet boundary conditions. Later on, Gallouet and Monier [16]
generalized Meyers’ result to Neumann BVPs. However, for the best of the authors knowledge there is no proof
of such a result for the problem (1.1) and (1.2).

The following proof was suggested by one of the anonymous referees. The authors are grateful to him for this
suggestion.
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Proof of Theorem 2.3. Let u ∈ H1(Ω) be the unique solution of (1.1) and (1.2). It clearly satisfies the weak
formulation ∫

Ω

a∇u · ∇ϕdx +
∫

Ω

cuϕdx =
∫

Γ

gϕdσ ∀ϕ ∈ H1(Ω). (A.1)

Define now ũ := u − 1
|Ω|

∫
Ω udx, which in particular satisfies the weak formulation (5) in [16], i.e.,

⎧⎨⎩
ũ ∈ H1

∗ (Ω),∫
Ω

a∇ũ · ∇ϕdx = 〈f, ϕ〉(H1)′,H1 ∀ϕ ∈ H1(Ω),

where f is defined as

〈f, ϕ〉(H1)′,H1 :=
∫

Γ

gϕdσ −
∫

Ω

cuϕdx ∀ϕ ∈ H1(Ω).

Note that f naturally satisfies 〈f, 1〉(H1)′,H1 = 0. Hence, to finish the proof we only need to apply the regularity
result given in ([16], Thm. 2). To this end, it remains to show that the distribution f is in W 1,q(Ω)′. As g
belongs to W 1−1/q,q(Γ )′ the distribution ϕ 	→ ∫

Γ gϕdσ is in W 1,q(Ω)′ thanks to the trace theorem in Sobolev
spaces. Next we shall prove that the distribution h : ϕ 	→ ∫

Ω cuϕdx also belongs to W 1,q(Ω)′. Consider first the
case N = 2. In this case, since q < 2, we have the continuous embedding ([4], Cor. 9.14) W 1,q(Ω) ↪→ Lq∗

(Ω),
where q∗ = 2q/(2− q) > 2. Letting s := q∗/(q∗ − 1) be the conjugate of q∗ we have s < 2 (because q∗ > 2) and,
as a consequence, the continuous embedding [4] H1(Ω) ↪→ L2(Ω) ↪→ Ls(Ω). Using the latter inclusions, the fact
that u ∈ H1(Ω), the second inequality in (2.2) and the Hölder’s inequality, we obtain (for all ϕ ∈ W 1,q(Ω)):

|〈h, ϕ〉| =
∣∣∣∣∫

Ω

c(x)uϕdx

∣∣∣∣ ≤ c‖u‖Ls‖ϕ‖Lq∗

≤ c‖u‖Ls‖ϕ‖W 1,q , (A.2)

which proves that h ∈ W 1,q(Ω)′. Consider now the case N ∈ {3, 4} and let q∗ := qN/(N − q) > 1 and (as
before) s := q∗/(q∗ − 1) its conjugate. In this case, we have also the continuous embeddings ([4], Cor. 9.14)
W 1,q(Ω) ↪→ Lq∗

(Ω) and, since 1 ≤ s ≤ 2∗ := 2N/(N − 2), H1(Ω) ↪→ Ls(Ω). Using the same reasoning as in the
case N = 2 we find that (A.2) also holds when N ∈ {3, 4} which concludes the proof of the desired regularity
to the distribution h. Altogether, we obtain that f is well-defined and belongs to W 1,q(Ω)′. �
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