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ON THE LOWER SEMICONTINUITY OF SUPREMAL FUNCTIONAL
UNDER DIFFERENTIAL CONSTRAINTS

Nadia Ansini1,2 and Francesca Prinari3

Abstract. We study the weak* lower semicontinuity of functionals of the form

F (V ) = ess sup
x∈Ω

f(x, V (x)),

where Ω ⊂ R
N is a bounded open set, V ∈ L∞(Ω; Md×N )∩KerA and A is a constant-rank partial dif-

ferential operator. The notion of A-Young quasiconvexity, which is introduced here, provides a sufficient
condition when f(x, ·) is only lower semicontinuous. We also establish necessary conditions for weak*
lower semicontinuity. Finally, we discuss the divergence and curl-free cases and, as an application, we
characterise the strength set in the context of electrical resistivity.
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1. Introduction

In this paper we study the lower semicontinuity of the L∞ functionals defined as

F (V ) := ess sup
x∈Ω

f(x, V (x)), (1.1)

where Ω ⊂ R
N is a bounded open set, the function f(x, ·) is lower semicontinuous for a.e. x ∈ Ω and V ∈

L∞(Ω; Md×N ) ∩ KerA. That is, V is constrained to satisfy a system of first-order linear partial differential
equations:

AV :=
N∑

i=1

A(i) ∂V

∂xi
= 0. (1.2)

Here A(i) : Md×N → Rl are linear transformations whenever i = 1, . . . , N and the operator A satisfies the
constant-rank condition (see [17]): there exists r ∈ N such that
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rank Aw = r for all w ∈ SN−1,

where

Aw =
N∑

i=1

A(i)wi, w ∈ R
N .

This type of constraint arises naturally in the setting of continuum mechanics and electromagnetism: for
example,

(a) in the case of solenoidal fields (divergence-free fields), which are relevant to treat extreme resistivity:

AV = 0 if and only if Div V = 0,

where V : Ω → Md×N ;
(b) in the context of effective conductivity (curl-free fields):

AV = 0 if and only if curlV = 0;

(c) in the micromagnetics literature when the constraints are given by Maxwell’s equations;
(d) in the case of higher gradients.

(For further details, see ([15], Ex. 3.10)). The class of functionals represented in the “supremal” form (1.1)
has been introduced to model physical situations where the relevant “quantities” are not negligible on sets of
arbitrarily small measure (see e.g. [1, 5, 12]). In these cases it may be natural to formulate the problem as a
minimum of a supremal functional as, for example, in [16] where the authors study dielectric breakdown for
composites made of two homogeneous phases. In this case the corresponding variational principle is given by
the minimum problem of a supremal functional of the form

F (v) :=

{
ess sup

x∈Ω
|λ(x)Dv(x)| if v ∈ W 1,∞(Ω),

+∞ otherwise,

where λ(x) is a piecewise-constant function (constant values of which represent the two phases) and Du satisfies
the condition

∫
Q

Du dx = ξ, which corresponds to assigning the average electric field. In order to study the
macroscopic behaviour of the two-phase composite material for the first failure dielectric breakdown model, the
authors use an Lp-approximation approach and show that the supremal functional ess supx∈Ω |λ(x)Dv(x)| can
be obtained as the Γ -limit of power-law functionals Fp : L1(Ω) → [0, +∞] given by

Fp(v) :=

⎧⎨
⎩

(∫
Ω

|λ(x)Dv(x)|p dx

)1/p

if v ∈ W 1,p(Ω),

+∞ otherwise

as p → +∞ with respect to the L1-topology.
The study of Lp-approximation, by way of Γ -convergence, has been addressed for more general functionals

by Champion et al. in [13] (see also [19]) and in the framework of a constant-rank operator A by Bocea and
Nesi in [8] and by the authors in [3].

Since the Γ -limit is always lower semicontinuous, the approach by Lp-approximation of a supremal functional
can be very useful for studying the lower semicontinuity of supremal functionals.

In [3] we introduce the notion of an A-∞ quasiconvex function (see Def. 2.7) and we prove, among other
results, that if f : Ω ×RN → [0, +∞) is a Carathéodory function, A-∞ quasiconvex in the second variable and
satisfying a linear growth condition, then

F (V ) :=

{
ess sup

x∈Ω
f(x, V (x)) if V ∈ L∞(Ω; Md×N ) ∩ KerA,

+∞ otherwise
(1.3)
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is the Γ (w∗-L∞)-limit of the family of power-law functionals Fp : L∞(Ω; Md×N ) → [0, +∞) given by

Fp(V ) :=

⎧⎨
⎩

(∫
Ω

fp(x, V (x))dx

)1/p

if V ∈ L∞(Ω; Md×N ) ∩ KerA,

+∞ otherwise,
(1.4)

as p → +∞ (see [3], Thm. 4.2).
Therefore in the continuous setting the notion of A-∞ quasiconvexity provides a sufficient condition for the

L∞-weak* lower semicontinuity of the supremal functional under a differential constraint as in (1.1). However,
A-∞ quasiconvexity is far from a necessary condition. In fact, in ([3], Example 3) we show that the class of curl -
∞ quasiconvex functions is contained strictly in the class of strong Morrey quasiconvex functions (introduced
by Barron, Jensen and Wang in [7] to prove the lower semicontinuity of a supremal functional defined on
W 1,∞(Ω, Md×N )). In addition, the continuity assumption on f(x, ·), which is more natural in the context of
integral functionals, is too restrictive for supremal functionals. In fact, if f(x, ·) is lower semicontinuous and
level convex (see (2.20)) then we still find that the functional (1.1) is L∞-weak* lower semicontinuous (see [1],
Rem. 4.4) even if f(x, ·) is not A-∞ quasiconvex (see [3], Example 5.9). On the other hand, the level convexity
cannot to be considered a fulfilling condition for the vectorial case (see Example 6.6). For all these reasons the
study of the lower semicontinuity of supremal functionals of the form (1.1) requires the introduction of a larger
class of functions, containing both A-∞ quasiconvex and level convex functions.

To this end we define the class of A-Young quasiconvex functions. We say that a function f : M
d×N → R is

A-Young quasiconvex if it satisfies a generalised Jensen’s inequality for Young measures; that is,

f

(∫
Md×N

Σdμx(Σ)
)

≤ ess sup
x∈Q

μx- ess sup
Σ∈Md×N

f(Σ) (1.5)

for a.e. x ∈ Q and for every A-∞-Young measure μ = (μx)x∈Q (see [4, 9, 15, 22]).
This class of functions is not empty. In fact, thanks to ([7], Thm. 1.2), any lower semicontinuous and level

convex function satisfies inequality (1.5). Moreover, in Proposition 3.4, we show that any continuous and A-∞
quasiconvex function is A-Young quasiconvex. In Example 6.7 we construct a curl -Young quasiconvex function
which is neither curl -∞ quasiconvex nor level convex. Therefore the class of the A-Young quasiconvex functions
contains the class of level convex functions and the class of continuous A-∞ quasiconvex functions, but it is
strictly larger. However, we show that, if d = 1, A = curl or A = div , then a lower semicontinuous and A-Young
quasiconvex function is level convex (see Prop. 6.4).

In Theorem 4.2 we prove that, if f(x, ·) is lower semicontinuous and A-Young quasiconvex for a.e. x ∈ Ω, then
the supremal functional F given by (1.1) is weakly* lower semicontinuous on L∞(Ω; Md×N ) ∩ KerA. It is still
an open question whether A-Young quasiconvexity is also necessary. In Theorem 5.1 we provide some necessary
conditions. More precisely, we show that if F is L∞-weakly* lower semicontinuous and f(·, Σ) is continuous,
then the supremand function satisfies

f(x, tΣ1 + (1 − t)Σ2) ≤ max{f(x, Σ1), f(x, Σ2)} (1.6)

for every x ∈ Ω, t ∈ [0, 1] and (Σ1 − Σ2) ∈ Λ, where

Λ :=
⋃

w∈SN−1

Ker A(w).

We also prove that f(x, ·) is A-weak quasiconvex (see Def. 2.8).
If A = curl , then A-weak quasiconvexity coincides with weak Morrey quasiconvexity (see [3], Rem. 3.2(2)).

