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BOUNDARY OBSERVABILITY INEQUALITIES FOR THE 3D OSEEN–STOKES
SYSTEM AND APPLICATIONS

Sérgio S. Rodrigues
1

Abstract. Controllability properties for the Navier–Stokes system are closely related to observability
properties for the adjoint Oseen–Stokes system; boundary observability inequalities are derived, for
that adjoint system, that will be appropriate to deal with suitable constrained controls, like finite-
dimensional controls supported in a given subset of the boundary. As an illustration, new boundary
controllability results for the Oseen–Stokes system are derived. Finally, some further plausible conse-
quences of the derived inequalities, concerning the Navier–Stokes system, are discussed.
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1. Introduction

Let Ω ⊂ R3 be a connected bounded domain located locally on one side of its smooth boundary Γ = ∂Ω, and
let I ⊆ R be a nonempty open interval. The Navier–Stokes system, in I ×Ω, controlled through the boundary
reads

∂tu + 〈u · ∇〉u − νΔu + ∇pu + h = 0, div u = 0, u|Γ = γ + ζ (1.1)

where ζ is a control taking values in a suitable subspace of square-integrable functions in Γ whose support,
in x, is contained in the closure Γc of a given open subset Γc ⊆ Γ . Furthermore, as usual, u = (u1, u2, u3)
and pu, defined for (t, x1, x2, x3) ∈ I ×Ω, are the unknown velocity field and pressure of the fluid, ν > 0 is the
viscosity, the operators ∇ and Δ are respectively the well known gradient and Laplacean in the space variables
(x1, x2, x3), 〈u ·∇〉v stands for (u ·∇v1, u ·∇v2, u ·∇v3), div u := ∂x1u1 + ∂x2u2 + ∂x3u3, and h and γ are fixed
functions.

It turns out that (local) controllability properties to trajectories for system (1.1) are often related to observ-
ability inequalities for the time-backward “adjoint” Oseen–Stokes system

−∂tq + B∗(û)q − νΔq + ∇pq + f = 0, div q = 0, q |Γ = 0, (1.2)

where û is a given reference (desired) trajectory of (1.1) (with ζ = 0), f is a suitable force, and B∗(û) is
the formal adjoint to B(û) : v �→ 〈û · ∇〉v + 〈v · ∇〉û. We refer the reader to the works [5, 19] for the case of
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internal controls, and to [16] for a procedure to obtain boundary controllability results from internal ones. See
also [12, 13, 15, 17] and references therein.

We are particularly interested in the case where the reference solution û is nonstationary (i.e., û = û(t)
depends on time), a situation that often can occur in real world applications, as in the case suitable (say non-
gradient) external forces (h and γ) depend on time. Moreover, for applications purposes it is often required that
the control obeys some general constraints like, for example, to be feedback, finite-dimensional and supported
in a given (small) open subset. It turns out that with these constraints on the boundary control, the procedure
in [16] is (or may be) no longer sufficient to derive the wanted boundary controllability results.

In reference [5], an internal stabilizing finite-dimensional feedback controller was found for the case of non-
stationary reference solutions. Then, one question arises: can we find a similar boundary controller? We can,
for example, see that from the internal result and from the procedure in [16] we cannot guarantee that the
obtained boundary control is finite-dimensional. Also, the methods used in the particular case of a stationary
reference solution, in [2–4, 6, 25], use some (spectral-like) properties of the (time-independent) Oseen–Stokes
operator u �→ νΔu − B(û)u−∇pu and/or of its “adjoint” q �→ νΔq − B∗(û)q −∇pq, which seem to give us no
hint for the nonstationary case. A more promising idea to obtain a positive answer is to adapt the procedure
in [5] to the boundary control case, even if we can realize that the adaptation is not straightforward because
of new difficulties we will encounter, namely some regularity issues and the “tighter” compatibility conditions
relating the solution and the control. In other words, we need to develop first some tools in order to be able to
adapt the procedure to the boundary control case.

One of the main ingredients in [5] is a suitable internal truncated observability inequality for system (1.2),
where the truncation is closely related to the finite-dimensional control space; this inequality was derived by
truncating the “observed space” in a well-known observability inequality we find in reference [19].

The work [5] and the relation between observability inequalities for the adjoint Oseen–Stokes system (1.2)
and controllability properties for the Navier–Stokes system (1.1) are the main motivations of this paper. We
establish appropriate observability inequalities for (1.2) to deal with boundary control problems for (1.1), in
particular to deal with the constraints on the finite dimension and on the support of the boundary controls ζ.
To give an idea, from the results we will derive in Section 4.2, we can conclude that the solution of (1.2), in the
case f = 0 and I ×Ω = (a, b) ×Ω, satisfies

|q(a)|2L2(Ω, R3) ≤ C [|û|W ]|PΓ
Mχ(pqn− ν〈n · ∇〉q)|2L2((a, b), L2(Γ, R3)),

where C [|û|W ] is some constant depending on the norm of the reference solution û in an appropriate Banach
space W , PΓ

M : L2(Γ, R3) → L2
M (Γ, R3) is a projection onto an M -dimensional space L2

M (Γ, R3), and χ : Γ → R

is an a priori given smooth function. This inequality can be related to control problems for system (1.1) where
the controls take their values in the “adjoint” finite dimensional space χL2

M (Γ, R3) = χPΓ
ML2(Γ, R3), that is,

ζ : (a, b) → χL2
M (Γ, R3); the support of the controls is then necessarily contained in that of χ.

