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CHARACTERIZATION OF GRADIENT YOUNG MEASURES GENERATED
BY HOMEOMORPHISMS IN THE PLANE ∗

Barbora Benešová1,2 and Martin Kruž́ık1,2,3

Abstract. We characterize Young measures generated by gradients of bi-Lipschitz orientation-
preserving maps in the plane. This question is motivated by variational problems in nonlinear elasticity
where the orientation preservation and injectivity of the admissible deformations are key requirements.
These results enable us to derive new weak∗ lower semicontinuity results for integral functionals de-
pending on gradients. As an application, we show the existence of a minimizer for an integral functional
with nonpolyconvex energy density among bi-Lipschitz homeomorphisms.

Mathematics Subject Classification. 49J45, 35B05.

Received May 13, 2014. Revised November 14, 2014.
Published online January 28, 2016.

1. Introduction

The aim of this paper is to describe oscillatory properties of sequences of gradients of bi-Lipschitz maps in
the plane that preserve the orientation, i.e., the gradients of which have a positive determinant. Such mappings
naturally appear in non-linear hyperelasticity where they act as deformations.

Although there are more general definitions of a deformation, i.e. a function y : Ω → Rn that maps each point
in the reference configuration to its current position, we confine ourselves to the one by Ciarlet ([9], p. 27) which
requires injectivity in the domain Ω ⊂ Rn, sufficient smoothness and orientation preservation. Here, “sufficient
smoothness” will mean that a considered deformation will be a homeomorphism in order to prevent cracks or
cavitation and its (weak) deformation gradient will be integrable, i.e. y ∈ W 1,p(Ω; Rn) with 1 < p ≤ +∞.

Clearly, a deformation is an invertible map but, in our modeling, we put an additional requirement on y−1 –
namely, it should again qualify as a deformation, which is motivated by the fact that we aim to model the elastic
response of the specimen. In the elastic regime, the specimen returns to its original shape after all loads are
released and so, since the rôles of the reference and the deformed configuration can be exchanged, we would
like to understand the releasing of loads as applying a new loading, inverse to the original one, in the deformed
configuration and the “return” of the specimen as the corresponding deformation. Thus, we define the following
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set of deformations

W 1,p,−p
+ (Ω; Rn) =

{
y : Ω �→ y(Ω) an orientation preserving homeomorphism;
y ∈ W 1,p(Ω; Rn) and y−1 ∈W 1,p(y(Ω); Rn)

}
. (1.1)

Although invertibility of deformations is a fundamental requirement in elasticity it is still often omitted in
modeling due to the lack of appropriate mathematical tools to handle it. However, let us mention that some
ideas of incorporating invertibility of the deformation already appeared e.g. in [4, 10, 15, 18, 19, 27, 28, 32] and
very recently e.g. in [14, 20].

Stable states of the specimen are found by minimizing

J(y) =
∫

Ω

W (∇y(x)) dx, (1.2)

where W : Rn×n → R is the stored energy density, i.e. the potential of the first Piola–Kirchhoff stress tensor,
over the set of admissible deformations (1.1); possibly with respect to a Dirichlet boundary condition y = y0
on ∂Ω.

A natural, still open, question is under which minimal conditions on a continuous W satisfying W (A) = +∞
if detA ≤ 0 and

W (A) → +∞ whenever det A→ 0+ (1.3)

we can guarantee that J is weakly lower-semicontinuous on (1.1). In fact, Problem 1 in Ball’s paper [6]: “Prove
the existence of energy minimizers for elastostatics for quasiconvex stored-energy functions satisfying (1.3)” is
closely related.

Here we answer this question for the special case of bi-Lipschitz mappings in the plane; i.e. we restrict our
attention to the setting p = ∞, n = 2. It is natural to conjecture that the sought equivalent characterization
of weak* lower semicontinuity will lead to a suitable notion of quasiconvexity. We confirm this conjecture and
show that J is weakly* lower semicontinuous on W 1,∞,−∞

+ (Ω; R2) if and only if it is bi-quasiconvex in the sense
of Definition 3.1.
Remark 1.1 (Quasiconvexity). We say that W is quasiconvex if

|Ω|W (A) ≤
∫

Ω

W (A+ ∇ϕ(x)) dx (1.4)

holds for all ϕ ∈ W 1,∞
0 (Ω; Rn) and all A ∈ Rn×n [25]. It is well-known [12] that if W takes only finite values

and is quasiconvex then J in (1.2) is weakly* lower semicontinuous on W 1,∞(Ω; Rn) and so, in particular, also
on W 1,∞,−∞

+ (Ω; R2).
Nevertheless, as we shall see, classical quasiconvexity is too restrictive in the bi-Lipschitz setting; indeed,

since we narrowed the set of deformations it can be expected that a larger class of energies will lead to weak*
lower semicontinuity of J . This can be also understood from a mechanical point of view: quasiconvex materials
are described by energies having the property that among all deformations with affine boundary data the affine
ones are stable. Thus, since we now restricted the set of deformations it seems natural to verify (1.4) only
for bi-Lipschitz functions; this is indeed the sought after convexity notion which we call bi-quasiconvexity (cf .
Def. 3.1).

To prove our main result, we completely and explicitly characterize gradient Young measures generated by
sequences in W 1,∞,−∞

+ (Ω; R2) (cf . Sect. 3). Young measures extend the notion of solutions from Sobolev map-
pings to parametrized measures [5,17,29–31,33,34,36]. The idea is to describe the limit behavior of {J(yk)}k∈N

along a minimizing sequence {yk}k∈N. Actually, one needs to work with the so-called gradient Young mea-
sures because it is the gradient of the deformation entering the energy in (1.2). Their explicit characterization
is due to Kinderlehrer and Pedregal [21, 22]; however, it does not take into account any constraint on deter-
minants or invertibility of the generating mappings. In spite of this drawback, gradient Young measures are
massively used in literature to model solid-to-solid phase transitions as appearing in, e.g., shape memory alloys;
cf . [7, 24, 26, 29, 30].
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Yet, not excluding matrices with a negative determinant may add non-realistic phenomena to the model.
Indeed, it is well-known that the modeling of solid-to-solid phase transitions via Young measures is closely
related to the so-called quasiconvex envelope of W which must be convex along rank-one lines, i.e. lines whose
elements differ by a rank-one matrix. Not excluding matrices with negative determinants, however, adds many
non-physical rank-one lines to the problem. Notice, for instance, that any element of SO(2) is on a rank-one line
with any element of O(2) \ SO(2). Consequently, the determinant must inevitably change its sign on such line.

The first attempt to include constraints on the sign of the determinant of the generating sequence appeared
in [2] where quasi-regular generating sequences in the plane were considered; however injectivity of the mappings
could only be treated in the homogeneous case. Then, in [8] the characterization of gradient Young measures
generated by sequences whose gradients are invertible matrices for the case where gradients as well as their
inverse matrices are bounded in the L∞-norm was given. Very recently, Koumatos et al. [23] characterized
Young measures generated by orientation preserving maps in W 1,p for 1 < p < n; however they did not account
for the restriction that deformations should be injective.

Therefore, this contribution (to our best knowledge) presents the first characterization of Young measures
that are generated by sequences that are orientation-preserving and globally invertible and so qualify to be
admissible deformations in elasticity.

Generally speaking, the main difficulty in characterizing sets of Young measures generated by deformations
(or, at least, mappings having constraints on the invertibility and/or determinant of the deformation gradient)
is that this constraint is non-convex. Thus, many of the standardly used techniques such as smoothing by a
mollifier kernel are not applicable. In our context, we need to be able to modify the generating sequence on a
vanishingly small set near the boundary to have the same boundary conditions as the limit; i.e. to construct
a cut-off technique. It can be seen from (1.4), that standard proofs of characterizations of gradient Young
measures [21,22] or weak lower semicontinuity of quasiconvex functionals [12] will rely on such techniques since
the test functions in (1.4) have fixed boundary data. Usually, the cut-off is realized by convex averaging which
is, of course, ruled out here. Novel ideas in [8, 23] are to solve differential inclusions near the boundary to
overcome this drawback. This allows to impose restrictions on the determinant of the generating sequence in
several “soft-regimes”; nevertheless, such techniques have not been generalized to more rigid constraints like the
global invertibility.

Here we follow a different approach and, for bi-Lipschitz mappings in the plane, we obtain the result by
exploiting bi-Lipschitz extension theorems [13,35]. Thus, by following a strategy inspired by [14] we modify the
generating sequence (on a set of gradually vanishing measure near the boundary) first on a one-dimensional
grid and then extend it. The main reason why we confine ourselves to the bi-Lipschitz case and do not work in
W 1,p,−p

+ (Ω; R2) with p < ∞ is the fact that our technique relies on the extension theorem or, in other words,
a full characterization of traces of bi-Lipschitz functions. To our best knowledge, such a characterization is at
the moment completely open in W 1,p,−p

+ (Ω; R2) with p < ∞. Still, let us point out its importance for finding
minimizers of J over (1.1): in fact, constructing an extension theorem allows to precisely characterize the set of
Dirichlet boundary data admissible for this problem. Notice that this question appears also in the existence proof
for polyconvex materials and usually one assumes there that the set of admissible deformations is nonempty; [9].

Remark 1.2 (Growth conditions). Even though in this paper we restrict our attention to bi-Lipschitz functions,
let us point under which growth of the energy we can guarantee that the minimizing sequence of J lies in
W 1,p,−p

+ (Ω; Rn). Namely, it follows from the works of Ball [3, 4] that it suffices to require that W is finite only
on the set of matrices with positive determinant and (“cof” stands for the cofactor in dimension 2 or 3)

C

(
|A|p +

1
det A

+
|cof(A)|p
det Ap−1

− 1
)

≤W (A) ≤ C

(
|A|p +

1
det A

+
|cof(A)|p
det Ap−1

+ 1
)
, (1.5)

as well as fix suitable boundary data (for example bi-Lipschitz ones)4.