We recall that, in the scalar case, weak Morrey quasiconvex functions are strong Morrey quasiconvex functions
(see [7,21]). In a forthcoming paper [20] we will show that, in the vectorial case, the two classes do not coincide;
this proves the conjecture raised by Barron et al..
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In Section 6 we discuss Theorems 4.2 and 5.1 in the case of A = curl and A = Div . More precisely,
when A = curl , Theorem 4.2 improves both ([7], Thm. 2.6) and ([13], Thm 3.4) since we do not require the
continuity and coercivity of f(·, Σ). In Proposition 6.1 we show that curl -Young quasiconvex functions are
strong Morrey quasiconvex functions. Conversely, in Proposition 6.3 we prove that polylevelconvex functions,
which are introduced in ([7], Def. 3.5) as a subclass of strong Morrey quasiconvex functions, are curl -Young
quasiconvex functions. Finally, since in the curl -free case we have

KerA(w) =
{
ξ ⊗ w ∈ M

d×N : ξ ∈ R
d, w ∈ SN−1

}
,

it follows by Theorem 5.1 that, if f(x, ·) is lower semicontinuous and curl-Young quasiconvex, then f(x, ·) is
rank-1 level convex; that is, f satisfies (1.6) for every Σ1, Σ2 ∈ Md×N with rank (Σ1 − Σ2) ≤ 1. In the cases
of N = 1 or d = 1 we find that the class of curl -Young quasiconvex functions coincides with the class of level
convex ones (see Prop. 6.5).

In the case of A = Div , if d = 1, then Λ = RN and we find that the class of div -Young quasiconvex functions
coincides with that of level convex ones. The vectorial case (d ≥ N > 1) can be treated by generalising the scalar
case; hence, if f : Md×N → [0, +∞) is lower semicontinuous and Div -Young quasiconvex, then f is rank-(N −1)
level convex.

In Section 6.2 we characterise, by way of Γ -convergence, the effective strength set Keff in the context of
electrical resistivity (that is, of how strongly a given material opposes the flow of electric current). This set is
defined by

Keff :=
{

σ̄ :=
∫

Ω

σ(x) dx : σ(x) ∈ K(x) a.e. x ∈ Ω, div σ = 0
}

,

with K(x) = {ξ ∈ RN : f(x, ξ) ≤ 1} and f : Ω ×RN → R is a Borel function that is lower semicontinuous and
is level convex with respect to ξ and satisfies a growth condition. In this model σ : Ω 
→ RN is the current and
the right differential constraint is the divergence. In ([8], Props. 6.1, 6.2), Bocea and Nesi characterise the set
Keff under the assumption that f(x, ·) is convex. In this paper we improve their result by assuming that f(x, ·)
is lower semicontinuous and div -Young quasiconvex.

2. Notation and preliminaries

Let Ω be a bounded open subset of RN . We denote by O(Ω) the family of open subsets of Ω. We write
LN (E) for the Lebesgue measure of E ⊂ R

N . Let Σ ∈ M
d×N , where M

d×N stands for the space of d × N

real matrices, with a slight abuse of notation, we denote |Σ| =
∑d

i=1 |Σi|, where Σi is the ith row of Σ and
|Σi| its Euclidean norm. We use ξi also to denote the ith component of a vector ξ. If V : Ω → Md×N , we
define Div V : Ω 
→ Rd as (Div V )i := divVi whenever i = 1, . . . , d. Hereafter in this paper, we assume that
A : Lp(Ω; Md×N ) → W−1,p(Ω; Rl), 1 < p ≤ ∞, is a constant-rank first-order linear partial operator given by

AV :=
N∑

i=1

A(i) ∂V

∂xi

where A(i) : M
d×N → R

l are linear transformations whenever i = 1, . . . , N . We denote the kernel of the operator
A by

KerA :=
{
V ∈ Lp(Ω; Md×N ) : AV = 0

}
.

We recall that an A-∞-Young measure is a measure generated by a sequence in L∞(Ω; Md×N )∩KerA weakly*
converging in L∞ (see [15], Sect. 2). We denote the N -dimensional unit cube (0, 1)N by Q.
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2.1. A-quasiconvexity

In this section we recall some definitions and results we will use in the sequel.

Definition 2.1. Let f : Md×N 
→ R be a function. We say that f is A-quasiconvex if

f(Σ) ≤
∫

Q

f(Σ + V (x)) dx

for every V ∈ C∞
# (RN ; Md×N ) such that AV = 0 and

∫
Q

V dx = 0.

We denote by C∞
# (RN ; Md×N ) the set of C∞(RN ; Md×N) functions which are Q-periodic.

Definition 2.2. Given a Borel function f : Md×N 
→ R we define the A-quasiconvexification of f at Σ as

QAf(Σ) := inf
{∫

Q

f(Σ + V (x)) dx : V ∈ C∞
# (RN ; Md×N ) ∩ KerA,

∫
Q

V (y) dy = 0
}

. (2.7)

Remark 2.3. If f(x, ·) is upper semicontinuous for a.e. x ∈ Ω then QAf(x, ·) is A-quasiconvex (see [15],
Prop. 3.4). Moreover, if f is upper semicontinuous and locally bounded from above, then, by Fatou’s lemma, we
may replace C∞(RN ; Md×N ) by L∞(RN ; Md×N ) in Definitions 2.1 and 2.2. If, in addition, |f(Σ)| ≤ β(1+ |Σ|p)
for some β > 0 and for every Σ ∈ Md×N , then C∞(RN ; Md×N ) may be replaced by Lp(RN ; Md×N ) (see [15],
Rem. 3.3(ii)).

In [15] Fonseca and Müller prove that the A-quasiconvexity is a necessary and sufficient condition for the
lower semicontinuity of integral functionals of the form

F (V ) =
∫

Ω

f(x, V (x))dx (2.8)

under the PDE constraint AV = 0 and f Carathéodory (see [15], Thms. 3.6 and 3.7).

The following proposition turns out to be an important tool to prove Theorem 4.1.

Proposition 2.4 ([15], Prop. 3.9). Let (Vn) ⊂ L∞(Ω; Md×N )∩KerA be a sequence such that Vn ⇀ V weakly*
in L∞(Ω; Md×N ) and such that (Vn) generates a Young measure μ. Then there exists a neglibible set N ⊂ Ω such
that for every x0 ∈ Ω \N and for every subcube Q′ ⊂⊂ Q there exists a sequence (W̄n) ⊂ L∞

# (Q; Md×N )∩KerA
such that

1. W̄n ⇀ V (x0) weakly* in L∞;
2.

∫
Q

W̄n(y)dy = V (x0);
3. W̄n generates a Young measure ν such that for every f ∈ Cc(Md×N )∣∣∣∣

∫
Q

〈νy, f〉dy − 〈μx0 , f〉
∣∣∣∣ ≤ LN (Q \ Q′)‖f‖L∞(B(0,3K)) (2.9)

where K = supn ‖Vn‖∞. In addition, if f : Md×N → R is continuous and A-quasiconvex then

f(V (x0)) ≤ 〈μx0 , f〉 (2.10)

for every x0 ∈ Ω \ N .
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Remark 2.5. Let μ, ν, x0 ∈ Ω \ N and Q′ ⊂⊂ Q be as in Proposition 2.4. If f : Md×N → [0, +∞) is locally
bounded and lower semicontinuous then the inequality∫

Q

〈νy, f〉dy ≤ 〈μx0 , f〉 + LN (Q \ Q′)‖f‖L∞(B(0,3K)) (2.11)

still holds true.
We first prove (2.11) for every continuous and nonnegative function f . Let ϕ ∈ C1

c (Md×N ) be a cut-off
function such that

ϕ(Σ) :=
{

1 if |Σ| ≤ 1,
0 if |Σ| ≥ 2.

(2.12)

We define fn(Σ) := ϕ(Σ/n)f(Σ). Then, fn ∈ Cc(Md×N ) and it satisfies

〈νy, fn〉 =
∫

Md×N

fn(Σ)dνy(Σ) ≥
∫

Bn(0)

f(Σ)dνy(Σ)

for every y ∈ Q. This implies that

lim inf
n→∞ 〈νy, fn〉 ≥

∫
Md×N

f(Σ)dνy(Σ)

for every y ∈ Q. By Fatou’s Lemma and (2.9) with fn in place of f , we have that

∫
Q

〈νy, f〉dy ≤ lim inf
n→∞

∫
Q

〈νy, fn〉dy

≤ lim inf
n→∞ 〈μx0 , fn〉 + LN (Q \ Q′)‖fn‖L∞(B(0,3K))

≤ 〈μx0 , f〉 + LN (Q \ Q′)‖f‖L∞(B(0,3K)), (2.13)

which proves (2.11) when f is continuous and nonnegative.
We now assume that f : Md×N → [0, +∞) is a locally bounded and lower semicontinuous function. Then,

f = supλ>0 fλ where fλ is its Yosida transform for every λ > 0 (see e.g. [10]). Since fλ is continuous and
nonnegative, by (2.13) we find that∫

Q

〈νy, fλ〉dy ≤ 〈μx0 , fλ〉 + LN (Q \ Q′)‖fλ‖L∞(B(0,3K)), ∀λ > 0. (2.14)

Moreover, 0 ≤ fλ ≤ f ; hence, we get that

‖fλ‖L∞(B(0,3K)) ≤ ‖f‖L∞(B(0,3K)), ∀λ > 0.

