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ON THE POLYNOMIAL INTEGRABILITY OF A SYSTEM MOTIVATED
BY THE RIEMANN ELLIPSOID PROBLEM

Jaume Llibre1 and Clàudia Valls2

Abstract. We consider differential systems obtained by coupling two Euler–Poinsot systems. The
motivation to consider such systems can be traced back to the Riemann ellipsoid problem. We provide
new cases for which these systems are completely integrable. We also prove that these systems either
are completely integrable or have at most four functionally independent analytic first integrals.
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1. Introduction and statement of the main results

Consider the following system of differential equations

dx

dt
= ∇xG(x, y) ∧ x,

dy

dt
= ∇yG(x, y) ∧ y, (1.1)

where (x, y) ∈ R
3 × R

3 and G is the quadratic form

G =
1
2

3∑
i=1

(ai(x2
i + y2

i ) + 2bixiyi).

The ai, bi, i = 1, 2, 3 are real constants. To avoid the trivial cases, at least one of the coupling constants bi’s is
assumed to be different from zero. Of course, x = 0 (or y = 0) is an invariant subspace and here system (1.1)
reduces to the Euler–Poinsot equations, see for instance [1, 2]. The motivation to consider such systems can be
traced back to the Riemann ellipsoid problem, see [6, 8], and for more details the last part of Section 1 of the
paper [9] where one page is dedicated to explain this connection, and also the papers [3, 10]. Other results on
the integrability of quadratic Hamiltonian systems similar to system (1.1) can be found in [11].
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Expanding the notation, system (1.1) writes as:

ẋ1 = (a2 − a3)x2x3 + b2x3y2 − b3x2y3 = P1(x1, x2, x3, y1, y2, y3),
ẋ2 = (a3 − a1)x1x3 + b3x1y3 − b1x3y1 = P2(x1, x2, x3, y1, y2, y3),
ẋ3 = (a1 − a2)x1x2 + b1x2y1 − b2x1y2 = P3(x1, x2, x3, y1, y2, y3),
ẏ1 = b2x2y3 − b3x3y2 + (a2 − a3)y2y3 = P4(x1, x2, x3, y1, y2, y3),
ẏ2 = b3x3y1 − b1x1y3 + (a3 − a1)y1y3 = P5(x1, x2, x3, y1, y2, y3),

ẏ3 = b1x1y2 − b2x2y1 + (a1 − a2)y1y2 = P6(x1, x2, x3, y1, y2, y3), (1.2)

where (x1, x2, x3, y1, y2, y3) ∈ R
6 and ai, bi ∈ R for i = 1, 2, 3 such that at least one bi is assumed to be different

from zero.
It is immediate to verify that system (1.2) has the following polynomial three first integrals

H1 =
3∑

i=1

x2
i , H2 =

3∑
i=1

y2
i , H3 =

3∑
i=1

[
ai(x2

i + y2
i ) + 2bixiyi

]
.

which are functionally independent. We recall that given U an open set of R
6 such that R

6\U has zero Lebesgue
measure, we say that a real function H = H(x1, x2, x3, y1, y2, y3) : U ⊂ R

6 → R is a first integral if H is constant
for all values of a solution (x1(t), x2(t), x3(t), y1(t), y2(t), y3(t)) of system (1.2) contained in U , i.e. H is a first
integral in U if and only if

3∑
i=1

(
∂H

∂xi
Pi(x1, x2, x3, y1, y2, y3) +

∂H

∂yi
Pi+3(x1, x2, x3, y1, y2, y3)

)
= 0

on the points of U . Moreover, the first integrals H1, . . . , Hr are functionally independent if the r × 6 matrix⎛
⎜⎝

∂H1/∂x1 · · · ∂H1/∂y3

... · · · ...
∂Hr/∂x1 · · · ∂Hr/∂y3

⎞
⎟⎠ (x1, x2, x3, y1, y2, y3)

has rank r at all points (x1, x2, x3, y1, y2, y3) ∈ R
6 where they are defined except perhaps in a zero Lebesgue

measure set.
We are interested in finding additional polynomial first integrals which are functionally independent with H1,

H2 and H3. We recall that the first natural class to investigate the existence of first integrals is the class of the
polynomials since it is the easiest one. Only after this class is completely understood it makes sense to go to
bigger classes of functions to look for integrability.