4 As pointed above, since the traces of functions in W 1,p,−p
+ (Ω; R2) are not precisely characterized to date, it is hard to decide

what “suitable boundary data” are. In any case, in the plane bi-Lipschitz boundary data are sufficient.
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Polyconvexity, i.e. convexity in all minors of A, is fully compatible with such growth conditions (they are
themselves polyconvex) whence if W is polyconvex minimizers of (1.2) over W 1,p(Ω; Rn), p > n are indeed
deformations; i.e. are globally invertible and elements of W 1,p,−p

+ (Ω; Rn). We refer, e.g., to [9, 12] for various
generalizations of this result. However, while polyconvexity is a sufficient condition it is not a necessary one.

On the other hand, classical results on quasiconvexity yielding existence of minimizers [12] are compatible
with neither the growth conditions proposed in this remark nor (1.3). In fact, existence of a minimizer of (1.2)
on W 1,p(Ω; Rn) for quasiconvex W can be, to date, proved only if

c (−1 + |A|p) ≤W (A) ≤ c̃ (1 + |A|p) . (1.6)

The reason why the current proofs of existence of minimizers for quasiconvex cannot be extended to (1.5) is
exactly the non-convexity detailed above.

The plan of the paper is as follows. We first introduce necessary definitions and tools in Section 2. Then
we state the main results in Section 3. Proofs are postponed to Section 4 while the novel cut-off technique is
presented in Section 5.

2. Preliminaries

Before stating our main theorems in Section 3, let us summarize, at this point, the notation as well as
background information that we shall use later on.

We define the following subsets of the set of invertible matrices:

R2×2
� =

{
A ∈ R2×2 invertible; |A−1| ≤ � & |A| ≤ �

}
, (2.1)

R2×2
�+ =

{
A ∈ R2×2

� ; det A > 0
}

(2.2)

for 1 ≤ � <∞. Note that both R2×2
� and R2×2

�+ are compact. Set

R2×2
inv =

⋃
�

R2×2
� R2×2

inv+ =
⋃
�

R2×2
�+ .

We assume that the matrix norm used above is sub-multiplicative, i.e. that |AB| ≤ |A||B| for all A,B ∈ R2×2

and such that the norm of the identity matrix is one. This means that if A ∈ R2×2
�+ then min(|A|, |A−1|) ≥ 1/�.

Definition 2.1. A mapping y : Ω → R2 is called L-bi-Lipschitz (or shortly bi-Lipschitz) if there is L ≥ 1 such
that for all x1, x2 ∈ Ω

1
L
|x1 − x2| ≤ |y(x1) − y(x2)| ≤ L|x1 − x2|. (2.3)

The number L is called the bi-Lipschitz constant of y.

This means that y as well as its inverse y−1 are Lipschitz continuous, hence y is homeomorphic. Notice that
1
L ≤ |∇y(x)| ≤ L for almost all x ∈ Ω.

Definition 2.2. We say that {yk}k∈N ⊂ W 1,∞,−∞
+ (Ω; R2) is bounded in W 1,∞,−∞

+ (Ω; R2) if the bi-Lipschitz
constants of yk, k ∈ N, are uniformly bounded and {yk}k∈N is bounded in W 1,∞(Ω; Rn). Moreover, we say that
yk

∗
⇀ y in W 1,∞,−∞

+ (Ω; R2) if the sequence is bounded and yk
∗
⇀ y in W 1,∞(Ω; R2).

We would like to stress the fact that W 1,∞,−∞
+ (Ω; R2) is not a linear function space.
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Remark 2.3. Notice that if yk
∗
⇀ y in W 1,∞,−∞

+ (Ω; R2), we can give a precise statement on how the inverses
of {yk} converge if the target domain is fixed throughout the sequence; i.e. if yk : Ω → Ω̃ for all k ∈ N. This
can be achieved for example by fixing Dirichlet boundary data through the sequence.

In such a case it is easy to see that y−1
k

∗
⇀ y−1 in W 1,∞(Ω̃, Ω): Since the gradients of the inverses ∇y−1

k

are uniformly bounded by the uniform bi-Lipschitz constants, we may select at least a subsequence converging
weakly* in W 1,∞(Ω̃, Ω) and thus strongly in L∞(Ω̃, Ω). Nevertheless, the latter allows us to pass to the limit
in the identity y−1

k (yk(x)) = x for any x ∈ Ω and therefore to identify the weak* limit as y−1; in other words,
the weak limit is identified independently of the selected subsequence which assures that the whole sequence
{y−1

k }k∈N converges weakly* to y−1.

Let us now summarize the theorems on invertibility, extension from the boundary in the bi-Lipschitz case
and on approximation by smooth functions needed below.

Theorem 2.4 (Taken from [4]). Let Ω ⊂ Rn be a bounded Lipschitz domain. Let u0 : Ω → Rn be continuous
in Ω and one-to-one in Ω such that u0(Ω) is also bounded and Lipschitz. Let u ∈ W 1,p(Ω; Rn) for some p > n,
u(x) = u0(x) for all x ∈ ∂Ω, and let det∇u > 0 a.e. in Ω. Finally, assume that for some q > n∫

Ω

|(∇u(x))−1|qdet∇u(x) dx < +∞. (2.4)

Then u(Ω) = u0(Ω) and u is a homeomorphism of Ω onto u0(Ω). Moreover, the inverse map u−1 ∈
W 1,q(u0(Ω); Rn) and ∇u−1(z) = (∇u(x))−1 for z = u(x) and a.a. x ∈ Ω.

Remark 2.5. Let us point out that the original statement of Theorem 2.4 requires that u0(Ω) satisfies the
so-called cone condition and that Ω is strongly Lipschitz. These conditions hold if Ω and u0(Ω) are bounded
and Lipschitz domains (cf . [1], pp. 83–84).

Theorem 2.6 (Square bi-Lipschitz extension theorem due to [13] and previously [35]). There exists a geometric
constant C ≤ 81 · 63600 such that every L bi-Lipschitz map u : ∂D(0, 1) �→ R2 (with D(0, 1) the unit square)
admits a CL4 bi-Lipschitz extension v : D(0, 1) �→ Γ where Γ is the bounded closed set such that ∂Γ =
u(∂D(0, 1)).

Remark 2.7 (Rescaled squares). Let us note, that the theorem above holds with the same geometric constant
C also for rescaled squares D(0, ε) with some ε > 0, possibly small. Indeed, for u : ∂D(0, ε) �→ R2, we define the
rescaled function ũ : ∂D(0, 1) �→ R2 through ũ(x) = εu(x/ε); note that both functions have the same bi-Lipschitz
constant. This function is then extended to obtain ṽ : D(0, 1) �→ R2 as in the above theorem. Again we rescale
ṽ, under preservation of the bi-Lipschitz constant, to v : D(0, ε) �→ R2 v = 1

ε ṽ(εx). So, v is CL4 bi-Lipschitz
and, since ũ coincides with ṽ on the boundary of the unit square, v coincides with u on ∂D(0, ε).

Theorem 2.8 (Smooth approximation [20] and in the bi-Lipschitz case also by [14]). Let Ω ⊂ R2 be bounded
open and y ∈ W 1,p(Ω; R2) (1 < p < ∞) be an orientation preserving homeomorphism. Then it can be, in
the W 1,p-norm, approximated by diffeomorphisms having the same boundary value as y. Moreover, if y is bi-
Lipschitz, then there exists a sequence of diffeomorphisms {yk} having the same boundary value as y and yk,
y−1

k approximate y, y−1 in W 1,p-norm with 1 < p <∞, respectively.

2.1. Young measures

We denote by “rca(S)” the set of Radon measures on a set S. Young measures on a bounded domain Ω ⊂ Rn

are weakly* measurable mappings x �→ νx : Ω → rca(Rn×n) with values in probability measures; the adjective
“weakly* measurable” means that, for any v ∈ C0(Rn×n), the mapping Ω → R : x �→ 〈νx, v〉 =

∫
Rn×n v(s)νx(ds)

is measurable in the usual sense. Let us remind that, by the Riesz theorem, rca(Rn×n), normed by the total
variation, is a Banach space which is isometrically isomorphic with C0(Rn×n)∗, where C0(Rn×n) stands for
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the space of all continuous functions Rn×n → R vanishing at infinity. Let us denote the set of all Young
measures by Y(Ω; Rn×n). It is known (see e.g. [30]) that Y(Ω; Rn×n) is a convex subset of L∞

w (Ω; rca(Rn×n)) ∼=
L1(Ω;C0(Rn×n))∗, where the subscript “w” indicates the aforementioned property of weak* measurability
Let S ⊂ Rn×n be a compact set. A classical result [33] states that for every sequence {Yk}k∈N bounded in
L∞(Ω; Rn×n) such that Yk(x) ∈ S there exists a subsequence (denoted by the same indices for notational
simplicity) and a Young measure ν = {νx}x∈Ω ∈ Y(Ω; Rn×n) satisfying

∀v ∈ C(S) : lim
k→∞

v(Yk) =
∫

Rn×n

v(s)νx(ds) weakly* in L∞(Ω). (2.5)

Moreover, νx is supported on S̄ for almost all x ∈ Ω. On the other hand, if μ = {μx}x∈Ω, μx is supported on S
for almost all x ∈ Ω and x �→ μx is weakly* measurable then there exist a sequence {Zk}k∈N ⊂ L∞(Ω; Rn×n),
Zk(x) ∈ S and (2.5) holds with μ and Zk instead of ν and Yk, respectively.