By Beppo–Levi’s Theorem, we can pass to the limit in (2.14), as λ → 0+, and the inequality (2.11) holds true.

Remark 2.6. Let μ = (μx)x∈Ω be a A-∞-Young measure. Then, reasoning as in Proposition 2.4, we can easily
check that for every continuous functions f the following inequality

QAf

(∫
Md×N

Σdμx(Σ)
)

≤ 〈μx, f〉 ,

holds true for a.e. x ∈ Ω.
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2.2. A-∞ and A-weak quasiconvexity

In this section we recall some definitions and results contained in ([3], Sect. 3). We also prove Proposition 2.9
which improves ([19], Cor. 3.10) and ([3], Prop. 3.6(iv)). As a consequence, in Theorem 2.10 we prove an
Lp-approximation result by way of Γ -convergence.

Definition 2.7. We say that a Borel function f : Md×N 
→ [0, +∞) is A-∞ quasiconvex if for every Σ ∈ Md×N

f(Σ) = lim
p→∞ inf

{(∫
Q

fp(Σ + V (x))dx

)1/p

: V ∈ L∞
# (Q; Md×N ) ∩ KerA,

∫
Q

V dx = 0

}
. (2.15)

Here and in the sequel we denote by L∞
# (Q; Md×N ) the set of L∞

loc(R
N ; Md×N ) functions which are Q-periodic

and we define

fp(Σ) := inf

{(∫
Q

fp(Σ + V (x))dx

)1/p

: V ∈ L∞
# (Q; Md×N) ∩ KerA,

∫
Q

V dx = 0

}
. (2.16)

For any function f : Md×N → R we define the A-∞ quasiconvex envelope of f as

Q∞
A f(Σ) := sup{h(Σ) : h is A-∞ quasiconvex and h ≤ f}. (2.17)

In ([3], Prop. 3.8) we prove that if f is a continuous function, then fp is an A-quasiconvex function and Q∞
A f

is an A-∞ quasiconvex function. The A-∞ quasiconvex envelope of f can be also obtained as limit of fp as p
tends to +∞; i.e.,

Q∞
A f(Σ) = lim

p→∞ inf

{(∫
Q

fp(Σ + V (y)) dy

)1/p

: V ∈ L∞
# (Q; Md×N) ∩ KerA,

∫
Q

V dy = 0

}
, (2.18)

for every Σ ∈ Md×N . In ([3], Thm. 4.2) we prove that the Γ -limit of a sequence of power-law functionals, as in
(1.4), is given by the supremal functional

F̃ (V ) :=

{
ess sup

x∈Ω
Q∞

A f(x, V (x)) if V ∈ L∞(Ω; Md×N ) ∩ KerA,

+∞ otherwise.
(2.19)

In ([3], Def. 3.1) we also introduce the notion of A-weak quasiconvex functions.

Definition 2.8. We say that a Borel function f : Md×N 
→ R is A-weak quasiconvex if for all Σ ∈ Md×N

f(Σ) ≤ ess sup
x∈Q

f(Σ + V (x))

for every V ∈ L∞
# (Q; Md×N ) ∩ KerA with

∫
Q V dx = 0.

In ([3], Prop. 3.6) we prove that

A-quasiconvexity =⇒ A-∞ quasiconvexity =⇒ A-weak quasiconvexity;

while, the counter implications are false (see [3], Sect. 5.2). In ([3], Prop. 3.6) we also prove that

if f is lower semicontinuous and level convex =⇒ f is A-weak quasiconvex.

We recall that a function f : M
d×N → R is level convex if

f(tΣ1 + (1 − t)Σ2) ≤ f(Σ1) ∨ f(Σ2), ∀Σ1, Σ2 ∈ M
d×N , ∀t ∈ [0, 1]. (2.20)

Finally, in the following proposition we prove that

if f is lower semicontinuous, coercive and level convex =⇒ f is A-∞ quasiconvex.
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Proposition 2.9. Let f : RN → R be a level convex, lower semicontinuous function satisfying

f(ξ) ≥ α|ξ|
for a fixed α > 0 and for every ξ ∈ RN . Let (fp)∗∗ be the convex envelope of fp for every p ≥ 1. Then

lim
p→∞((fp)∗∗)1/p(ξ) = f(ξ), (2.21)

for every ξ ∈ R
N . In particular, f is an A-∞ quasiconvex function.

Proof. We can easily prove that (((fp)∗∗)1/p) is a nondecreasing sequence. Since f is lower semicontinuous we
have that f = supλ>0 fλ where fλ is the λ-Lipschitz continuous function given by

fλ(ξ) = inf
{
f(η) ∨ λ|ξ − η| : η ∈ R

N
}
, (2.22)

(see [1], Props. 2.5 and 2.6). Note that fλ is also coercive; i.e., fλ(ξ) ≥ α|ξ| for every λ > 0 and for every
ξ ∈ RN . In addition, since f is level convex, then fλ is also level convex for every λ > 0. In fact, let ξ1, ξ2 ∈ RN .
For every fixed ε > 0 let η1, η2 ∈ R

N be such that

fλ(ξ1) ≥ f(η1) ∨ λ|ξ1 − η1| − ε, fλ(ξ2) ≥ f(η2) ∨ λ|ξ2 − η2| − ε.

Then, for every t ∈ (0, 1), we find that

fλ(tξ1 + (1 − t)ξ2) ≤ f(tη1 + (1 − t)η2) ∨ λ|t(ξ1 − η1) + (1 − t)(ξ2 − η2)|
≤ f(η1) ∨ g(η2) ∨ λ|ξ1 − η1| ∨ λ|ξ2 − η2|
≤ fλ(ξ1) ∨ gλ(ξ2) + ε.

By the arbitrariness of ε, it follows that

fλ(θξ1 + (1 − θ)ξ2) ≤ fλ(ξ1) ∨ fλ(ξ2);

that is, fλ is a level convex function.
By [19], Corollary 3.10, we find that

sup
p>1

((fp
λ)∗∗)1/p(ξ) = fλ(ξ),

for every ξ ∈ RN . This implies that

f(ξ) = sup
λ>0

fλ(ξ) = sup
λ>0

(
sup
p>1

((fp
λ)∗∗)1/p(ξ)

)
= sup

p>1

(
sup
λ>0

((fp
λ)∗∗)1/p(ξ)

)
≤ sup

p>1
((fp)∗∗)1/p(ξ) ≤ f(ξ),

which proves formula (2.21).
We now demonstrate that f is an A-∞ quasiconvex function. By Jensen’s inequality we have that

(fp)∗∗(Σ) ≤
∫

Q

(fp)∗∗(Σ + V (x)) dx ≤
∫

Q

fp(Σ + V (x)) dx

for every V ∈ L∞
# (Q; Md×N ) ∩ KerA such that

∫
Q V dx = 0. It follows that

(fp)∗∗(Σ) ≤ inf
{∫

Q

fp(Σ + V (x))dx : V ∈ L∞
# (Q; Md×N ) ∩ KerA,

∫
Q

V dx = 0
}

= fp
p (Σ); (2.23)

hence, ((fp)∗∗)1/p ≤ fp ≤ f . Passing to the limit as p → ∞ we get, in particular, that f = limp→∞ fp which
concludes the proof. �

We now prove the following Γ -convergence result for power-law functionals.
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Theorem 2.10. Let f : Ω×Md×N 
→ R be a Borel function such that f(x, ·) is lower semicontinuous and level
convex for a.e. x ∈ Ω and satisfies the growth condition: there exists α > 0 such that

f(x, Σ) ≥ α|Σ| for a.e x ∈ Ω, for every Σ ∈ M
d×N . (2.24)

Let Fp, F : L1(Ω; Md×N ) → R ∪ {+∞} be given by

Fp(V ) :=

⎧⎨
⎩

(∫
Ω

fp(x, V (x))dx

)1/p

if V ∈ Lp(Ω; Md×N ) ∩ KerA
+∞ otherwise,

and

F (V ) :=

{
ess sup

x∈Ω
f(x, V (x)) if V ∈ L∞(Ω; Md×N ) ∩ KerA
+∞ otherwise,

respectively. Then
Γ (w-L1)- lim

p→∞Fp(V ) = F (V )

where Γ (w-L1) denotes the Γ -limit with respect to the L1-weak topology.

Proof. We remark that (|Ω|−1/pFp) is a nondecreasing sequence and it converges pointwise to the functional F ;
hence, by ([14], Props 6.7, 5.1), we have that

Γ (w-L1)- lim
p→∞ Fp(V ) ≤ F (V ).