As an illustration, we use the derived observability inequalities, to obtain a new controllability result: let
{ei | i ∈ N0} be the eigenvector fields of the Stokes operator, forming an orthogonal basis for the subspace H ⊂
L2(Ω, R3) of solenoidal vector fields. Then, we can construct a family {χΨn | n ∈ N0} ⊂ C1([a, b], C2(Γ, R3))
such that for any given N ∈ N0, there is a positive integer MN, |û|W depending on the pair (N, |û|W) with the

following property: for any given v0 ∈ H , there is κ(v0) ∈ R
MN, |û|W , such that the control ζ = χ

∑MN, |û|W
n=1 κnΨn,

drives the Oseen–Stokes system

∂tv + B(û)v − νΔv + ∇pv = 0, div v = 0, v|Γ = ζ,

from v(a) = v0 ∈ H , at time t = a, to a vector field v(b) ∈ H , at time t = b, with (v(b), ei)L2(Ω, R3) = 0 for all
i ≤ N . Roughly speaking, there is a control ζ, that can be “realized” by MN, |û|W constants, driving the (first
N) less stable Stokes modes to zero. Further, the mapping v0 �→ ζ(v0) is linear and continuous.

The rest of the paper is organized as follows. In Section 2, we introduce the functional spaces arising in the
theory of the Navier–Stokes equations, set up our problem, and recall some well-known facts. In Sections 3 and 4
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we derive some boundary observability inequalities including some appropriate to deal with finite-dimensional
controls supported in a given subset of the boundary. In Section 5 we illustrate/recall how the observability
inequalities can be used to obtain controllability results, deriving two new controllability results. In Section 6
we give some remarks and discuss some further plausible consequences of the derived inequalities and of the
controllability results derived in Section 5; namely, the boundary versions of the internal results in [5] and [29]
concerning, respectively, the stabilization to a nonstationary solution of the Navier–Stokes equations and a
property of the stochastic version of the same equations. Finally, the Appendix gathers some auxiliary results
used in the main text.

Notation. We write R and N for the sets of real numbers and nonnegative integers, respectively, and we
define N0 := N \ {0}. We denote by Ω ⊂ R3 a bounded domain with a smooth boundary Γ = ∂Ω. Given a
vector function u : (t, x1, x2, x3) �→ u(t, x1, x2, x3) ∈ R3, defined in an open subset of R × Ω, its partial time
derivative ∂u

∂t will be denoted by ∂tu. Also the partial spatial derivatives ∂u
∂xi

will be denoted by ∂xiu.
Given a Banach space X and an open subset O ⊂ Rn, let us denote by Lp(O, X), with either p ∈ [1, +∞)

or p = ∞, the Bochner space of measurable functions f : O → X , and such that |f |pX is integrable over
O, for p ∈ [1, +∞), and such that ess supx∈O |f(x)|X < +∞, for p = ∞. In the case X = R we recover
the usual Lebesgue spaces, and Lp(O, Rk) ∼ Lp(O, R)k, k ∈ N0. By W s,p(O, Rk), for s ∈ R, denote the
usual Sobolev space of order s. In the case p = 2, as usual, we denote Hs(O, Rk) := W s,2(O, Rk). Recall
that H0(O, Rk) = L2(O, Rk). For each s > 0, we recall also that H−s(O, Rk) stands for the dual space of
Hs

0 (O, Rk) = closure of {f ∈ C∞(O, Rk) | supp(f) ⊂ O} in Hs(O, Rk). Notice that H−s(O, Rk) is a space of
distributions.

For a normed space X , we denote by | · |X the corresponding norm, by X ′ its dual, and by 〈·, ·〉X′,X the
duality between X ′ and X . The dual space is endowed with the usual dual norm: |f |X′ := sup{〈f, x〉X′,X | x ∈
X and |x|X = 1}.

Let X and Y be normed spaces, and let Z be a Hausdorff topological space. Suppose that both inclusions
X ⊆ Z and Y ⊆ Z are continuous; then the Cartesian product X × Y , the intersection X ∩ Y and the sum
X + Y are supposed to be endowed with the norms |(a, b)|X×Y :=

(
|a|2X + |b|2Y

) 1
2 ; |a|X∩Y := |(a, a)|X×Y ; and

|a|X+Y := inf(aX , aY )∈X×Y

{
|(aX , aY )|X×Y | a = aX + aY

}
, respectively. We can show that, if X and Y are

endowed with a scalar product, then also X×Y , X ∩Y , and X +Y are. In the case we know that X ∩Y = {0},
we say that X + Y is a direct sum and we write X ⊕ Y instead.

Given an open interval I ⊆ R and two Banach spaces X, Y , then we write W (I, X, Y ) := {f ∈ L2(I, X) |
∂tf ∈ L2(I, Y )}, where the derivative ∂tf is taken in the sense of distributions. This space is endowed with the

natural norm |f |W (I, X, Y ) :=
(
|f |2L2(I, X)+|∂tf |2L2(I, Y )

) 1
2 . In the case X = Y we write H1(I, X) := W (I, X, X).

Again, if X and Y are endowed with a scalar product, then also W (I, X, Y ) is. The space of continuous linear
mappings from X into Y will be denoted by L(X → Y ).