We know that since system (1.2) has zero divergence it follows from Theorem 2.7 of [5] that if it has 4
functionally independent analytic first integrals then the system is completely integrable, i.e. it has 5 first
integrals functionally independent.

We note that system (1.2) is invariant under the diffeomorphism

τ(x1, x2, x3, y1, y2, y3, a1, a2, a3, b1, b2, b3) → (x2, x3, x1, y2, y3, y1, a2, a3, a1, b2, b3, b1).

First we obtain some polynomial first integrals.

Theorem 1.1. The differential systems (1.2) have a fourth polynomial first integral H4 functionally independent
with H1, H2 and H3 if

(a) b1 = ±b2 and a1 = a2, then H4 = ±x3 + y3;
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(b) b1 = ±b3 and a1 = a3, then H4 = ±x2 + y2;
(c) b2 = ±b3 and a2 = a3, then H4 = ±x1 + y1;
(d) b1 = a2 − a1 + b2, b3 = a3 − a2 − b2, a1 �= a2 and a3 �= a2, then

H4 = (x1 + y1)2 + (x2 + y2)2 + (x3 − y3)2;
(e) b1 = a1 − a2 + b2, b3 = a3 − a2 + b2, a1 �= a2 and a3 �= a2, then

H4 = (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2;
(f) b1 = a2 − a1 − b2, b3 = a2 − a3 − b2, a1 �= a2 and a3 �= a2, then

H4 = (x1 + y1)2 + (x2 − y2)2 + (x3 + y3)2;
(g) b1 = a1 − a2 − b2, b3 = a2 − a3 + b2, a1 �= a2 and a2 �= a3, then

H4 = (x1 − y1)2 + (x2 + y2)2 + (x3 + y3)2;
(h) b1 = a1 − a2 + b2, b3 = a2 − a3 − b2, a1 �= a2 and a3 �= a2, then

H4 =
a2 − a3 − b3

a2 − a3
(x1 − y1)2 +

a1 − a3 − b3

a1 − a3
(x2 − y2)2 + (x3 − y3)2;

(i) b1 = a2 − a1 − b2, b3 = a3 − a2 + b2, a1 �= a2 and a3 �= a2, then

H4 = −a1 − a2 + b1

a2 − a3
(x1 + y1)2 − b1

a1 − a3
(x2 − y2)2 + (x3 + y3)2;

(j) b1 = a2 − a1 + b2, b3 = a2 − a3 + b2, a1 �= a2 and a2 �= a3, then

H4 = − b2

a2 − a3
(x1 + y1)2 +

a1 − a2 − b2

a1 − a3
(x2 + y2)2 + (x3 − y3)2;

(k) b1 = a1 − a2 − b2, b3 = a3 − a2 − b2, a1 �= a2 and a2 �= a3, then

H4 = − b2

a2 − a3
(x1 − y1)2 +

a1 − a2 − b2

a1 − a3
(x2 + y2)2 + (x3 + y3)2.

The cases of integrability of Theorem 1.1 were already known by Negrini (see Thms. 2 and 3 of [9]), but he did
not know that the fourth functionally independent first integral of systems (1.2) of the statements (a), (b) and
(c) of Theorem 1.1 can be polynomial.

Theorem 1.1 can be checked easily by direct computations.

Corollary 1.2. The differential systems (1.2) satisfying the conditions of Theorem 1.1 are completely integrable.

Corollary 1.2 is proved in Section 2, but it was also known by Negrini in [9]. In [9] the author also gives
conditions for the existence or non-existence of meromorphic first integrals for system (1.2).

Theorem 1.3. If a differential system (1.2) is completely integrable with analytic first integrals, then it satis-
fies one of the conditions of Theorem 1.1. Otherwise, the differential system (1.2) has at most 4 functionally
independent analytic first integrals.