Conversely, since (fp)∗∗(x, ·) is a convex function we have that the functional Gp : L1(Ω; RN ) → R ∪ {+∞}
given by

Gp(V ) =

⎧⎨
⎩

(∫
Ω

(fp)∗∗(x, V (x))dx

)1/p

if V ∈ Lp(Ω, Md×N ) ∩ KerA
+∞ otherwise

is lower semicontinuous with respect to the L1-weak topology. Moreover, Gp ≤ Fp for every p ≥ 1. Therefore,
by ([14], Prop. 5.4), we find that

Γ (w-L1)- lim
p→∞Fp(V ) ≥ Γ (w-L1)- lim

p→∞Gp(V ) = sup
p>1

Gp(V ).

By Proposition 2.9 and reasoning as in the proof of ([3], Thm. 4.2), we easily get that

sup
p>1

Gp(V ) = F (V ).

Therefore, we conclude that Γ (w-L1)- limp→∞ Fp(V ) = F (V ). �

3. A-Young quasiconvex functions

In order to study the L∞-weak* lower semicontinuity of supremal functionals as in (1.1) we introduce the
following class of functions.

Definition 3.1. We say that a Borel function f : Md×N 
→ R is A-Young quasiconvex if for every A-∞-Young
measure μ = (μx)x∈Q it satisfies the following Jensen’s inequality for Young measures

f

(∫
Md×N

Σdμx(Σ)
)

≤ ess sup
x∈Q

μx- ess sup
Σ∈Md×N

f(Σ) (3.25)

for a.e. x ∈ Q.
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We remark that the class of A-Young quasiconvex functions is quite large. In fact, in the following Propo-
sitions 3.3 and 3.4, under suitable assumptions, we prove that this class contains strictly the more relevant
classes of functions as A-quasiconvex functions, level convex functions, A-∞ quasiconvex functions and A-∞
quasiconvex envelope functions (see also Rem. 3.5).

In order to prove Proposition 3.3(2) we recall the Jensen’s inequality introduced by Barron et al. in [6].

Theorem 3.2 ([7], Thm. 1.2). Let f : Rk → R be a lower semicontinuous and level convex function, and let μ
be a probability measure supported on Ω. Then, for every function u ∈ L1

μ(Ω; Rk), we have

f

(∫
Ω

u(x)dμ(x)
)

≤ μ- ess sup
x∈Ω

(f ◦ u)(x). (3.26)

Proposition 3.3. Let f : Md×N 
→ R.

(1) If f is a continuous and A-quasiconvex function, then f is an A-Young quasiconvex function;
(2) If f is a lower semicontinuous and level convex function, then f is an A-Young quasiconvex function.

Proof.

(1) By Proposition 2.4, we find that for every A-∞-Young measure μ = (μx)x∈Q

f

(∫
Md×N

Σ dμx(Σ)
)

≤
∫

Md×N

f(Σ) dμx(Σ),

for a.e. x ∈ Q. Therefore, f satisfies (3.25).
(2) By the Fundamental Theorem on Young Measure (see e.g. [15], Thm. 2.2(5)) we have that every A-∞-Young

measure is a probability measure. Therefore, by Theorem 3.2, we easily get that any lower semicontinuous
and level convex function is, in particular, an A-Young quasiconvex function. �

Proposition 3.4. Let f : M
d×N 
→ [0, +∞) be a continuous function.

(1) If f is an A-∞ quasiconvex function, then for every open set Ω ⊂ R
N and for every A-∞-Young measure

μ = (μx)x∈Ω we have that

f

(∫
Md×N

Σdμx(Σ)
)

≤ μx- ess sup
Σ∈Md×N

f(Σ)

for a.e. x ∈ Ω. In particular, f is an A-Young quasiconvex function.
(2) If f satisfies the growth condition f(Σ) ≥ α|Σ|, for α > 0 and for every Σ ∈ Md×N , then Q∞

A f is a lower
semicontinuous and A-Young quasiconvex function.

Proof.

(1) Let μ be an A-∞-Young measure generated by a sequence (Vh) ∈ L∞(Ω; Md×N )∩KerA weakly* converging
to V ∈ L∞(Ω; Md×N ). In particular, we have that

V (x) =
∫

Md×N

Σdμx(Σ),

for a.e. x ∈ Ω (see e.g. [15], Rem. 2.3(ii)). By Remark 2.6, it follows that

QAfp(V (x)) ≤ μx- ess sup
Σ∈Md×N

fp(Σ),
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for a.e. x ∈ Ω. Since, by definition, fp
p ≤ QAfp for every p ≥ 1, we get that

fp

(∫
Md×N

Σdμx(Σ)
)

≤ μx- ess sup
Σ∈Md×N

f(Σ).

Passing to the limit as p → ∞, we obtain

f

(∫
Md×N

Σdμx(Σ)
)

≤ μx- ess sup
Σ∈Md×N

f(Σ)

for a.e. x ∈ Ω. By Definition 3.1 we get that f is also an A-Young quasiconvex function.
(2) By ([3], Props. 3.8 and 3.9) we have that (fp

p ) is a sequence of continuous and A-quasiconvex functions and
supp fp = Q∞

A f. In particular, Q∞
A f is a lower semicontinuous function. With a slight abuse of notation, we

denote by fn the function given by fp with p = 1/n.
By Proposition 2.4, we have that for every fixed A-∞-Young measure μ = (μx)x∈Ω and for every fixed
n ∈ N, there exists a negligible set Hn ⊂ Ω such that

fn

(∫
Md×N

Σdμx(Σ)
)

= fn(V (x)) ≤ 〈μx, fn
n 〉1/n ≤ μx- ess sup

Σ∈Md×N

Q∞
A f(Σ)

for every x ∈ Ω \ Hn. Set H =
⋃

n Hn. Then, we find that

fn

(∫
Md×N

Σdμx(Σ)
)

≤ μx- ess sup
Σ∈Md×N

Q∞
A f(Σ)

for every x ∈ Ω \ H . Hence, by ([3], Prop. 3.8), passing to the limit as n → ∞, we have that

Q∞
A f

(∫
Md×N

Σdμx(Σ)
)

≤ μx- ess sup
Σ∈Md×N

Q∞
A f(Σ)

for every x ∈ Ω \ H . In particular, if Ω = Q we obtain that Q∞
A f is an A-Young quasiconvex function.

�

Remark 3.5.

(1) Note that, by ([3], Thm. 4.2) and Proposition 3.4(2), if f is a Carathéodory function, then the Γ -limit of
(Fp), as in (1.4), is a supremal functional whose supremand function is an A-Young quasiconvex function
with respect to the second variable.

(2) In Section 6.1 we exhibit an example which shows that if d, N > 1, then

A-Young quasiconvexity �=⇒
⎧⎨
⎩

A-quasiconvexity,
level convexity,
A-∞ quasiconvexity,

(see Example 6.7).

4. A sufficient condition for the w∗-lower semicontinuity

In this section we deal with the lower semicontinuity of a supremal functionals F under a differential constraint
defined by

F (V ) := ess sup
x∈Ω

f(x, V (x)), V ∈ L∞(Ω; Md×N ) ∩ KerA. (4.27)
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In Theorem 4.1 we prove the lower semicontinuity of F under the hypotheses that f is a coercive, lower
semicontinuous and A-Young quasiconvex function in the second variable. In Theorem 4.2 we remove the
coercivity assumption. Note that, if A = curl , then Theorem 4.2 generalises ([13], Thm. 3.4).

It is still an open question whether the A-Young quasiconvexity is also a necessary condition for the lower
semicontinuity of F when d, N > 1.

Theorem 4.1. Let f : Ω ×Md×N → [0, +∞) be a Borel function such that f(x, ·) is lower semicontinuous and
locally bounded for a.e. x ∈ Ω. Assume that

(i) f satisfies the growth condition: there exists α > 0 such that

f(x, Σ) ≥ α|Σ| for a.e x ∈ Ω, for every Σ ∈ M
d×N ; (4.28)

(ii) f(x, ·) is A-Young quasiconvex for a.e. x ∈ Ω.

Let F, Fp : L∞(Ω; Md×N ) → R ∪ {+∞} be the functionals defined by (1.3) and (1.4), respectively.
Then, for every V, (Vp) ⊂ L∞(Ω; Md×N ) such that Vp ⇀ V weakly* in L∞(Ω; Md×N ), we have

F (V ) ≤ lim inf
p→∞ Fp(Vp).

In particular the functional F is sequentially lower semicontinuous with respect to the L∞- weak* convergence.