If Ī ⊂ R is a closed bounded interval, C(Ī , X) stands for the space of continuous functions f : Ī → X with
the norm |f |C(Ī,X) = maxt∈Ī |f(t)|X .

C [a1,...,ak] denotes a nonnegative function of nonnegative variables aj that increases in each of its arguments.
C, Ci, i = 1, 2, . . . , stand for unessential positive constants.

2. Preliminaries

2.1. Functional spaces

Let Ω ⊂ R3 be a connected bounded domain of class C∞ located locally on one side of its boundary Γ = ∂Ω,
with

∫
Γ dΓ < +∞. Due to the incompressibility condition, div u = 0, some important subspaces in the study

of the systems (1.1) and (1.2) are the Lebesgue and Sobolev subspaces

Lr
div(Ω, R

3) := {u ∈ Lr(Ω,R3) | div u = 0 in Ω}, 1 ≤ r ≤ +∞,

Hs
div(Ω, R

3) := {u ∈ Hs(Ω,R3) | div u = 0 in Ω}, s ≥ 0.
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The incompressibility condition allows us to define the trace of u · n on the boundary Γ = ∂Ω, where n is
the unit outward normal vector to the boundary Γ , and then to write

H := {u ∈ L2
div(Ω, R

3) | u · n = 0 on Γ}, Hc := {u ∈ L2
div(Ω, R

3) | u · n = 0 on Γ \ Γc},

where Γc is an open subset of Γ . Some spaces of more regular vector fields we find throughout the paper are

V := {u ∈ H1
div(Ω, R

3) | u = 0 on Γ}, Vc := {u ∈ H1
div(Ω, R

3) | u = 0 on Γ \ Γc},
D(L) := V ∩H2(Ω,R3). (2.1)

The spaces Hs
div(Ω, R3) are endowed with the scalar product inherited from Hs(Ω,R3); the spaces H and

Hc with that inherited from L2(Ω,R3); the spaces V and Vc with that inherited from H1(Ω,R3); and D(L)
with that inherited from H2(Ω,R3). Notice that if Π is the orthogonal projection in L2(Ω,R3) onto H , it is
well known that D(L) coincides with the domain {u ∈ V |Lu ∈ H} of the Stokes operator L := −νΠΔ. That is
the reason for the notation.

Next, fix a constant σ > 6
5 . For any pair of real numbers a, b, with a < b, we introduce the Banach

spaces W(a, b)|wk and W(a, b)|st of the measurable vector functions u = (u1, u2, u3), defined in (a, b)×Ω, satisfying

|u|W(a, b)|wk :=
(
|u|2L∞((a, b), L∞

div(Ω, R3)) + |∂tu|2L2((a, b), Lσ(Ω, R3))

) 1
2
< ∞

|u|W(a, b)|st :=
(
|u|2W(a, b)|wk + |∇u|2L2((a, b), L3(Ω, R9))

) 1
2
< ∞.

(2.2)

Remark 2.1. The lower bound 6
5 for σ is motivated from the results in [12, 27].

Now, we recall that, in [14], the set of traces u|Γ at the boundary Γ of the elements u in the space
W ((a, b), Hs

div(Ω, R3), Hs−2(Ω, R3)) is completely characterized, for each s > 1
2 , with s /∈

{
3
2 ,

5
2

}
. Denot-

ing that trace space by Gs
av((a, b), Γ ), we have that v �→ v|Γ is continuous:∣∣v|Γ ∣∣

Gs
av((a, b), Γ )

≤ C1|w|W ((a, b), Hs
div(Ω, R3), Hs−2(Ω, R3))

and, there is a continuous extension Es : Gs
av((a, b), Γ ) → W ((a, b), Hs

div(Ω, R3), Hs−2(Ω, R3)) such that

(Esw)|Γ = w and |Esw|W ((a, b), Hs
div(Ω, R3), Hs−2(Ω, R3)) ≤ C2|w|Gs

av((a, b), Γ ).

Moreover, from ([14], Sect. 2.2), we know that

Gs
av((a, b), Γ ) = Gs

t((a, b), Γ ) ⊕Gs
n,av((a, b), Γ )n,

with

{
Gs

t((a, b), Γ ) = L2((a, b), Hs− 1
2 (Γ, TΓ )) ∩Hrt,1(s)((a, b), Hrt,2(s)(Γ, TΓ ))

Gs
n,av((a, b), Γ ) = L2((a, b), Hs− 1

2
av (Γ, R)) ∩Hrn,1(s)((a, b), Hrn,2(s)

av (Γ, R))
; and where Hr

av(Γ, R) :=

{κ ∈ Hr(Γ, R) |
∫

Γ
κ dΓ = 0}, and rt,1(s), rt,2(s), rn,1(s), rn,2(s) are constants, in R, given by

(rt,1(s), rt,2(s)) =

⎧⎪⎨⎪⎩
(
1, s− 5

2

)
if 5

2 < s(
2s−1

4 , 0
)

if 2 ≤ s < 5
2(

2s−1
2s , (s−2)(2s−1)

2s

)
if 1

2 < s ≤ 2, s �= 3
2

,

(rn,1(s), rn,2(s)) =

⎧⎪⎨⎪⎩
(
1, s− 5

2

)
if 3

2 < s, s �= 5
2(

2s+1
4 , −1

)
if 1 ≤ s < 3

2(
2s+1
2s+2 ,

2s2−3(s+1)
2s+2

)
if 1

2 < s ≤ 1
.