Theorem 1.3 is proved in Section 3.

2. Proof of Corollary 1.2

The following result is due to Jacobi. For a proof in a more general setting see Theorem 2.7 of [5].

Theorem 2.1. Consider an analytic differential system in R
n of the form

dx

dt
= ẋ = P (x), x = (x1, . . . , xn) ∈ R

n (2.1)

with P (x) = (P1(x), . . . , Pn(x)). Assume that

n∑
i=1

∂Pi

∂xi
= 0 (i.e. it has zero divergence)
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and that it admits n − 2 first integrals, Ii(x) = ci with i = 1, . . . , n − 2 functionally independent. These
integrals define, up to a relabeling of the variables, an invertible transformation mapping from (x1, . . . , xn) to
(c1, . . . , cn−2, xn−1, xn) given by

yi = Ii(x), i = 1, . . . , n − 2, yn−1 = xn−1, yn = xn.

Let Δ be the Jacobian of the transformation

Δ = det

⎛
⎜⎜⎝

∂x1I1 ∂x2I1 · · · ∂xn−2I1

∂x1I2 ∂x2I2 · · · ∂xn−2I2

...
...

. . .
...

∂x1In−2 ∂x2In−2 · · · ∂xn−2In−2

⎞
⎟⎟⎠ .

Then system (2.1) admits an extra first integral given by

In−1 =
∫

1
Δ̃

(
P̃n dxn−1 − P̃n−1 dxn),

where the tilde denotes the quantities expressed in the variables (c1, . . . , cn−2, xn−1, xn). Moreover this first
integral is functionally independent with the previous n − 2 first integrals, that is, the system is completely
integrable.

Note that from the expression of the additional first integral In−1, we see that in general such extra first
integral can be non-analytic when the previous n − 2 first integrals are analytic.

Proof of Corollary 1.2. It is immediate to verify that the differential systems (1.2) in R
6 have zero divergence

because every Pi does not depend on xi for i = 1, 2, 3, and Pi does not depend on yi−3 for i = 4, 5, 6. In the case
of the conditions given in Theorem 1.1 the differential systems (1.2) have 4 = 6 − 2 first integrals functionally
independent. So in this case they satisfy the assumptions of Theorem 2.1. Therefore this case is completely
integrable. �

3. Proof of Theorem 1.3

We denote by Z+ the set of non-negative integers. The following result, due to Zhang [12], will be used in a
strong way in the proof of Theorem 1.3.

Theorem 3.1. For an analytic vector field X defined in a neighborhood of the origin in R
n associated to

system (2.1) with P (0) = 0, let λ1, . . . , λn be the eigenvalues of DP (0). Set

G =
{

(k1, . . . , kn) ∈ (Z+)n :
n∑

i=1

kiλi = 0,

n∑
i=1

ki > 0
}

.

Assume that system (2.1) has r < n functionally independent analytic first integrals Φ1(x), . . . , Φr(x) in a
neighborhood of the origin. If the Z-linear space generated by G has dimension r, then any nontrivial analytic
first integral of system (2.1) in a neighborhood of the origin is an analytic function of Φ1(x), . . . , Φr(x).

Extensions of Theorem 3.1 can be found in [4, 7].
We call each element (k1, . . . , kn) ∈ G a resonant lattice of the eigenvalues λ1, . . . , λn.
Direct calculations show that the differential systems (1.2) have seven planes of singularities, but we only use

for proving our result two of these planes of singularities.
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The idea of the proof is to use Theorem 3.1. Note that From Theorem 3.1 we know that the number of
functionally independent analytic first integrals of the differential systems (1.2) in a neighborhood of each of
the singularities, say for example, S1 is at most the number of linearly independent elements of the set

G1 =
{

(k1, . . . , k6) ∈ (Z+)6 :
6∑

i=1

kiλi = 0,

6∑
i=1

ki > 0
}

. (3.1)