Proof. Let (Vp) ∈ L∞(Ω; Md×N ) be a sequence L∞-weakly* converging to V ∈ L∞(Ω; Md×N ). We may
always assume that lim infp→∞ Fp(Vp) < +∞. In particular, Vp ∈ L∞(Ω; Md×N ) ∩ KerA; hence, also
V ∈ L∞(Ω; Md×N ) ∩ KerA. In fact,

〈AV, φ〉 = lim
p→+∞〈AVp, φ〉 = 0, ∀φ ∈ C∞

0 (Ω, Md×N ).

By the density of the subset C∞
0 (Ω, Md×N ) in W 1,1

0 (Ω, Md×N ), with respect to the strong convergence, we get
that also V satisfies the constraint AV = 0.

The sequence (Vp) generates a Young measure (μx)x∈Ω such that

V (x) =
∫

Rd×N

Σ dμx(Σ)

for a.e. x ∈ Ω. In particular, by the Fundamental Theorem on Young Measure (see e.g. [15], Thm. 2.2(5)) for
any fixed q > 1, we have that

lim inf
p→∞ Fq(Vp) = lim inf

p→∞

(∫
Ω

f q(x, Vp(x))dx

)1/q

≥
(∫

Ω

∫
Md×N

f q(x, Σ)dμx(Σ)dx

)1/q

.

By applying ([3], Lem. 4.5) we obtain

lim inf
q→∞ lim inf

p→∞ Fq(Vp) ≥ ess sup
x∈Ω

(
μx- ess sup

Σ∈Md×N

f(x, Σ)
)

. (4.29)

By (4.29), we get that

ess sup
x∈Ω

(
μx- ess sup

Σ∈Md×N

f(x, Σ)
)

≤ lim inf
q→∞ lim inf

p→∞ Fq(Vp)

≤ lim inf
q→∞ lim inf

p→∞ |Ω|1/q−1/pFp(Vp)

= lim inf
p→∞ Fp(Vp). (4.30)
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If we prove that

f(x0, V (x0)) ≤ ess sup
x∈Ω

(
μx- ess sup

Σ∈Md×N

f(x, Σ)
)

(4.31)

for a.e. x0 ∈ Ω, by (4.30), we infer that

F (V ) ≤ lim inf
p→∞ Fp(Vp).

By Proposition 2.4 and Remark 2.5, there exists a negligible set N ⊂ Ω such that for every x0 ∈ Ω \ N
and for every Q′ ⊂⊂ Q we can construct a sequence (W̄n) ⊂ L∞

# (Q; Md×N ) ∩ KerA satisfying the following
properties

(1) W̄n ⇀ V (x0) weakly* in L∞(Ω; Md×N );
(2)

∫
Q W̄n(x)dx = V (x0);

(3) (W̄n) generates a Young measure νx0 such that for every p ≥ 1
(∫

Q

〈
νx0

y , fp(x0, ·)
〉
dy

)1/p

≤( 〈μx0 , f
p(x0, ·)〉 + LN (Q \ Q′)||fp(x0, ·)||L∞(B(0,3K)))1/p

≤ ess sup
x∈Ω

(
μx- ess sup

Σ∈Md×N

f(x, Σ)
)

+ LN (Q \ Q′)1/p||f(x0, ·)||L∞(B(0,3K)) (4.32)

where K = supp ||Vp||∞.

Let Ω′ = {x ∈ Ω \ N : f(x, ·) is A-Young quasiconvex}. Note that LN (Ω \ Ω′) = 0. We now consider x0 ∈ Ω′

and (W̄n) constructed as above. Then, letting in (4.32) first Q′ → Q and then p → +∞, by ([3], Lem. 4.5), we
obtain

ess sup
y∈Q

(
νx0

y - ess sup
Σ∈Md×N

f(x0, Σ)
)

≤ ess sup
x∈Ω

(
μx- ess sup

Σ∈Md×N

f(x, Σ)
)

. (4.33)

By properties (1) and (3) we have that

V (x0) =
∫

Md×N

Σ dνx0
y (Σ)

for a.e. y ∈ Ω (see [15], Rem. 2.3(ii)). Moreover, since μ = (μy)y∈Q is A-∞ Young measure and f(x0, ·) is
A-Young quasiconvex we have that

f(x0, V (x0)) = f(x0,

∫
Md×N

Σ dνx0
y (Σ)) ≤ ess sup

y∈Q

(
νx0

y - ess sup
Σ∈Md×N

f(x0, Σ)
)

for every x0 ∈ Ω′. By (4.33) we get then (4.31) which concludes the proof of the liminf inequality. Since
Fp ≤ |Ω|1/pF for every p ≥ 1, by the liminf inequality we get also the sequential lower semincontinuity of the
functional F . �

Theorem 4.2 (Sufficient condition). Let f : Ω × Md×N → [−∞, +∞] be a Borel function, f �≡ +∞. As-
sume that f(x, ·) is lower semicontinuous and A-Young quasiconvex for a.e. x ∈ Ω. Then the functional
F : L∞(Ω; Md×N ) ∩ KerA → R defined by (4.27) is sequentially lower semicontinuous with respect to the
L∞-weak* convergence.

Proof. The proof is achieved in two steps.

Step 1. We first deal with f nonnegative and such that f(x, ·) is locally bounded for a.e. x ∈ Ω. For every fixed
n ∈ N we define

fn(x, Σ) := f(x, Σ) ∨ 1
n
|Σ|
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for every (x, Σ) ∈ Ω×Md×N . We can easily check that the function fn is A-Young quasiconvex, lower semicon-
tinuous, locally bounded in the second variable. Moreover, it satisfies the growth condition (4.28) with α = 1/n
for every fixed n ∈ N. We now define the functional F (n) : L∞(Ω; Md×N ) ∩ KerA → R given by

F (n)(V ) := ess sup
x∈Ω

fn(x, V (x)).

By Theorem 4.1, F (n) is sequentially L∞-weakly* lower semicontinuous.
Let (Vk) ∈ L∞(Ω; Md×N )∩KerA be a sequence L∞-weakly* converging to V . Without loss of generality we

may assume that lim infk→∞ F (Vk) = limk→∞ F (Vk). Let M := supk ||Vk||∞. If limk→∞ F (Vk) > 0 then there
exists n0, k0 ∈ N such that

F (Vk) ≥ M

n0

for every k ≥ k0. It implies that

F (Vk) ≥ 1
n
||Vk||∞

for every n ≥ n0 and k ≥ k0. We remark that

F (n)(V ) = F (V ) ∨ 1
n
||V ||∞,

and that the sequence (F (n)) converges pointwise to the functional F as n → ∞ (see [18], Prop. 4.3).
In particular, we find that

F (n)(Vk) = F (Vk) ∨ 1
n
||Vk||∞ = F (Vk)

for every k ≥ k0 and n ≥ n0. By the lower semicontinuity of F (n) we have that

F (n)(V ) ≤ lim inf
k→∞

F (n)(Vk) = lim
k→∞

F (Vk)

for every n ≥ n0. Passing to the limit as n → ∞ we obtain

F (V ) ≤ lim inf
k→∞

F (Vk).

If limk→∞ F (Vk) = 0, then we have that for every n ∈ N

F (V ) ≤ (F (V ) ∨ 1
n
||V ||∞) = F (n)(V ) ≤ lim inf

k→∞
F (n)(Vk) = lim inf

k→∞
(F (Vk) ∨ 1

n
||Vk||∞) ≤ M

n
·

Passing to the limit as n → ∞, we find that F (V ) = 0.

Step 2. We define g(x, Σ) := arctan(f(x, Σ)) + π
2 . Since f is an A-Young quasiconvex function, by the mono-

tonicity of the arctangent function, it is easy to see that g is a nonnegative A-Young quasiconvex function.
Moreover, g is bounded and lower semicontinuous with respect to the second variable. By Step 1, we have that
the functional G : L∞(Ω; Md×N ) ∩ KerA → R defined by

G(V ) := ess sup
x∈Ω

g(x, V (x)) (4.34)

is sequentially L∞-weakly* lower semicontinuous. Let (Vk) ∈ L∞(Ω; Md×N ) ∩ KerA be a sequence weakly*
converging to V and let (Vnk

) be a subsequence such that

lim inf
k→∞

ess sup
x∈Ω

f(x, Vk(x)) = lim
n→∞ ess sup

x∈Ω
f(x, Vkn(x)).
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Since

lim inf
k→∞

arctan
(

ess sup
x∈Ω

(f(x, Vk(x)))
)

≥ arctan(lim inf
k→∞

ess sup
x∈Ω

f(x, Vk(x))) ;

it easily follows that

lim inf
k→∞

arctan
(

ess sup
x∈Ω

(f (x, Vk(x)))
)

= lim
n→∞ arctan

(
ess sup

x∈Ω
f(x, Vkn(x))

)
.

