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STABILITY OF AN INTERCONNECTED SYSTEM OF EULER−BERNOULLI
BEAM AND HEAT EQUATION WITH BOUNDARY COUPLING ∗

Jun-Min Wang1 and Miroslav Krstic2

Abstract. We study the stability of an interconnected system of Euler−Bernoulli beam and heat
equation with boundary coupling, where the boundary temperature of the heat equation is fed as
the boundary moment of the Euler−Bernoulli beam and, in turn, the boundary angular velocity of
the Euler−Bernoulli beam is fed into the boundary heat flux of the heat equation. We show that
the spectrum of the closed-loop system consists only of two branches: one along the real axis and
the another along two parabolas symmetric to the real axis and open to the imaginary axis. The
asymptotic expressions of both eigenvalues and eigenfunctions are obtained. With a careful estimate
for the resolvent operator, the completeness of the root subspaces of the system is verified. The Riesz
basis property and exponential stability of the system are then proved. Finally we show that the
semigroup, generated by the system operator, is of Gevrey class δ > 2.
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1. Introduction

Engineering applications give rise to fluid-structure interactions, composite laminates in smart materials and
structures, structural-acoustic systems, and other interactive physical process, which are modeled by partial
differential equation (PDE) cascades or interconnected PDEs. Control design and stability analysis for such
systems have become active over the past decades, see [5, 6, 8, 19, 20, 23, 24] and the references therein.

The stability and controllability analysis for a heat-wave system, arising from the fluid-structure interaction,
were treated in [23,24]. Feedback controllers for several classes of coupled PDEs and structural-acoustic models
were introduced in [8]. The stability and Riesz basis property of the composite laminates and the sandwich
beam with boundary controls were analyzed in [19, 20].
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� �Euler−Bernoulli beam

Heat equation

f1 y1
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f2y2

Figure 1. Euler−Bernoulli beam (1.1) and heat equation (1.2).

We consider Euler−Bernoulli beam and heat equation (see Fig. 1) governed by the equations:

Euler−Bernoulli beam :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) + wxxxx(x, t) = 0, 0 < x < 1, t > 0,

w(0, t) = w(1, t) = wxx(1, t) = 0, t ≥ 0,

wxx(0, t) = f1(t), t ≥ 0,

y1(t) = −wxt(0, t), t ≥ 0,

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 ≤ x ≤ 1,

(1.1)

and

Heat equation :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(x, t) − uxx(x, t) = 0, 0 < x < 1, t > 0,

u(1, t) = 0, t ≥ 0,

ux(0, t) = f2(t), t ≥ 0,

y2(t) = −u(0, t), t ≥ 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1,

(1.2)

where the Euler−Bernoulli beam is hinged at the right hand, the right side of the heat equation is kept at
zero temperature, f1(t) and f2(t) are the boundary controls applied at the left ends of the beam and the heat
respectively, y1(t) and y2(t) are the observations, and (w0(x), w1(x)) and u0(x) are the initial conditions. We
denote the two dynamic systems with the mappings

E : f1 �→ y1

and
H : f2 �→ y2.

It is well-known that the feedback law
f1(t) = −y1(t) (1.3)

achieves exponential stability of the Euler−Bernoulli beam system, as well as that the feedback law

f2(t) = −y2(t) (1.4)

guarantees exponential stability of the heat equation. In this paper we study the case where the two subsystems
are interconnected via the feedback laws (see Fig. 2)

f1(t) = −y2(t) (1.5)
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Euler–Bernoulli beam

Heat equation

wtt(x, t) = −wxxxx(x, t)

wxx(0, t) = u(0, t)

ut(x, t) = uxx(x, t)

ux(0, t) = −wxt(0, t)

�

�

u(0, t) −wxt(0, t)

� �
u0(x) u(x, t)

� �
(w0(x), w1(x)) (w(x, t), wt(x, t))

Figure 2. Block diagram for the closed-loop system (1.7).

and
f2(t) = y1(t). (1.6)

The interconnection (1.5) and (1.6) can be interpreted in three ways. The first interpretation of (1.5) and (1.6)
is as

f1(t) = (−Hy1)(t),

namely, as replacing the unit-gain static feedback (1.3) of the Euler−Bernoulli beam by a dynamic feedback
law governed by the heat equation. The second interpretation of (1.5) and (1.6) is as

f2(t) = (E(−y2)) (t),

namely, as replacing the unity-gain static feedback (1.4) of the heat equation by a dynamic feedback law governed
by the Euler−Bernoulli beam. The third interpretation of (1.5), (1.6) is simply as a coupled PDE system given
in Figure 2.

Under the feedback laws (1.5), (1.6), the interconnected system of Euler−Bernoulli beam and heat equation is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) + wxxxx(x, t) = 0, 0 < x < 1, t > 0,

ut(x, t) − uxx(x, t) = 0, 0 < x < 1, t > 0,

w(1, t) = wxx(1, t) = 0, t ≥ 0,

u(1, t) = 0, t ≥ 0,

w(0, t) = 0, t ≥ 0,

wxx(0, t) = u(0, t), t ≥ 0,

ux(0, t) = −wxt(0, t), t ≥ 0,

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 ≤ x ≤ 1,

u(x, 0) = u0(x), 0 ≤ x ≤ 1.

(1.7)

The energy function for (1.7) is given by

E(t) =
1
2

∫ 1

0

[
w2

t (x, t) + w2
xx(x, t) + u2(x, t)

]
dx.
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Then we have

d
dt
E(t) =

∫ 1

0

[wt(x, t)wtt(x, t) + wxx(x, t)wxxt(x, t) + u(x, t)ut(x, t)] dx

=
∫ 1

0

[−wt(x, t)wxxxx(x, t) + wxx(x, t)wxxt(x, t) + u(x, t)uxx(x, t)] dx

= −wtwxxx

∣∣∣1
0

+ wxtwxx

∣∣∣1
0

+ uux

∣∣∣1
0
−
∫ 1

0

u2
x(x, t)dx = −

∫ 1

0

u2
x(x, t)dx ≤ 0

and E(t) is non-increasing.
We provide a detailed spectral analysis for the system (1.7). We show that there are two branches of eigen-

values of (1.7): one is along the real axis, and another is along the two parabolas symmetric to the real axis
and open to the imaginary axis. The latter branch of eigenvalues generated by the beam is very similar to the
case studied in [4], where the well-posedness and exponential stability of an Euler−Bernoulli beam with non-
monotone boundary feedback wxxx(0, t) = −kwxt(0, t), proposed early in [11], were considered for the feedback
gain k > 0 with k �= 1. Later on, its Gevrey regularity was treated in [1, 14, 17].

In this paper, the asymptotic expressions of the eigenvalues and eigenfunctions, the Riesz basis property and
exponential stability of (1.7) are studied. Moreover, we show that the C0-semigroup, generated by the system
operator, is of Gevrey class δ > 2 (Gevrey regularity is described in terms of the bounds on all derivatives
of the semigroups. The differentiability of the Gevrey semigroup is slightly weaker than that of an analytic
semigroup [1, 14, 17, 18]). The Gevrey regularity for a Schrödinger equation in boundary feedback with a heat
equation is obtained in [21].

We proceed as follows. In Section 2 we formulate the problem as an evolution equation in Hilbert energy
space. The C0-semigroup approach is used to prove the well-posedness of the system. Section 3 is devoted to the
spectral analysis and the asymptotic expressions of eigenvalues and eigenfunctions are presented. By estimating
the resolvent operator of the system, the completeness of the root subspace of the system is proved in Section 4.
In Section 5, the Riesz basis property and exponential stability are established. Finally, Gevrey regularity of
the semigroup is obtained in Section 6.

2. Well-posedness of the system (1.7)

We consider the system (1.7) in the energy space

H = H2
L(0, 1)× L2(0, 1) × L2(0, 1)

where H2
L(0, 1) = {f | f ∈ H2(0, 1), f(0) = f(1) = 0} and the norm in H is induced by the following inner

product

〈X1, X2〉 =
∫ 1

0

[
f ′′
1 (x)f ′′

2 (x) + g1(x)g2(x) + h1(x)h2(x)
]
dx,

where Xi = (fi, gi, hi) ∈ H, i = 1, 2. Define the system operator by⎧⎪⎪⎨⎪⎪⎩
A(f, g, h) = (g,−f (4), h′′), ∀ (f, g, h) ∈ D(A),

D(A) =

{
(f, g, h) ∈ (H4 ×H2

L ×H2) ∩H
∣∣∣∣∣h(1) = f ′′(1) = 0,

g′(0) = −h′(0), f ′′(0) = h(0)

}
.

(2.1)

Then (1.7) can be written as an evolution equation in H:⎧⎨⎩
dX(t)

dt
= AX(t), t > 0,

X(0) = X0,

(2.2)

where X(t) = (w(·, t), wt(·, t), u(·, t)) and X0 = (w0, w1, u0).
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Theorem 2.1. Let A be given by (2.1). Then A−1 exists and is compact. Moreover A is dissipative in H and A
generates a C0-semigroup eAt of contractions in H.

Proof. For any given (f1, g1, h1) ∈ H, solve

A(f, g, h) = (g,−f (4), h′′) = (f1, g1, h1).