So, we compute when we can have five linearly independent elements of the set G1. We find that to have five
linearly independent elements we must satisfy two type of conditions that we call (i) and (ii). Investigating
condition (i) we find some conditions given in Theorem 1.1 and some others. To study conditions (i) that are
not inside the condition given in Theorem 1.1 we use a second lattice G2 corresponding to a second singularity
S2 of the system. We compute again, for S2 when, under these remaining conditions the number of linearly
independent elements of the set G2 can be five and we find that this is only possible when we are under some of
the conditions given in Theorem 1.1. Now we investigate condition (ii). To study conditions (ii) we divide it into
two cases (ii.1) and (ii.2), because the technicalities involved are different for both cases. When we investigate
case (ii.1) we find some conditions given in Theorem 1.1 and another extra condition. To investigate if this extra
condition can have five linearly independent analytic first integrals we use the second lattice S2. We compute
again, for S2 when, under this extra condition the number of linearly independent elements of the set G2 can
be five and we find that never. Finally, when we study case (ii.2) we find some conditions given in Theorem 1.1
and six extra conditions. To investigate if these extra conditions can have five linearly independent analytic first
integrals, again we use the second lattice S2. We compute again, for S2 when, under these extra conditions the
number of linearly independent elements of the set G2 can be five and we find that never. So the proof will be
complete.

At the singularity S1 = (0, x2, 0, 0, y2, 0), the 6-tuple of eigenvalues λ = (λ1, . . . , λ6) of the linear part of the
differential systems (1.2) are

λ =

⎛
⎝0, 0,−

√
A1 −

√
B1

2
,

√
A1 −

√
B1

2
,−

√
A1 +

√
B1

2
,

√
A1 +

√
B1

2

⎞
⎠ , (3.2)

where

A1 = ((a1 − a2)(a2 − a3) − b2
2)(x

2
2 + y2

2) + 2((a1 − 2a2 + a3)b2 − b1b3)x2y2,

B1 = A2
1 − 4Δ1,

with

Δ1 = ((a2 − a1)b2(x2
2 + y2

2) + ((a1 − a2)2 + b2
2 − b2

1)x2y2)

× ((a2 − a3)b2(x2
2 + y2

2) + ((a2 − a3)2 + b2
2 − b2

3)x2y2).

From Theorem 3.1 we know that the number of functionally independent analytic first integrals of the differential
systems (1.2) in a neighborhood of the singularity S1 is at most the number of linearly independent elements
of the set G1 given in (3.1). According to the eigenvalues (3.2) the resonant lattices satisfy√

A1 −
√

B1(k4 − k3) +
√

A1 +
√

B1(k6 − k5) = 0. (3.3)

This last equation has the following linearly independent non-negative solutions (k1, . . . , k6):

(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0) and (0, 0, 0, 0, 1, 1).
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In order that equation (3.3) has an additional linearly independent non-negative integer solutions different
from the above list, we must have:

(i) either (A1 −
√

B1)(A1 +
√

B1) = 0;
(ii) or (A1 − √

B1)(A1 +
√

B1) �= 0 and
√

A1 −
√

B1/
√

A1 +
√

B1 is a rational number. Then Δ1 �= 0 and
A1 �= 0 (otherwise

√
−√

B1/
√√

B1 cannot be a rational number). Set√
A1 −

√
B1√

A1 +
√

B1

=
m

n
, m, n ∈ Z \ {0} coprime.

This last equality can be written in an equivalent way as

Δ1

A2
1

=
m2n2

(m2 + n2)2
,

where we have used the fact that B1 = A2
1 − 4Δ1.

In case (i) we obtain the following independent conditions:

b1 = ±b2, a1 = a2;
b2 = ±b3, a2 = a3;
b1 = ±(a1 − a2), b2 = 0;

b3 = ±(a2 − a3), b2 = 0. (3.4)

In the first four cases we are inside the conditions of Theorem 1.1. Now we shall consider the last four cases.
We denote them by

s1,2 =
{
b1 = ±(a1 − a2), b2 = 0

}
, s3,4 =

{
b3 = ±(a2 − a3), b2 = 0

}
.

