
ESAIM: COCV 23 (2017) 455–473 ESAIM: Control, Optimisation and Calculus of Variations
DOI: 10.1051/cocv/2015056 www.esaim-cocv.org
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Abstract. The paper concerns on an infinite dimensional Hilbert space, the existence and unique-
ness of absolutely continuous solutions, for Lipschitz single-valued perturbations of evolution problems
involving maximal-monotone operators. This result allows us to extend to optimal control problems as-
sociated with such equations, the relaxation theorems with Young measures proved recently in [S. Säıdi,
L. Thibault and M.F. Yarou, Numer. Funct. Anal. Optim. 34 (2013) 1156–1186].
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1. Introduction

The study of inclusions involving maximal-monotone operators constitutes an important class in set-valued
analysis. These operators enjoy some properties that guarantees existence and uniqueness of solutions related
to such problems. The authors in [9], were interested on an interval I := [0, T ], in the evolution inclusion

{−ẋ(t) ∈ A(t)x(t) a.e. t ∈ I

x(0) = x0 ∈ D(A(0)),

where A(t) : D (A(t)) ⊂ H ⇒ H is a maximal monotone operator in a Hilbert space H for every t ∈ I, and the
dependence t �→ A(t) is –in some sense– absolutely continuous on I. They proved the existence and uniqueness
of an absolutely continuous (AC) solution to the problem with the following assumptions:

(C1) There exists an a ∈W 1,1(I) such that

dis (A(t), A(s)) ≤ ‖a(t) − a(s)‖ for t, s ∈ I, (1.1)

where dis (·, ·) is the pseudo-distance between maximal monotone operators introduced in [15] (see the
definition below).
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(C2) There exists a positive constant c such that

‖A◦(t)x‖ ≤ c(1 + ‖x‖) for t ∈ I, x ∈ D(A(t)), (1.2)

where A◦(t)x denotes the element of minimal norm of A(t)x.

In this work, we deal first with the problem of the form{−ẋ(t) ∈ A(t)x(t) + f(t, x(t)) a.e. t ∈ I

x(0) = x0 ∈ D(A(0)),

where f : I ×H −→ H is a single-valued map which is Lipschitz continuous with respect to the second variable
on any bounded subset of H and which satisfies the natural growth condition

‖f(t, x)‖ ≤ β(t)(1 + ‖x‖), ∀(t, x) ∈ I ×H ;

with β(·) a non negative function in L2
R
(I). Then, in the second part of the paper, we use this result to study

the relaxation of a Bolza type problem associated with such evolution inclusion.
The main existence theorem we establish here, is inspired by the work developed in [14] dealing with the

particular case of the subdifferential operator, that is,{−ẋ(t) ∈ ∂ϕ(t, x(t)) + f(t, x(t)) a.e. t ∈ [T0, T ]

x(T0) = x0 ∈ domϕ(T0, ·),
where for each t ∈ [T0, T ], ϕ(t, ·) is a time-dependent proper lower semicontinuous (lsc) convex function of
a Hilbert space H into R ∪ {+∞}; domϕ(t, ·) denotes the effective domain of the function ϕ(t, ·) and the
perturbation f satisfies the conditions above. For ϕ(t, ·) taken as the indicator function of a closed convex or
r-prox-regular moving set C(t) (the sweeping process), many results were obtained in the finite dimensional
setting (see e.g. [3]) and in the infinite dimensional setting (see e.g. [6]).

The result obtained is used to study a Bolza type control problem. Let U be a compact metric space,
Γ : I ⇒ U a nonempty compact-valued measurable map, and define the Lebesgue-measurable set-valued map
Σ from I into M1

+(U) (the set of probability measures on U) by

Σ(t) = {P ∈ M1
+(U) : P (Γ (t)) = 1}.

Denote by SΓ (resp. SΣ) the set of all Lebesgue measurable selections of Γ (resp. Σ). Let g : I×H×U → H be
a map satisfying some appropriate conditions, in particular some Lipschitz property with respect to the second
variable as above. For x0 ∈ D(A(0)), ζ ∈ SΓ , and μ ∈ SΣ , let us consider the two following problems

(Pζ)

{−ẋ(t) ∈ A(t)x(t) + g(t, x(t), ζ(t)) a.e. t ∈ I

x(0) = x0

and

(Pμ)

{−ẋ(t) ∈ A(t)x(t) +
∫

Γ (t) g(t, x(t), u)μt(du) a.e. t ∈ I

x(0) = x0.

We will see that both of these problems has one and only one solution. These solutions will be denoted respec-
tively by xζ(·) and xμ(·).

The aim of the second part of the paper is to present a Bolza-type problem for (Pζ) and (Pμ). Let J :
I ×H × U → R be an integrand. Then, consider the following control problems:

inf
ζ(·)∈SΓ

∫
I

J(t, xζ(t), ζ(t)) dt (P.O)
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and
inf

μ∈SΣ

∫
I

∫
U

J(t, xμ(t), u)μt(du) dt. (P.R)

The latter is called the relaxed problem, we will prove that inf (P.O) = min (P.R). Several relaxation results
dealing with optimal control problems have been concerned. They involved m-accretive operators A(t), t ∈ [0, 1]
(see [4]), or the sweeping process (see [6]). More recently, the paper [14] discussed the case of time-dependant
subdifferential operator in Hilbert spaces. For more details and related results, see [5, 7, 8, 16].

The result of the second part can be used to study in the finite dimensional setting, the existence of viscosity
sub-solutions of Hamilton–Jacobi–Bellman PDEs related to control problems subject to evolution inclusions
involving time dependent maximal monotone operators and Young measures. This will be the object of a
forthcoming paper [13].

The paper is organized as follows. In Section 2, we give the necessary background material. In Section 3, we
state some results concerning the non-autonomous case of an evolution equation governed by time-dependent
maximal monotone operator A(t)x(t), proved in [9], along with the case A(t)x(t) + h(t) with an L2

H(I) map
h(·). In Section 4, we prove the existence and uniqueness of the absolutely continuous solution for the single
valued perturbation depending on both time variable and state variable of the problem under consideration.
The last Section 5 is devoted to an application of the main result of Section 4 to the relaxation problem of
optimal control with Young measures.