We get g(x) = f1(x) directly. To get h we solve{
h′′(x) = h1(x),

h(1) = 0, h′(0) = −g′(0) = −f ′
1(0)

obtaining

h(x) = f ′
1(0)(1 − x) −

[∫ x

0

(1 − x)h1(ξ)dξ +
∫ 1

x

(1 − ξ)h1(ξ)dξ
]
. (2.3)

To get f we solve {
f (4)(x) = −g1(x),
f(0) = f(1) = f ′′(1) = 0, f ′′(0) = h(0)

obtaining ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(x) =
∫ x

0

ϕ(s)(x − s)ds− x

∫ 1

0

ϕ(s)(1 − s)ds,

ϕ(x) =
∫ x

0

g1(s)(s− x)ds+ x

∫ 1

0

g1(s)(1 − s)ds+ h(0)(1 − x),

h(0) = f ′
1(0) −

∫ 1

0

(1 − ξ)h1(ξ)dξ.

(2.4)

By (2.3), (2.4) and g(x) = f1(x), we get the unique (f, g, h) ∈ D(A). Hence, A−1 exists and is compact on H
by the Sobolev embedding theorem. Now we show that A is dissipative in H. Let X = (f, g, h) ∈ D(A). Then
we have

〈AX,X〉 =
〈
(g,−f (4), h′′), (f, g, h)

〉
=
∫ 1

0

g′′f ′′dx−
∫ 1

0

f (4)gdx+
∫ 1

0

h′′hdx

= −f ′′′g
∣∣∣1
0

+ f ′′g′
∣∣∣1
0

+ h′h
∣∣∣1
0
+
∫ 1

0

g′′f ′′dx−
∫ 1

0

f ′′g′′dx−
∫ 1

0

|h′|2dx

= −f ′′(0)g′(0) − h′(0)h(0) +
∫ 1

0

g′′f ′′dx−
∫ 1

0

f ′′g′′dx−
∫ 1

0

|h′|2dx

=
∫ 1

0

g′′f ′′dx−
∫ 1

0

f ′′g′′dx−
∫ 1

0

|h′|2dx

and

Re〈AX,X〉 = −
∫ 1

0

|h′|2dx ≤ 0. (2.5)

Hence A is dissipative and A generates a C0-semigroup eAt of contractions in H by the Lumer−Philips
Theorem [15]. �

Remark 2.2. As an elementary consequence of the compactness of A−1, σ(A), the spectrum of A, consists of
isolated eigenvalues of finite algebraic multiplicity only.
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3. Spectral analysis

Let us now consider the eigenvalue problem of A. AX = λX , where X = (f, g, h) ∈ D(A), if and only if
g(x) = λf(x), and f, h satisfy the following eigenvalue problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f (4)(x) + λ2f(x) = 0,

h′′(x) − λh(x) = 0,

f(0) = f(1) = f ′′(1) = h(1) = 0,

f ′′(0) = h(0),

λf ′(0) = −h′(0).

(3.1)

Lemma 3.1. Let A be defined by (2.1). Then for each λ ∈ σ(A), we have Reλ < 0.

Proof. By Theorem 2.1, since A is dissipative, we have for each λ ∈ σ(A), Reλ ≤ 0. So we only need to show
there are no eigenvalues on the imaginary axis. Let λ = iμ2 ∈ σ(A) with μ ∈ R+ and X = (f, g, h) ∈ D(A) be
its associated eigenfunction of A. Then by (2.5), we have

Re〈AX,X〉 = Re
(
iμ2〈X,X〉) = −

∫ 1

0

|h′|2dx = 0

and hence h′(x) = 0. By h(1) = 0, we have h = 0. Moreover AX = iμ2X further gives that g = iμ2f and f
satisfies the following {

f (4)(x) − μ4f(x) = 0,

f(0) = f(1) = f ′′(0) = f ′′(1) = f ′(0) = 0.

A direct computation yields that the above equation only has the trivial solution. Hence f = g = h = 0 and
X = 0. Therefore, there are no eigenvalues on the imaginary axis. �

Due to Lemma 3.1 and the fact that the eigenvalues are symmetric about the real axis, we consider only
those λ which are located in the second quadrant of the complex plane:

λ := iρ2, ρ ∈ S :=
{
ρ ∈ C | 0 ≤ arg ρ ≤ π

4

}
. (3.2)

Note that for any ρ ∈ S, we have

Re(−ρ) ≤ Re(iρ) ≤ Re(−iρ) ≤ Re(ρ), (3.3)

and {
Re(−ρ) = −|ρ| cos(arg ρ) ≤ −

√
2

2 |ρ| < 0,
Re(iρ) = −|ρ| sin(arg ρ) ≤ 0.

(3.4)

Moreover, if we denote S = S1 ∪ S2 with{S1 :=
{
ρ ∈ C | π

8 < arg ρ ≤ π
4

}
,

S2 :=
{
ρ ∈ C | 0 ≤ arg ρ ≤ π

8

}
,

(3.5)

then we have ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Re(iρ) = −|ρ| sin(arg ρ) ≤ −|ρ| sin

(
1
8
π

)
< 0, ∀ρ ∈ S1,

Re(−
√

iρ) = −|ρ| cos
(π

4
+ arg ρ

)
≤ −|ρ| cos

(
3
8
π

)
< 0, ∀ρ ∈ S2.

(3.6)
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Now substituting λ = iρ2 into (3.1), we have the eigenvalue system of (1.7) in ρ:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f (4)(x) − ρ4f(x) = 0,

h′′(x) − iρ2h(x) = 0,

f(0) = f(1) = f ′′(1) = h(1) = 0,

f ′′(0) = h(0),
iρ2f ′(0) = −h′(0).

(3.7)

Let
f(x) = c1eρx + c2e−ρx + c3eiρx + c4e−iρx, h(x) = d1e

√
iρx + d2e−

√
iρx, (3.8)

where cs, s = 1, 2, 3, 4, d1, d2 are constants, and
√
i = ei π

4 =
√

2
2 (1 + i). Substituting these into the boundary

conditions of (3.7), we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 + c2 + c3 + c4 = 0,

c1eρ + c2e−ρ + c3eiρ + c4e−iρ = 0,

c1ρ
2eρ + c2ρ

2e−ρ − c3ρ
2eiρ − c4ρ

2e−iρ = 0,

d1e
√

iρ + d2e−
√

iρ = 0,

c1ρ
2 + c2ρ

2 − c3ρ
2 − c4ρ

2 − d1 − d2 = 0,

c1iρ
3 − c2iρ

3 − c3ρ
3 + c4ρ

3 + d1

√
iρ− d2

√
iρ = 0.

Then (3.7) has the nontrivial solution if and only if the characteristic determinant detΔ(ρ) = 0, where

Δ(ρ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0

eρ e−ρ eiρ e−iρ 0 0

ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ 0 0

0 0 0 0 e
√

iρ e−
√

iρ

ρ2 ρ2 −ρ2 −ρ2 −1 −1

iρ3 −iρ3 −ρ3 ρ3
√
iρ −√

iρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.9)

Lemma 3.2. Let λ = iρ2 with ρ ∈ S and let Δ(ρ) be given by (3.9). Then the following asymptotic expansion
holds:

detΔ(ρ) = −2ρ5eρ
{
a1eiρe

√
iρ + a2eiρe−

√
iρ + a3e−iρe

√
iρ + a4e−iρe−

√
iρ + O

(
e−|ρ|

)}
, (3.10)

where {
a1 = 1 +

√
2 + i(1 +

√
2), a2 =

√
2 − 1 + i(

√
2 − 1),

a3 = 1 −√
2 − i(1 +

√
2), a4 = −1 −√

2 − i(
√

2 − 1).
(3.11)

Moreover, we have a more accurate asymptotic expansion, that is, when ρ ∈ S1 and ρ ∈ S2, detΔ(ρ) has more
accurate asymptotic expansions respectively,

detΔ(ρ) = −2ρ5eρe−iρ
{
a3e

√
iρ + a4e−

√
iρ + O(e−k1|ρ|)

}
, ρ ∈ S1, (3.12)

and
detΔ(ρ) = −2ρ5eρe

√
iρ
{
a1eiρ + a3e−iρ + O

(
e−k2|ρ|

)}
, ρ ∈ S2 (3.13)

where k1 and k2 are positive constants.



1036 J.-M. WANG AND M. KRSTIC

Proof. From (3.9), a direct computation gives

detΔ(ρ) = −
∣∣∣∣∣ e

√
iρ e−

√
iρ

1 1

∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

1 1 1 1

eρ e−ρ eiρ e−iρ

ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ

iρ3 −iρ3 −ρ3 ρ3

∣∣∣∣∣∣∣∣∣∣

−
∣∣∣∣∣ e

√
iρ e−

√
iρ

√
iρ −√

iρ

∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

1 1 1 1

eρ e−ρ eiρ e−iρ

ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ

ρ2 ρ2 −ρ2 −ρ2

∣∣∣∣∣∣∣∣∣∣
= −ρ5

[
e
√

iρ − e−
√

iρ
]
G1(ρ) +

√
iρ5

[
e
√

iρ + e−
√

iρ
]
G2(ρ),

where

G1(ρ) =

∣∣∣∣∣∣∣∣∣∣

1 1 1 1

eρ e−ρ eiρ e−iρ

eρ e−ρ −eiρ −e−iρ

i −i −1 1

∣∣∣∣∣∣∣∣∣∣
= 2eρ

[
(1 + i)eiρ + (1 − i)e−iρ + O(e−ρ)

]
(3.14)

and

G2(ρ) =

∣∣∣∣∣∣∣∣∣∣

1 1 1 1

eρ e−ρ eiρ e−iρ

eρ e−ρ −eiρ −e−iρ

1 1 −1 −1

∣∣∣∣∣∣∣∣∣∣
= −2eρ

[
2eiρ − 2e−iρ + O(e−ρ)