The space Gs
av((a, b), Γ ), if nothing is said in contrary, is supposed to be endowed with the scalar product

(u, v)Gs
av((a, b), Γ ) = (ut + unn, vt + vnn)Gs

av((a, b), Γ ) := (ut, vt)Gs
t((a, b), Γ ) + (un, vn)Gs

n,av((a, b), Γ ).
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Remark 2.2. The notation TΓ , in the definition of Gs
t((a, b), Γ ), stands for the tangent bundle of Γ ; the

notation underlines that, at (almost) every instant of time, the value u(t) of an element u ∈ Gs
t((a, b), Γ ) is a

vector function tangent to Γ , that is, a vector field in Γ .

Remark 2.3. Notice that the integral
∫

Γ
κ dΓ = 0 is well-defined, in the sense of distributions, for κ ∈

Hr(Γ, R) and all r ∈ R: for r ≥ 0, we have κ ∈ L2(Γ, R) and the integral is well-defined; on the other
hand for r < 0, we have that Hr(Γ, R) coincides with the dual space of H−r(Γ, R) (because ∂Γ = ∅), then
since the constant function 1Γ (x) := 1, x ∈ Γ , is in H−r(Γ, R) (because

∫
Γ dΓ is bounded), the integral∫

Γ
κ dΓ := 〈κ, 1Γ 〉Hr(Γ, R),H−r(Γ, R) is well-defined (considering, as usual, L2(Γ, R) as a pivot space).

For technical reasons we relax a little the trace spaces: we define the superspace Gs((a, b), Γ ) of Gs
av((a, b), Γ )

by just omitting the average constraint:

Gs((a, b), Γ ) := Gs
t((a, b), Γ ) ⊕Gs

n((a, b), Γ )n (2.3)

with Gs
n((a, b), Γ ) := L2((a, b), Hs− 1

2 (Γ, R)) ∩Hrn,1(s)((a, b), Hrn,2(s)(Γ, R)). The space Gs((a, b), Γ ) is en-
dowed with the scalar product (u, v)Gs((a, b), Γ ) = (ut + unn, vt + vnn)Gs

av((a, b), Γ ) := (ut, vt)Gs
t((a, b), Γ ) +

(un, vn)Gs
n((a, b), Γ ).

Proposition 2.4. We have that Gs((a, b), Γ ) = Gs
av((a, b), Γ ) ⊕ Hrn,1(s)((a, b), R)n. Moreover, for πu :=

1∫
Γ

dΓ

∫
Γ u · n dΓ , the projections

πs : Gs((a, b), Γ ) → Hrn,1(s)((a, b), R)n
u �→ πun

and 1 − πs : Gs((a, b), Γ ) → Gs
av((a, b), Γ )

u �→ uav := u− πsu

are continuous.

From ([34], Chap. 1, Prop. 2.3), there exists a unique vector function Θ ∈ H2(Ω, R3) solving the Stokes
system

−νΔΘ + ∇p = 0, divΘ =
∫

Γ
dΓ∫

Ω
dΩ

in Ω, and Θ|Γ = n on Γ.

Now, we can extend the extension Es above, defined in Gs
av((a, b), Γ ), to Gs((a, b), Γ ):

Proposition 2.5. Writing each u ∈ Gs((a, b), Γ ) as u = uav + πun, we define

Ee
s : Gs((a, b), Γ ) → W ((a, b), Hs

div(Ω, R
3), Hs−2(Ω, R

3)) ⊕Hrn,1(s)((a, b), R)Θ
u �→ Esuav + πuΘ

and we endow the space Hrn,1(s)((a, b), R)Θ with the scalar product

(κ1Θ, κ2Θ)Hrn,1(s)((a, b), R)Θ := (κ1, κ2)Hrn,1(s)((a, b), R).

Then, Ee
s extends Es and is linear and continuous. Moreover, the trace mapping v �→ v|Γ from the space

W ((a, b), Hs
div(Ω, R3), Hs−2(Ω, R3)) ⊕Hrn,1(s)((a, b), R)Θ onto Gs((a, b), Γ )) is also linear and continuous.

The proofs of Propositions 2.4 and 2.5 will be given in the Appendix, Section A.3.

2.2. The (illustrating) control space

Let us write L2(Ω,R3) = H ⊕H⊥, where H⊥ = {∇ξ | ξ ∈ H1(Ω, R)} denotes the orthogonal complement
of H in L2(Ω,R3), and denote by Π the orthogonal projection Π : L2(Ω,R3) → H in L2(Ω,R3) onto H . For
each positive integer N , we now define the N -dimensional space HN ⊂ H as follows: let {ei | i ∈ N0} be the
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orthonormal basis in H formed by the eigenfunctions of the Stokes operator L, whose domain is defined by (2.1),
and let 0 < α1 ≤ α2 ≤ . . . be the corresponding eigenvalues: Lei = αiei, then put