Let us denote by Y∞(Ω; Rn×n) the set of all Young measures which are created in this way, i.e. by taking
all bounded sequences in L∞(Ω; Rn×n). Moreover, we denote by GY∞(Ω; Rn×n) the subset of Y∞(Ω; Rn×n)
consisting of measures generated by gradients of {yk}k∈N ⊂W 1,∞(Ω; Rn), i.e. Yk = ∇yk in (2.5). The following
result is due to Kinderlehrer and Pedregal [21, 22] (see also [26, 29]):

Theorem 2.9 (adapted from [21, 22]). Let Ω be a bounded Lipschitz domain. Then the parametrized measure
ν ∈ Y∞(Ω; Rn×n) is in GY∞(Ω; Rn×n) if and only if

(1) there exists z ∈W 1,∞(Ω; Rn) such that ∇z(x) =
∫

Rn×n Aνx(dA) for a.e. x ∈ Ω,
(2) ψ(∇z(x)) ≤ ∫

Rn×n ψ(A)νx(dA) for a.e. x ∈ Ω and for all ψ quasiconvex, continuous and bounded from
below,

(3) supp νx ⊂ K for some compact set K ⊂ Rn×n for a.e. x ∈ Ω.

3. Main results

We shall denote, for � ≥ 1,

GY∞,−∞
�

(
Ω; R2×2

)
=

{
ν ∈ Y∞ (

Ω; R2×2
)

that are generated by �-bi-Lipschitz, orientation preserving maps
}
,

and
GY∞,−∞

+

(
Ω; R2×2

)
=

⋃
�≥1

GY∞,−∞
�

(
Ω; R2×2

)
.

As already pointed out in the introduction we seek for an explicit characterization of GY∞,−∞
+

(
Ω; R2×2

)
; it can

be expected that, when compared to [21], we shall restrict the support of the Young measure as in [2,8,23] but
also alter the Jensen’s inequality by changing the notion of quasiconvexity.

Definition 3.1. Suppose v : R2×2 → R∪{+∞} is bounded from below and Borel measurable. Then we denote

Zv(A) = inf
ϕ∈W 1,∞,−∞

A (Ω;R2)
|Ω|−1

∫
Ω

v(∇ϕ(x)) dx,

with

W 1,∞,−∞
A

(
Ω; R2

)
=

{{
y ∈ W 1,∞,−∞

+

(
Ω; R2

)
; y(x) = Ax if x ∈ ∂Ω

}
if det A > 0,

∅ else.

and say that v is bi-quasiconvex on R2×2
inv+ if Zv(A) = v(A) for all A ∈ R2×2

inv+. Here we set inf ∅ = +∞.
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Remark 3.2.

(1) Notice that actually Zv(A) ≤ v(A) if det A > 0 and Zv(A) = +∞ otherwise, so that Zv �≤ v in general.
Moreover, the infimum in the definition of Zv(A) is, generically, not attained.

(2) Any v as in Definition 3.1 bi-quasiconvex if and only if

|Ω|v(A) ≤
∫

Ω

v(∇ϕ(x)) dx (3.1)

for all ϕ ∈ W 1,∞,−∞
+ (Ω; R2), ϕ = Ax on ∂Ω and all A ∈ R2×2

inv+. Indeed, clearly if v is bi-quasiconvex
then (3.1) holds. On the other hand, if (3.1) holds, we have that v(A) ≤ Zv(A) for A ∈ R2×2

inv+ by taking
the infimum in (3.1). Moreover, Zv(A) ≤ v(A) for such A, so that Zv(A) = v(A).

(3) We recall that the condition of bi-quasiconvexity is less restrictive than the usual quasiconvexity and there
obviously exist bi-quasiconvex functions on R2×2 which are not quasiconvex (for example, take v : R → R

with v(0) = 1 and v(A) = 0 if A �= 0.). Also, we can allow for the growth (1.3).
(4) It is interesting to investigate whether, for any v as from Definition 3.1, Zv(A) is already a bi-quasiconvex

function. If one wants to follow the standard approach known from the analysis of classical quasiconvex
function [12], this consists in showing that Zv can be actually replaced by Z ′v defined through

Z ′v(A) = inf
ϕ∈W 1,∞,−∞

A (Ω;R2) piecewise affine
|Ω|−1

∫
Ω

v(∇ϕ(x)) dx,

and that the latter is bi-quasiconvex. To do so, one relies on the density of piecewise affine function which,
in our case, is available through Theorem 2.8. Moreover, to employ the density argument, one needs to show
that Z ′v is rank-1 convex on R2×2

inv+ and hence continuous. This is done by constructing a sequence of faster
and faster oscillating laminates that are altered near the boundary to meet the boundary condition. Now,
since an appropriate cut-off technique becomes available through this work, it seems that this approach
should be feasible. Nevertheless, the details are beyond the scope of the present paper and we leave them
for future work.
Let us remark that an alternative to the above methods may be possible along the lines of the recent
work [11].

The main result of our paper is the following characterization theorem.

Theorem 3.3. Let Ω ⊂ R2 be a bounded Lipschitz domain. Let ν ∈ Y∞(Ω; R2×2). Then ν ∈
GY∞,−∞

+

(
Ω; R2×2

)
if and only if the following three conditions hold:

∃� ≥ 1 s.t. supp νx ⊂ R2×2
�+ for a.a. x ∈ Ω, (3.2)

∃ u ∈ W 1,∞,−∞
+ (Ω; R2) : ∇u(x) =

∫
R

2×2
inv+

Aνx(dA), (3.3)

∃c̄(�) > � such that for a.a. x ∈ Ω, all �̃ ∈ [c̄(�); +∞], and all v ∈ O(�̃) the following inequality is valid

Zv(∇u(x)) ≤
∫

R
2×2
inv+

v(A)νx(dA), (3.4)

with
O(�) =

{
v : R2×2 → R ∪ {+∞}; v ∈ C

(
R2×2

�

)
, v(A) = +∞ if A ∈ R2×2 \R2×2

�+

}
. (3.5)

An easy corollary is the following:

Corollary 3.4. Let Ω ⊂ R2 be a bounded Lipschitz domain. Let v be in O(+∞). Let {yk}k∈N ⊂
W 1,∞,−∞

+ (Ω; R2) and suppose that yk
∗
⇀ y in W 1,∞,−∞

+ (Ω; R2). Then v is bi-quasiconvex if and only if
y �→ I(y) =

∫
Ω
v(∇y(x)) dx is sequentially weakly* lower semicontinuous with respect to the convergence above.
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Finally, as an application we can state the following statement about the existence of minimizers.

Proposition 3.5. Let Ω ⊂ R2 be a bounded Lipschitz domain and let 0 ≤ v ∈ O(+∞) be bi-quasiconvex. Let
further ε > 0 and define Iε : W 1,∞,−∞

+ (Ω; R2) → R

Iε(u) =
∫

Ω

v(∇u(x)) dx + ε
(‖∇u‖L∞(Ω;R2×2) + ‖∇u−1‖L∞(u(Ω);R2×2)

)
.

Let u0 ∈W 1,∞,−∞
+

(
Ω; R2

)
and

A =
{
u ∈ W 1,∞,−∞

+

(
Ω; R2

)
; u = u0 on ∂Ω

}
.

Then there is a minimizer of Iε on A.

Remark 3.6.

(1) Note that, we needed in Theorem 3.3 that �̃ > � so that boundedness of
∫

Ω
v(∇yk)dx does not yield the

right L∞-constraint of the gradient of the minimizing sequence. This is actually a known fact in the L∞-
case [21] and is usually overcome by assuming that the generating sequence does not need to be Lipschitz
but is only bounded in some W 1,p(Ω; R2) space. Alternatively, one can use Proposition 3.5 stated above.

(2) It will follow from the proof that the constant c̄(�) is actually determined by the extension Theorem 2.6.
(3) Note that if one can show that Zv is already a bi-quasiconvex function (cf . Rem. 3.2(4)) then (3.4) can be

replaced by requiring that

v(∇u(x)) ≤
∫

R
2×2
inv+

v(A)νx(dA) (3.6)

is fulfilled for all bi-quasiconvex v in O(�̃). Indeed, (3.6) follows directly from (3.4) if v is bi-quasiconvex.
On the other hand, if (3.6) holds and if we knew that Zv is bi-quasiconvex, we know that

Zv(∇u(x)) ≤
∫

R
2×2
inv+

Zv(A)νx(dA) ≤
∫

R
2×2
inv+

v(A)νx(dA),

where the second inequality is due to Remark 3.2(1).

4. Proofs

Here we prove Theorem 3.3. Actually, we follow in large parts [21,29] since, as pointed out in the introduction,
the main difficulty lies in constructing an appropriate cut-off which we do in Section 5; so, we mostly just sketch
the proof and refer to these references.

4.1. Proof of Theorem 3.3 – necessity

Condition (3.2) follows from [8], Propositions 2.4 and 3.3 and from the fact that any Young measure generated
by a sequence bounded in the L∞ norm is supported on a compact set.