Lemma 3.2. The differential systems (1.2) under one of the conditions s1, s2, s3 or s4, either satisfy the con-
ditions of Theorem 1.1, or the eigenvalues of the singularity S2 = (x1, 0, 0, y1, 0, 0) do not have a fifth linearly
independent resonant lattice.

Proof. At the singularity S2 = (x1, 0, 0, y1, 0, 0), the 6-tuple of eigenvalues of the linear part of the differential
systems (1.2) are given by

λ =

⎛
⎝0, 0,−

√
A2 −

√
B2

2
,

√
A2 −

√
B2

2
,−

√
A2 +

√
B2

2
,

√
A2 +

√
B2

2

⎞
⎠ , (3.5)

where

A2 = −((a1 − a2)(a1 − a3) + b2
1)(x

2
1 + y2

1) + 2((a2 − 2a1 + a3)b1 − b2b3)x1y1,

B2 = A2
2 − 4Δ2,

with

Δ2 =((a1 − a2)b1(x2
1 + y2

1) + ((a1 − a2)2 + b2
1 − b2

2)x1y1)
× ((a1 − a3)b1(x2

1 + y2
1)((a1 − a3)2 + b2

1 − b2
3)x1y1).

Now direct calculations show that under one of the conditions s1, s2, s3, s4, the equation Δ2 = 0 yields that either
b1 = ±b3, a1 = a3 and b2 = 0; or b2 = b1 = 0 and a1 = a2; or b1 = b2 = 0 and b3 = ±(a2 − a3) = ±(a1 − a3).
This last condition in fact splits into four different conditions. In all the cases we are under the conditions
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of Theorem 1.1. Then, under one of the conditions s1, s2, s3 or s4, either Δ2 = 0 and then we are under the
conditions of Theorem 1.1, or Δ2 �= 0. Now, working in a similar way as we did for the singularities S1 for studying
if there is a fifth linearly independent resonant lattice at S1, we need to check if

√
A2 −

√
B2/

√
A2 +

√
B2 �= 0

is a rational number. For S2 under one of the conditions s1, s2, s3 or s4 we write√
A2 −

√
B2√

A2 +
√

B2

=
m2

n2
, m2, n2 ∈ Z \ {0} coprime.

This last equation can be written as
Δ2

A2
2

=
m2

2n
2
2

(n2 + m2)2
· (3.6)

Clearly we have that A2 �= 0, otherwise
√

A2 −
√

B2/
√

A2 +
√

B2 is not a rational number. Δ2 should be a
square of (a1 − a2)b1(x2

1 + y2
1)+ ((a1 − a2)2 + b2

1− b2
2)x1y1 or of (a1 − a3)b1(x2

1 + y2
1)+ ((a1 − a3)2 + b2

1 − b2
3)x1y1.

Without loss of generality we can write it as

(a1 − a2)b1(x2
1 + y2

1) + ((a1 − a2)2 + b2
1 − b2

2)x1y1

= L2
2((a1 − a3)b1(x2

1 + y2
1) + ((a1 − a3)2 + b2

1 − b2
3)x1y1), (3.7)

and it is easy to check that A2/((a1 − a3)b1(x2
1 + y2

1) + ((a1 − a3)2 + b2
1 − b2

3)x1y1) is a constant. Set

A2 = K2((a1 − a3)b1(x2
1 + y2

1) + ((a1 − a3)2 + b2
1 − b2

3)x1y1). (3.8)

Then, from (3.7) and (3.8) equating to zero the coefficients of the monomials in the variables x1 and y1 we have