HN := span{ei | i ≤ N} ⊂ D(L) ⊂ H, (2.4)

and denote by ΠN the orthogonal projection ΠN : H → HN in H onto HN .
Let O ⊆ Γ be a connected open subset of the boundary Γ , localized on one side of its boundary. We suppose

that O is a C∞-smooth manifold, either boundaryless or with C∞-smooth boundary ∂O. Let {πi | i ∈ N0} be
an orthonormal basis in L2(O, R) formed by the eigenfunctions of the Laplace–de Rham (or Laplace–Beltrami)
operator ΔO on the smooth manifold O, under Dirichlet boundary conditions, πi(p) = 0 for all p ∈ ∂O.
Analogously let {τi | i ∈ N0} be an orthonormal basis in L2(O, TO) formed by the vector fields that are
eigenfunctions of ΔO on TO, also under Dirichlet boundary conditions in the case ∂O �= ∅, τi(p) = 0 ∈ TpΓ for
all p ∈ ∂O. It is known that πi and τi (i ∈ N0) are smooth. Let 0 ≤ β1 ≤ β2 ≤ . . . , and 0 ≤ γ1 ≤ γ2 ≤ . . . be
the eigenvalues associated with the systems {πi | i ∈ N0} and {τi | i ∈ N0}, respectively.

We may write L2(O, R3) as an orthogonal sum L2(O, R3) = L2(O, R)n⊕L2(O, TO). Notice that {πin | i ∈
N0} is an orthonormal basis for L2(O, R)n = {fn | f ∈ L2(O, R)}, and the system {πin | i ∈ N0}∪{τi | i ∈ N0}
is an orthonormal basis in the space L2(O, R

3).
Define, for each M ∈ N0, the space

L2
M (O, R

3) := span{πin, τi | i ∈ N0, i ≤ M} (2.5)

and, denote by PO
M the orthogonal projection PO

M : L2(O, R3) → L2
M (O, R3) in L2(O, R3) onto L2

M (O, R3).
We suppose we are able to apply a control through a subset Γc ⊆ Γc ⊆ O ⊆ Γ , where Γc = supp(χ) is the

support of a function χ ∈ C∞(Γ, R). Further let ε > 0 and let ϑ ∈ C2(Γ, R) be a function such that for all
x ∈ Γc, ϑ(x) ≥ ε and with supp(ϑ) ⊆ O. For an illustration purpose, we will give particular attention to the
case where the boundary control ζ is in the space

E1
M := χE

O
0 P

O
χ⊥P

O
MϑG1((a, b), Γ )|O (2.6)

:= {ζ | ζ(t) = χE
O
0 P

O
χ⊥P

O
M (ϑη(t)|O) and η ∈ G1((a, b), Γ )}

where EO
0 : L2(O, R) → L2(Γ, R) stands for the extension by zero outside O, and PO

χ⊥ : L2(O, R3) → {f ∈
L2(O, R3) | (f, χn)L2(O, R3) = 0} is the orthogonal projection in L2(O, R3) onto {χn|O}⊥. In other words,

E
O
0 ξ(x) :=

{
ξ(x) if x ∈ O
0 if x ∈ Γ \ O and PO

χ⊥v := v − (v, χn)L2(O, R3)∫
O χ2 dO χn|O .

In particular the controls take their values ζ(t), for a.e. t ∈ (a, b), in the finite-dimensional space spanned
by {χEO

0 P
O
χ⊥πin, χEO

0 τi | i ∈ N0, i ≤ M}.

Remark 2.6. Notice that the function ζ(t) = χEO
0 P

O
χ⊥P

O
M (ϑη(t)|O) satisfies the zero-average compatibility

condition:
∫

Γ
ζ(t) ·n dΓ =

∫
O PO

χ⊥P
O
M (ϑη(t)|O) ·χn|O dO = 0. The function χ guarantees that the controls are

supported in Γc; the function ϑ is needed because we will need suitable continuity properties (cf. Props. 2.17
and 5.1, needed in the proofs of Thms. 5.2 and 5.3, respectively). Further, as we said, we propose the space (2.6)
mainly as an example guideline; the arguments that will follow may work for other (admissible) control spaces
(cf. Sect. 5 where we consider a variation of this control space).

2.3. The addressed problem

Consider the following time-forward Oseen–Stokes system, in (a, b) ×Ω,

∂tv + B(û)v − νΔv + ∇pv + g = 0, div v = 0,
v|Γ = ζ, v(a) = v0,

(2.7)
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where û ∈ W(a, b)|wk, g ∈ L2((a, b), H−1(Ω, R3)), ζ ∈ G1
av((a, b), Γ ) is a control, v0 ∈ L2

div(Ω, R3), and
B(û) : v �→ 〈û · ∇〉v + 〈v · ∇〉û.

We will start by the derivation of some observability inequalities concerning the “adjoint” Oseen–Stokes
time-backward system, in (a, b) ×Ω,

−∂tq + B∗(û)q − νΔq + ∇pq + f = 0, div q = 0,
q |Γ = 0, q(b) = q1 ∈ H,

(2.8)

where f ∈ L2((a, b), H−1(Ω, R3)) and B∗(û) is the formal adjoint to B(û), that is,

(B∗(û)q, v)L2(Ω, R3) := 〈q, B(û)v〉H1
0 (Ω, R3), H−1(Ω, R3), q ∈ V, v ∈ H1

div(Ω, R
3). (2.9)

Then, two of the derived observability inequalities will be used to obtain two new controllability results to
the Oseen–Stokes system (2.7), where (a subspace of) E1

M is taken as the space of the controls.