]
. (3.15)

Hence,

detΔ(ρ) = − 2ρ5eρ

{[
e
√

iρ − e−
√

iρ
] [

(1 + i)eiρ + (1 − i)e−iρ
]

+ 2
√
i
[
e
√

iρ + e−
√

iρ
] [

eiρ − e−iρ
]
+ O(e−ρ)

}
= − 2ρ5eρ

{
a1eiρe

√
iρ + a2eiρe−

√
iρ + a3e−iρe

√
iρ + a4e−iρe−

√
iρ + O(e−ρ)

}
,

where ai, i = 1, 2, 3, 4, are given by (3.11). Moreover, when ρ ∈ S1 and ρ ∈ S2, from (3.6), we have{
e−iρ → ∞, as |ρ| → ∞, ρ ∈ S1,

e
√

iρ → ∞, as |ρ| → ∞, ρ ∈ S2,

and hence, detΔ(λ) has more accurate asymptotic expressions given by (3.12) and (3.13) in S1 and S2,
respectively. �

Theorem 3.3. Let A be defined by (2.1). The spectrum σ(A) has two families:

σ(A) = {λp
n, n ∈ N} ∪ {λe

n, λ
e
n, n ∈ N}, (3.16)
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where λp
n and λe

n have the following asymptotic expansions:⎧⎪⎪⎪⎨⎪⎪⎪⎩
λp

n = −
[
nπ +

1
2
θp

]2

+ O (
ne−k1n

)
,

λe
n =

[
nπ +

1
2
θe

]
ln r +

1
4
[
(2nπ + θe)2 − (ln r)2

]
i+ O(ne−k2n),

(3.17)

and

θp = π − arctan2
√

2, θe = arctan
√

2
2
, r =

√
3

1 +
√

2
< 1, ln r < 0. (3.18)

Therefore,
Reλp

n,Reλe
n → −∞, as n→ ∞. (3.19)

Proof. Let detΔ(ρ) = 0. By (3.12), ρ ∈ S1 satisfies

a3e
√

iρ + a4e−
√

iρ + O(e−k1|ρ|) = 0. (3.20)

By (3.11), a3e
√

iρ + a4e−
√

iρ = 0 yields

e2
√

iρ = −a4

a3
=

1 +
√

2 + i(
√

2 − 1)
1 −√

2 − i(1 +
√

2)
=

−1 + 2
√

2i
3

= eiθp , (3.21)

where θp is given by (3.18). Hence, the roots of a3e
√

iρ + a4e−
√

iρ = 0 are

ρ̃p
n =

[
nπ +

1
2
θp

]√
i, n = 0, 1, 2, . . .

By Rouché’s theorem, the roots of (3.20) have the following asymptotic expression

ρp
n =

[
nπ +

1
2
θp

]√
i+ O(e−k1n), n > N1, (3.22)

where N1 is a sufficiently large positive integer. Similarly, from (3.13), it follows that ρ ∈ S2 satisfies

a1eiρ + a3e−iρ + O(e−k2|ρ|) = 0. (3.23)

By (3.11), a1eiρ + a3e−iρ = 0 yields

e2iρ = −a3

a1
= −1 −√

2 − i(1 +
√

2)
1 +

√
2 + i(1 +

√
2)

=
2 +

√
2 + i(1 +

√
2)

3 + 2
√

2
= reiθe , (3.24)

where θe and r are given by (3.18). Hence, the roots of a1eiρ + a3e−iρ = 0 are

ρ̃e
n =

1
2i

[ln r + (2nπ + θe)i] , n = 0, 1, 2, . . .

By Rouché’s theorem, the roots of (3.23) have the following asymptotic expression

ρe
n =

1
2i

[ln r + (2nπ + θe)i] + O(e−k2n), n > N2, (3.25)

where N2 is a sufficiently large positive integer. Finally, by using λ = iρ2, we eventually get λp
n and λe

n given
by (3.17). �

We now investigate the asymptotic behavior of the eigenfunctions.
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Theorem 3.4. Let A be defined by (2.1), let σ(A) = {λp
n, n ∈ N} ∪ {λe

n, λ
e
n, n ∈ N} be the spectrum of A,

and let λp
n := i(ρp

n)2 and λe
n := i(ρe

n)2 with ρp
n, ρe

n given by (3.22) and (3.25), respectively. Then there are two
families of approximate normalized eigenfunctions of A:

(i) One family {Φp
n = (fp

n, λ
p
nf

p
n, h

p
n), n ∈ N}, where Φp

n is the eigenfunction of A with respect to the eigenvalue
λp

n, has the following asymptotic expression:⎛⎜⎝ (fp
n)′′(x)

λp
nf

p
n(x)

hp
n(x)

⎞⎟⎠ =

⎛⎜⎜⎝
−2

√
i [ϕp

n1(x) + ϕp
n2(x)]

2i
√
i [ϕp

n1(x) − ϕp
n2(x)]

a3ϕ
p
n3(x) + a4ϕ

p
n4(x)

⎞⎟⎟⎠+ O(e−k1n), (3.26)

where ϕp
nj(x), j = 1, 2, 3, 4, have the following forms:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕp
n1(x) = eiρp

nx = ei
√

i[nπ+ 1
2 θp]x+O(e−k1n) = e

[
−

√
2

2 +i
√

2
2

]
[nπ+ 1

2 θp]x+O(e−k1n)
,

ϕp
n2(x) = e−ρp

nx = e−
√

i[nπ+ 1
2 θp]x+O(e−k1n) = e

[
−

√
2

2 −i
√

2
2

]
[nπ+ 1

2 θp]x+O(e−k1n)
,

ϕp
n3(x) = e

√
iρp

nx = ei[nπ+ 1
2 θp]x+O(e−k1n),

ϕp
n4(x) = e−

√
iρp

nx = e−i[nπ+ 1
2 θp]x+O(e−k1n),

(3.27)

a3, a4, θp are constants given by (3.11) and (3.18), respectively, and O (
e−k1n

)
is uniform with respect to

x ∈ [0, 1]. Furthermore, Φp
n = (fp

n, λ
p
nf

p
n, h

p
n) are approximately normalized in H in the sense that there exist

positive constants b1 and b2 independent of n, such that for all n

b1 ≤ ‖Φp
n‖ = ‖(fp

n)′′‖L2(0,1) + ‖λp
nf

p
n‖L2(0,1) + ‖hp

n‖L2(0,1) ≤ b2. (3.28)

(ii) The other family {Φe
n = (fe

n, λ
e
nf

e
n, h

e
n), Φe

n = (fe
n, λ

e
nf

e
n, h2n), n ∈ N}, where Φe

n and Φe
n are the eigenfunc-

tions of A with respect to the complex conjugate eigenvalue pairs λe
n and λe

n, respectively, has the following
asymptotic expression:⎛⎜⎝ (fe

n)′′(x)

λe
nf

e
n(x)

he
n(x)

⎞⎟⎠ =

⎛⎜⎜⎝
ϕe

n1(x) − ϕe
n2(x) + 2 sinh

[
1
2 ln r + (nπ + 1

2θe)i
]
ϕe

n3(x)

iϕe
n2(x) − iϕe

n1(x) + 2i sinh
[

1
2 ln r + (nπ + 1

2θe)i
]
ϕe

n3(x)

4 sinh
[

1
2 ln r + (nπ + 1

2θe)i
]
ϕe

n4(x)

⎞⎟⎟⎠+ O (
e−k2n

)
, (3.29)

where ϕe
nj(x), j = 1, 2, 3, 4, are given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ϕe
n1(x) = eiρe

n(1−x) = e
1
2 [ln r+(2nπ+θe)i](1−x)+O(e−k2n),

ϕe
n2(x) = e−iρe

n(1−x) = e−
1
2 [ln r+(2nπ+θe)i](1−x)+O(e−k2n),

ϕe
n3(x) = e−ρe

nx = e
1
2 [i ln r−(2nπ+θe)]x+O(e−k2n),

ϕe
n4(x) = e−

√
iρe

nx = e
1
2

√
i[i ln r−(2nπ+θe)]x+O(e−k2n),

(3.30)

θe, r are constants given by (3.18), and O (
e−k2n

)
is uniform with respect to x ∈ [0, 1]. Furthermore,

Φe
n = (fe

n, λ
e
nf

e
n, h

e
n) are approximately normalized in H in the sense that there exist positive constants b3

and b4 independent of n, such that for all n

b3 ≤ ‖Φe
n‖ = ‖f ′′

2n‖L2(0,1) + ‖λe
nf

e
n‖L2(0,1) + ‖he

n‖L2(0,1) ≤ b4. (3.31)
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Proof. First we look for Φp
n of A with respect to λp

n. From (3.4)−(3.9), and some linear algebra calculations, for
ρ ∈ S1, hp(x) is given by

hp(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 0 0

eρ e−ρ eiρ e−iρ 0 0

ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ 0 0

0 0 0 0 e
√

iρx e−
√

iρx

ρ2 ρ2 −ρ2 −ρ2 −1 −1

iρ3 −iρ3 −ρ3 ρ3
√
iρ −√

iρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −ρ5

[
e
√

iρx − e−
√

iρx
]
G1(ρ) +

√
iρ5

[
e
√

iρx + e−
√

iρx
]
G2(ρ),

where G1(ρ) and G2(ρ) are given by (3.14) and (3.15), respectively. Hence,

hp(x) = −2ρ5eρ

{
a1eiρe

√
iρx + a2eiρe−

√
iρx + a3e−iρe

√
iρx + a4e−iρe−

√
iρx + O(e−ρ)

}
,

where ai, i = 1, 2, 3, 4, are given by (3.11) and O(e−ρ) is uniform with respect to x ∈ [0, 1]. Since ρ ∈ S1, we
have e−iρ → ∞, as |ρ| → ∞, and hence,

hp(x) = −2ρ5eρe−iρ

{
a3e

√
iρx + a4e−

√
iρx + O

(
e−k1|ρ|

)}
,

where O (
e−k1|ρ|) is uniform with respect to x ∈ [0, 1]. Similarly,

fp(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 0 0

eρ e−ρ eiρ e−iρ 0 0

ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ 0 0

eρx e−ρx eiρx e−iρx 0 0

ρ2 ρ2 −ρ2 −ρ2 −1 −1

iρ3 −iρ3 −ρ3 ρ3
√
iρ −√

iρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −4

√
iρ3eρe−iρ

[
eiρx − e−ρx + O

(
e−k1|ρ|

)]

and

(fp)′′(x) = 4
√
iρ5eρe−iρ

[
eiρx + e−ρx + O

(
e−k1|ρ|

)]
.