2. Notation and preliminaries

In all the paper I := [0, T ] is an interval of R and H is a real Hilbert space whose inner product is denoted by
〈·, ·〉 and the associated norm by ‖ · ‖. We denote by BH [x, r] the closed ball of center x and radius r on H , by B

the closed unit ball, and by 1A the characteristic function of a set A, that is, 1A(x) = 1 if x ∈ A and 0 otherwise.
By λ, we denote the Lebesgue measure and by CH(I) the space of continuous maps x : I → H with the norm
of the uniform convergence on CH(I) ‖x‖∞ = sup

t∈I
‖x(t)‖. We denote by Lp

H(I) the the space of dt-measurable

maps x : I −→ H such that
∫

I ‖x(t)‖p dt < +∞ with the norm ‖x‖Lp
H(I) = (

∫
I ‖x(t)‖p dt)

1
p , 1 ≤ p < +∞.

If A : D(A) ⇒ H is a maximal monotone operator, then the effective domain of A is D (A) = {x ∈ H : Ax =
∅}. It is well known (see, e.g., [2]) that any maximal monotone operator A satisfies the closure property, that
is, if x = lim

n→∞xn strongly in H and y = lim
n→∞ yn weakly in H , where xn ∈ D(A)and yn ∈ Axn, then, x ∈ D(A)

and y ∈ Ax.
The assumption (C1) is given using the pseudo-distance between two maximal monotone operator A1 and

A2 defined in [15], as follows

dis (A1, A2) := sup{〈y1 − y2, x2 − x1〉
‖y1‖ + ‖y2‖ + 1

, xi ∈ D(Ai), yi ∈ Aixi, i = 1, 2}

(the distance may be equal to +∞).
The element of minimal norm of A(t)x, is defined by A◦(t)x ∈ A(t)x such that ‖A◦(t)x‖ = d(0, A(t)x).

Concerning the properties of maximal monotone operators in Hilbert spaces, we refer to [1, 2].
Recall now, the following consequence of Gronwall’s lemma proved in [6].

Lemma 2.1. Let (xn(·)) be a sequence of absolutely continuous maps from I to H. Assume that lim
n
xn(0) = 0

and, for any n,
d
dt

(‖xn(t)‖2) ≤ βn(t)‖xn(t)‖2 + αn(t) a.e. t ∈ I,

where αn(·) and βn(·) are non negative functions in L1
R
(I). Assume moreover that the sequence (βn(·)) is bounded

in L1
R
(I) and lim

n

∫ T

0 αn(t) dt = 0. Then,

lim
n

‖xn(·)‖∞ = 0.
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3. Single-valued time-dependent perturbations

We intend in this section to recall the existence result for evolution equation governed by time-dependent
maximal monotone operator A(t)x(t), proved in [9], and deduce some estimation of the solution for the case
A(t)x(t) + h(t) with an L2

H(I) map h(·).
A function x(·) : I → H is said to be a solution of the unperturbed problem, if x(·) is AC on I, with

x(0) = x0 ∈ D(A(0)) and x(t) ∈ D(A(t)) for t ∈ I; and if the differential inclusion is satisfied for Lebesgue-a.e.
t ∈ I.

Theorem 3.1. Let for every t ∈ I, a maximal monotone operator A(t) : D (A(t)) → 2H be given such that (C1)
and (C2) are satisfied. Then, the unperturbed problem{−ẋ(t) ∈ A(t)x(t) a.e. t ∈ I

x(0) = x0 ∈ D(A(0)),

has a unique AC solution x(·) on I which satisfies the following estimate
∫ T

0

‖ẋ(s)‖2 ds ≤ c2
∫ T

0

(1 + ‖x(s)‖)2 ds. (3.1)

Proof. To prove the existence and uniqueness see ([9], Thm. 3). To get the required estimate of the derivative
of the solution, we develop some arguments of Theorem 3 in [9]. �

We need the following useful application of Theorem 3.1 concerning an evolution problem with single-valued
perturbation depending only on time.

Theorem 3.2. Under the assumptions of Theorem 3.1, for any h ∈ L2
H(I) and x0 ∈ D(A(0)), the differential

equation {−ẋ(t) ∈ A(t)x(t) + h(t) a.e. in I

x(0) = x0 ∈ D(A(0))

admits a unique absolutely continuous solution x(·) satisfying

‖ẋ(·)‖2
L2

H(I) ≤ 2‖h(·)‖2
L2

H(I) + 4c2
∫ T

0

(1 + ‖x(t)‖2) dt, (3.2)

with the same constant c of the previous theorem.

Proof. Set Φ(t) =
∫ t

0
h(τ) dτ for every t ∈ I. Then, the equation{−ẋ(t) ∈ A(t)x(t) + h(t)

x(0) = x0 ∈ D(A(0))

is equivalent to the following equation {−ẏ(t) ∈ B(t)y(t)

y(0) = x0 ∈ D(B(0)),
(3.3)

where

y(t) = x(t) + Φ(t), ∀t ∈ I

B(t)z = A(t)(z − Φ(t)), ∀(t, z) ∈ I ×H.



CONTROL PROBLEMS GOVERNED BY TIME-DEPENDENT MAXIMAL MONOTONE OPERATORS 459

It’s obvious that B(t), t ∈ I, is a maximal monotone operator in H . Therefore, it is sufficient to show that
B(t), t ∈ I, satisfies the conditions of Theorem 3.1. So, it remains to examine (C1) and (C2).

Let us check first (C1). Consider for any s, t ∈ I, x1 ∈ D(B(t)), x2 ∈ D(B(s)) and y1 ∈ B(t)x1, y2 ∈ B(s)x2.
Then, taking the definition of dis (·, ·), and the fact that A(t), t ∈ I satisfies (C1) into account, one has

〈y2 − y1, x1 − Φ(t) − (x2 − Φ(s))〉 ≤ dis (A(t), A(s))(1 + ‖y1‖ + ‖y2‖)
≤ ‖a(t) − a(s)‖(1 + ‖y1‖ + ‖y2‖).

Hence

〈y2 − y1, x1 − x2〉 = 〈y2 − y1, x1 − Φ(t) − (x2 − Φ(s))〉 + 〈y2 − y1, Φ(t) − Φ(s)〉
≤ [‖a(t) − a(s)‖ + ‖Φ(t) − Φ(s)‖](1 + ‖y1‖ + ‖y2‖).

Let us put now

a1(t) =
∫ t

0

[‖ȧ(τ)‖ + ‖h(τ)‖] dτ, ∀t ∈ I.

Thus, a1(·) is absolutely continuous, with

〈y2 − y1, x1 − x2〉 ≤ ‖a1(t) − a1(s)‖(1 + ‖y1‖ + ‖y2‖),

which entails (C1).
Now, note that for any t ∈ I, y ∈ D(B(t)), one has

‖B◦(t)y‖ = ‖A◦(t)(y − Φ(t))‖
≤ c(1 + ‖y − Φ(t)‖)

≤ c(1 + ‖y‖ +
∫ T

0

‖h(τ)‖ dτ).