Remark 2.7. Notice that for Dsq :=
(
∇q + (∇q)�

)
, where A� denotes the transpose matrix of A, we have

B∗(û)q = 〈û ·Ds〉q, with w = (w1, w2, w3) := 〈û ·Ds〉q given by wj =
∑3

i=1 ûi(∂xiqj +∂xjqi) for all j ∈ {1, 2, 3}.
In particular we have (〈u ·Ds〉q) · v = (〈v ·Ds〉q) · u, for any given pair of vectors u, v in R3.

2.4. Existence and uniqueness of weak and strong solutions

Here we present some remarks concerning the solutions of the considered systems (2.7) and (2.8). Among
the spaces Gs

av((a, b), Γ ), the most interesting for us will be the ones corresponding to s ∈ {1, 2}, that will be
related to so-called weak and strong solutions. Recall the extensions Es in Section 2.1.

Definition 2.8. Given û ∈ W(a, b)|wk, v0 ∈ L2
div(Ω, R3), g ∈ L2((a, b), H−1(Ω, R3)), and ζ ∈ G1

av((a, b), Γ );
we say that v, in the space W ((a, b), H1

div(Ω, R3), H−1(Ω, R3)), is a weak solution for system (2.7), if v−E1ζ ∈
L2((a, b), V, V ′) is a weak solution for the system

∂ty + B(û)y − νΔy + ∇py + f = 0, div y = 0,
y |Γ = 0, y(a) = y0

(2.10)

with f = g+∂tE1ζ+B(û)E1ζ−νΔE1ζ, and y0 = v0−E1ζ(a) ∈ H . Here weak solution for (2.10) is understood
in the classical sense (cf. [22, 32, 34]).

Definition 2.9. Given û ∈ W(a, b)|st, v0 ∈ H1
div(Ω, R3), g ∈ L2((a, b), L2(Ω, R3)), and ζ ∈ G2

av((a, b), Γ );
we say that v, in the space W ((a, b), H2

div(Ω, R3), L2(Ω, R3)), is a strong solution for system (2.7), if v −
E2ζ ∈ L2((a, b), D(L), H) is a strong solution for system (2.10) with f = g + ∂tE2ζ + B(û)E2ζ − νΔE2ζ, and
y0 = v0 −E2ζ(a) ∈ V . Again, strong solution for (2.10) is understood in the classical sense (cf. [32], Sect. 2.4).

Remark 2.10. The existence and uniqueness of a weak solution in W ((a, b), V, V ′) for (2.10), can be proved
by standard arguments as in [34] taking into account that, formally

〈
B(û)y, w

〉
H−1(Ω, R3),H1

0 (Ω, R3)
= −

3∑
i, j=1

∫
Ω

ûi(∂xiwj)yj dx−
3∑

i, j=1

∫
Ω

yi(∂xiwj)ûj dx,

which leads to the estimate |B(û)y|H−1(Ω, R3) ≤ C|û|L∞
div(Ω, R3)|y|L2

div(Ω, R3) (cf. [27], Rem. 3.1). For the existence
and uniqueness of a strong solution for (2.10) we can use, in addition,

|B(û)y|L2(Ω, R3) ≤ C1(|û|L∞
div(Ω, R3)|∇y|L2(Ω, R9) + |∇û|L3(Ω, R9)|y|L6

div(Ω, R3)) ≤ C2|û|W(a, b)|st |y|H1
div(Ω, R3).
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In the case our control takes its values in the space E1
M , a natural question is: what are the admissible initial

vector fields v0 for this type of controls, if we want to guarantee the existence of a weak solution? The answer
is not difficult if we give it in a general way (cf. [27], Sect. 3.1): let Z be a Hilbert space, and K1 : Z →
G1

av((a, b), Γ ) a continuous linear mapping; then the set of admissible weak initial conditions for system (2.7),
with ζ ∈ K1Z, is given by AK1 = H + HK1 where HK1 := E1K1Z(a) = {γ(a) | γ = E1K1η and η ∈ Z}.
Moreover HK1 and AK1 are Hilbert spaces, with associated range norms

|u|HK1
:= inf {|η|Z | u = E1K1η(a), η ∈ Z} ,

|u|AK1
:= inf{|(w, z)|H×HK1

| u = w + z and (w, z) ∈ H ×HK1},

and there are constants C1, C2, C3 > 0 such that

|u|L2
div(Ω, R3) ≤ C1|u|HK1

, for all u ∈ HK1 ; (2.11a)

|u|L2
div(Ω, R3) ≤ C2|u|AK1

, for all u ∈ AK1 ; (2.11b)

|u|L2
div(Ω, R3) ≥ C3|u|AK1

, for all u ∈ H. (2.11c)

From ([27], Sect. 3.1), we also have the following existence result:

Theorem 2.11. Given û ∈ W(a, b)|wk, g ∈ L2((a, b), H−1(Ω, R3)), a Hilbert space Z, a continuous linear
mapping K1 : Z → G1

av((a, b), Γ ), v0 ∈ AK1 and η ∈ Z, with v0 − E1K1η(a) ∈ H, then there exists a weak
solution v in the space W ((a, b), H1

div(Ω, R3), H−1(Ω, R3)) for system (2.7), with ζ = K1η. Moreover v is
unique and depends continuously on the given data (v0, g, η) :

|v|2W ((a, b), H1
div(Ω, R3), H−1(Ω, R3)) ≤ C[|û|W(a, b)|wk ]

(
|v0|2L2

div(Ω, R3) + |g|2L2((a, b), H−1(Ω, R3)) + |η|2Z
)
.