−b1(−a1 + a2 + L2
2(a1 − a3)) = 0,

(a1 − a2)2 + b2
1 − b2

2 − L2
2((a1 − a3)2 + b2

1 − b2
3) = 0,

(a1 − a3)(a2 − a1) − b2
1 + b1K2(a3 − a1) = 0,

2b1(a2 + a3 − 2a1) − 2b2b3 − K2((a1 − a3)2 + b2
1 − b2

3) = 0, (3.9)

where L2/K2 = m2n2/(n2
2 + m2

2) �= 0. For the conditions s1 and s2 we have that the solutions of (3.9) are

b3 = ±(a1 − a3), a1 = a2;

b3 = ±L2
2 − 1
L2

2

(a1 − a2), K = ±(1 + L2
2), a3 = a1 +

a2 − a1

L2
2

,

where the last condition corresponds in fact to four conditions. In all cases we are under the assumptions of
Theorem 1.1 (note that in the last four cases we have in fact that b3 = ±(a2 − a3)). Finally, for the conditions
s3 and s4 we have that the solutions of (3.9) are

a2 = a1, b1 = 0;
b1 = ±(a1 − a2) = ±(a1 − a3), K2

2 = 4, L2
2 = 1;

b1 = ±(a1 − a2), K2 = ∓(1 + L2
2), a3 = a1 ∓ b1

L2
2

,

where every one of the two last conditions correspond in fact to two conditions. In all cases we are under the
assumptions of Theorem 1.1 (note that in the last four cases we also have that b3 = ±(a2 − a3)). This ends the
proof of the lemma. �
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From Theorem 3.1 and Lemma 3.2 we have proved that in the case (i) the differential systems (1.2) either
satisfy the conditions of Theorem 1.1, or have at most four functionally independent polynomial first integrals.
Next we consider the case (ii).

In case (ii) Δ1/A
2
1 has the form m2

1n
2
1/(n1+m1)2 with m, n ∈ Z\{0} coprime. So it follows from the expressions

of Δ1 and A1 that Δ1 should be a square of (a2−a1)b2(x2
2 +y2

2)+((a1−a2)2 +b2
2−b2

1)x2y2 or of (a2−a3)b2(x2
2 +

y2
2) + ((a2 − a3)2 + b2

2 − b2
3)x2y2. Without loss of generality we can write it as

(a2 − a1)b2(x2
2 + y2

2) + ((a1 − a2)2 + b2
2 − b2

1)x2y2

= L2
1((a2 − a3)b2(x2

2 + y2
2) + ((a2 − a3)2 + b2

2 − b2
3)x2y2), (3.10)

and it is easy to check that A1/((a2 − a3)b2(x2
2 + y2

2) + ((a2 − a3)2 + b2
2 − b2

3)x2y2) is a constant. Set

A1 = K1((a2 − a3)b2(x2
2 + y2

2) + ((a2 − a3)2 + b2
2 − b2

3)x2y2). (3.11)

Then, from (3.10) and (3.11) equating to zero the coefficients of the monomials in the variables x2 and y2 we
have

−b2(a1 − a2 + L2
1(a2 − a3)) = 0,

(a1 − a2)2 − b2
1 + b2

2 − L2
1((a2 − a3)2 + b2

2 − b2
3) = 0,

(a1 − a2)(a3 − a2) + b2
2 + b2K1(a2 − a3) = 0,

−2b2(a1 + a3 − 2a2) + 2b1b3 + K1((a2 − a3)2 + b2
2 − b2

3) = 0, (3.12)

where L1/K1 = m1n1/(n2
1 + m2

1) �= 0.

Subcase (ii.1): If K2
1 = 4L2

1, solving (3.12), using that (b1, b2, b3) �= (0, 0, 0) and bi, ai ∈ R for i = 1, 2, 3 we
obtain

b1 = ±(a2 − a1), b3 = 0, b2 = 0, a2 = a3;
b1 = 0, b2 = 0, a1 = a2, b3 = ±(a3 − a2),

b1 = b3L1, a1 = a2 + b2L1, a3 = a2 +
b2

L1
·

Note that the first four conditions are inside the conditions of Theorem 1.1. Now we consider the last condition.

Lemma 3.3. The differential systems (1.2) under condition

s5 =
{

b1 = b3L1, a1 = a2 + b2L1, a3 = a2 +
b2

L1

}

either satisfy the conditions of Theorem 1.1, or the eigenvalues of the singularity S2 do not have a fifth linearly
independent resonant lattice.