By setting

Φp
n =

⎛⎝ fp
n(x)

λp
nf

p
n(x)

hp
n(x)

⎞⎠ = −1
2
(ρp

n)−5e−ρp
neiρp

n

⎛⎝ fp(x, ρp
n)

i(ρp
n)2fp(x, ρp

n)
hp(x, ρp

n)

⎞⎠ ,

we get ⎛⎜⎝ (fp
n)′′(x)

λp
nf

p
n(x)

hp
n(x)

⎞⎟⎠ =

⎛⎜⎝−2
√
ieiρp

nx − 2
√
ie−ρp

nx

2i
√
ieiρp

nx − 2i
√
ie−ρp

nx

a3e
√

iρp
nx + a4e−

√
iρp

nx

⎞⎟⎠+ O(e−k1|ρp
n|), (3.32)
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where a3, a4 are given by (3.11) and O (
e−k1|ρp

n|) is uniform with respect to x ∈ [0, 1]. Substituting ρp
n given

by (3.22) into (3.32) yield (3.26). Noting that from (3.27), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖ϕp

n1‖2
L2(0,1) = O(n−1), ‖ϕp

n2‖2
L2(0,1) = O(n−1),

‖ϕp
n3‖2

L2(0,1) = 1 + O(e−k1n), ‖ϕp
n4‖2

L2(0,1) = 1 + O(e−k1n),

‖a3ϕ
p
n3 + a4ϕ

p
n4‖2

L2(0,1) = |a3|2 + |a4|2 + O(n−1).

These together (3.26), (3.27) yield (3.28). Now we are going to look for Φe
n. For ρ ∈ S2, we have e

√
iρ → ∞, as

|ρ| → ∞. Similarly, we get

he(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 0 0

eρ e−ρ eiρ e−iρ 0 0

ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ 0 0

0 0 0 0 e
√

iρ e−
√

iρ

ρ2 ρ2 −ρ2 −ρ2 −1 −1

0 0 0 0 e
√

iρx e−
√

iρx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 8iρ4eρ

[
e
√

iρe−
√

iρx − e−
√

iρ(1−x)
] [

sin ρ+ O(e−ρ)
]
,

fe(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 0 0

eρ e−ρ eiρ e−iρ 0 0

ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ 0 0

0 0 0 0 e
√

iρ e−
√

iρ

ρ2 ρ2 −ρ2 −ρ2 −1 −1

eρx e−ρx eiρx e−iρx 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −2ρ2eρ

[
e
√

iρ − e−
√

iρ
] [

eiρ(1−x) − e−iρ(1−x) − 2i sinρe−ρx + O
(
e−|ρ|

)]
and

(fe)′′(x) = 2ρ4eρ
[
e
√

iρ − e−
√

iρ
] [

eiρ(1−x) − e−iρ(1−x) + 2i sinρe−ρx + O
(
e−|ρ|

)]
.

By setting

Φe
n =

⎛⎝ fe
n(x)

λe
nf

e
n(x)

he
n(x)

⎞⎠ =
1
2
(ρe

n)−4e−ρe
ne−

√
iρe

n

⎛⎝ fe(x, ρe
n)

i(ρe
n)2fe(x, ρe

n)
he(x, ρe

n)

⎞⎠ ,

we get ⎛⎜⎝ (fe
n)′′(x)

λe
nf

e
n(x)

he
n(x)

⎞⎟⎠ =

⎛⎜⎜⎝
eiρe

n(1−x) − e−iρe
n(1−x) + 2i sinρe

ne−ρe
nx

−ieiρe
n(1−x) + ie−iρe

n(1−x) − 2 sinρe
ne−ρe

nx

4i sinρe
ne−

√
iρe

nx

⎞⎟⎟⎠+ O
(
e−k2|ρe

n|
)
, (3.33)
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where O (
e−k2|ρe

n|) is uniform with respect to x ∈ [0, 1]. Substituting ρe
n given by (3.25) into the above equation

and nothing that sin ρe
n = −i sinh

[
1
2 ln r + (nπ + 1

2θe)i
]
+O(e−k2n), we get (3.29). Noting from (3.30), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖ϕe
n1‖2

L2(0,1) = [r − 1][ln r]−1 + O(e−k2n),

‖ϕe
n2‖2

L2(0,1) =
[
1 − 1

r

]
[ln r]−1 + O(e−k2n),

‖ϕe
n3‖2

L2(0,1) = O(n−1), ‖ϕe
n4‖2

L2(0,1) = O(n−1),

‖ϕe
n1 − ϕe

n2‖2
L2(0,1) =

[
r − 1

r

]
[ln r]−1 + O(n−1).

These together with (3.29), (3.30) yield (3.31). The proof is complete. �

To end this section, we remark that the same process can be used to produce asymptotic expansions for the
eigenpairs of A∗, the adjoint operator of A,⎧⎪⎪⎨⎪⎪⎩

A∗(f, g, h) = (−g, f (4), h′′), ∀ (f, g, h) ∈ D(A),

D(A∗) =

{
(f, g, h) ∈ (H4 ×H2

L ×H2) ∩H
∣∣∣∣∣h(1) = f ′′(1) = 0,

g′(0) = h′(0), f ′′(0) = h(0)

}
.

(3.34)

It is because when A is a discrete operator, so is A∗ ([2], p. 2354); and when the eigenvalues of A are symmetric
about the real axis, then A∗ will have the same eigenvalues as A ([10], p. 26) with the same algebraic multiplicity
for the conjugate eigenvalues ([2], p. 2354 or [3], p. 10). Moreover, we can get the asymptotic eigenfunctions
of A∗. Actually, from A∗X = λX , whereX = (f, g, h) is the eigenfunction of A∗ with respect to the eigenvalue λ,
we have that g = −λf and that f, h satisfy the following equation:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f (4)(x) + λ2f(x) = 0,

h′′(x) − λh(x) = 0,

f(0) = f(1) = f ′′(1) = h(1) = 0,

f ′′(0) = h(0), λf ′(0) = −h′(0).

This problem is the same as (3.1). So the eigenfunctions of A∗ are obtained as in the proof of Theorem 3.4.

Theorem 3.5. Let A∗ be defined by (3.34), let σ(A∗) = σ(A) = {λp
n, n ∈ N} ∪ {λe

n, λ
e
n, n ∈ N}, and let

λp
n := i(ρp

n)2 and λe
n := i(ρe

n)2 with ρp
n, ρe

n given by (3.22) and (3.25), respectively. Then there are two families
of approximate normalized eigenfunctions of A∗:

(i) One family {Ψp
n = (fp

n ,−λp
nf

p
n, h

p
n), n ∈ N}, where Ψp

n is the eigenfunction of A∗ with respect to the eigen-
value λp

n, has the following asymptotic expression:⎛⎜⎝ (fp
n)′′(x)

−λp
nf

p
n(x)

hp
n(x)

⎞⎟⎠ =

⎛⎜⎜⎝
−2

√
i [ϕp

n1(x) + ϕp
n2(x)]

2i
√
i [ϕp

n2(x) − ϕp
n1(x)]

a3ϕ
p
n3(x) + a4ϕ

p
n4(x)

⎞⎟⎟⎠+ O(e−k1n), (3.35)

where ϕp
nj(x), j = 1, 2, 3, 4, are given by (3.27), a3, a4 are constants given by (3.11), and O(e−k1n) is uniform

with respect to x ∈ [0, 1]. Moreover, Ψp
n = (fp

n,−λp
nf

p
n, h

p
n) are approximately normalized in H.
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(ii) The other family {Ψe
n = (fe

n,−λe
nf

e
n, h

e
n), Ψe

n = (fe
n,−λe

nf
e
n, h

e
n), n ∈ N}, where Ψ2n and Ψ2n are the eigen-

functions of A∗ with respect to the complex conjugate eigenvalue pairs λe
n and λe

n, respectively, has the
following asymptotic expression:⎛⎜⎝ (fe

n)′′(x)

−λe
nf

e
n(x)

he
n(x)

⎞⎟⎠ =

⎛⎜⎜⎝
ϕe

n1(x) − ϕe
n2(x) + 2 sinh

[
1
2 ln r + (nπ + 1

2θe)i
]
ϕe

n3(x)

iϕe
n1(x) − iϕe

n2(x) − 2i sinh
[
1
2 ln r + (nπ + 1

2θe)i
]
ϕe

n3(x)

4 sinh
[
1
2 ln r + (nπ + 1

2θe)i
]
ϕe

n4(x)

⎞⎟⎟⎠+ O (
e−k2n

)
, (3.36)

where ϕe
nj(x), j = 1, 2, 3, 4, are given by (3.30), θe, r are constants given by (3.18), and O(e−k2n) is uniform

with respect to x ∈ [0, 1]. Moreover, Ψ2n = (fe
n,−λe

nf
e
n, h

e
n) are approximately normalized in H.