Setting c1 = c(1 +
∫ T

0 ‖h(τ)‖ dτ), one obtains

‖B◦(t, y)‖ ≤ c1 +
c1

1 +
∫ T

0 ‖h(τ)‖ dτ
‖y‖ ≤ c1(1 + ‖y‖).

Consequently, assumptions of Theorem 3.1 are satisfied, we conclude that the perturbed problem admits a
unique AC solution x(·).

To obtain the estimate (3.2), we may follow the same arguments as in Theorem 3 [9] with the necessary
modifications. For this purpose, we just summarize the needed passage of the proof and omit details. We fix
appropriate partitions 0 = tn0 < tn1 < . . . < tnkn

= T of I. Then, we construct a consequence of functions (yn(·))n

satisfying

−d+yn

dt
(t) = B◦(ψn(t))yn(t) for t ∈ [tni , t

n
i+1[, yn(t) ∈ D(B(ψn(t))),

and where the function ψn : I → I is defined by{
ψn(t) = tni if t ∈ [tni , t

n
i+1[, i ∈ {0, . . . , kn − 1},

ψn(tnkn
) = T.

Thus, the following inequality

‖ẏn(t)‖ ≤ ‖B◦(ψn(t))yn(t)‖ = ‖A◦(ψn(t))(yn(t) − Φn(ψn(t)))‖ a.e. t ∈ I,
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holds true. Notice that we choose a sequence of step mappings hn :=
∑kn−1

i=1 vi1[tn
i ,tn

i+1[
, where {vi, i =

1, . . . , kn − 1} ⊂ H, that converges to the function h with respect to the strong topology of L2
H(I). Next,

we define Φn by

Φn(t) =
∫ t

0

hn(τ)dτ, t ∈ I.

Taking (1.2) into account, the latter inequality yields

‖ẏn(t)‖ ≤ c(1 + ‖yn(t) − Φn(ψn(t))‖).

Let’s mention that by repeating the process used in [9] with B(t) instead of A(t) (to solve the problem (3.3)),
the different convergence modes hold true. As a consequence, the sequence (ẏn(·))n converges weakly to ẏ(·)n

in L2
H(I) and (yn(·)) converges strongly to y(·) in L2

H(I). So, passing to the limit when n→ ∞, entails

‖ẏ(·)‖L2
H (I) ≤ {c2

∫ T

0

(1 + ‖y(s) − Φ(s)‖)2 ds} 1
2 ,

i.e.,

‖ẋ(·) + h(·)‖L2
H(I) ≤ c{

∫ T

0

(1 + ‖x(s)‖)2 ds} 1
2 .

Hence, one has

‖ẋ(·)‖2
L2

H(I) ≤ 2‖h(·)‖2
L2

H(I) + 4c2
∫ T

0

(1 + ‖x(t)‖2) dt,

which is the required inequality. �

We can now address the case of perturbation depending on both time variable and state variable. The
estimate (3.2) will play an important role in the proof of the next Theorem.

4. Single-valued “measurable/Lipschitz” perturbations

This section is devoted to the study of the perturbed problem where f(·, ·) is separately measurable and
Lipschitz continuous. We prove the existence and uniqueness theorem, using technics from Theorem 4.1 [14].

Theorem 4.1. Let assumptions (C1) and (C2) be satisfied and let f : I ×H → H be a map such that

(i) f is separately measurable on I;
(ii) for every η > 0, there exists a non-negative function γη(·) ∈ L2

R
(I) such that, for all t ∈ I and for any

x, y ∈ B[0, η]
‖f(t, x) − f(t, y)‖ ≤ γη(t)‖x− y‖; (4.1)

(iii) there exists a non-negative function β(·) ∈ L2
R
(I) such that, for all t ∈ I and for all x ∈ H, one has

‖f(t, x)‖ ≤ β(t)(1 + ‖x‖). (4.2)

Then, for any x0 ∈ D(A(0)), the following problem{−ẋ(t) ∈ A(t)x(t) + f(t, x(t)) a.e. t ∈ I

x(0) = x0

(4.3)

has one and only one absolutely continuous solution x(·) on I.
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Proof. We use subdivisions of I and estimates depending on the initial point of each subinterval. Then, we
construct a sequence of solutions (xn(·)) of a problem with single-valued time dependent perturbation in each
subinterval by using Theorem 3.2. After that, we show the convergence of this sequence to a solution x(·)
of (4.3).

Choose τ > 0 such that ⎧⎪⎨
⎪⎩

τ < 1
2
√

2c

and∫ τ

0 β
2(t) dt < 1

8T [1 − 8c2T 2].

(4.4)

First part: If T ≤ τ

1. Construction of the sequence (xn(·))
Define, for every n ∈ N, a partition of I with

tni = i
T

n
(0 ≤ i ≤ n).

Consider first the following differential inclusion on the interval [tn0 , t
n
1 ]{−ẋ(t) ∈ A(t)x(t) + f(t, x0) a.e. t ∈ [tn0 , t

n
1 ]

x(tn0 ) = x0 ∈ D(A(0)),

and observe that the map f(·, x0) depends only on t and is in L2
H([tn0 , t

n
1 ]) (by assumption (iii)). By Theorem 3.2,

the latter differential inclusion has one and only one absolutely continuous solution that we denote by xn
0 (·) :

[tn0 , t
n
1 ] → H . According to (3.2) this solution satisfies

‖ẋn
0‖2

L2
H([tn

0 ,tn
1 ]) ≤ 2‖hn

0‖2
L2

H([tn
0 ,tn

1 ]) + 4c2
∫ tn

1

tn
0

(1 + ‖xn
0 (s)‖2) ds;

where hn
0 : t �→ f(t, x0) for all t ∈ [tn0 , tn1 ].