Proof. At the singularities S2, the 6-tuple of eigenvalues of the linear part of the differential systems (1.2)
are given in (3.5). Direct calculations show that under the condition s5, the equation Δ2 = 0 yields that
either b2 = b3 = 0, which is not possible since otherwise bi = 0 for i = 1, 2, 3, or L2

1 = 1 and then b1 = b3,
b2 = a1 − a2 = a3 − a2. Hence a1 = a3. Thus, we are under the assumptions of Theorem 1.1. Then, under
condition s5 either Δ2 = 0 and we are under the assumptions of Theorem 1.1, or Δ2 �= 0. Now, working in a
similar way as we did for the singularities S1 for studying if there is a fifth linearly independent resonant lattice
at S1, we need to check if

√
A2 −

√
B2/

√
A2 +

√
B2 �= 0 is a rational number. For S2 under the condition s5

we have that
Δ2

A2
2

=
(L2

1 − 1)(b2
3L

2
1x1y1 + b2

2(L
2
1 − 1)x1y1 + b2b3L

2
1(x

2
1 + y2

1))
2

L2
1(4b2b3L2

1x1y1 + b2
3L

2
1(x

2
1 + y2

1) + b2
2(L

2
1 − 1)(x2

1 + y2
1))2

·
Since L1 �= 0 this shows that there always exist infinitely many singularities S2 which cannot satisfy condi-
tion (3.6). At these singularities S2 the eigenvalues do not have a fifth linearly independent resonant lattice. �
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From Theorem 3.1 and Lemma 3.3 we have proved that in the case (ii.1), the differential systems (1.2) either
satisfy the conditions in Theorem 1.1 or have at most four functionally independent polynomial first integrals.
Subcase (ii.2): If K2

1 �= 4L2
1, solving (3.12), using that (b1, b2, b3) �= (0, 0, 0) and bi, ai ∈ R for i = 1, 2, 3 we

obtain (note that K2
1 − 4L2

1 = K2
1(m1 − n1)2(m1 + n1)2/(m2

1 + n2
1)

2 > 0),

b1 =
b2

2
(2σ1 + K1σ2 + σ3

√
K2

1 − 4L2
1), a1 = a2 +

b2

2

(
K1 + σ4

√
K2

1 − 4L2
1

)
,

b3 =
b2

2L2
1

(
σ5K1 + 2σ6L

2
1 + σ7

√
K2

1 − 4L2
1

)
, a3 = a2 +

b2

2L2
1

(
K1 + σ8

√
K2

1 − 4L2
1

)
;

b1 = ∓ 2L2
1√

K2
1 − 4L2

1

(a2 − a3), a1 = a2, b3 = ∓ K1√
K2

1 − 4L2
1

(a2 − a3), b2 = 0;

b1 =
b3K1

2
, a1 = a2 ∓ b3

2

√
K2

1 − 4L2
1, a3 = a2, b2 = 0;

with (σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8) equal to

(1,−1, 1,−1, 1,−1,−1,−1), (1, 1,−1,−1, 1, 1,−1,−1),

(1, 1, 1, 1, 1, 1, 1, 1), (−1,−1,−1, 1,−1,−1,−1, 1),
(−1, 1, 1, 1,−1, 1,−1, 1), (−1,−1, 1,−1,−1,−1, 1,−1),
(1,−1,−1, 1, 1,−1, 1, 1), (−1, 1,−1,−1,−1, 1, 1,−1).

We remark that the second case is in fact four cases. We note that the first eight cases can be written, in
particular, as one of the following four conditions

b1 = a2 − a1 + b2 and b3 = a3 − a2 − b2,

b1 = a1 − a2 + b2 and b3 = a3 − a2 + b2,

b1 = a2 − a1 − b2 and b3 = a2 − a3 − b2,

b1 = a1 − a2 − b2 and b3 = a2 − a3 + b2.