In order to show (3.3), realize that it expresses the fact that the first moment of ν is just the weak* limit of a
generating sequence {∇yk} ⊂ L∞(Ω; R2×2). The sequence {yk} is also bounded in W 1,∞,−∞

+ (Ω; R2) and {yk}
converges strongly to some y ∈ W 1,∞(Ω; R2). Passing to the limit in (2.3) written for yk instead of y shows that
y is bi-Lipschitz. The L∞- weak* convergence of det∇yk to det∇y finally implies that y ∈W 1,∞,−∞

+ (Ω; R2) as
a bi-Lipschitz map cannot change sign of its Jacobian on Ω.

To prove (3.4) we follow a standard strategy, e.g., as in [29]. First, we show that almost every individual
measure νx is a homogeneous Young measure generated by bi-Lipschitz maps with affine boundary data. The
latter fact is implied by Theorem 5.1. Then (3.4) stems from the very definition of bi-quasiconvexity.
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Lemma 4.1. Let ν ∈ GY∞,−∞
�

(
Ω; R2×2

)
. Then μ = {νa}x∈Ω ∈ GY∞,−∞

�

(
Ω; R2×2

)
for a.e. a ∈ Ω.

Proof. Note that the construction in the proof of ([29], Thm. 7.2) does not affect orientation-preservation nor
the bi-Lipschitz property. Namely, if gradients of a bounded sequence {uk} ⊂W 1,∞,−∞

+ (Ω; R2) generate ν then
for almost all a ∈ Ω one constructs a localized sequence {juk(a+ x/j)}j,k∈N (note that this function is clearly
injective if uk was; since the norm of the gradient is just shifted this yields the bi-Lipschitz property) whose
gradients generate μ as j, k → ∞. �

Proposition 4.2. Let ν ∈ GY∞,−∞
+

(
Ω; R2×2

)
, supp ν ⊂ R2×2

� be such that ∇y(x) =
∫

R2×2
�

Aνx(dA) for almost

all x ∈ Ω, where y ∈W 1,∞,−∞
+ (Ω; R2). Then for all �̃ ∈ [c̄(�); +∞], almost all x ∈ Ω and all v ∈ O(�̃) we have∫

R
2×2
inv

v(A)νx(dA) ≥ Zv(∇y(x)). (4.1)

Proof. We know from Lemma 4.1 that μ = {νa}x∈Ω ∈ GY∞,−∞
�

(
Ω; R2×2

)
for a.e. a ∈ Ω, so there exits its

generating sequence {∇uk}k∈N such that {uk}k∈N ⊂ W 1,∞,−∞
+ (Ω; R2) and for almost all x ∈ Ω and all k ∈ N

∇uk(x) ∈ R2×2
� . Moreover, {uk}k∈N weakly* converges to the map x �→ (∇y(a))x which is bi-Lipschitz.

Using Corollary 5.2, we can, without loss of generality, suppose that uk is �̃-bi-Lipschitz for all k ∈ N and
uk(x) = ∇y(a)x if x ∈ ∂Ω. Therefore, we have

|Ω|
∫

R
2×2
inv+

v(A)νa(dA) = lim
k→∞

∫
Ω

v(∇uk(x)) dx ≥ |Ω|Zv(∇y(a)). �

4.2. Proof of Theorem 3.3 – sufficiency

We need to show that conditions (3.2)–(3.4) are also sufficient for ν ∈ Y∞(Ω; R2×2) to be in
GY+∞,−∞(Ω; R2×2). Put

U�
A = {y ∈W 1,∞,−∞

A (Ω; R2); ∇y(x) ∈ R2×2
�+ for a.a. x ∈ Ω}; (4.2)

In other words this is the set of �-bi-Lipschitz functions with affine boundary values equal to x �→ Ax. Consider
for A ∈ R2×2

inv the set

M�
A = {δ∇y; y ∈ U�

A}, (4.3)

where δ∇y ∈ rca(R2×2) is defined for all v ∈ C0(R2×2) as
〈
δ∇y, v

〉
= |Ω|−1

∫
Ω v(∇y(x)) dx; M�

A will denote its
weak∗ closure.

Lemma 4.3. Let A ∈ R2×2
�+ . Then the set M�

A is nonempty and convex.

Proof. To show that M�
A �= ∅ is trivial because x �→ y(x) = Ax is an element of this set as A has a positive

determinant.
To show that M�

A is convex we follow ([29], Lem. 8.5). We take y1, y2 ∈ U�
A and, for a given λ ∈ (0, 1), we

find a subset D ⊂ Ω such that |D| = λ|Ω|. There are two countable disjoint families of subsets of D and Ω \D
of the form

{ai + εiΩ; ai ∈ D, εi > 0, ai + εiΩ ⊂ D}
and

{bi + ρiΩ; bi ∈ Ω \D, ρi > 0, bi + ρiΩ ⊂ Ω \D}
such that

D =
⋃
i

(ai + εiΩ) ∪N0, Ω \D =
⋃
i

(bi + ρiΩ) ∪N1,
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where the Lebesgue’s measure of N0 and N1 is zero. We define

y(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εiy1

(
x−ai

εi

)
+Aai if x ∈ ai + εiΩ,

ρiy2

(
x−bi

ρi

)
+Abi if x ∈ bi + ρiΩ,

Ax otherwise,

yielding ∇y(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇y1

(
x−ai

εi

)
if x ∈ ai + εiΩ,

∇y2
(

x−bi

ρi

)
if x ∈ bi + ρiΩ,

A otherwise.

We must show that y is �-bi-Lipschitz; actually, as ∇y(x) ∈ R2×2
�+ a.e., we only need to check the injectivity of

the mapping.
To this end, we apply Theorem 2.4. Notice that (2.4) clearly holds for any q ∈ (1,∞) due to the a.e.

bounds on ∇y. Moreover, we have affine boundary data, y(x) = Ax, so that indeed the boundary data form
a homeomorphism and, since Ω was a bounded Lipschitz domain, so will be AΩ = {Ax; x ∈ Ω}. Thus we
conclude that, indeed, y is �-bi-Lipschitz.

In particular, y ∈ U�
A and δ∇y = λδ∇y1 + (1 − λ)δ∇y2 . �

The following homogenization lemma can be proved the same way as ([29], Thm. 7.1). The argument showing
that a generating sequence of ν comes from bi-Lipschitz orientation preserving maps comes from Theorem 2.4
the same way as in the proof of Lemma 4.3.

Lemma 4.4. Let {uk}k∈N ⊂ W 1,∞,−∞
A (Ω; R2) be a bounded sequence in W 1,∞,−∞

+ (Ω; R2). Let the Young
measure ν ∈ GY∞,−∞

+

(
Ω; R2×2

)
be generated by {∇uk}k∈N. Then there is a another bounded sequence

{wk}k∈N ⊂W 1,∞,−∞
A (Ω; R2) that generates a homogeneous (i.e. independent of x) measure ν̄ defined through∫

R2×2
�+

v(s)ν̄(ds) =
1
|Ω|

∫
Ω

∫
R2×2

�+

v(s)νx(ds) dx, (4.4)

for any v ∈ C(R2×2
�+ ) and almost all x ∈ Ω. Moreover, ν̄ ∈ GY∞,−∞

+

(
Ω; R2×2

)
.

Proposition 4.5. Let μ be a probability measure supported on a compact set K ⊂ R2×2
α+ for some α ≥ 1 and

let A =
∫

K sμ(ds). Let � > α and let

Zv(A) ≤
∫

K

v(s)μ(ds), (4.5)

for all v ∈ O(�). Then μ ∈ GY∞,−∞
+

(
Ω; R2×2

)
and it is generated by gradients of mappings from U�

A.

Proof. First, notice that |A| ≤ α < � < +∞. Secondly, the set of measures μ in the statement of the proposition
is convex and contains M�

A as its convex and non void subset due to Lemma 4.3. We show that no fixed μ
satisfying (4.5) can be separated from the weak* closure of M�

A by a hyperplane. We argue by a contradiction
argument. Then by the Hahn–Banach theorem, assume that there is ṽ ∈ C0(R2×2) that separates M�

A from μ.
In other words, there exists a constant c̃ such that

〈ν, ṽ〉 ≥ c̃ for all ν ∈ M�
A and 〈μ, ṽ〉 < c̃.

However, since we are working with probability measures, we may use ṽ− c̃ instead of ṽ. In this way, we can
put c̃ = 0. Hence, without loss of generality, we assume that

0 ≤ 〈ν, ṽ〉 =
∫

R2×2
�

ṽ(s)ν(ds) = |Ω|−1

∫
Ω

ṽ(∇y(x)) dx,



CHARACTERIZATION OF GRADIENT YOUNG MEASURES GENERATED BY HOMEOMORPHISMS IN THE PLANE 277

for all ν ∈ M�
A (and hence all y ∈ U�

A) and 0 > 〈μ̃, ṽ〉. Now, the function

v(F ) =

{
ṽ(F ) if F ∈ R2×2

�+ ,

+∞ else,

is in O(�). Notice that it follows from (4.5) that Zv(A) is finite. Thus, Zv(A) = infU�
A
|Ω|−1

∫
Ω
v(∇y(x)) dx.