Likewise, the differential inclusion{−ẋ(t) ∈ A(t)x(t) + f(t, xn
0 (tn1 )) a.e. t ∈ [tn1 , t

n
2 ]

x(tn1 ) = xn
0 (tn1 ) ∈ D(A(tn1 )),

has one and only one absolutely continuous solution that we denote by xn
1 (·) : [tn1 , tn2 ] → H with xn

1 (tn1 ) = xn
0 (tn1 ),

and it satisfies (3.2).
And so on, for each n, there exists a finite sequence of absolutely continuous maps xn

i (·) : [tni , t
n
i+1] → H (0 ≤

i ≤ n− 1) such that, for each i ∈ {0, . . . , n− 1},{−ẋn
i (t) ∈ A(t)xn

i (t) + f(t, xn
i−1(t

n
i )) a.e. t ∈ [tni , t

n
i+1]

xn
i (tni ) = xn

i−1(t
n
i ) ∈ D(A(tni )),

with

‖ẋn
i ‖2

L2
H([tn

i ,tn
i+1])

≤ 2‖hn
i ‖2

L2
H([tn

i ,tn
i+1])

+ 4c2
∫ tn

i+1

tn
i

(1 + ‖xn
i (s)‖2) ds; (4.5)

where xn−1(0) = x0, h
n
i : t �→ f(t, xn

i (tni )) for all t ∈ [tni , t
n
i+1].

Define xn : I → H by
xn(t) = xn

i (t) ∀t ∈ [tni , t
n
i+1] , i ∈ {0, . . . , n− 1}.
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Obviously xn(·) is absolutely continuous on I, and, putting{
θn(0) = 0

θn(t) = tni if t ∈]tni , t
n
i+1], i ∈ {0, . . . , n− 1},

one has {−ẋn(t) ∈ A(t)xn(t) + f(t, xn(θn(t))) a.e. t ∈ I

xn(0) = x0.

Note that the map f(·, xn(θn(·))) defined for t ∈ I belongs to L2
H(I) because, by assumption (iii) for each

i ∈ {0, . . . , n− 1}, the map f(·, xn
i (tni )) belongs to L2

H([tni , t
n
i+1]).

Set
hn(t) = f(t, xn(θn(t))), ∀t ∈ I.

Then, for Ii := [tni , t
n
i+1], the inequality

‖ẋn‖2
L2

H(Ii)
≤ 2‖hn‖2

L2
H(Ii)

+ 4c2
∫ tn

i+1

tn
i

(1 + ‖xn(s)‖2) ds

holds true.
Observing that

‖ẋn‖2
L2

H(Ii)
≤ 2

∫ tn
i+1

tn
i

‖f(t, xn(θn(t)))‖2 dt+ 4c2
∫ tn

i+1

tn
i

ds+ 4c2‖xn‖2
L2

H(Ii)
, (4.6)

and taking (iii) into account, one has

‖ẋn‖2
L2

H(Ii)
≤ 2(1 + ‖xn(tni )‖)2

∫ tn
i+1

tn
i

β2(t) dt+ 4c2(tni+1 − tni ) + 4c2
∫ tn

i+1

tn
i

‖xn(s)‖2 ds,

≤ 4(1 + max ‖xn(tni )‖2)
∫ tn

i+1

tn
i

β2(t) dt+ 4c2(tni+1 − tni ) + 4c2
∫ tn

i+1

tn
i

‖xn(s)‖2 ds. (4.7)

This being true for any i ∈ {0, . . . , n− 1}, one has

n−1∑
i=0

∫ tn
i+1

tn
i

‖ẋn(s)‖2 ds ≤ 4(1 + ‖xn(·)‖2
∞)
∫ T

0

β2(t) dt

+ 4c2T + 4c2T ‖xn(·)‖2
∞.

Then,

‖ẋn‖2
L2

H(I) ≤ 4(1 + ‖xn(·)‖2
∞)
∫ T

0

β2(t) dt+ 4c2T + 4c2T ‖xn(·)‖2
∞

≤ 4[
∫ T

0

β2(t) dt+ c2T ]‖xn(·)‖2
∞ + 4

∫ T

0

β2(t) dt+ 4c2T.

Setting

α = 4

[∫ T

0

β2(t) dt+ c2T

]
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one gets
‖ẋn‖2

L2
H(I) ≤ α[‖xn(·)‖2

∞ + 1]. (4.8)

Using the Cauchy–Schwartz inequality and taking (4.8) into account, one has for all s ∈ I

‖xn(s) − x0‖2 ≤ s

(∫ s

0

‖ẋn(t)‖2dt
)

≤ Tα[‖xn(·)‖2
∞ + 1]

and hence

‖xn(s)‖2 ≤ 2‖x0‖2 + 2‖xn(s) − x0‖2 ≤ 2‖x0‖2 + 2Tα[‖xn(·)‖2
∞ + 1].

Consequently, for each n, we get
[1 − 2Tα]‖xn(·)‖2

∞ ≤ 2[‖x0‖2 + Tα].

According to (4.4), that is, 2Tα < 1, one has, for any t and for any n,

‖xn(·)‖∞ ≤M (4.9)

and
‖hn(t)‖ = ‖f(t, xn(θn(t)))‖ ≤ β(t)(1 +M), (4.10)

where

M =
[
2‖x0‖2 + 2Tα

1 − 2Tα

] 1
2

·

In a straight way, (4.8) and (4.9) yield

sup
n∈N

∫ T

0

‖ẋn(t)‖2dt ≤ α(1 +M2). (4.11)

As a result, in view of (4.10), one deduces that

sup
n∈N

‖ẋn(·) + f(·, xn(θn(·)))‖L2
H (I) < +∞. (4.12)

Therefore, we may suppose, without loss of generality, that (ẋn(·) + f(·, xn(θn(·)))) converges weakly in L2
H(I).

It results from (4.6), for all n,

‖ẋn‖2
L2

H(I) ≤ 2
∫ T

0

‖f(t, xn(θn(t)))‖2 dt+ 4c2T + 4c2‖xn‖2
L2

H(I). (4.13)

2. Convergence of the sequence (xn(·))
Let p and q be arbitrary integers. We know that, for a.e. t ∈ I

−ẋp(t) − f(t, xp(θp(t))) ∈ A(t)xp(t)

−ẋq(t) − f(t, xq(θq(t))) ∈ A(t)xq(t).