4. Completeness of the root subspace of the system

In this section, we are going to show the completeness of the root subspace of the system (2.2).

Lemma 4.1. Let A be defined by (2.1) and for x ∈ [0, 1] and ρ ∈ C, let⎧⎪⎨⎪⎩
Q1(x, ξ) =

1
8
sign(x− ξ)ρ−3

[
eρ(x−ξ) − e−ρ(x−ξ) + ieiρ(x−ξ) − ie−iρ(x−ξ)

]
,

Q2(x, ξ) = −i1
4
sign(x− ξ)ρ−1

[√
ie

√
iρ(x−ξ) −

√
ie−

√
iρ(x−ξ)

]
.

(4.1)

For any λ = iρ2 ∈ ρ(A) with λ �= 0 and (φ, ψ, χ) ∈ H, let R(λ,A) = (λ −A)−1 be the resolvent operator of A
and let

F0(x, ρ) =
∫ 1

0

Q1(x, ξ)
[
iρ2φ(ξ) + ψ(ξ)

]
dξ, H0(x, ρ) = −

∫ 1

0

Q2(x, ξ)χ(ξ)dξ. (4.2)

Then the solution of the resolvent equation R(λ,A)(φ, ψ, χ) = (f, g, h) is given by

f(x) =
F (x, ρ)
detΔ(ρ)

, g(x) = λf(x) − φ(x), h(x) =
H(x, ρ)
detΔ(ρ)

, (4.3)

where Δ(ρ) is defined by (3.9),

F (x, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eρx e−ρx eiρx e−iρx 0 0 F0(x, ρ)

1 1 1 1 0 0 F1

eρ e−ρ eiρ e−iρ 0 0 F2

ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ 0 0 F3

0 0 0 0 e
√

iρ e−
√

iρ H4

ρ2 ρ2 −ρ2 −ρ2 −1 −1 F5 −H5

iρ3 −iρ3 −ρ3 ρ3
√
iρ −√

iρ F6 +H6 − φ′(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

H(x, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 e
√

iρx e−
√

iρx H0(x, ρ)

1 1 1 1 0 0 F1

eρ e−ρ eiρ e−iρ 0 0 F2

ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ 0 0 F3

0 0 0 0 e
√

iρ e−
√

iρ H4

ρ2 ρ2 −ρ2 −ρ2 −1 −1 F5 −H5

iρ3 −iρ3 −ρ3 ρ3
√
iρ −√

iρ F6 +H6 − φ′(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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and Fj , j = 1, 2, 3, 5, 6, Hs, s = 4, 5, 6 are constants given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1 = −1
8
ρ−3

∫ 1

0

[
e−ρξ − eρξ + ie−iρξ − ieiρξ

] [
iρ2φ(ξ) + ψ(ξ)

]
dξ,

F2 =
1
8
ρ−3

∫ 1

0

[
eρ(1−ξ) − e−ρ(1−ξ) + ieiρ(1−ξ) − ie−iρ(1−ξ)

] [
iρ2φ(ξ) + ψ(ξ)

]
dξ,

F3 =
1
8
ρ−1

∫ 1

0

[
eρ(1−ξ) − e−ρ(1−ξ) − ieiρ(1−ξ) + ie−iρ(1−ξ)

] [
iρ2φ(ξ) + ψ(ξ)

]
dξ,

F5 = −1
8
ρ−1

∫ 1

0

[
e−ρξ − eρξ − ie−iρξ + ieiρξ

] [
iρ2φ(ξ) + ψ(ξ)

]
dξ,

F6 = −i1
8

∫ 1

0

[
e−ρξ + eρξ − e−iρξ − eiρξ

] [
iρ2φ(ξ) + ψ(ξ)

]
dξ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

H4 = i
1
4
ρ−1

∫ 1

0

[√
ie

√
iρ(1−ξ) −

√
ie−

√
iρ(1−ξ)

]
χ(ξ)dξ,

H5 = −i1
4
ρ−1

∫ 1

0

[√
ie−

√
iρξ −

√
ie

√
iρξ
]
χ(ξ)dξ,

H6 =
1
4

∫ 1

0

[
e−

√
iρξ + e

√
iρξ
]
χ(ξ)dξ.

Proof. For any (φ, ψ, χ) ∈ H and any λ = iρ2 ∈ ρ(A) with ρ �= 0, solving the resolvent equation

(λ−A)(f, g, h) = (φ, ψ, χ)

yields g = λf − φ with f, h satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f (4)(x) − ρ4f(x) = iρ2φ(x) + ψ(x),

h′′(x) − iρ2h(x) = −χ(x),

f(0) = f(1) = f ′′(1) = h(1) = 0,

f ′′(0) = h(0),

λf ′(0) + h′(0) = φ′(0).

(4.4)

Note that f (4)(x)−ρ4f(x) = iρ2φ(x)+ψ(x) and h′′(x)−iρ2h(x) = −χ(x) have the general solutions respectively{
f(x) = c1eρx + c2e−ρx + c3eiρx + c4e−iρx + F0(x, ρ),

h(x) = d1e
√

iρx + d2e−
√

iρx +H0(x, ρ),
(4.5)

where F0(x, ρ) and H0(x, ρ) are given by (4.2). Hence, by the boundary conditions of (4.4), cj , j = 1, 2, 3, 4 and
d1, d2 satisfy the following algebraic equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 + c2 + c3 + c4 = −F1,

c1eρ + c2e−ρ + c3eiρ + c4e−iρ = −F2,

c1ρ
2eρ + c2ρ

2e−ρ − c3ρ
2eiρ − c4ρ

2e−iρ = −F3,

d1e
√

iρ + d2e−
√

iρ = −H4,

c1ρ
2 + c2ρ

2 − c3ρ
2 − c4ρ

2 − d1 − d2 = −F5 +H5,

c1iρ
3 − c2iρ

3 − c3ρ
3 + c4ρ

3 + d1

√
iρ− d2

√
iρ = −F6 −H6 + φ′(0).

(4.6)
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Since λ = iρ2 ∈ ρ(A), detΔ(ρ) �= 0 and hence (4.6) have a unique solution. Moreover, the solution f(x, ρ) and
of h(x, ρ) of (4.5) can be written as (4.3). �
Proposition 4.2. Let A be defined by (2.1). Then all λ = iρ2 ∈ σ(A) with sufficiently large moduli are
algebraically simple.

Proof. We only prove the case when ρ ∈ S since the proof for λ = −iρ2 is similar. From Lemma 4.1, the order of
each λ ∈ σ(A), as a pole of R(λ,A), with sufficiently large modulus is less than or equal to the multiplicity of λ
as a zero of the entire function det(Δ(ρ)) with respect to ρ. Since it is easy to see that λ is geometrically simple
and from (3.20) and (3.23) all zeros of det(Δ(ρ)) = 0 with large moduli are simple in S1 and S2, respectively,
the result then follows from the formula: ma ≤ p ·mg (see e.g. [12], p. 148), where p denotes the order of the
pole of the resolvent operator and ma, mg denote the algebraic and geometric multiplicities respectively. �

To estimate the norm of the resolvent operator, we recall the Lemma 1.2 of [16] (see also [7]).

Lemma 4.3. Let

D(λ) = 1 +
n∑

i=1

Qi(λ)eαiλ,

where Qi are polynomials of λ, αi are some complex numbers, and n is a positive integer. Then for all λ outside
those circles of radius ε > 0 that centered at the roots of D(·), one has

|D(λ)| ≥ C(ε) > 0

for some constant C(ε) that depends only on ε.

Theorem 4.4. Let A be defined by (2.1) and for λ ∈ ρ(A), let R(λ,A) = (λ −A)−1 be the resolvent operator
of A. Then there exists a constant M > 0 independent of λ such that

‖R(λ,A)‖ ≤M(1 + |λ|),
for all λ = iρ2 with ρ ∈ C lying outside all circles of radius ε > 0 that are centered at the zeros of det(Δ(ρ)).