Following the same idea in Section 3.1 of [27], we can also prove the analogous results for strong solutions,
where now, we consider a continuous linear mapping K2 : Z → G2

av((a, b), Γ ), the set of admissible strong
initial conditions is AK2 := V + HK2 with HK2 := E2K2Z(a), and

|u|HK2
:= inf {|η|Z | u = E2K2η(a), η ∈ Z} ,

|u|AK2
:= inf{|(w, z)|V ×HK2

| u = w + z and (w, z) ∈ V ×HK2},

and there are constants C1, C2, C3 > 0 such that

|u|H1
div(Ω, R3) ≤ C1|u|HK2

, for all u ∈ HK2 ; (2.12a)

|u|H1
div(Ω, R3) ≤ C2|u|AK2

, for all u ∈ AK2 ; (2.12b)

|u|H1
div(Ω, R3) ≥ C3|u|AK2

, for all u ∈ V. (2.12c)

Theorem 2.12. Given û ∈ W(a, b)|st, g ∈ L2((a, b), L2(Ω, R3)), a Hilbert space Z, a continuous linear mapping
K2 : Z → G2

av((a, b), Γ ), v0 ∈ AK2 and η ∈ Z, with v0 − E2K2η(a) ∈ V , then there exists a strong solution
v in the space W ((a, b), H2

div(Ω, R3), L2(Ω, R3)) for system (2.7), with ζ = K2η. Moreover v is unique and
depends continuously on the given data (v0, g, η):

|v|2W ((a, b), H2
div(Ω, R3), L2(Ω, R3)) ≤ C[|û|W(a, b)|st ]

(
|v0|2H1

div(Ω, R3) + |g|2L2((a, b), L2(Ω, R3)) + |η|2Z
)
.

Analogously, weak and strong solutions for system (2.8) can be defined in the classical sense, just reversing
time. We have the following results.

Theorem 2.13. Given û ∈ W(a, b)|wk, f ∈ L2((a, b), H−1(Ω, R3)), and q1 ∈ H, then there exists a weak
solution q ∈ W ((a, b), V, V ′) for system (2.8). Moreover, q is unique and depends continuously on the given
data (q1, f), that is, |q|2W ((a, b), V, V ′) ≤ C[|û|W(a, b)|wk ]

(
|q1|2H + |f |2L2((a, b), H−1(Ω, R3))

)
.
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Theorem 2.14. Given û ∈ W(a, b)|wk, f ∈ L2((a, b), L2(Ω, R3)), and q1 ∈ V , then there exists a strong
solution q ∈ W ((a, b), D(L), H) for system (2.8). Moreover, q is unique and depends continuously on the given
data (q1, f), that is, |q|2W ((a, b), D(L), H) ≤ C[|û|W(a, b)|wk ]

(
|q1|2V + |f |2L2((a, b), L2(Ω, R3))

)
.

Remark 2.15. Notice that in [27] we find the Lebesgue-like notation L∞((a, b)×Ω, R3) instead of the Bochner-
like notation L∞((a, b), L∞(Ω, R3)). Here we use the latter because it will be more convenient below. To see
that the spaces coincide, first we observe that the inclusion L1((a, b) ×Ω, R3) ⊆ L1((a, b), L1(Ω, R3)) follows
from Fubini’s Theorem (see e.g. [11], Sect. III.11, Thm. 9); and L1((a, b)×Ω, R3) ⊇ L1((a, b), L1(Ω, R3)) can
be derived from Theorem 17 in Section III.11 of [11] (recalling that functions in L1((a, b)×Ω, R3) are defined up
to sets of measure zero). Then, we can write L∞((a, b)×Ω, R

3) = L1((a, b)×Ω, R
3)′ = L1((a, b), L1(Ω, R

3))′ =
L∞((a, b), L∞(Ω, R3)).

Remark 2.16. Notice that, although we have taken the reference solution û in the spaces (2.2), for the previous
results concerning the existence, uniqueness and continuity of the solutions we do not need the condition on
the time-derivative: ∂tû ∈ L2((a, b), Lσ(Ω, R3)). This condition is, essentially, only needed for the observability
and controllability results that follow.

Notice that, PO
MϑL2(O, R3) is a subset of C2(O, R3); then it follows that

(
χEO

0 P
O
χ⊥P

O
MϑL2(O, R3)

)
|Γc

is a
subset of H2

0 (Γc, R3), and χEO
0 P

O
χ⊥P

O
MϑL2(O, R3) = E

Γc
0 (χEO

0 P
O
χ⊥P

O
MϑL2(O, R3))|Γc

is a subset of H2(Γ, R3);
here E

Γc
0 : H2

0 (Γc, R3) → H2(Γ, R3) stands for the extension by 0 outside Γc.

Proposition 2.17. The operator η �→ Kiη = KOη := χE
O
0 P

O
χ⊥P

O
M (ϑη|O) maps the space Gi((a, b), Γ ) into

Gi
av((a, b), Γ ), and is linear and continuous, for i ∈ {1, 2}.