Hence, Zv(A) ≥ 0 and, by (4.5), 0 ≤ Zv(A) ≤ ∫
K v(s)μ(ds) =

∫
K ṽ(s)μ(ds). As this holds for all hyperplanes,

μ ∈ M�
A, a contradiction. As C0(R2×2) is separable, the weak* topology on bounded sets in its dual, rca(R2×2),

is metrizable. Hence, there is a sequence {uk}k∈N ⊂ U�
A such that for all v ∈ C(R2×2

�+ ) (and all v ∈ O(�))

lim
k→∞

∫
Ω

v(∇uk(x)) dx = |Ω|
∫

R2×2
�+

v(s)μ(ds), (4.6)

and {uk}k∈N is bounded inW 1,∞,−∞
+ (Ω; R2×2). Let ν be a Young measure generated by {∇uk} (or a subsequence

of it). Then we have for v as above

lim
k→∞

∫
Ω

v(∇uk(x)) dx =
∫

Ω

∫
R2×2

�+

v(s)νx(ds) dx = |Ω|
∫

R2×2
�+

v(s)μ(ds). (4.7)

As uk(x) = Ax for x ∈ ∂Ω we apply Lemma 4.4 to get a new sequence {ũk} bounded in W 1,∞,−∞
+ (Ω; R2×2)

with ũk(x) = Ax for x ∈ ∂Ω. The sequence {∇ũk} generates a homogeneous Young measure ν̄ given by (4.4),
so that in view of (4.7) we get for g ∈ L1(Ω)

lim
k→∞

∫
Ω

g(x)v(∇ũk(x)) dx =
∫

Ω

g(x) dx
1
|Ω|

∫
Ω

∫
R2×2

�+

v(s)νx(ds) dx =
∫

Ω

∫
R2×2

�+

g(x)v(s)μ(ds) dx. �

Lemma 4.6 (see [29], Lem. 7.9 for a more general case). Let Ω ⊂ Rn be an open domain with |∂Ω| = 0 and
let N ⊂ Ω be of the zero Lebesgue measure. For rk : Ω \N → (0,+∞) and {fk}k∈N ⊂ L1(Ω) there exists a set
of points {aik} ⊂ Ω \N and positive numbers {εik}, εik ≤ rk(aik) such that {aik + εikΩ̄} are pairwise disjoint
for each k ∈ N, Ω̄ = ∪i{aik + εikΩ̄} ∪Nk with |Nk| = 0 and for any j ∈ N and any g ∈ L∞(Ω)

lim
k→∞

∑
i

fj(aik)
∫

aik+εikΩ

g(x) dx =
∫

Ω

fj(x)g(x) dx.

In fact, the points {aik} can be chosen from the intersection of sets of Lebesgue points of all fj , j ∈ N. Notice
that this intersection has the full Lebesgue’s measure. Here for each j ∈ N, fj is identified with its precise
representative ([16], p. 46). We adopt this identification below whenever we speak about a value of an integrable
function at a particular point.

Proof of Theorem 3.3 – sufficiency. Some parts of the proof follow ([21], Proof of Thm. 6.1). We are looking
for a sequence {uk}k∈N ⊂W 1,∞,−∞

+ (Ω; R2) satisfying

lim
k→∞

∫
Ω

v(∇uk(x))g(x) dx =
∫

Ω

∫
R2×2n

v(s)νx(ds)g(x) dx

for all g ∈ Γ and any v ∈ S, where Γ and S are countable dense subsets of C(Ω̄) and C(R2×2
�+ ), respectively.

First of all notice that, as u ∈ W 1,∞,−∞
+ (Ω; R2) from (3.3) is differentiable in Ω outside a set of measure

zero called N , we may find for every a ∈ Ω \ N and every k > 0 some 1/k > rk(a) > 0 such that for any
0 < ε < rk(a) we have for every y ∈ Ω

1
ε
|u(a+ εy) − u(a) − ε∇u(a)y| ≤ 1

k
· (4.8)
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Applying Lemma 4.6 and using its notation, we can find aik ∈ Ω \N , εik ≤ rk(aik) such that for all v ∈ S and
all g ∈ Γ

lim
k→∞

∑
i

V̄ (aik)g(aik)|εikΩ| =
∫

Ω

V̄ (x)g(x) dx, (4.9)

where
V̄ (x) =

∫
R

2×2
inv

v(s)νx(ds).

In view of Lemma 4.5, we see that {νaik
}x∈Ω ∈ GY+∞,−∞ (Ω; Rn×n) is a homogeneous gradient Young measure

and we call {∇yik
j }j∈N ⊂ W 1,∞,−∞

+ (Ω; R2) its generating sequence. We know that we can consider {yik
j }j∈N ⊂

U �̃
∇u(aik) for arbitrary +∞ > �̃ > �. Hence

lim
j→∞

∫
Ω

v(∇yik
j (x))g(x) dx = V̄ (aik)

∫
Ω

g(x) dx (4.10)

and, in addition, yik
j weakly∗ converges to the map x �→ ∇u(aik)x for j → ∞ in W 1,∞(Ω; R2) and due to the

Arzela-Ascoli theorem also uniformly on C(Ω̄; R2).
Further, consider for k ∈ N yk ∈W 1,∞(aik + εikΩ; R2) defined for x ∈ aik + εikΩ by

yk(x) := u(aik) + εiky
ik
j

(
x− aik

εik

)
where j = j(k, i) will be chosen later. Note that the above formula defines yk almost everywhere in Ω. We write
for almost every x ∈ aik + εikΩ that

|u(x) − yk(x)| ≤
∣∣∣∣u(x) − u(aik) − εik∇u(aik)

(
x− aik

εik

)∣∣∣∣
+ εik

∣∣∣∣∇u(aik)
(
x− aik

εik

)
− yik

j

(
x− aik

εik

)∣∣∣∣ ≤ 2εik
k
, (4.11)

if j is large enough. The first term on the right-hand side is bounded by εik/k because of (4.8) while the
second one due to the uniform convergence of yik

j → x �→ ∇u(aik)x. Notice that yk as well as u are bi-
Lipschitz and orientation preserving on aik + εikΩ. If x ∈ aik + εikΩ we set x̃ = (x − aik)/εik ∈ Ω and define
ũ(x̃) = ε−1

ik u(aik + εikx̃) and ỹk(x̃) = ε−1
ik yk(aik + εikx̃) so that we get by (4.11) for all x ∈ Ω

|ũ(x̃) − ỹk(x̃)| ≤ 2
k
·

Additionally, note that the bi-Lipschitz constant of ỹk, k ∈ N is again L.
Hence, we can take k > 0 large enough that ‖ũ − ỹk‖C(Ω̄;R2) is arbitrarily small. Therefore, we can use

Theorem 5.2 and modify ỹk so that it has the same trace as ũ on the boundary of Ω. Let us call this modification
ũk, i.e.,

ũk(x̃) =

{
ỹk(x̃) if x ∈ Ω,

ũ(x̃) otherwise.

Then we proceed in the opposite way to define for x = aik + εikx̃: uk(x) = εikũk(x̃).
Then, since {uk}k∈N is bounded in W 1,∞(Ω; R2), we may assume the weak∗ convergence of uk to u. It

remains to show that every uk is bi-Lipschitz. To do so, we again apply Theorem 2.4. We see that for every
k ∈ N det∇uk > 0. Further, supk∈N |(∇uk)−1| < +∞ follows from construction of the sequence, and uk = u on
∂Ω, so that uk is indeed bi-Lipschitz.
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For k, i fixed we take j = j(k, i) so large that for all (g, v) ∈ Γ × S∣∣∣∣ε2ik ∫
Ω

g(aik + εiky)v(∇uik
j (y)) dy − V̄ (aik)

∫
aik+εikΩ

g(x) dx
∣∣∣∣ ≤ 1

2ik
·

Using this estimate and (4.10) we get for any (g, v) ∈ Γ × S

lim
k→∞

∫
Ω

g(x)v(∇uk(x)) dx = lim
k→∞

∑
i

εnik

∫
Ω

g(aik + εiky)v(∇uik
j (y)) dy

= lim
k→∞

∑
i

V̄ (aik)
∫

aik+εikΩ

g(x) dx =
∫

Ω

V̄ (x)g(x) dx

=
∫

Ω

∫
R2×2

v(s)νx(ds)g(x) dx. �

4.3. Proofs of Corollary 3.4 and Proposition 3.5

Proof of Corollary 3.4. For showing the weak lower semicontinuity, we realize that the sequence {∇yk}k∈N

generates a measure in GY∞,−∞
+

(
Ω; R2×2

)
and so if v is bi-quasiconvex we easily have from (3.4)∫

Ω

v(∇y(x))dx =
∫

Ω

Zv(∇y(x))dx ≤
∫

Ω

∫
R

2×2
inv+

v(s)νx(ds)dx = lim inf
k→∞

∫
Ω

v(∇yk)dx.