Proof. We first consider those λ = iρ2 with ρ ∈ S. Let ρ ∈ S with ρ �= 0. For (φ, ψ, χ) ∈ H, (f, g, h) =
R(λ,A)(φ, ψ, χ) has the expression given by (4.3). In order to estimate R(λ,A), since in sector S, we have
from (3.3), (3.4) and (3.6) that

Re(−ρ) ≤ Re(iρ) ≤ 0 and Re(−
√

iρ) ≤ 0,

we need to use the transformation of the determinant to make the elements Fj , j = 1, 2, . . . , 6 given by (4.1)
and (4.1) stable. So, for F (x, ρ) and H(x, ρ) given by (4.1) and (4.1), multiply⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

the first column by − 1
8
ρ−3

∫ 1

0

e−ρξ
[
iρ2φ(ξ) + ψ(ξ)

]
dξ,

the second column by − 1
8
ρ−3

∫ 1

0

eρξ
[
iρ2φ(ξ) + ψ(ξ)

]
dξ,

the third column by
1
8
ρ−3

∫ 1

0

ie−iρξ
[
iρ2φ(ξ) + ψ(ξ)

]
dξ,

the fourth column by
1
8
ρ−3

∫ 1

0

ieiρξ
[
iρ2φ(ξ) + ψ(ξ)

]
dξ,

the fifth column by − 1
4
ρ−1

∫ 1

0

i
√
ie−

√
iρξχ(ξ)dξ,

the sixth column by − 1
4
ρ−1

∫ 1

0

i
√
ie

√
iρξχ(ξ)dξ,
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and add these columns to the last column of F (x, ρ) and H(x, ρ) respectively, we have

F (x, ρ) = ρ2eρ(1−i+
√

i)F̃ (x, ρ), H(x, ρ) = ρ4eρ(1−i+
√

i)H̃(x, ρ)

where

H̃(x, ρ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 e
√

iρx e−
√

iρx H̃0(x, ρ)
e−ρ 1 1 eiρ 0 0 ρ−2F̃1

1 e−ρ eiρ 1 0 0 ρ−2F̃2

1 e−ρ −eiρ −1 0 0 ρ−2F̃3

0 0 0 0 1 e−
√

iρ H̃4

e−ρ 1 −1 −eiρ −ρ−2e−
√

iρ −ρ−2 ρ−2
[
F̃5 − H̃5

]
iρ2e−ρ −iρ2 −ρ2 ρ2eiρ

√
ie−

√
iρ −√

i F̃6 + H̃6 − φ′(0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and for s = 0, 1, 2,

1
ρs

dsF̃ (x, ρ)
dxs

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eρ(x−1) (−1)se−ρx iseiρx (−i)seiρ(1−x) 0 0
dsF̃0(x, ρ)

dxs

e−ρ 1 1 eiρ 0 0 F̃1

1 e−ρ eiρ 1 0 0 F̃2

1 e−ρ −eiρ −1 0 0 F̃3

0 0 0 0 1 e−
√

iρ ρ2H̃4

e−ρ 1 −1 −eiρ −ρ−2e−
√

iρ −ρ−2 F̃5 − H̃5

iρ2e−ρ −iρ2 −ρ2 ρ2eiρ
√
ie−

√
iρ −√

i ρ2(F̃6 + H̃6 − φ′(0))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Here

H̃0(x, ρ) =
1
2

1√
i

[∫ x

0

e−
√

iρ(x−ξ)χ(ξ)dξ +
∫ 1

x

e−
√

iρ(ξ−x)χ(ξ)dξ
]
,

dsF̃0(x, ρ)
dxs

=
1
4

∫ 1

0

∂sP (x, ξ)
∂xs

[
iρ2φ(ξ) + ψ(ξ)

]
dξ, s = 0, 1, 2

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (x, ξ) =
{−e−ρ(x−ξ) + ieiρ(x−ξ), x ≥ ξ,

−e−ρ(ξ−x) + ieiρ(ξ−x), x < ξ,

∂P (x, ξ)
∂x

=
{

e−ρ(x−ξ) − eiρ(x−ξ), x ≥ ξ,

−e−ρ(ξ−x) + eiρ(ξ−x), x < ξ,

∂2P (x, ξ)
∂x2

=
{−e−ρ(x−ξ) − ieiρ(x−ξ), x ≥ ξ,

−e−ρ(ξ−x) − ieiρ(ξ−x), x < ξ,
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃1 = −1
4

∫ 1

0

[
e−ρξ − ieiρξ

] [
iρ2φ(ξ) + ψ(ξ)

]
dξ,

F̃2 = −1
4

∫ 1

0

[
e−ρ(1−ξ) − ieiρ(1−ξ)

] [
iρ2φ(ξ) + ψ(ξ)

]
dξ,

F̃3 = −1
4

∫ 1

0

[
e−ρ(1−ξ) + ieiρ(1−ξ)

] [
iρ2φ(ξ) + ψ(ξ)

]
dξ,

F̃5 = −1
4

∫ 1

0

[
e−ρξ + ieiρξ

] [
iρ2φ(ξ) + ψ(ξ)

]
dξ,

F̃6 = −i1
4

∫ 1

0

[
e−ρξ − eiρξ

] [
iρ2φ(ξ) + ψ(ξ)

]
dξ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

H̃4 =
1
2

1√
i

∫ 1

0

e−
√

iρ(1−ξ)χ(ξ)dξ,

H̃5 =
1
2

1√
i

∫ 1

0

√
ie−

√
iρξχ(ξ)dξ,

H̃6 =
1
2

∫ 1

0

e−
√

iρξχ(ξ)dξ,

So, by (3.2)−(3.6), the asymptotic expression of detΔ(ρ) given by (3.10) in S, (3.12) in S1, and (3.13) in S2,
respectively, and Lemma 4.3, there is M1 > 0, such that

|f ′′(x)| ≤ M1

|ρ|
[∫ 1

0

[|λ||φ(ξ)| + |ψ(ξ)| + |χ(ξ)|] dξ + |φ′(0)|
]
,

|g(x)| ≤ M1

|ρ|
[∫ 1

0

[|λ||φ(ξ)| + |ψ(ξ)| + |χ(ξ)|] dξ + |φ′(0)|
]

+ |φ(x)|,

|h(x)| ≤ M1

|ρ|
∫ 1

0

[|λ||φ(ξ)| + |ψ(ξ)| + |χ(ξ)|] dξ

for all λ = iρ2 with ρ ∈ S lying outside all circles of radius ε > 0 that are centered at the zeros of det(Δ(ρ)). Since
|l′(x)| ≤ ‖l′′‖L2 and |l(x)| ≤ ‖l′‖L2 ≤ ‖l′′‖L2 for any x ∈ [0, 1] and l ∈ H2

L[0, 1], it follows that ∀ (φ, ψ, χ) ∈ H,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

|λ|−1|f ′′(x)| ≤ M1

|ρ|
[‖φ′′‖L2 + |λ|−1‖ψ‖L2 + |λ|−1‖χ‖L2 + |λ|−1‖φ′′‖L2

]
,

|λ|−1|g(x)| ≤ M1

|ρ|
[‖φ′′‖L2 + |λ|−1‖ψ‖L2 + |λ|−1‖χ‖L2 + |λ|−1‖φ′′‖L2

]
+ |λ|−1‖φ′′‖L2 ,

|λ|−1|h(x)| ≤ M1

|ρ|
[‖φ′′‖L2 + |λ|−1‖ψ‖L2 + |λ|−1‖χ‖L2

]
,

It is seen from the above that we can find constants M2,K > 0 independent of λ such that

‖(f, g, h)‖ ≤M2(1 + |λ|)‖(φ, ψ, χ)‖

for all |λ| = |ρ2| > K > 1 with ρ ∈ S lies outside all circles of radius ε > 0 that centered at the zeros of
det(Δ(ρ)). Moreover, there is M > M2 such that for |λ| ≤ K, we have ‖(f, g, h)‖ ≤ M‖(φ, ψ, χ)‖. Therefore,
we get

‖(f, g, h)‖ ≤M(1 + |λ|)‖(φ, ψ, χ)‖
for all λ = iρ2 with ρ ∈ S lying outside all circles of radius ε > 0 that are centered at the zeros of det(Δ(ρ)).

This result can be extended to all the other ρ’s by the exact same arguments of ([13], pp. 56–60). �

Theorem 4.5. Let A be defined by (2.1). Then both the root subspaces of A and A∗ are complete in H, that
is, Sp(A∗) = Sp(A) = H.
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Proof. We only show the completeness for the root subspace of A since the proof for that of A∗ is almost the
same. It follows from Lemma 5 on page 2355 of [2] that the following orthogonal decomposition holds:

H = σ∞(A∗) ⊕ Sp(A)

where σ∞(A∗) consists of those Y ∈ H so that R(λ,A∗)Y is an analytic function of λ in the whole complex
plane. Hence, Sp(A) = H if and only if σ∞(A∗) = {0}. Now suppose that Y ∈ σ∞(A∗). Since R(λ,A∗)Y is an
analytic function in λ, it is also analytic in ρ. By the maximum modulus principle (or the Phragmén–Lindelöf’s
theorem) and the fact that ‖R(λ,A∗)‖ = ‖R(λ,A)‖, it follows from Theorem 4.4 that

‖R(λ,A∗)Y ‖ ≤M(1 + |λ|)‖Y ‖, ∀ λ ∈ C,

for some constant M > 0. By Theorem 1 of ([9], p. 3), we conclude that R(λ,A∗)Y is a polynomial in λ of
degree ≤ 1, i.e., R(λ,A∗)Y = Y0 +λY1 for some Y0, Y1 ∈ H. Thus Y = (λ−A∗)(Y0 +λY1). Since A∗ is a closed
operator, Y1 belongs to D(A∗) and so does Y0. Therefore,

−A∗Y0 + λ(Y0 −A∗Y1) + λ2Y1 = Y, ∀ λ ∈ C.