Therefore, the monotonicity property of A(t), t ∈ I ensures that

〈−ẋp(t) − f(t, xp(θp(t))) + ẋq(t) + f(t, xq(θq(t))), xp(t) − xq(t)〉 ≥ 0

hence
〈ẋp(t) − ẋq(t), xp(t) − xq(t)〉 ≤ 〈−f(t, xp(θp(t))) + f(t, xq(θq(t))), xp(t) − xq(t)〉.
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We may write

〈−f(t, xp(θp(t))) + f(t, xq(θq(t))), xp(t) − xq(t)〉 =
〈f(t, xq(θq(t))) − f(t, xq(t)), xp(t) − xq(t)〉 + 〈f(t, xq(t)) − f(t, xp(t)), xp(t)

− xq(t)〉 + 〈f(t, xp(t)) − f(t, xp(θp(t))), xp(t) − xq(t)〉.
Thanks to assumption (ii) and (4.9), one has for the non-negative function γM (·) ∈ L2

R
(I) and for a.e. t ∈ I,

1
2

d
dt

‖xp(t) − xq(t)‖2 = 〈ẋp(t) − ẋq(t), xp(t) − xq(t)〉 ≤ γM (t)‖xp(t) − xq(t)‖2

+ γM (t)‖xp(t) − xq(t)‖[‖xp(t) − xp(θp(t))‖ + ‖xq(θq(t)) − xq(t)‖]. (4.14)

Next, making use of the absolute continuity of xp and xq, we may write

‖xp(t) − xp(θp(t))‖ + ‖xq(t) − xq(θq(t))‖ =

∥∥∥∥∥
∫ t

θp(t)

ẋp(s)ds

∥∥∥∥∥+

∥∥∥∥∥
∫ t

θq(t)

ẋq(s)ds

∥∥∥∥∥ .
For each p and any t, one has

‖xp(t) − xp(θp(t))‖ ≤
∫ t

θp(t)

‖ẋp(s)‖ds.

As a result, using (4.9) and (4.14), for almost every t ∈ I,

1
2

d
dt

‖xp(t) − xq(t)‖2 ≤ γM (t)‖xp(t) − xq(t)‖2

+ 2MγM(t)

(∫ t

θp(t)

‖ẋp(s)‖ds+
∫ t

θq(t)

‖ẋq(s)‖ds
)
.

Recall that by construction, 0 ≤ t− θp(t) ≤ T/p for any t ∈ I and any p ∈ N. Consequently, for any 0 ≤ t ≤ T ,
one has

∫ t

θp(t)

‖ẋp(s)‖ds ≤ (t− θp(t))
1
2

(∫ T

0

‖ẋp(s)‖2ds

) 1
2

≤
(
T

p

) 1
2
(∫ T

0

‖ẋp(s)‖2ds

) 1
2

.

Since by (4.11)
S = sup

n∈N

‖ẋn‖L2
H(I) < +∞,

we obtain that, for a.e. t ∈ I

1
2

d
dt

‖xp(t) − xq(t)‖2 ≤ γM (t)‖xp(t) − xq(t)‖2

+ 2MSγM (t)

[(
T

p

) 1
2

+
(
T

q

) 1
2
]
.

Let us put

Gp,q(t) = 2MSγM (t)

[(
T

p

) 1
2

+
(
T

q

) 1
2
]
.
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Because γM (·) ∈ L1
R
(I) and T

p ,
T
q → 0 when p, q → +∞, one has

lim
p,q→∞Gp,q(t) = 0 a.e. t ∈ I.

Once more, since γM (·) ∈ L1
R
(I), it follows from the definition of Gp,q that

lim
p,q→∞

∫ T

0

Gp,q(s)ds = 0. (4.15)

This, along with the fact that ‖xp(0) − xq(0)‖ = 0, entails, via Lemma 2.1,

lim
p,q→∞ ‖xp(·) − xq(·)‖∞ = 0.

Then, the uniform Cauchy’s criterion guarantees that the sequence (xn(·)) converges uniformly on I to some
map x(·) ∈ CH(I).

In addition, for 0 ≤ s ≤ t ≤ T ,

‖xn(t) − xn(s)‖ = ‖
∫ t

s

ẋn(τ)dτ‖ ≤ (t− s)
1
2

(∫ T

0

‖ẋn(τ)‖2dτ

) 1
2

≤ (t− s)
1
2S.

Further, observing that

‖xn(θn(t)) − x(t)‖ ≤ ‖xn(θn(t)) − xn(t)‖ + ‖xn(t) − x(t)‖
≤ (t− θn(t))

1
2S + ‖xn(t) − x(t)‖

and then

‖xn(θn(t)) − x(t)‖ ≤
(
T

n

) 1
2

S + ‖xn(t) − x(t)‖,

we conclude that ‖xn(θn(t)) − x(t)‖ −→ 0, when n → ∞, for any t ∈ I. Thus, the Lipschitz behavior of f(t, ·)
for each fixed t in I leads to

lim
n→∞ ‖f(t, xn(θn(t))) − f(t, x(t))‖ = 0,

along with

lim
n→∞

∫ T

0

‖f(t, xn(θn(t))) − f(t, x(t))‖2dt = 0, (4.16)

by Lebesgue’s convergence theorem because of (4.2) and (4.9) and hence

lim
n→∞

∫ T

0

‖f(t, xn(θn(t)))‖2dt =
∫ T

0

‖f(t, x(t))‖2dt. (4.17)

Further, letting n tends to infinity in (4.9) and (4.10), one also has

‖x(·)‖∞ ≤M (4.18)

and
‖f(t, x(t))‖ ≤ β(t)(1 +M). (4.19)

Furthermore, in view of (4.11), one knows that the sequence of velocities is bounded in L2
H(I) so that, up to a

subsequence that we do not relabel, we may suppose that (ẋn)n converges weakly in L2
H(I) to some element z(·).
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For any integer n and any y ∈ H and for 0 ≤ s ≤ t ≤ T , relying on the absolute continuity of (xn(·))n, we
can write ∫ T

0

〈y1[s,t](τ), ẋn(τ)〉dτ = 〈y, xn(t) − xn(s)〉.

Next, passing to the limit in the equality yields

〈y,
∫ t

s

z(τ)dτ〉 = 〈y, x(t) − x(s)〉.

Therefore, given any s, t ∈ I with s ≤ t, we get
∫ t

s z(τ)dτ = x(t)− x(s), and hence x(·) is absolutely continuous
and z(·) coincides almost everywhere in I with ẋ(·). Thus, ẋ ∈ L2

H(I) and

ẋn → ẋ weakly in L2
H(I). (4.20)

Then, taking the superior limit on n in (4.13) and using the uniform convergence of xn(·) to x(·), (4.17) and (4.20)
yield

‖ẋ‖2
L2

H(I) ≤ 2
∫ T

0

‖f(t, x(t))‖2 dt+ 4c2T + 4c2‖x‖2
L2

H(I). (4.21)

3. The map x(·) is a solution of (4.3).
Recall that, for each n ∈ N {−ẋn(t) ∈ A(t)xn(t) + f(t, xn(θn(t))) a.e. t ∈ I.

xn(0) = x0.

Then using the closure property of maximal monotone operator entails

−ẋ(t) ∈ A(t)x(t) + f(t, x(t)) a.e. t ∈ I.