On the other hand, we realize that every y ∈ W 1,∞,−∞
A (Ω; R2) defines a homogeneous Young measure

ν ∈ GY∞,−∞
+ (Ω; R2×2) by setting ∫

R2×2
f(s)ν(ds) = |Ω|−1

∫
Ω

f(∇y(x)) dx

for every f continuous on matrices with positive determinant.
Notice that the first moment of ν is A. Let {∇yk}k∈N be a generating sequence for ν which can be taken

such that {yk}k∈N ⊂ W 1,∞,−∞
A (Ω; R2). Moreover, the weak* limit of ∇yk is A. As we assume that I(y) =∫

Ω
v(∇y(x)) dx and that I is weakly∗ lower semicontinuous on W 1,∞,−∞

A (Ω; R2) we get

|Ω|v(A) ≤ lim inf
k→∞

I(yk) =
∫

Ω

∫
R2×2

v(s)ν(ds)dx =
∫

Ω

v(∇y(x)) dx,

which shows that v is bi-quasiconvex. �

Proof of Proposition 3.5. Notice that u0 ∈ A so that the admissible set is nonempty. Let {uk}k∈N ⊂ A
be a minimizing sequence for Iε, i.e., limk→∞ Iε(uk) = infA Iε ≥ 0. Hence, ‖∇u‖L∞(Ω;R2×2) ≤ C and
‖∇u−1‖L∞(u0(Ω);R2×2) ≤ C for some finite C > 0. Applying a Poincaré inequality we get that {uk} is bounded
in W 1,∞,−∞

+ (Ω; R2). Therefore, there is a subsequence converging weakly* to some u ∈W 1,∞,−∞
+ (Ω; R2). Com-

pactness of the trace operator ensures that u = u0 on the boundary of Ω. Consequently, u ∈ A and weak* lower
semicontinuity of Iε finishes the argument. Indeed, as v is bi-quasiconvex the weak* lower semicontinuity of the
first two terms is obvious. The last term is weak* lower semicontinuous in view of Remark 2.3. �

5. Cut-off technique preserving the bi-Lipschitz property

One of the main steps in the characterization of gradient Young measures [21, 29] is to show that having
a bounded sequence {yk}k∈N ⊂ W 1,∞(Ω; R2), such that it converges weakly∗ to y(x) : Ω �→ R2 and {∇yk}
generates a Young measure ν, then there is a modified sequence {uk}k∈N ⊂ W 1,∞(Ω; R2), uk(x) = y(x) for
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x ∈ ∂Ω and {∇uk} still generates ν. Standard proofs of this fact use a cut-off technique based on convex
combinations near the boundary; due to the non-convexity of our constraints, however, this could destroy the
bi-Lipschitz property, so it is not at all suitable for our purposes. Therefore, we resort to a different approach
borrowing from recent results by Daneri and Pratelli [13, 14]. More precisely, the following theorem is a main
ingredient of our approach.

Theorem 5.1. Let Ω ⊂ R2 be a bounded Lipschitz domain, let diam Ω � δ > 0 and L ≥ 1 be fixed. Then there
exists ε > 0 that is only dependent on δ and L such that if ỹ, y ∈ W 1,∞,−∞

+ (Ω; R2) are L-bi-Lipschitz maps
satisfying

‖ỹ − y‖C(Ω;R2) ≤ ε(δ, L),

then we can find another c̄(L)-bi-Lipschitz map u ∈ W 1,∞,−∞
+ (Ω; R2) satisfying u = y on ∂Ω and |{x ∈

Ω; ∇u(x) �= ∇ỹ(x)}| ≤ δ.

The following corollary allows us to modify convergent sequences at the boundary of Ω.

Corollary 5.2. Assume that {yk}k∈N ⊂ W 1,∞,−∞
+ (Ω; R2) is a sequence of L-bi-Lipschitz maps and yk

∗
⇀ y

in W 1,∞,−∞
+ (Ω; R2) as k → ∞. Then there is a subsequence of {ykn}n∈N and {ukn}n∈N ⊂ W 1,∞,−∞

+ (Ω; R2)
bounded such that ukn

∗
⇀ y in W 1,∞,−∞

+ (Ω; R2) as n → ∞, for all n ∈ N ukn = y on ∂Ω and limn→∞ |{x ∈
Ω; ∇ukn �= ∇ykn}| → 0. In particular, the sequences {∇ykn} and {∇ukn} generate the same Young measure.

Proof. Let {δn}n∈N be a sequence of positive numbers converging to zero as n → ∞. We apply Theorem 5.1
and uniform convergence of {yk}k∈N to y in C(Ω̄; R2) to find {εn(δn, L)}n∈N and {ykn}n∈N such that ‖ykn −
y‖C(Ω̄;R2) ≤ εn(δn, L). Use Theorem 5.1 with ỹ := ykn to obtain ukn ∈ W 1,∞,−∞

+ (Ω; R2) with the mentioned
properties. �

Proof of Theorem 5.1. We devote the rest of this section to proving Theorem 5.1, large parts of the proof,
collected in its third section, are rather technical. Therefore, we start with an overview of the proof:

Section 1 of the proof: Overview.

We define the open set
Ωδ =

{
x ∈ Ω : dist(x, ∂Ω) < δ

}
;

now, we find r = r(δ) and a corresponding, suitable r(δ)-tiling of Ωδ, i.e. a finite collection of closed squares

Ωr =
N⋃

i=1

D(zi, r) with zi ∈ Ωδ (5.1)

that satisfies that Ωr � Ωδ and that two squares have in common only either a whole edge or a vertex.
Furthermore, we require the tiling to be fine enough so that there exists a collection of edges Γ satisfying the
following properties:

• every continuous path connecting two points x1 and x2 such that x1 ∈ ∂Ω and x2 ∈ ∂Ωδ \ ∂Ω crosses Γ ,
• Γ ⊂ intΩr.

This setting is best imagined in the case when Ω is simply connected. Then, Ωr forms a thin strip of squares
near the boundary and Γ is a closed curve consisting of edges in the interior of this strip. We will refer to the
special case of a simple connected domain for a better imagination of the introduced concepts at several places
bellow; nevertheless, simple connectivity of Ω is never explicitly used and, in fact, not needed.

Further, we separate Ω into three parts:

Ω = Ωbulk ∪Ωr ∪Ωbound,
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where

Ωbulk = {x ∈ Ω \Ωr : every continuous path from x to ∂Ω crosses Ωr.}
Ωbound = Ωδ \ (Ωbulk ∪Ωr).

Let us again, for a moment, think of a simply connected Ω. Then, Ωbulk forms the interior of the domain, Ωr

is the thin strip of squares and Ωbound is also a strip that reaches up to ∂Ω and is not tiled.
With these basic notations set, we explain how we construct the cut-off. Let us choose ε = r(δ)

12L3 so that we
have that

‖ỹ − y‖C(Ω;R2) ≤
r(δ)
12L3

· (5.2)

Now, we alter ỹ on Ωr to obtain the function uδ : Ωr → R2 that has the property that [uδ]|∂Ωr∩∂Ωbulk
= ỹ and

[uδ]|∂Ωr∩∂Ωbound
= y. If we think once more of simple connected Ω, this means that on the inner boundary of

Ωr we obtain the function ỹ while on the outer boundary we already have the sought boundary data.
We will give a precise definition of uδ in the next section of the proof. In fact, in view of the available extension

Theorem 2.6, it is sufficient to give a definition of uδ on all the edges in Ωr, which we will exploit. Namely,
on the edges the “fitting” of ỹ to y is essentially one-dimensional and hence our technique will be essentially a
linear interpolation.

In the third section of the proof, which is the most technical one, we then show that uδ, thus so far defined
only on the edges, is 18L-bi-Lipschitz (cf . (5.6)) and so extending it to Ωr via Theorem 2.6 will yield a c̄(L)-bi-
Lipschitz function uδ : Ωr → R2 having the above described properties. Indeed, ∂uδ(D(zi, r)) = uδ(∂D(zi, r))
for all admissible i, so that uδ : Ωr → R2 is injective.

Therefore, we may define

u(x) =

⎧⎪⎪⎨⎪⎪⎩
ỹ(x) on Ωbulk,

uδ(x) on Ωr,

y(x) on Ωbound.

It is obvious that the obtained mapping is Lipschitz and satisfies |∇u(x)−1| > c(L) a.e. on Ω. The injectivity of
u follows from the fact that u(Ωbulk), u(Ωbound) and u(Ωr) are mutually disjoint, which is a consequence of the
“fitting” boundary data through [uδ]|∂Ωr∩∂Ωbulk

= ỹ and [uδ]|∂Ωr∩∂Ωbound
= y. Thus, the mapping u is globally

bi-Lipschitz and hence orientation preserving since it preserves orientation on Ωbulk.

Section 2 of the proof: Partitioning of the grid and definition of uδ.

In this section we give a precise definition of uδ(x) on the grid of the tiling Ωr, denoted Q, which consists of all
edges of Ωr; in other words,

Q =
N⋃

i=1

∂D(zi, r) with zi as in (5.1).

Clearly, Γ ⊂ Q and we divide Q into two other parts

Q = Qouter ∪ Γ ∪Qinner,

defined through

Qinner =
{
x ∈ Q \ Γ ; every continuous path connecting x to ∂Ω crosses Γ}, (5.3)

Qouter = Q \ (Γ ∪ Qinner). (5.4)

The names of these two other parts are borrowed from the situation when Ω is simply connected; namely, then
Qinner corresponds to those edges that are “further away” from the boundary than Γ and so in the “interior”
while Qouter are the edges in the exterior. Nevertheless, as already stressed above, simple-connectivity of Ω is
not needed.
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Ωr

ΩδΩ

Γ

(a) r-tiling of the set Ωδ (b) Detail of cross on Γ

Figure 1. Tiling near boundary and detail of one cross.

For further convenience, we shall fix some notation (in accord with [14]); see also Figure 1b. We shall denote

• wα any vertex of the grid Q that lies on Γ ,
• for any wα we denote wi

α all vertices that are at distance of r to wα; note that from construction there
always exist 4 such vertices (as wα cannot lie on the boundary of Ωr),

• for any wα the largest numbers ξi
α > 0 that satisfy∣∣ỹ (

wα + ξi
α

(
wi

α − wα

)) − y(wα)
∣∣ =

r

4L
if the edge wαw

i
α ⊂ Qinner,∣∣y (

wα + ξi
α

(
wi

α − wα

)) − y(wα)
∣∣ =

r

4L
else;

• we call the “boundary cross” the set

Zα =
4⋃

i=1

{
wα + t

(
wi

α − wα

)
: 0 ≤ t ≤ ξi

α

}
and denote the extremals of this cross p1

α . . . p
4
α.