These cases are all inside the conditions of Theorem 1.1. Now we consider the six last conditions and we set

s6,7 =

{
b1 = ∓2L2

1(a2 − a3)√
K2

1 − 4L2
1

, a1 = a2, b3 = −K1(a2 − a3)√
K2

1 − 4L2
1

, b2 = 0

}
,

s8,9 =

{
b1 = ∓2L2

1(a2 − a3)√
K2

1 − 4L2
1

, a1 = a2, b3 =
K1(a2 − a3)√

K2
1 − 4L2

1

, b2 = 0

}
,

s10,11 =
{

b1 =
b3K1

2
, a1 = a2 ∓ b3

2

√
K2

1 − 4L2
1, a3 = a2, b2 = 0

}
. (3.13)

Lemma 3.4. The differential systems (1.2) under one of the conditions s6, . . . , s9 or s10, s11, either satisfy
the conditions of Theorem 1.1, or the eigenvalues of the singularity S2 do not have a fifth linearly independent
resonant lattice.

Proof. At the singularities S2, the 6-tuple of eigenvalues of the linear part of the differential systems (1.2) are
given in (3.5). Now direct calculations show that under one of the conditions s6, . . . , s9, the equation Δ2 = 0
yields a2 = a3, which is not possible since otherwise bi = 0 for i = 1, 2, 3. Then, under one of the conditions
s6, . . . , s9, we have Δ2 �= 0. Now working in a similar way as we did for the singularities S1 for studying if there
is a fifth linearly independent resonant lattice at S2, we need to check if

√
A2 −

√
B2/

√
A2 +

√
B2 �= 0 is a
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rational number. Since on either s6, . . . , s9 we have

∣∣∣∣Δ2

A2
2

∣∣∣∣ =
L2

1(K
2
1 − 4L2

1)
(√

K2
1 − 4L2

1(x
2
1 + y2

1) + 2(L2
1 − 1)x1y1

)
2
( − K2

1x1y1 + L2
1(

√
K2

1 − 4L2
1(x

2
1 + y2

1) + 4x1y1)
)2 x1y1,

and since L2
1(K

2
1 − 4L2

1) �= 0 this shows that there always exist infinitely many singularities S2 which cannot
satisfy condition (3.6). At these singularities S2 the eigenvalues do not have a fifth linearly independent resonant
lattice.

Now direct calculations show that under one of the conditions s10, s11 using that K2
1 �= 4L2

1, the equation
Δ2 = 0 yields b3 = 0 which is not possible since otherwise bi = 0 for i = 1, 2, 3. Then, under one the conditions
s10, s11 we have Δ2 �= 0. Now working in a similar way as we did for the cases s6, . . . , s9, we must have that
under one of the conditions s10, s11, condition (3.6) must hold. However, since Δ2/A

2
2 = N1N2/D1 with

N1 = K1

√
K2

1 − 4L2
1(x

2
1 + y2

1) + 2(K2
1 − 2L2

1)x1y1,

N2 = K1

√
K2

1 − 4L2
1(x

2
1 + y2

1) + 2(K2
1 − 2L2

1 − 2)x1y1,

D1 = 4
(
(K2

1 − 2L2
1)(x

2
1 + y2

1) + 2K1

√
K2

1 − 4L2
1x1y1

)2
,

and since L1K1(K2
1 − 4L2

1) �= 0 this shows again that there always exist infinitely many singularities S2 which
cannot satisfy condition (3.6). At these singularities S2 the eigenvalues do not have a fifth linearly independent
resonant lattice. �

From Theorem 3.1 and Lemma 3.4 we have proved that in the case (ii.2), the differential systems (1.2) either
satisfy the conditions in Theorem 1.1 or have at most four functionally independent polynomial first integrals.

In short, if cases (i) or (ii) hold then the conditions given in Theorem 1.1 are satisfied and by Corollary 1.2
the differential systems (1.2) are completely integrable. If cases (i) and (ii) do not hold then by Theorem 3.1
the differential systems (1.2) can have at most four analytic integrals in a neighborhood of a point of S.
Consequently the differential systems (1.2) have at most four functionally independent polynomial first integrals.
This completes the proof of Theorem 1.3
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