Second part: If T > τ

We choose a partition of I such that for each subinterval J of I with length(J) ≤ τ one has
∫

J β
2(s) ds ≤

1
8T [1 − 8c2T 2] and we also fix some integer N such that T/N ≤ τ . Put Ti := i

N T for i = 0, . . . , N and observe
that for each i = 1, . . . , N we have∫ Ti

Ti−1

β2(s) ds <
1

8T
[1 − 8c2T 2] <

1
8(Ti − Ti−1)

[1 − 8c2(Ti − Ti−1)2]

and hence (4.4) relative to the interval [Ti−1, Ti] is fulfilled. Consequently me may apply what precedes to the
intervals [0, T1], [T1, T2], . . ., and [TN−1, T ], and we obtain absolutely continuous solutions y1(·) on [0, T1] with
y1(0) = x0, y2(·) on [T1, T2] with y2(T1) = y1(T1), . . ., yN(·) on [TN−1, T ] with yN(TN−1) = yN−1(TN−1). So
the mapping x(·) from I = I into H defined by x(t) = yi(t) for all t ∈ [Ti−1, Ti], i = 1, 2, . . . , N is obviously an
absolutely continuous solution on I of (4.3).

The uniqueness follows from the monotonicity property of the maximal monotone operator A(t), t ∈ I, and
the Lipschitz condition on f . Then, the proof is complete. �

As a consequence, we have the following properties

Proposition 4.2. The absolutely continuous solution x(·) of (4.3) satisfies
∫ T

0

‖ẋ(t)‖2 dt ≤ 2
∫ T

0

‖f(t, x(t))‖2 dt+ 4c2T + 4c2
∫ T

0

‖x(t)‖2 dt. (4.22)
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Moreover, one has ‖x(·)‖∞ ≤ K. Then

‖f(t, x(t))‖ ≤ β(t)(1 +K) a.e. t ∈ I (4.23)

and ∫ T

0

‖ẋ(t)‖2 dt ≤ 2(1 +K)2
∫ T

0

β2(t) dt+ 4c2T (1 +K2), (4.24)

with
K = ‖x0‖ + [ξ(T )]

1
2

and where ξ(·) is the increasing, continuous, and non-negative function defined on I by

ξ(s) = b(s) + 4s
∫ s

0

b(τ)[β2(τ) + 2c2] exp
(∫ s

τ

[β2(θ) + 2c2]c(θ)dθ
)

dτ

and for each t ∈ I

b(t) = t[4
∫ t

0

β2(τ)(1 + ‖x0‖)2 dτ + 4c2T (2‖x0‖2 + 1)].

Proof. Let x(·) be the unique solution of (4.3), it’s easy to see that (4.21) holds true in the whole interval I.
Owing to (4.21) and assumption (iii) and making use of the absolute continuity of x(·) on I, we may write

for 0 ≤ s < T

‖x(s) − x0‖2 ≤ s

∫ s

0

‖ẋ(τ)‖2dτ

≤ s

[
2
∫ s

0

β2(τ)(1 + ‖x(τ)‖)2 dτ + 4c2T + 4c2
∫ s

0

‖x(τ)‖2 dτ
]
.

Hence, for any s ∈ I

‖x(s) − x0‖2 ≤ s

[
4
∫ s

0

β2(τ)(1 + ‖x0‖)2 dτ + 8c2
∫ s

0

‖x0‖2 dτ4c2T + 4
∫ s

0

(β2(τ) + 2c2)‖x(τ) − x0‖2 dτ
]

≤ s

[
4
∫ s

0

β2(τ)(1 + ‖x0‖)2 dτ + 8c2s‖x0‖2 + 4c2T + 4
∫ s

0

(β2(τ) + 2c2)‖x(τ) − x0‖2 dτ
]

≤ s

[
4
∫ s

0

β2(τ)(1 + ‖x0‖)2 dτ + 4c2T (2‖x0‖2 + 1) + 4
∫ s

0

(β2(τ) + 2c2)‖x(τ) − x0‖2 dτ
]
.

Applying Gronwall’s inequality entails that given s ∈ I, one has

‖x(s) − x0‖2 ≤ ξ(s) (4.25)

where

ξ(s) = b(s) + c(s)
∫ s

0

b(τ)[β2(τ) + 2c2] exp
(∫ s

τ

[β2(θ) + 2c2]c(θ)dθ
)

dτ

with

b(t) = t

[
4
∫ t

0

β2(τ)(1 + ‖x0‖)2 dτ + 4c2T (2‖x0‖2 + 1)
]
,

c(t) = 4t.

Clearly such functions b(·), c(·) and ξ(·) are increasing and continuous on I.
Finally, as a straight consequence of (4.25) and the finiteness of T , one has

‖x(·)‖∞ ≤ K,

where K = ‖x0‖ + [ξ(T )]
1
2 . Consequently, (4.23) and (4.24) hold true. �
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The following proposition gives a topological result concerning the map a �→ xa(·) which associates with each
a ∈ D(A(0)) the unique solution of the foregoing problem with the initial condition a.

Proposition 4.3. Under the assumptions of Theorem 4.1, for each a ∈ D(A(0)), let xa(·) be the unique solution
of the problem {−ẋ(t) ∈ A(t)x(t) + f(t, x(t)) a.e. t ∈ I

x(0) = a.

Then, the map ψ : a �→ xa(·) from D(A(0)) to the space CH(I) endowed with the uniform convergence norm is
Lipschitz continuous on any bounded subset of D(A(0)).

Proof. Let M be any fixed positive real number. We are going to prove that the map ψ is Lipschitz continuous
on D(A(0)) ∩MB.

According to Theorem 4.1 and Proposition 4.2, there exists a real number M1 depending only on M such
that, for all y ∈ D(A(0)) ∩MB and, for all t ∈ I,

‖f(t, xy(t))‖ ≤ (1 +M1)β(t) (4.26)

and ∫ T

0

‖ẋy(t)‖2 dt ≤ 2(1 +M1)2
∫ T

0

β2(t) dt+ 4c2T (1 +M2
1 ).