By the lower semicontinuity of G we have that

G(V ) ≤ lim
n→∞G(Vkn )

and, consequently,

arctan
(

ess sup
x∈Ω

f(x, V (x))
)

≤ lim
n→∞ arctan

(
ess sup

x∈Ω
f(x, Vkn(x))

)
.

Gathering the previous inequalities, we can now conclude that

F (V ) = ess sup
x∈Ω

f(x, V (x))) ≤ lim
n→∞ ess sup

x∈Ω
f(x, Vkn(x)) ≤ lim

k→∞
ess sup

x∈Ω
f(x, Vk(x)) = lim inf

k→∞
F (Vk). �

Remark 4.3. Let f : Md×N 
→ [0, +∞) be a lower semicontinuous function satisfying the growth condition

f(Σ) ≥ α|Σ| (4.35)

for every Σ ∈ Md×N and a fixed α > 0. By (4.31) we have that

f

(∫
Md×N

Σdμx(Σ)
)

≤ ess sup
x∈Ω

μx- ess sup
Σ∈Md×N

f(Σ) (4.36)

for a.e. x ∈ Ω, for every A-∞-Young measure μ = (μx)x∈Ω and for every Ω open bounded subset of RN . In
particular, f is an A-Young quasiconvex function and the condition (3.25) holds true not only for the unit cube
Q but for every open bounded subset of RN .

5. Some necessary conditions for the w∗-lower semicontinuity

In the following theorem we provide necessary conditions for the lower semicontinuity of functionals as
in (4.27). In particular, we prove that the A-weak quasiconvexity is a necessary condition too. However, this
condition is not sufficient as proved by a counter-example in [20]. The proof of (i) and (ii) closely follows that
of ([7], Lem. 2.8) with the necessary changes.

Theorem 5.1 (Necessary conditions). Let f : Ω × Md×N → R be a Borel function. Assume that there exists a
function ω : [0, +∞)× [0, +∞) 
→ [0, +∞]) continuous in its first variable, non-decreasing in its second variable,
ω(0, t) = 0 for every t > 0, and such that

|f(x1, Σ) − f(x2, Σ)| ≤ ω(|x1 − x2|, |Σ|) (5.37)

for every x1, x2 ∈ RN , Σ ∈ Md×N . Let F : L∞(Ω; Md×N ) ∩ KerA×O(Ω) → R be defined by

F (V, B) := ess sup
x∈B

f(x, V (x)),
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for every V ∈ L∞(Ω; Md×N )∩KerA and B ∈ O(Ω). Assume that F (·, B) is L∞-weakly* lower semicontinuous
for every B ∈ O(Ω). Then

(i) ∀x ∈ RN

Σ 
→ f(x, Σ)

is a lower semicontinuous function in RN ;
(ii) ∀x0 ∈ Ω and for every N -cube Y ⊂ RN

f

(
x0,−

∫
Y

V (x) dx

)
≤ ess sup

x∈Y
f(x0, V (x)) (5.38)

for every V ∈ L∞
# (Y ; Md×N ) ∩ KerA. In particular, f(x0, ·) is A-weak quasiconvex;

(iii) ∀x ∈ Ω and for every t ∈ [0, 1] it holds

f(x, tΣ1 + (1 − t)Σ2) ≤ max{f(x, Σ1), f(x, Σ2)} (5.39)

for every (Σ1 − Σ2) ∈ Λ, where
Λ :=

⋃
w∈SN−1

Ker A(w).

Proof.

(i) Let us fix x0 ∈ RN and let us consider Σh → Σ in Md×N . We want to prove that f(x0, Σ) ≤
lim infh→∞ f(x0, Σh). Since F is weak∗ lower semicontinuous we trivially have that

ess sup
x∈Bρ(x0)

f(x, Σ) ≤ lim inf
h→∞

ess sup
x∈Bρ(x0)

f(x, Σh).

Since (Σh) is bounded, by (5.37), it follows that

f(x, Σh) = f(x, Σh) − f(x0, Σh) + f(x0, Σh)
≤ ω(|x − x0|, |Σh|) + f(x0, Σh)

≤ ω(|x − x0|, c) + f(x0, Σh).

Then
ess sup

x∈Bρ(x0)

f(x, Σh) ≤ f(x0, Σh) + ess sup
x∈Bρ(x0)

ω(|x − x0|, c)

and, passing to the limit as h → ∞, we find that

lim inf
h→∞

ess sup
x∈Bρ(x0)

f(x, Σh) ≤ lim inf
h→∞

f(x0, Σh) + ess sup
x∈Bρ(x0)

ω(|x − x0|, c).

It implies that
ess sup

x∈Bρ(x0)

f(x, Σ) ≤ lim inf
h→∞

f(x0, Σh) + ess sup
x∈Bρ(x0)

ω(|x − x0|, c).

Passing to the limit as ρ → 0+ we have that

f(x0, Σ) = lim
ρ→0+

ess sup
x∈Bρ(x0)

f(x, Σ)

≤ lim inf
h→∞

f(x0, Σh) + lim
ρ→0+

ess sup
x∈Bρ(x0)

ω(|x − x0|, c),

which concludes the proof of the lower semicontinuity of the function f(x0, ·).
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(ii) Let V ∈ L∞
# (Y ; Md×N ) ∩ KerA. We define Vn(x) = V (n(x − x0)). Then, Vn ∈ L∞(Ω; Md×N ) ∩ KerA is a

(1/n)Y -periodic function and it converges weakly* to −
∫

Y

V (x) dx in L∞(Ω; Md×N ). By the lower semicontinuity

of the functional F we have that

ess sup
x∈Bρ(x0)

f

(
x,−

∫
Y

V (y) dy

)
≤ lim inf

n→∞ ess sup
x∈Bρ(x0)

f(x, Vn(x)). (5.40)

Since f is continuous in its first variable, we get the left hand side of (5.38) passing to the limit in (5.40) as
ρ → 0+; i.e.,

lim
ρ→0+

ess sup
x∈Bρ(x0)

f

(
x,−

∫
Y

V (y) dy

)
= f

(
x0,−

∫
Y

V (y) dy

)
.

By the periodicity of Vn and n big enough we have that

ess sup
x∈Bρ(x0)

f(x0, Vn(x)) = ess sup
x∈Y

f(x0, V (x)).

Hence, we can get the right hand side of inequality (5.38) computing the following limit

lim
n→∞ ess sup

x∈Bρ(x0)

f(x0, Vn(x)) = ess sup
x∈Y

f(x0, V (x)).

On the other hand, by (5.37) we have that

|f(x, Vn(x)) − f(x0, Vn(x))| ≤ ω(|x − x0|, |Vn(x)|) ≤ ω(|x − x0|, c) ;

hence,

f(x, Vn(x)) = f(x, Vn(x)) − f(x0, Vn(x)) + f(x0, Vn(x))

≤ ω(|x − x0|, c) + ess sup
x∈Bρ(x0)

f(x0, Vn(x)).

It implies that
ess sup

x∈Bρ(x0)

f(x, Vn(x)) ≤ ess sup
x∈Bρ(x0)

ω(|x − x0|, c) + ess sup
x∈Bρ(x0)

f(x0, Vn(x)).

By (5.40) and gathering the previous inequalities we get that

ess sup
x∈Bρ(x0)

f

(
x,−

∫
Y

V (y) dy

)
≤ lim inf

n→∞ ess sup
x∈Bρ(x0)

f(x, Vn(x))

≤ lim inf
n→∞ ess sup

x∈Bρ(x0)

f(x0, Vn(x)) + ess sup
x∈Bρ(x0)

ω(|x − x0|, c)

= ess sup
x∈Y

f(x0, V (x)) + ess sup
x∈Bρ(x0)

ω(|x − x0|, c).

Passing to the limit as ρ → 0+ we get the formula (5.38).

Finally, for any W ∈ L∞
# (Y ; Md×N ) ∩ KerA with

∫
Y

W (x) dx = 0 we can define a function V = Σ + W ∈

L∞
# (Y ; Md×N ) ∩ KerA satisfying −

∫
Y

V (x) dx = Σ. Hence,

f(x0, Σ) = f

(
x0,−

∫
Y

V (x) dx

)
≤ ess sup

x∈Y
f(x0, V (x)) = ess sup

x∈Y
f(x0, Σ + W (x)) (5.41)



1070 N. ANSINI AND F. PRINARI

for every fixed x0 ∈ Ω, Σ ∈ Md×N and W ∈ L∞
# (Y ; Md×N)∩KerA with

∫
Y

W (x) dx = 0. In particular, f(x0, ·)
is A-weak quasiconvex.