It is due to the L-bi-Lipschitz property of ỹ and y as well as (5.2) that all the concepts above are well defined.
In particular, we can assure that

the numbers ξi
α can be found in the interval [1/(6L2), 1/3], (5.5)

so that the boundary crosses are mutually disjoint. We postpone the proof of (5.5) until the end of this section.
Now, we are in the position to define the sequence ukδ(x) on Q as follows: first, we define uδ(x) everywhere

in Q except for the boundary crosses:

uδ(x) =

{
ỹ(x) if x ∈ Qinner \ (

⋃
α Zα),

y(x) if x ∈ (Qouter ∪ Γ ) \ (
⋃

α Zα);
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while on the cross the uδ will be continuous and piecewise affine, i.e.

uδ(wα + t(wi
α − wα)) =

⎧⎨⎩y(wα) + t
ξi

α

(
ỹ

(
pi

α

) − y(wα)
)

if wαw
i
α ⊂ Qinner and t ∈ [0, ξi

α],

y(wα) + t
ξi

α

(
y

(
pi

α

) − y(wα)
)

if wαw
i
α �⊂ Qinner and t ∈ [0, ξi

α].

The rough idea behind this construction is that the matching, or the cut-off, actually happens on the boundary
crosses where we, on each edge, replace ỹ as well as y by an affine map. By adjusting the slopes of these affine
replacements we get a continuous piecewise affine, and hence bi-Lipschitz, map on the cross. What we need to
show are then, essentially, the following two properties of such a replacement: it connects in a bi-Lipschitz way
to uδ along the endpoints of the boundary cross and the adjustment of the slopes needed to obtain continuity
is just small so that the overall L-bi-Lipschitz property is not affected much.

For the former, we mimic the strategy of Daneri and Pratelli [14] who were also able to connect an affine
replacement of a bi-Lipschitz function to the original map. The latter is due to the fact that ỹ and y are suitably
close to each other (as expressed by the property (5.2)) which assures that the change of slope on the cross
needed for the cut-off will depend just on L.

We will show in the next section that uδ is 18L-bi-Lipschitz on Q; cf . (5.6). Therefore, we can apply Theo-
rem 2.6 to extend uδ from Q (without changing the notation) to each square of the tiling. As for every square
D(zi, r) of the tiling we have that ∂uδ(D(zi, r)) = uδ(∂D(zi, r)) we see that the extended mapping is globally
injective on Ωr.

Proof of (5.5). For wαw
i
α ⊂ Qinner, we notice that the function t �→ ∣∣ỹ(wα + t(wi

α −wα)
)− y(wα)

∣∣ is continuous
on [0, 1] and, owing to (5.2), smaller or equal than r

12L3 in 0 while in t = 1 we have that∣∣∣ỹ(wi
α) − ỹ(wα) + ỹ(wα) − y(wα)

∣∣∣ ≥ ∣∣∣ r
L

− r

12L3

∣∣∣ ≥ r

4L
;

which yields the existence of ξi
α ∈ [0, 1] such that∣∣ỹ(wα + t(wi

α − wα)
) − y(wα)

∣∣ =
r

4L
·

To establish the bounds on ξi
α, we note that

r

4L
=

∣∣∣ỹ(wα + ξi
α(wi

α − wα)
) − y(wα)

∣∣∣ =
∣∣∣ỹ(wα + ξi

α(wi
α − wα)

)
+ ỹ(wα) − ỹ(wα) − y(wα)

∣∣∣
≤ Lξi

αr +
r

12L3
≤ Lξi

αr +
r

12L
,

i.e. ξi
α ≥ 1/(6L2). On the other hand we have that

r

4L
=

∣∣∣ỹ(wα + ξi
α(wi

α − wα)
) − y(wα)

∣∣∣ =
∣∣∣ỹ (

wα + ξi
α(wi

α − wα)
)

+ ỹ(wα) − ỹ(wα) − y(wα)
∣∣∣

≥ r

L

(
ξi
α − 1

12L2

)
≥ r

L

(
ξi
α − 1

12

)
,

which is satisfied if 0 ≤ ξi
α ≤ 1/3.

In the case when wαw
i
α �⊂ Qinner, we proceed in a similar way and rely just on the bi-Lipschitz property of

y; exploiting (5.2) is not necessary.

Section 3 of the proof: Bi-Lipschitz property of uδ.

The function uδ defined in the previous section is continuous on the grid Q and we claim that it is even
bi-Lipschitz, i.e. (as long as (5.2) holds true)

18L|z − z′| ≥ |uδ(z) − uδ(z′)| ≥ 1
18L

|z − z′| ∀z, z′ ∈ Q (5.6)
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The proof of this claim is the content of this section and will be performed in several steps.

Step 1 of the proof of (5.6): Suppose that z and z′ lie in Zα.
Let us first consider the situation when both z, z′ lie on the same edge; i.e. z, z′ ∈ wαw

i
α for some i = 1 . . . 4. In

this a case uδ is affine and we have that

|uδ(z) − uδ(z′)|
|z − z′| =

∣∣uδ(wα) − uδ(pi
α)

∣∣
ξi
αr

=

⎧⎪⎨⎪⎩
∣∣ỹ(pi

α)−ỹ(wα)+ỹ(wα)−y(wα)
∣∣

ξi
αr ≥ 1

L − 1
ξi

αr
r

12L3 ≥ 1
L − 6L2

r
r

12L3 ≥ 1
2L if wαw

i
α ⊂ Qinner∣∣y(pi

α)−y(wα)
∣∣

ξi
αr ≥ 1

L ≥ 1
2L if wαw

i
α �⊂ Qinner.

Similarly,

|uδ(z) − uδ(z′)|
|z − z′| =

∣∣uδ(wα) − uδ(pi
α)

∣∣
ξi
αr

=

⎧⎪⎨⎪⎩
∣∣ỹ(pi

α)−ỹ(wα)+ỹ(wα)−y(wα)
∣∣

ξi
αr ≤ L+ 1

ξi
αr

r
12L3 ≤ L+ 6L2

r
r

12L3 ≤ 2L if wαw
i
α ⊂ Qinner∣∣y(pi

α)−y(wα)
∣∣

ξi
αr ≤ L ≤ 2L if wαw

i
α �⊂ Qinner.

If z and z′ are not on the same edge let, for example, z ∈ wαp
1
α and z′ ∈ wαp

2
α. Moreover, we may assume,

without loss of generality, that
|uδ(z) − y(wα)| ≤ |uδ(z′) − y(wα)|

and, hence, define z′′ in the segment wαz
′ such that

|uδ(z) − y(wα)| = |uδ(z′′) − y(wα)|.
Then, as the points uδ(z), uδ(z′′) and uδ(z′) form a triangle that is obtuse at uδ(z′′) (cf . also Fig. 2) we may
apply Remark 5.3 to obtain

|uδ(z) − uδ(z′)| ≥ 1√
2

(|uδ(z) − uδ (z′′)| + |uδ(z′) − uδ (z′′)|)

≥ 1√
2

(
|uδ(z) − uδ (z′′)| + 1

2L
|z′ − z′′|

)
(5.7)

since the points z′, z′′ lie on the same edge where we already proved the bi-Lipschitz property. Further, by the
fact that uδ is piecewise affine on the cross5,

|uδ(z) − uδ(z′′)|
|z − z′′| =

∣∣uδ

(
p1

α

) − uδ

(
p2

α

)∣∣
|p1

α − p2
α|

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|ỹ(p1
α)−ỹ(p2

α)|
|p1

α−p2
α| ≥ 1

L if both p1
α, p2

α lie in Qinner

|y(p1
α)−y(p2

α)|
|p1

α−p2
α| ≥ 1

L if neither p1
α nor p2

α lies in Qinner

|ỹ(p1
α)−ỹ(p2

α)+ỹ(p2
α)−y(p2

α)|
|p1

α−p2
α| ≥ 1

L − 1
|p1

α−p2
α|

r
12L3 ≥ 1

2L , p1
α ∈ Qinner p2

α, /∈ Qinner

5 Notice that on any the segment wαpi
α we can write uδ(t) = uδ(wα)+t(uδ(pi

α)−uδ(wα)). Therefore, the points z,z′′ correspond
to such t, t′′ that t|uδ(p1

α)− uδ(wα)| = t′′|uδ(p
2
α)− uδ(wα)|. By definition, however, |uδ(p1

α)− uδ(wα)| = |uδ(p
2
α) − uδ(wα)| = r

4L
so that t = t′′.
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Figure 2. The obtuse triangle formed by uδ(z), uδ(z′′) and uδ(z′) in the image of the boundary
cross as needed in Step 1. Notice that since uδ is piecewise affine on the cross, each segment of
the cross forms again a part of a straight line.

where we realized that |p1
α − p2

α| ≥ r
6L2 because the triangle formed by the points p1

α,wα, p2
α is right angled or

a line. Notice also that the situation when p1
α /∈ Qinner, p2

α ∈ Qinner is completely symmetrical to the already
covered case. So, returning to (5.7), we have by the triangle inequality

|uδ(z) − uδ(z′)| ≥
√

2
4L

|z − z′|.

On the other hand, by exploiting that the triangle formed by the points z,z′ and wα is either right angled or
a line, we get that

|uδ(z) − uδ(z′)| ≤ |uδ(z) − y(wα) + y(wα) − uδ(z′)| ≤ 2L
(|z − wα| + |z′ − wα|

) ≤ 2L
√

2|z − z′|.

Step 2 of the proof of (5.6): Suppose that z /∈ Zα and z′ /∈ Zβ for all α, β.
Notice that we only have to investigate the case when z ∈ Qinner and z′ /∈ Qinner for the other options are
trivial. Then, however, we have that |z − z′| ≥ r

6L2 and so the Lipschitz property follows immediately as

|uδ(z) − uδ(z′)| ≤ |y(z) − ỹ(z) + ỹ(z) − ỹ(z′)| ≤ r

6L2

1
2L

+ L|z − z′| ≤ 2L|z − z′|.