Comparing the coefficients of λ2, λ and λ0 in two sides of the above equation, we get Y1 = Y0 = Y = 0. �

5. Riesz basis property and exponential stability

In this section, we show the Riesz basis generation and exponential stability of the system (2.2). To establish
the Riesz basis property of the system (2.2), we recall the following two lemmas:

Lemma 5.1. An approximately normalized sequence {ei}∞i=1 and its approximately normalized biorthogonal
sequence {e∗i }∞i=1 are Riesz bases for a Hilbert space H if and only if ([22], p. 27)

(a) both {ei}∞i=1 and {e∗i }∞i=1 are complete in H; and
(b) both {ei}∞i=1 and {e∗i }∞i=1 are Bessel sequences in H, that is, for any f ∈ H, two sequences {〈f, ei〉}∞i=1,

{〈f, e∗i 〉}∞i=1 belong to �2.

Lemma 5.2 ([16], Lem. 3.2). Let {μn} be a sequence which has asymptotics

μn = α(n+ iβ lnn) + O(1), α �= 0, n = 1, 2, 3, . . . , (5.1)

where β is a real number. If μn satisfies supn≥1 Reμn < ∞, then the sequence {eμnx}∞n=1 is a Bessel sequence
in L2(0, 1).

Lemma 5.3. Let ϕp
nj(x) and ϕe

nj(x), j = 1, 2, 3, 4, be given by (3.27) and (3.30), respectively. Then all
{ϕp

nj(x)}∞n=1 and {ϕe
nj(x)}∞n=1, j = 1, 2, 3, 4, are Bessel sequences in L2(0, 1).

Proof. By (3.27), if we take α = i
√
iπ, β = 0 in ϕp

n1(x), α = −√
iπ, β = 0 in ϕp

n2(x), α = iπ, β = 0 in ϕp
n3(x), and

α = −iπ, β = 0 in ϕp
n4(x), respectively, then it follows from Lemma 5.2 directly that {ϕp

nj(x)}∞n=1, j = 1, 2, 3, 4,
are four Bessel sequences in L2(0, 1).

Similarly, by (3.30), if we take α = iπ, β = 0 in ϕe
n1(x), α = −iπ, β = 0 in ϕe

n2(x), α = −π, β = 0 in ϕe
n3(x),

and α = −√
iπ, β = 0 in ϕe

n4(x), respectively, then it follows from Lemma 5.2 directly that ϕe
nj(x), j = 1, 2, 3, 4,

are Bessel sequences in L2(0, 1). �

Now we can establish the Riesz basis property of the system (2.2).
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Theorem 5.4. Let A be defined by (2.1). Then the generalized eigenfunctions of A form a Riesz basis for H.

Proof. Let σ(A) = {λp
n, λ

e
n, λ

e
2n}∞n=1 be the eigenvalues of A. By Theorem 3.3 and Proposition 4.2, we have

that each eigenvalue of A with sufficient large modulus is simple, and hence there exists an integer N > 0
such that all λp

n, λ
e
n, λ

e
2n with n ≥ N , are algebraically simple. For n ≤ N , if the algebraic multiplicities of λp

n

and λe
n are mp

n and me
n, respectively, we can find the highest order generalized eigenfunctions Φp

n,1 and Φe
n,1

from respectively
(A− λp

n)mp
nΦp

n,1 = 0, (A− λp
n)mp

n−1Φp
n,1 �= 0

and
(A − λe

n)me
nΦe

n,1 = 0, (A− λe
n)me

n−1Φe
n,1 �= 0.

Furthermore, the other lower order linearly independent generalized eigenfunctions associated with λp
n and λe

n

can be found through Φp
n,j = (A− λp

n)j−1Φp
n,1, j = 2, 3, . . . ,mp

n, and Φe
n,s = (A− λe

n)s−1Φe
n,1, s = 2, 3, . . . ,me

n,
respectively, where Φp

n,mp
n

and Φe
n,me

n
are eigenfunctions of A with respect to λp

n and λe
n, respectively. Assume Φp

n

and Φe
n are the normalized eigenfunctions of A corresponding to λp

n and λe
n with n ≥ N respectively. Then{

{Φp
n,j}mp

n

j=1

}
n<N

∪ {Φp
n}n≥N

⋃{
{Φe

n,j , Φ
e
n,j}me

n

j=1

}
n<N

∪ {Φe
n, Φ

e
n

}
n≥N

(5.2)

are all linearly independent generalized eigenfunctions of A. On the other hand, we also have that{
{Ψp

n,j}mp
n

j=1

}
n<N

∪ {Ψp
n}n≥N

⋃{
{Ψe

n,j, Ψ
e
n,j}me

n

j=1

}
n<N

∪ {Ψe
n, Ψ

e
n

}
n≥N

(5.3)

are all linearly independent generalized eigenfunctions of A∗. Let⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Φp∗

n,j =
Ψp

n,j

〈Φp
n,j , Ψ

p
n,j〉

, n < N, j = 1, 2, . . . ,mp
n,

Φp∗
n =

Ψp
n

〈Φp
n, Ψ

p
n〉
, n ≥ N

(5.4)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Φe∗

n,j =
Ψe

n,j

〈Φe
n,j , Ψ

e
n,j〉

, n < N, j = 1, 2, . . . ,me
n,

Φe∗
n =

Ψe
n

〈Φe
n, Ψ

e
n〉
, n ≥ N.

(5.5)

Then {
{Φp∗

n,j}mp
n

j=1

}
n<N

∪ {Φp∗
n }n≥N

⋃{
{Φe∗

n,j , Φ
e∗
n,j}me

n
j=1

}
n<N

∪ {Φe∗
n , Φ

e∗
n

}
n≥N

(5.6)

are all linearly independent generalized eigenfunctions of A∗ and they are bi-orthogonal to the sequence given
by (5.2). Actually, it is easy to see that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈Φp
s,i, Φ

p∗
l,j〉 = δsl × δij , for 1 ≤ s, l < N, 1 ≤ i ≤ mp

s, 1 ≤ j ≤ mp
l ,

〈Φe
s,i, Φ

e∗
l,j〉 = δsl × δij , for 1 ≤ s, l < N, 1 ≤ i ≤ me

s, 1 ≤ j ≤ me
l ,

〈Φp
s , Φ

p∗
l 〉 = δsl, 〈Φe

s, Φ
e∗
l 〉 = δsl, for N ≤ s, l <∞,

〈Φp
s,i, Φ

e∗
l,j〉 = 〈Φp

s,i, Φ
e∗
l,j〉 = 〈Φe

s,i, Φ
p∗
l,j〉 = 〈Φe

s,i, Φ
p∗
l,j〉 = 0, for 1 ≤ s, l < N, 1 ≤ i ≤ mp

s, 1 ≤ j ≤ mp
l ,

〈Φp
s , Φ

e∗
l 〉 = 〈Φp

s , Φ
e∗
l 〉 = 〈Φe

s, Φ
p∗
l 〉 = 〈Φe

s, Φ
p∗
l 〉 = 0, for N ≤ s, l <∞,

〈Φp
s,i, Φ

e∗
l 〉 = 〈Φp

s,i, Φ
e∗
l 〉 = 0, for 1 ≤ s < N,N ≤ l <∞, 1 ≤ i ≤ mp

s,

〈Φe
s,j , Φ

p∗
l 〉 = 〈Φe

s,j , Φ
p∗
l 〉 = 0, for 1 ≤ s < N,N ≤ l <∞, 1 ≤ j ≤ mp

e,
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where δij is Kronecker delta and satisfies

δij =
{

1, i = j,
0, i �= j.

Hence, the set (5.6) is the bi-orthogonal sequence of (5.2). From Theorem 4.5, we have that all the sequences
given by (5.2), (5.3) and (5.6) are complete in H.

Hence, in order to prove the Riesz basis property of the system, since both {{Φp
n,j}mp

n

j=1, {Φe
n,j}me

n

j=1}n<N and

{{Φp∗
n,j}mp

n

j=1, {Φe∗
n,j}me

n

j=1}n<N are finitely many, it suffices to show that both the eigenfunctions {Φp
n, Φ

e
n}n≥N and

{Φp∗
n , Φe∗

n }n≥N of A and A∗, respectively, are Bessel sequences in H. Moreover, it follows from (5.4) and (5.5),
that {Φp∗

n , Φ
e∗
n }n≥N is a Bessel sequence if and only if {Ψp

n, Ψ
e
n}n≥N is a Bessel sequence. So we only need to

show that {Φp
n, Φ

e
n}n≥N and {Ψp

n, Ψ
e
n}n≥N are Bessel sequences in H.

Without loss of generality, we may assume that Φp
n = (fp

n, λ
p
nf

p
n, h

p
n), Φe

n = (fe
n, λ

e
nf

e
n, h

e
n) and Ψp

n =
(fp

n ,−λp
nf

p
n, h

p
n), Ψe

n = (fe
n,−λe

nf
e
n, h

e
n) given by (3.26), (3.29) and (3.35), (3.36), respectively, for all n ≥ N . It

then follows from Lemma 5.3 and the expansions of (3.26), (3.29) and (3.35), (3.36) that all of {(fp
n)′′}∞n=N ,

{(fe
n)′′}∞n=N , {±λp

nf
p
n}∞n=N , {±λe

nf
e
n}∞n=N , {hp

n}∞n=N and {he
n}∞n=N are Bessel sequences in L2(0, 1). Hence both

of {Φp
n, Φ

e
n}n≥N and {Ψp

n, Ψ
e
n}n≥N are also Bessel sequences in H. Therefore we get that both of {Φp

n, Φ
e
n}n≥N

and {Φp∗
n , Φ

e∗
n }n≥N are also Bessel sequences in H. The desired result of the theorem then follows from

Lemma 5.1. �

Theorem 5.5. Let A be defined by (2.1). Then the spectrum-determined growth condition ω(A) = s(A) holds
true, where ω(A) is the growth bound of the C0-semigroup eAt and

s(A) := sup{Reλ
∣∣ λ ∈ σ(A)}

is the spectral bound of A. Moreover, the system (2.2) is exponentially stable, that is, there exist two positive
constants M and ω such that the C0-semigroup eAt generated by A satisfies

‖eAt‖ ≤Me−ωt.