(iii) Let Σ1, Σ2 ∈ Md×N and let w ∈ SN−1 be a vector such that (Σ1 − Σ2) ∈ KerA(w). We define

V (x) =

{
(1 − t)(Σ1 − Σ2), x ∈ A1

−t(Σ1 − Σ2), x ∈ A2

where

A1 = {x ∈ R
N : j < 〈x, w〉 < j + t, j ∈ Z},

A2 = {x ∈ R
N : j + t < 〈x, w〉 < j + 1, j ∈ Z}

for a fixed t ∈ (0, 1). Since (Σ1 − Σ2) ∈ Ker A(w), we may easily check that AV = 0 (see e.g. [2], Thm. 4.2,
Step 3). Moreover, by construction V ∈ L∞

# (Y ; Md×N ) for a suitable cube Y ⊂ RN and satisfies
∫

Y V dx = 0.
Hence, by (5.41), for every fixed x0 ∈ Ω and for every t ∈ [0, 1] we have that

f(x0, Σ) ≤ ess sup
x∈Y

f(x0, Σ + V (x))

≤ ess sup
x∈A1∪A2

f(x0, Σ + V (x))

= max{ess sup
x∈A1

f(x0, Σ + (1 − t)(Σ1 − Σ2)), ess sup
x∈A2

f(x0, Σ − t(Σ1 − Σ2))}.

In particular, for Σ = tΣ1 + (1 − t)Σ2 we get that

f(x0, tΣ
1 + (1 − t)Σ2) ≤ max{f(x0, Σ

1), f(x0, Σ
2)}. �

Remark 5.2. Note that if f : Md×N → R is a lower semicontinuous and A-Young quasiconvex function then,
by Theorems 4.2 and 5.1, we have that f satisfies conditions (5.38) and (5.39). In particular, f is an A-weak
quasiconvex function and the condition (5.38) holds true for every N -cube Y .

6. Div -Young and curl -Young quasiconvexity

In this section we study the properties of the A-Young quasiconvex functions in the divergence-free and
curl-free case; that is, A = Div , curl .

As already remarked, in the gradient case, Barron, Jensen and Wang proved that strong Morrey quasiconvex-
ity is a necessary and sufficient condition for the lower semicontinuity of supremal functionals with f = f(Σ)
lower semicontinuous (see [7], Def. 2.1, Thms. 2.6 and 2.7). Therefore, by Theorem 4.2 we have that a curl -Young
quasiconvex function is, in particular, a strong Morrey quasiconvex function (see Prop. 6.1 below). Note that if f
depends explicitly on x, then strong Morrey quasiconvexity provides a necessary and sufficient condition under
continuity assumption on f(·, Σ). Therefore, in the case of A = curl , Theorem 4.2 improves ([7], Thm. 2.6)
since we do not require any continuity assumption on f(·, Σ).

Proposition 6.1. Let f : Ω×Md×N → R be a Borel function. Assume that f(x, ·) is lower semicontinuous and
curl -Young quasiconvex for a.e. x ∈ Ω. Then, f(x, ·) is a strong Morrey quasiconvex function for a.e. x ∈ Ω.

Proof. Let x ∈ Ω be such that the function f(x, ·) is lower semicontinuous and curl -Young quasiconvex. For
every open set A ⊂ RN let Fx(·, A) : W 1,∞(A; Md×N ) → R be the functional defined by

Fx(u, A) := ess sup
y∈A

f(x, Du(y)). (6.42)

Then, by Theorem 4.2, we have that for every open set A ⊂ RN the functional Fx(·, A) is sequentially L∞-
weakly* lower semicontinuous on W 1,∞(A; Md×N ). Thanks to the necessary condition in ([7], Thm. 2.7), it
follows that f(x, ·) is a strong Morrey quasiconvex function. �



ON THE LOWER SEMICONTINUITY OF SUPREMAL FUNCTIONAL UNDER DIFFERENTIAL CONSTRAINTS 1071

In Proposition 6.3 we prove that polylevelconvex functions (see Def. 6.2 below) are curl -Young quasiconvex
functions. In ([7], Cor. 3.9) they show that a lower semicontinuous polylevelconvex function is a strong Morrey
quasiconvex function.

Definition 6.2 ([7], Def. 3.5). A measurable function f : Md×N → R is called polylevelconvex if there exists
a level convex function g : Rc(N,d) → R such that f(Σ) = (g ◦ T )(Σ)) where c(N, d) is given by

c(N, d) =
min(N,d)∑

s=1

d!N !
(s!)2(N − s)!(d − s)!

and T : Md×N → Rc(N,d) is the map consisting of Σ and all of its s × s minors for s ≤ min(N, d).

Note that such functions have been referred in [7] as polyquasiconvex functions.

Proposition 6.3. Let g : Rc(N,d) → [0, +∞) be a lower semicontinuous and level convex function. Then the
polylevelconvex function f = g ◦ T is curl -Young quasiconvex.

Proof. The proof is achieved in two steps.

Step 1. We first deal with g continuous function. We define gn(ξ) := g(ξ) ∨ 1
n |ξ|. Then gn is a continuous and

level convex function satisfying the growth condition (4.35). By ([3], Prop. 5.7) the polylevelconvex function
fn(Σ) := gn ◦ T (Σ) = g(T (Σ)) ∨ 1

n |T (Σ)| is curl -∞ quasiconvex. By Proposition 3.4 fn is also a curl -Young
quasiconvex function. In particular, for every curl -∞-Young measure μ = (μx)x∈Q and for every n ∈ N we have
that

f

(∫
Md×N

Σdμx(Σ)
)

≤ fn

(∫
Md×N

Σdμx(Σ)
)

≤ ess sup
x∈Q

μx- ess sup
Σ∈Md×N

fn(Σ). (6.43)

Note that, since the sequence of functions generating the Young measure μ = (μx)x∈Q is bounded in
L∞(Q, Md×N ), by the Fundamental Theorem on Young Measure (see e.g. ([15], Thm. 2.2 (2))), there exists a
compact set K ⊂ Md×N such that

supp μx ⊂ K for a.e. x ∈ Q.

Therefore, we have that

ess sup
x∈Q

μx- ess sup
Σ∈Md×N

|T (Σ)| = ess sup
x∈Q

μx- ess sup
Σ∈K

|T (Σ)| ≤ max
Σ∈K

|T (Σ)| = C ∈ R. (6.44)

In addition,

ess sup
x∈Q

μx- ess sup
Σ∈Md×N

fn(Σ) = ess sup
x∈Q

μx- ess sup
Σ∈Md×N

g(T (Σ)) ∨ 1
n

ess sup
x∈Q

μx- ess sup
Σ∈Md×N

|T (Σ)|. (6.45)

We denote by M = ess supx∈Q μx- ess supΣ∈Md×N f(Σ). By (6.44) and (6.45), we have that

ess sup
x∈Q

μx- ess sup
Σ∈Md×N

fn(Σ) ≤ M ∨ C

n
,

for every n ∈ N. Therefore, passing to the limit as n → ∞, we get that

ess sup
x∈Q

μx- ess sup
Σ∈Md×N

fn(Σ) ≤ M.

By (6.43) we get the thesis.
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Step 2. We now assume that g is a lower semicontinuous function. Reasoning as in the proof of Proposition 2.9
we have that g = supλ>0 gλ where gλ is a continuous and level convex function given by the formula

gλ(ξ) := inf
{
g(η) ∨ λ|ξ − η| : η ∈ R

c(N,d)
}
.

By Step 1, we have that gλ ◦T is a curl -Young quasiconvex function, for every λ > 0. Since f(Σ) = (g◦T )(Σ) =
sup{(gλ ◦ T )(Σ) : λ > 0}, we can conclude that f is a curl -Young quasiconvex function. �

Proposition 6.4. Let f : Md×N → R be a lower semicontinuous function.

(1) (A = div , d = 1). Let f be a div -Young quasiconvex function. Then f is a level convex function; i.e., f
satisfies

f(x, tΣ1 + (1 − t)Σ2) ≤ max{f(x, Σ1), f(x, Σ2)}, (6.46)

for every Σ1, Σ2 ∈ Md×N and t ∈ [0, 1].
(2) (A = Div , d ≥ N > 1). Let f be a Div -Young quasiconvex function. Then f is rank-(N − 1) level convex;

i.e., f satisfies (6.46) for every Σ1, Σ2 ∈ Md×N with rank (Σ1 − Σ2) ≤ (N − 1) and t ∈ [0, 1].
(3) (A = curl). Let f : Md×N 
→ R be curl-Young quasiconvex. Then f is rank-1 level convex; i.e., f satisfies

(6.46) for every Σ1, Σ2 ∈ Md×N with rank (Σ1 − Σ2) ≤ 1 and t ∈ [0, 1]. In particular, if either d = 1 or
N = 1 then f is level convex.