On the other hand,

|uδ(z) − uδ(z′)|
|z − z′| =

|y(z) − ỹ(z) + ỹ(z) − ỹ(z′)|
|z − z′| ≥ 1

L
− r

12L2|z − z′| ≥
1

2L
·

Step 3 of the proof of (5.6): Suppose that z ∈ Zα and z′ /∈ Zβ for all β.
To obtain the lower bound in (5.6) we rely on Remark 5.4; indeed the choice of z, z′ is such that uδ(z′) lies
outside the ball B(y(wα); r

4L ) while uδ(z) ∈ B(y(wα); r
4L ). In particular, we may assume that uδ(z) lies on the

segment y(wα)uδ(p1
α) (recall that uδ is affine on the cross). So,

|uδ(z) − uδ(z′)| ≥ |uδ(p1
α) − uδ(z)| + |uδ(p1

α) − uδ(z′)|
3

·
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Figure 3. The obtuse triangle formed by z, z′, p1
α as needed in Step 2.

Clearly, we only have to care about the latter term on the right hand side. Employing (5.2) and the triangle
inequality, we get that

|uδ(p1
α) − uδ(z′)|
|p1

α − z′| ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|ỹ(p1

α)−ỹ(z′)|
|p1

α−z′| ≥ 1
L if p1

α, z
′ ∈ Qinner

|y(p1
α)−y(z′)|
|p1

α−z′| ≥ 1
L if p1

α, z
′ /∈ Qinner

|ỹ(p1
α)−ỹ(z′)+ỹ(z′)−y(z′)|

|p1
α−z′| ≥ 1

L − 6L2

12L3 ≥ 1
2L if p1

α ∈ Qinner and z′ /∈ Qinner;

where, in the last case, p1
α and z′ necessarily lie in different edges and so |p1

α − z′| ≥ r
6L2 . Notice that since the

rôle of p1
α and z′ is symmetric we really exhausted all possibilities belonging to this step. Summing up,

|uδ(z) − uδ(z′)| ≥ |z − z′|
6L

·

To obtain the upper bound, we first realize that if z′ is at the boundary to the cross, i.e. z′ = pi
α for some

i = 1, . . . , 4, the procedure from Step 2 applies in verbatim. Therefore, we may restrict our attention to the
situation in which z′ is strictly in the interior of the cross; then, since all pi

α are at distance at most r/3 from wα

and since z′ /∈ wαp
i
α ∀i, at least one of these pi

α has to satisfy that the triangle z, pi
α, z

′ has an obtuse (or right)
angle at pi

α (see Fig. 3) – let it for notational convenience be p1
α. So, we are in the position to apply Remark 5.3

below and estimate

|uδ(z) − uδ(z′)| =
∣∣uδ(z) − uδ

(
p1

α

)
+ uδ

(
p1

α

) − uδ(z′)
∣∣

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣uδ(z) − ỹ
(
p1

α

)
+ ỹ

(
p1

α

) − ỹ(z′)
∣∣

≤ 2
√

2L
(∣∣z − p1

α

∣∣ +
∣∣p1

α − z′
∣∣) ≤ 4L|z − z′|) if z′ ∈ Qinner and p1

α ∈ Qinner∣∣uδ(z) − y
(
p1

α

)
+ ỹ

(
p1

α

) − ỹ(z′) + y
(
p1

α

) − ỹ
(
p1

α

)∣∣
≤ 2

√
2L

(∣∣z − p1
α

∣∣ +
∣∣p1

α − z′
∣∣) + r

6L2
1

2L ≤ 5L|z − z′| if z′ ∈ Qinner and p1
α /∈ Qinner∣∣uδ(z) − y

(
p1

α

)
+ y

(
p1

α

) − y(z′)
∣∣

≤ 2
√

2L
(∣∣z − p1

α

∣∣ +
∣∣p1

α − z′
∣∣) ≤ 4L|z − z′|) if z′ /∈ Qinner and p1

α /∈ Qinner∣∣uδ(z) − y
(
p1

α

)
+ ỹ

(
p1

α

) − ỹ(z′) + y
(
p1

α

) − ỹ
(
p1

α

)∣∣
≤ 2

√
2L

(∣∣z − p1
α

∣∣ +
∣∣p1

α − z′
∣∣) + r

6L2
1

2L ≤ 5L|z − z′| if z′ /∈ Qinner and p1
α ∈ Qinner
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where we used that we already proved the bi-Lipschitz property inside the cross Zα and in the second and
fourth case we used that r

6L2 ≤ |p1
α − z′| since, in this cases, p1

α and z′ have to lie on different edges.

Step 4 of the proof of (5.6): Suppose that z ∈ Zα, z′ ∈ Zβ with α �= β.
The last case we need to consider is when z, z′ lie in two crosses corresponding to two different vertices,
respectively. In such a case |wα −wβ | ≥ r and also, from definition, |uδ(z′)− y(wβ)| ≤ r

4L (as z′ belongs to the
cross). Therefore,

|y(wα) − uδ(z′)| = |y(wβ) − y(wα) + uδ(z′) − y(wβ)| ≥ r

L
− r

4L
>

r

4L
;

i.e. uδ(z′) /∈ B(y(wα); r
4L) and we may apply Remark 5.4 to get (with p1

α being the extremal of Zα lying on the
same edge as z)

|uδ(z′) − uδ(z)| ≥
∣∣uδ

(
p1

α

) − uδ(z)
∣∣ +

∣∣uδ

(
p1

α

) − uδ(z′)
∣∣

3
·

Similarly, also uδ(p1
α) /∈ B(y(wβ); r

4l ) as∣∣y(wβ) − y(wα) − uδ

(
p1

α

)
+ y(wα)

∣∣ ≥ r

L
− r

4L
>

r

4L
;

and hence, again relying on Remark 5.4 (p2
β denotes the extremal of Zβ lying on the same edge as z′)

|uδ(z′) − uδ(z)| ≥
∣∣uδ

(
p1

α

) − uδ(z)
∣∣ +

∣∣∣uδ

(
p1

α

) − uδ

(
p2

β

)∣∣∣ +
∣∣∣uδ

(
p2

β

)
− uδ(z′)

∣∣∣
9

≥ 1
18L

(∣∣p1
α − z

∣∣ +
∣∣p1

α − p2
β

∣∣ +
∣∣p2

β − z′
∣∣) ≥ |z − z′|

18L
,

by applying the triangle inequality. Moreover, we exploited that |uδ(p1
α) − uδ(z)| ≥ |p1

α−z|
2L as p1

α and z lie on
the same edge within the same cross (cf . Step 1); similarly also for |uδ(p2

β) − uδ(z′)|. Finally, we can see that

|uδ(p1
α) − uδ(p2

β)| ≥ |p1
α−p2

β |
2L by the same procedure as employed in Step 3.

It, finally, remains to prove the upper bound in (5.6). But this follows from the fact that, since z,z′ belong
to different crosses, there has to exist a point p ∈ Q that does not belong to any cross such that the triangle
zpz′ is obtuse (or right) at p. Here, we admit also the extreme case in which zpz′ lie on a straight line; in this
case, we understand the angle at p to be π and hence obtuse. Therefore, exploiting (5.3), readily gives

|uδ(z) − uδ(p) + uδ(p) − uδ(z′)| ≤ 5L
(|z − p| + |z′ − p|) ≤ 10L√

2
(|z − z′|) ≤ 18L|z − z′|. �

Remark 5.3 (Obtuse triangle inequality). Let us consider a triangle formed by three points z, p1, z
′ ∈ R2 such

that the angle γ at p1 is obtuse or right (= larger or equal to π/2). Then it follows from the cosine law

|z − z′| =
√
|z − p1|2 + |z′ − p1|2 − 2|z − p1| |z′ − p1| cos(γ) ≥

√
|z − p1|2 + |z′ − p1|2

≥
√

2
2

(|z − p1| + |z′ − p1|) . (5.8)

Remark 5.4 (Ball separation inequality). Let us consider a ball centered at w with radius ξ and a point a
lying inside this ball on the segment wb with |b − w| = ξ. Moreover, let c be a point lying outside this ball.
Then, since b is the nearest to a lying on the boundary of the mentioned ball it has to hold that |a− b| ≤ |a− c|
and so by the triangle inequality6

|a− c| ≥ |a− b| + |b− c|
3

·
6 Indeed, |b − c| ≤ |a − b| + |a − c| ≤ 2|a − c| and so |a − b| + |b − c| ≤ 3|a − c| as desired.
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project CZ01-DE03/2013-2014.

References

[1] R.A. Adams and J.J.F. Fournier, Sobolev spaces, 2nd edn. Elsevier, Amsterdam (2003).

[2] K. Astala and D. Faraco, Quasiregular mappings and Young measures. In vol. 132. Proc. of Royal Soc. Edinb. A (2002)
1045–1056.

[3] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1977) 337–403.

[4] J.M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter. In vol. 88. Proc. of Roy. Soc. Edinb.
A (1981) 315–328.

[5] J.M. Ball, A version of the fundamental theorem for Young measures. In: PDEs and Continuum Models of Phase Transition,
edited by M. Rascle, D. Serre, M. Slemrod. Vol. 344 of Lect. Notes Phys. Springer, Berlin (1989) 207–215.

[6] J.M. Ball, Some open problems in elasticity. In Geometry, Mechanics, and Dynamics. Springer, New York (2002) 3–59.

[7] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100 (1988) 13–52.
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