Proof. The spectrum-determined growth condition follows from Theorem 5.4. By Lemma 3.1, for each λ ∈ σ(A),
we have Reλ < 0. This, together with (3.16)−(3.19) and the spectrum-determined growth condition, shows that
eAt is exponentially stable. �

6. Gevrey regularity

In what follows, we show that the C0-semigroup eAt generated by A is of a Gevrey class δ with any δ > 2.
We recall the definition.

Definition 6.1 ([1, 18]). A C0-semigroup T (t) is of a Gevrey class δ > 1 for t > t0 if T (t) is infinitely differ-
entiable for t > t0 and for every compact subset K ⊂ (t0,∞) and each θ > 0, there is a constant C = C(K, θ)
such that

‖T (n)(t)‖ ≤ Cθn(n!)δ, ∀t ∈ K, n = 0, 1, 2, . . . .

In order to get the Gevrey regularity of the system (2.2), we need the following theorem established by Taylor
in ([18], Thm. 4, Chap. 5).

Theorem 6.2. Let eAt be a C0-semigroup satisfying ‖eAt‖ ≤ Meωt. Suppose that for some μ ≥ ω and α
satisfying 0 < α ≤ 1,

lim
|τ |→∞

sup |τ |α‖R(μ+ iτ,A)‖ = C <∞, τ ∈ R.

Then eAt is of Gevrey class δ with δ > 1/α for t > 0.

Now we establish the Gevrey regularity of the system (2.2).
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Theorem 6.3. Let A be defined by (2.1). Then the semigroup eAt, generated by A, is of a Gevrey class δ > 2
with t0 = 0.

Proof. From Theorem 5.5, A generates a exponentially stable C0-semigroup eAt in H. So, by Theorem 6.2, we
only need to show

lim
|τ |→∞

|τ |‖R(iτ,A)‖2 = C <∞, τ ∈ R. (6.1)

By Theorem 5.4, {
{Φp

n,j}mp
n

j=1

}
n<N

∪ {Φp
n}n≥N

⋃{
{Φe

n,j , Φ
e
n,j}me

n

j=1

}
n<N

∪ {Φe
n, Φ

e
n

}
n≥N

forms a Riesz basis in H. Then for each Y ∈ H, we have

Y =
N−1∑
n=1

mp
n∑

j=1

ap
n,jΦ

p
n,j +

∞∑
n=N

ap
nΦ

p
n +

N−1∑
n=1

me
n∑

j=1

[
ae

n,jΦ
e
n,j + ben,jΦ

e
n,j

]
+

∞∑
n=N

[
ae

nΦ
e
n + benΦ

e
n

]
, (6.2)

and

‖Y ‖2 �
N−1∑
n=1

mp
n∑

j=1

|ap
n,j |2 +

∞∑
n=N

|ap
n|2 +

N−1∑
n=1

me
n∑

j=1

[|ae
n,j |2 + |ben,j|2

]
+

∞∑
n=N

[|ae
n|2 + |ben|2

]
. (6.3)

Let τ > 0. Then we have iτ ∈ ρ(A), and, in addition,

R(iτ,A)Y =
N−1∑
n=1

mp
n∑

j=1

ap
n,jΦ

p
n,j

iτ − λp
n

+
N−1∑
n=1

me
n∑

j=1

[
ae

n,jΦ
e
n,j

iτ − λe
n

+
ben,jΦ

e
n,j

iτ − λe
n

]
+

∞∑
n=N

[
ae

nΦ
e
n

iτ − λe
n

+
benΦ

e
n

iτ − λe
n

]

+
∞∑

n=N

ap
nΦ

p
n

iτ − λp
n

+
N−1∑
n=1

O
(

1
|iτ − λp

n|2
)

+
N−1∑
n=1

[
O
(

1
|iτ − λe

n|2
)

+ O
(

1
|iτ − λe

n|2
)]

(6.4)

and

‖R(iτ,A)Y ‖2 �
N−1∑
n=1

mp
n∑

j=1

|ap
n,j |2

|iτ − λp
n|2 +

∞∑
n=N

|ap
n|2

|iτ − λp
n|2

+
N−1∑
n=1

me
n∑

j=1

[
|ae

n,j |2
|iτ − λe

n|2
+

|ben,j|2
|iτ − λe

n|2

]
+

∞∑
n=N

[ |ae
n|2

|iτ − λe
n|2

+
|ben|2

|iτ − λe
n|2

]
,

(6.5)

where {λp
n, n ∈ N} and {λe

n, λ
e
n, n ∈ N}, given by (3.17), are eigenvalues of A.

Now we estimate |iτ − λp
n|2, |iτ − λe

n|2 and |iτ − λe
n|2. By (3.17), for n large enough, we have

|iτ − λp
n|2 =

∣∣∣∣∣iτ +
[
nπ +

1
2
θp

]2

+ O(e−k1n)

∣∣∣∣∣
2

= τ2 +
[
nπ +

1
2
θp

]4

+ O
(
e−(k1−ε)n

)
≥M1τ

2, (6.6)

where ε denotes a small positive constant, and

|iτ − λe
n|2 = |τ + iλe

n|2 =
∣∣τ − (ρe

n)2
∣∣2 =

∣∣√τ + ρe
n

∣∣2 ∣∣√τ − ρe
n

∣∣2 ,
∣∣iτ − λe

n

∣∣2 =
∣∣τ + iλe

n

∣∣2 =
∣∣∣τ − i2(ρe

n)2
∣∣∣2 =

∣∣√τ + iρe
n

∣∣2 ∣∣√τ − iρe
n

∣∣2 ,
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where λe
n = i(ρe

n)2 with ρe
n given by (3.25), and M1 > 0 is a constant. Noting that

∣∣√τ + ρe
n

∣∣2 =
∣∣∣∣√τ +

(
nπ +

1
2
θe

)
+

1
2i

ln r + O (
e−k2n

)∣∣∣∣2
=
[√

τ + nπ +
1
2
θe

]2

+
1
4
(ln r)2 + O

(
e−(k2−ε)n

)
,

∣∣√τ − ρe
n

∣∣2 =
∣∣∣∣√τ − (

nπ +
1
2
θe

)
− 1

2i
ln r + O(e−k2n)

∣∣∣∣2
=
[√

τ −
(
nπ +

1
2
θe

)]2

+
1
4
(ln r)2 + O

(
e−(k2−ε)n

)
,

∣∣√τ + iρe
n

∣∣2 =
∣∣∣∣√τ − 1

2
ln r +

(
nπ +

1
2
θe

)
i+ O(e−k2n)

∣∣∣∣2
=
[√

τ +
1
2
| ln r|

]2

+
[
nπ +

1
2
θe

]2

+ O
(
e−(k2−ε)n

)
,

∣∣√τ − iρe
n

∣∣2 =
∣∣∣∣√τ +

1
2

ln r −
(
nπ +

1
2
θe

)
i+ O(e−k2n)

∣∣∣∣2
=
[√

τ − 1
2
| ln r|

]2

+
[
nπ +

1
2
θe

]2

+ O
(
e−(k2−ε)n

)
,

there are M2,M3 > 0 such that

|iτ − λe
n|2 =

∣∣√τ + ρe
n

∣∣2 ∣∣√τ − ρe
n

∣∣2 ≥M2

[
τ +

(
nπ +

1
2
θe

)2
]

(6.7)

and ∣∣iτ − λe
n

∣∣2 =
∣∣√τ + iρe

n

∣∣2 ∣∣√τ − iρe
n

∣∣2 ≥M3

[
τ +

1
4
| ln r|2

]
· (6.8)

Hence, by (6.3)−(6.8), there is an M > 0 such that

lim
τ→∞ |τ |‖R(iτ,A)‖2 = M <∞. (6.9)

On the other hand, when τ ∈ R and τ < 0, the same argument yields

|−i|τ | − λp
n|2 = |τ |2 +

[
nπ +

1
2
θp

]4

+ O
(
e−(k1−ε)n

)
≥M1|τ |2,

|−i|τ | − λe
n|2 = ||τ | − iλe

n|2 =
∣∣|τ | − i2ρ2

2n

∣∣2 =
∣∣∣√|τ | + iρe

n

∣∣∣2 ∣∣∣√|τ | − iρe
n

∣∣∣2
≥ M3

[
|τ | + 1

4
| ln r|2

]
,
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and ∣∣−i|τ | − λe
n

∣∣2 =
∣∣|τ | − iλe

n

∣∣2 =
∣∣∣|τ | − (ρe

n)2
∣∣∣2 =

∣∣∣√|τ | + ρe
n

∣∣∣2 ∣∣∣√|τ | − ρe
n

∣∣∣2 ,
≥ M2

[
|τ | +

(
nπ +

1
2
θe

)2
]
·

Hence, as τ → −∞, we have
lim

τ→−∞ |τ |‖R(iτ,A)‖2 = M <∞.

Therefore, this together with (6.9) yields (6.1), and by Theorem 6.2, the semigroup eAt, generated by A, is of
a Gevrey class δ > 2 with t0 = 0. �
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