Thanks to this last inequality, for some η1 > 0 depending only on M, for all y ∈ D(A(0)) ∩MB and, for all
t ∈ I

xy(t) ∈ B[0, η1]. (4.27)

Fix any a, b ∈ D(A(0))∩MB. By the monotonicity property of the operator A(t), we have, for almost all t ∈ I,

〈−ẋa(t) − f(t, xa(t)) + ẋb(t) + f(t, xb(t)), xa(t) − xb(t)〉 ≥ 0

and then
1
2

d
dt

(‖xa(t) − xb(t)‖2) ≤ ‖f(t, xa(t)) − f(t, xb(t))‖‖xa(t) − xb(t)‖. (4.28)

By virtue of assumption (ii) of Theorem 4.1, there is a non-negative function γη1(·) ∈ L2
R
(I) such that f(t, ·) is

γη1(t)-Lipschitz on B[0, η1] (this function depends only on M), the above inequality, along with (4.27), entails
that for almost all t ∈ I,

d
dt

(‖xa(t) − xb(t)‖2) ≤ 2γη1(t)‖xa(t) − xb(t)‖2.

Applying Gronwall’s lemma, we get, for any t ∈ I

sup
t∈I

‖xa(t) − xb(t)‖2 ≤ ‖a− b‖2 exp

{
2
∫ T

0

γη1(s)ds

}
.

Therefore,
‖xa(·) − xb(·)‖∞ ≤ B‖a− b‖

where

B := exp

{∫ T

0

γη1(s)ds

}
,

the proof is then complete. �

Now, we use the main existence result of this section to the study of a Bolza control problem (see also [6,14]
for further results).
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5. Application to a Bolza-type problem

From now on, the Hilbert space H is assumed to be separable. We will apply the theorem of existence and
uniqueness (Thm. 4.1) to an optimal control problem for differential inclusion governed by time-dependent-
maximal monotone operator via Young measures. Let’s recall first, some preliminary results about Young mea-
sures. For more details, we refer the reader to [5, 6, 14].

5.1. Young measures

Let (S,S, σ) be a complete measure space with a non-negative finite measure σ and let U be a complete
separable metric space. One calls Young measure on S×U , any non-negative finite measure ν on (S×U,S⊗B(U))
that satisfies

∀A ∈ S, ν(A× U) = σ(A).

In other words, a Young measure on S ⊗ B(U) is a non-negative measure whose projection on S (that is, its
image by the map (s, u) �→ s) is equal to σ. The set of Young measures will be denoted by Y(S, σ, U).

In other respects, let M1
+(U) be the set of all probability measures on (U,B(U)). Following [5], we denote by

Ydis(S, σ, U) the set of all maps μ : S → M1
+(U) (up to σ-almost everywhere equality) which are λ-measurable

in the sense that, for any B ∈ B(U), the function s �→ μs(B) is S-measurable.

Remark 5.1. If μ ∈ Ydis(S, σ, U), A ∈ S⊗B(U) and if 1A is the characteristic function of A (that is, 1A(x) = 1
if x ∈ A and 0 otherwise), then the function s �→ ∫

U
1A(s, u)μs(du) is S-measurable on S and the set function

ν defined by

ν(A) =
∫

S

∫
U

1A(s, u)μs(du)σ(ds) (5.1)

for all A ∈ S ⊗ B(U) is a Young measure on S × U . Accordingly, any member of Ydis(S, σ, U) is called a
disintegrable Young measure.

Conversely, under the above assumptions on S and U , any Young measure on S ×U is associated with some
μ ∈ Ydis(S, σ, U) in the way above.

Remark 5.2.

(1) If ν is the Young measure corresponding to the member μ ∈ Ydis(S, σ, U), i.e., the Young measure defined
by (5.1), then, for any function ψ : S×U → R∪{−∞,+∞} which is S⊗B(U)-measurable and non-negative
(resp. ν-integrable), the function s �→ ∫

U ψ(s, u)μs(du) is σ-measurable (resp. is σ-integrable) and one has∫
S×U

ψ dν =
∫

S

∫
U

ψ(s, u)μs(du)σ(ds).

(2) If ν is a Young measure associated with some μ ∈ Ydis(S, σ, U) we will make no distinction between ν and
μ, that is, for all s ∈ S, we will write νs instead of μs.

(3) Any S-measurable map u(·) : S → U defines a Young measure on S×U called the Young measure associated
with u(·). This is the Young measure corresponding to the member μ ∈ Ydis(S, σ, U) defined by μs := δu(s),
where δu(s) is the Dirac mass at the point u(s), i.e., for any B ∈ B(U), δu(s)(B) = 1 if u(s) ∈ B and 0
otherwise.

5.2. Carathéodory integrands and narrow convergence

One calls integrand any function ψ : S × U → R ∪ {−∞,+∞} that is S ⊗ B(U)-measurable. An integrand
is said to be of Carathéodory type if, for any s ∈ S, the partial function ψ(s, ·) is continuous and takes finite
values on U . An integrand ψ is said to be L1-bounded if there exists some non-negative function γ ∈ L1

R
(S, σ)

such that |ψ(s, u)| ≤ γ(s) for all (s, u) ∈ S × U .
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The set Y(S, σ, U) will be endowed with the narrow topology. Recall that a sequence (νn) of Y(S, σ, U)
converges to ν in Y(S, σ, U) if, for any L1-bounded Carathéodory integrand ψ,

lim
n

∫
S×U

ψ dνn =
∫

S×U

ψ dν. (5.2)

In the same vein, one says that a sequence (μn) of Ydis(S, σ, U) converges in Ydis(S, σ, U) to μ if the sequence
of the corresponding Young measures converges in Y(S, σ, U). It amounts to saying that, for any L1-bounded
Carathéodory integrand ψ,

lim
n

∫
S

∫
U

ψ(s, u)μn
s (du)σ(ds) =

∫
S

∫
U

ψ(s, u)μs(du)σ(ds). (5.3)

We recall also some important results proved in [5]

Proposition 5.3. Let hn(·), h(·) ∈ CH(I) (n ≥ 1) and μn, μ ∈ Ydis(I, λ, U). Assume that (hn(·)) converges
uniformly to h(·) and (μn) converges to μ in Ydis(I, λ, U). Let θn ∈ Y(I, λ,H×U) be defined by θn

t := δhn(t)⊗μn
t .

Then, θn converges in Y(I, λ,H × U) to the Young measure θ ∈ Y(I, λ,H × U) defined by θt := δh(t) ⊗ μt.

Recall that a sequence of functions (fn(·)) is said to be uniformly integrable in L1
R
(I), if it is bounded in L1

R
(I),

and
lim

λ(A)→0
sup

n

∫
A

|fn(t)| dt = 0.

Proposition 5.4. Let un(·) : I −→ U (n ≥ 1) be measurable maps. Assume that the sequence of the associated
Young measures (νn) (that is, νn

t = δun(t)) converges to ν in Y(I, λ, U). Let ψ : I × U → R be a Carathéodory
integrand. Assume that the sequence (ψ(·, un(·)))n is uniformly integrable in L1

R
(I). Then, ψ is ν-integrable and∫

I×U

ψ dν = lim
n

∫
I

ψ(t, un(t)) dt.