Proof.

(1) If d = 1 and A = div , then

Ker A(w) = {ξ ∈ R
N : 〈ξ, w〉 = 0}

for every w ∈ SN−1, which implies that Λ = RN . Note that, since for every ξ1 �= ξ2 there always exists
w ∈ SN−1 such that 〈ξ1 − ξ2, w〉 = 0, we have in particular that (ξ1 − ξ2) ∈ Λ. Hence, by Theorem 5.1, f
satisfies (6.46) for every ξ1, ξ2 ∈ R

N ; i.e., f is level convex.
(2) We recall that if d > 1, we define Div V : Ω 
→ R

d such that (Div V )i = div(V )i whenever i = 1, . . . , d.
Therefore the vectorial case, d ≥ N > 1, can be studied by generalising the previous case d = 1. More
precisely, we can prove that if (Σ1 − Σ2) ∈ Λ then rank (Σ1 − Σ2) ≤ (N − 1). By Theorem 5.1 we have
that f satisfies (6.46) for every Σ1 �= Σ2 ∈ Md×N with rank (Σ1 − Σ2) ≤ (N − 1).

(3) If A = curl , then

Ker A(w) =
{
ξ ⊗ w ∈ M

d×N : ξ ∈ R
d, w ∈ SN−1

}
.

By Theorem 5.1 we have that f satisfies (6.46) along any rank-one directions. �

Proposition 6.5. Let f : Md×N → R be a lower semicontinuous function.

(1) If d = 1 then f is level convex ⇐⇒ div -Young quasiconvex.
(2) If either d = 1 or N = 1 then f is level convex ⇐⇒ curl -Young quasiconvex ⇐⇒ strong Morrey quasiconvex.

Proof. For any constant-rank operator A, by Proposition 3.3(2), we find that if f is a level convex function
then f is also a A-Young quasiconvex function. In order to get the equivalence in the div and curl free cases it
is sufficient to apply Proposition 6.4. Moreover, by ([7], Cor. 3.9) we have that level convexity is equivalent to
strong Morrey quasiconvexity which concludes also the proof of (2). �
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6.1. Examples

In Propositions 3.3 and 3.4 we prove that A-quasiconvex functions, level convex functions and A-∞ quasi-
convex functions belong to the class of A-Young quasiconvex functions. Here we exhibit some examples (in the
case of A = curl ) in order to prove that the aforesaid classes are strictly included. We recall that a function is
curl -quasiconvex if and only if it is quasiconvex.

Example 6.6. The function
f(Σ) = arctan(det Σ), Σ ∈ M

2×2

is polylevelconvex, curl -Young quasiconvex but it is not level convex. In fact,

(1) let g : R
5 → [0, +∞) be defined as g(ξ) = arctan ξ5 and let T (Σ) = (Σ11, Σ12, Σ21, Σ22, detΣ) for every

Σ ∈ M2×2. Since g is a level convex function, by Definition 6.2 we have that f = g ◦ T is a polylevelconvex
function. Moreover, by Proposition 6.3 we have that f is also a curl -Young quasiconvex function;

(2) let Σ1 :=
(

1 0
0 0

)
, and Σ2 :=

(
0 0
0 1

)
. For every λ ∈ (0, 1) we have that arctandet(λΣ1 + (1 − λ)Σ2) =

arctan(λ(1 − λ)) > 0 while arctan(det Σ1) = arctan(det Σ2) = 0. More precisely, there exists λ = 1/2 such
that

f

(
1
2
Σ1 +

1
2
Σ2

)
= arctan

1
4

> 0 > f(Σ1) ∨ f(Σ2).

Therefore we may conclude that f is not level convex.

Example 6.7. The function f : M2×2 → [0, +∞) defined as

f(Σ) := k(Σ) ∨ h(|Σ|)
with k(Σ) := arctan(det Σ) and

h(t) :=

⎧⎨
⎩

0 if t ≤ 1
t − 1 if 1 ≤ t ≤ 2

1 if t ≥ 2

is a curl -Young quasiconvex function, but not level convex and neither curl -∞ quasiconvex nor quasiconvex. In
fact,

(1) h is a level convex function and by Example 6.6 we have that k is a curl -Young quasiconvex function. There-
fore f is a curl -Young quasiconvex function since it is the maximum between two curl -Young quasiconvex
functions;

(2) let Σ1 and Σ2 be as in Example 6.6; hence,

f

(
1
2
Σ1 +

1
2
Σ2

)
= arctan

1
4
∨ h

(
1√
2

)
= arctan

1
4

> 0 = f(Σ1) ∨ f(Σ2).

It follows that f is not a level convex function;
(3) note that fp

p = Qcurl f
p which coincides with the quasiconvex envelope of fp. Since fp is also bounded,

we have that fp
p = 0 (see [10], Ex. 4.2). Passing to the limit as p → +∞ we get that Q∞

curl f = 0; i.e.,
f(Σ) > Q∞

curl f(Σ), for every Σ ∈ Md×N with | detΣ| > 0. Therefore f is not a curl -∞ quasiconvex
function;

(4) reasoning by contradiction we assume that f is a quasiconvex function. Hence,

g(λ) := f(λΣ1)

is convex. Since g(λ) = k(λΣ1) ∨ h(λ|Σ1|) = h(λ|Σ1|) = h(λ
2 ) we get the contradiction. Note that we may

also deduce that f is not quasiconvex by ([3], Prop. 3.4(1)).
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6.2. An application to the effective strenght for resistive materials

In this section we characterise, by way of Γ -convergence, the effective strength set Keff in the context of
electrical resistivity. More precisely, we consider

Keff =
{

ξ ∈ R
N : ∃σ ∈ L∞(Q; RN ),

∫
Q

σ dx = 0, div σ = 0, f(x, ξ + σ(x)) ≤ 1 a.e. x ∈ Q

}
(6.47)

and we assume that f(x, ·) is a div -Young quasiconvex and lower semicontinuous function. Note that, by ([3],
Prop. 5.3), div -Young quasiconvexity is equivalent to level convexity. The following theorem is an application
of Theorem 2.10 and generalises both ([8], Props. 6.1, 6.2) and ([3], Thm. 6.1) where continuity and div -∞
quasiconvex assumptions are considered.

Theorem 6.8. Let f : Q × RN 
→ R be a Borel function such that f(x, ·) is lower semicontinuous and level
convex for a.e. x ∈ Ω and satisfies the growth condition (4.28). For any ξ ∈ RN let

jeff
p (ξ) := inf

{(∫
Q

fp(x, ξ + σ(x))dx

)1/p

: σ ∈ Lp(Q; RN ),
∫

Q

σ dx = 0, div σ = 0

}
.

Then, for any ξ ∈ RN , jeff
p (ξ) converges to jeff

∞ (ξ) given by

jeff
∞ (ξ) := inf

{
ess sup

x∈Q
f(x, ξ + σ(x)) : σ ∈ L∞(Q; RN),

∫
Q

σ dx = 0, div σ = 0
}

.

Moreover, the set Keff is described by

Keff = {ξ ∈ R
N : jeff

∞ (ξ) ≤ 1}. (6.48)

Proof. By Theorem 2.10, for every fixed ξ ∈ R
N , we have that the functional Hp : L1(Q; RN ) → R ∪ {+∞}

given by

Hp(σ) :=

⎧⎪⎪⎨
⎪⎪⎩

(∫
Q

fp(x, σ(x) + ξ)dx

)1/p

if σ ∈ Lp(Q; RN ), div σ = 0,

∫
Q

σ dx = 0

+∞ otherwise

Γ (w-L1)- converges to the functional

H(σ) =

⎧⎪⎪⎨
⎪⎪⎩

ess sup
x∈Q

f(x, σ(x) + ξ) if σ ∈ L∞(Q; RN), div σ = 0,

∫
Q

σ dx = 0

+∞ otherwise.

By assumption (4.28), for a fixed q > 1, for every p ≥ q and for every λ ∈ R we get the following inclusion

Eλ,p := {u ∈ L1(Ω; RN ) : Hp(σ) ≤ λ} ⊂ {u ∈ L1(Ω; RN ) :
∫

Ω

|σ|q dx ≤ C(q, λ)} =: Kλ.

Since Kλ is closed and sequentially compact with respect to the L1-weak topology, it follows that the sequence
(Hp)p≥q is equicoercive with respect to the same topology (see [14], Def. 7.6). Therefore, by ([14], Thm. 7.8),
we find that

lim
p→∞ jeff

p (ξ) = jeff
∞ (ξ),

for any ξ ∈ R
N . Since f is a level convex function, the functional H is weakly* lower semicontinuous on

L∞(Q; RN ) and the proof of (6.48) follows as in ([3], Thm. 6.1). �
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