The space Ydis(I, λ, U) has the following compactness property (see [5, 8]).

Proposition 5.5. If U is a compact metric space, then any sequence in Ydis(I, λ, U) has a subsequence which
converges in Ydis(I, λ, U).

In order to establish the existence result for our Bolza problem (P.O), we consider an another optimal control
problem called the relaxed problem. We will prove that the latter has an optimal solution and that its optimal
value equals the infimum in the problem (P.O).

Let U be a compact metric space and Γ : I ⇒ U be a Lebesgue-measurable set-valued map with nonempty
compact values. Let us consider the set-valued map Σ(·) defined on I by

Σ(t) = {P ∈ M1
+(U) : P (Γ (t)) = 1}.

Denote by SΓ (resp. SΣ) the set of all Lebesgue-measurable selections (up to almost everywhere equality) of Γ
(resp. Σ).

The following Proposition holds true (see, e.g., [6]).

Proposition 5.6. Let Γ : I ⇒ U be a Lebesgue-measurable set-valued map with nonempty compact values. The
set-valued map Σ(·) defined on I by

Σ(t) = {P ∈ M1
+(U) : P (Γ (t)) = 1}

is Lebesgue-measurable with nonempty compact convex values and the set SΣ is nonempty and sequentially closed
in Ydis(I, λ, U).
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The members of SΓ are called original controls and those of SΣ relaxed controls. Clearly, SΓ ⊂ SΣ in the
sense that, for any ζ ∈ SΓ , the Young measure μ with (μt := δζ(t))t∈I satisfies μ ∈ SΣ .

Let g : I ×H × U −→ H be a map satisfying:

(i) for any t ∈ I, g(t, ·, ·) is continuous on H × U ;
(ii) for each (x, u) ∈ H × U , g(·, x, u) is λ-measurable on I;
(iii) for every η > 0, there exists a non-negative function γη(·) ∈ L2

R
(I) such that, for all (t, u) ∈ I × U and for

all x, y ∈ B[0, η]
‖g(t, x, u) − g(t, y, u)‖ ≤ γη(t)‖x− y‖;

(iv) there exists a non-negative function β(·) ∈ L2
R
(I) such that, for all (t, x, u) ∈ I ×H × U , one has

‖g(t, x, u)‖ ≤ β(t)(1 + ‖x‖).
Now, assume that (C1) and (C2) are satisfied. Given x0 ∈ D(A(0)), ζ ∈ SΓ , μ ∈ SΣ , consider the two following
perturbed problems:

(Pζ)

{−ẋ(t) ∈ A(t)x(t) + g(t, x(t), ζ(t)) a.e. t ∈ I

x(0) = x0

and

(Pμ)

{−ẋ(t) ∈ A(t)x(t) +
∫

Γ (t)
g(t, x(t), u)μt(du) a.e. t ∈ I

x(0) = x0.

The map

hμ(t, x) =
∫

Γ (t)

g(t, x, u)μt(du) =
∫

U

g(t, x, u)μt(du),

is separately Lebesgue-measurable on I. Moreover, thanks to the assumptions on g and the fact that μt(Γ (t)) =
μt(U) = 1, we have

– for every η > 0, for all t ∈ I and for all x, y ∈ B[0, η],

‖hμ(t, x) − hμ(t, y)‖ ≤ γη(t)‖x− y‖;
– for all (t, x) ∈ I ×H , one has

‖hμ(t, x)‖ ≤ β(t)(1 + ‖x‖). (5.4)

Consequently, by Theorem 4.1, for any ζ ∈ SΓ and for any μ ∈ SΣ, each of the perturbed problem (Pζ) and
(Pμ) has one and only one solution, which will be denoted by xζ(·) and xμ(·) respectively.

5.3. The relaxation result

The Bolza-type optimal control problem to be relaxed in the present work is the following:

inf
ζ(·)∈SΓ

∫ T

0

J(t, xζ(t), ζ(t)) dt (P.O)

where xζ(·) is the unique absolutely continuous solution of (Pζ) and the cost functional J : I ×H ×U −→ R is
an integrand such that for each t ∈ I, J(t, ·, ·) is continuous on H × U , J is also bounded from below.

The relaxed control problem is

inf
μ∈SΣ

∫ T

0

∫
U

J(t, xμ(t), u)μt(du)dt (P.R)

with xμ(·) being the absolutely continuous solution of (Pμ).
The question is finding situations when (P.R) has an optimal solution and when the equality inf (P.O) =

min (P.R) holds true?
Now, we give the following results. The proofs are similar to those in [6] (see also [14]).
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Remark 5.7.

(1) The cost functional J in (P.O) and (P.R) takes values in [mJT,+∞], where mJ := inf J .
(2) Because of the boundedness assumption on J and the inclusion

∅ = {xζ(·) : ζ ∈ SΓ } ⊂ {xμ(·) : μ ∈ SΣ},
it is straightforward that

−∞ < inf (P.R) ≤ inf (P.O) ≤ +∞. (5.5)

Proposition 5.8. Under the assumptions above, suppose that, (C3) for any bounded sequence (xn(·)) in
(CH(I), ‖ · ‖∞) and for any sequence (ζn(·)) in SΓ , the sequence (J(·, xn(·), ζn(·))) is uniformly integrable in
L1

R
(I).
Let μ ∈ SΣ. Then, the function t �→ ∫

U J(t, xμ(t), u)μt(du) belongs to L1
R
(I). Moreover, for any (ζn(·)) in

SΓ such that the sequence of the associated Young measures converges in Y(I, λ, U) to μ, the sequence (xζn(·))
converges uniformly in CH(I) to xμ(·) and

∫ T

0

∫
U

J(t, xμ(t), u)μt(du)dt = lim
n

∫ T

0

J(t, xζn(t), ζn(t))dt.

Remark 5.9.

(1) Both of inf (P.O) and inf (P.R) are real numbers, under assumption (C3).
(2) The cost functional in (P.R) is finite under assumption (C3).

Consider the two following control problems

inf
ζ(·)∈SΓ

∫ T

0

J(t, xζ(t), ζ(t)) dt (P.O)

and

inf
μ∈SΣ

∫ T

0

∫
U

J(t, xμ(t), u)μt(du)dt. (P.R)

Theorem 5.10. Under the assumptions above, the control problem (P.R) has an optimal solution. Furthermore,
one has

min (P.R) = inf (P.O).
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