We give the proof in the Appendix, Section A.5. We can find the set of admissible weak conditions AKi as
above, and apply Theorem 2.11 to guarantee the existence of weak solutions, in the case the control functions
are in E1

M . Analogously, we can derive the existence of strong solutions for controls in the space

E2
M := χE

O
0 P

O
χ⊥P

O
MϑG2((a, b), Γ )|O ⊂ E1

M . (2.13)

3. Localized observability inequalities

In this Section the main goal is to derive some observability inequalities that are somehow appropriate
to deal with boundary controls problems with controls supported in a given subset of the boundary. The
starting point will be a result on null boundary controllability we find in Section 4 of [27]. Let us denote by
G1

av,c((a, b), Γ ) ⊆ G1
av((a, b), Γ ) the space of the traces at Γ of the functions in W ((a, b), Vc, H

−1(Ω, R3)).
We endow G1

av,c((a, b), Γ ) with the norm inherited from G1
av((a, b), Γ ). We observe that

G1
av,c((a, b), Γ ) = {u ∈ G1

av((a, b), Γ ) | u(t) = 0 in Γ \ Γc for a.e. t ∈ (a, b)}
and that G1

av,c((a, b), Γ ) is a closed subspace of G1
av((a, b), Γ ). Notice that if (un)n∈N is a sequence on

G1
av,c((a, b), Γ ) and un → u∞ in G1

av((a, b), Γ ), then in particular un → u∞ in L2((a, b), L2(Γ, R)), and
so un |Γ\Γc

converges to u∞ |Γ\Γc
in L2((a, b), L2(Γ \ Γc, R)). Necessarily, u∞|Γ\Γc

= 0. It follows that
G1

av,c((a, b), Γ ) is complete and, we can consider the system (2.7) with ζ ∈ G1
av,c((a, b), Γ ) and v0 ∈ AK1 , where

AK1 = H + HK1 is the space of admissible weak initial conditions for that system, with Z = G1
av,c((a, b), Γ ),

K1 :G1
av,c((a, b), Γ ) → G1

av((a, b), Γ ) the inclusion mapping η �→ η, and HK1 := {E1ζ(a) | ζ ∈ G1
av,c((a, b), Γ )}.

HK1 and AK1 are supposed to be endowed with the respective range scalar products, and range norms. From
Section 4 of [27], since Γc = supp(χ) is the support of a function χ ∈ C∞(Γ, R), we have the following null
controllability property:

Lemma 3.1. Given û ∈ W(a, b)|wk and v0 ∈ AK1 , there exists a control ζ = ζ(v0) ∈ G1
av,c((a, b), Γ ) such that,

for the corresponding solution v to system (2.7) with g = 0, we have v(b) = 0. Moreover the control may be
chosen so that the mapping v0 �→ ζ(v0) is linear and continuous: |ζ(v0)|G1

av,c((a, b), Γ ) ≤ C[|û|W(a, b)|wk ]|v0|AK1
.
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3.1. Some simple observability inequalities

Consider the system (2.8) with data

û ∈ W(a, b)|wk, f ∈ L2((a, b), H), and q1 ∈ V. (3.1)

By Theorem 2.14 there exists a strong solution q ∈ W ((a, b), D(L), H) for that system. Consider also, the weak
solution v of (2.7) with g = 0 and ζ = ζ(v0), the control given by Lemma 3.1. We find

(q1, v(b))L2(Ω, R3) − (q(a), v0)L2(Ω, R3) =
∫ b

a

d
dt

(q, v)L2(Ω, R3)(τ) dτ

=
∫ b

a

(
(B∗(û)q − νΔq + ∇pq + f, v)L2(Ω, R3) + 〈q, −B(û)v + νΔv −∇pv〉H1

0 (Ω, R3), H−1(Ω, R3)

)
dτ

=
∫ b

a

(f, v)L2(Ω, R3) dτ +
∫ b

a

(−ν〈n · ∇〉q + pqn, v)L2(Γ, R3) dτ,

from which, we obtain

−(q(a), v0)L2(Ω, R3) =
∫ b

a

(f, v)L2(Ω, R3) dτ +
∫ b

a

(−ν〈n · ∇〉q + pqn, v)L2(Γ, R3) dτ. (3.2)

Now, considering L2((a, b), L2(Γ, R3)) as a pivot space at the boundary, let G1((a, b), Γ )′ be the dual space
of G1((a, b), Γ ) ⊂ L2((a, b), L2(Γ, R3)). We have the dense inclusions G1((a, b), Γ ) ⊂ L2((a, b), L2(Γ, R3)) ⊂
G1((a, b), Γ )′. On the other hand, since v|Γ = ζ(v0) ∈ G1

av,c((a, b), Γ ), and the norm of G1
av,c((a, b), Γ ) is the

one inherited from G1((a, b), Γ ), we have that
∣∣(q(a), v0)L2(Ω, R3)

∣∣
R

is bounded by

C1

(
|f |L2((a, b), H) +

∣∣I|Γc
(pqn − ν〈n · ∇〉q)

∣∣
G1((a, b), Γ )′

)(
|v|L2((a, b), L2(Ω, R3)) + |ζ(v0)|G1

av,c((a, b), Γ )

)
,

where I|Γc
the indicator operator: I|Γc

f(t, x) :=
{
f(t, x) if x ∈ Γc

0 if x ∈ Γ \ Γc
, mapping L2((a, b), L2(Γ, R3)) into

itself. Thus, from the continuity of v0 �→ ζ(v0), together with (2.11b) and Theorem 2.11, we can find that

|v|L2((a, b), L2(Ω, R3)) ≤ C[|û|W(a, b)|wk ]|v0|AK1
(3.3)

and, from (2.11c), we arrive to the boundary observability inequality

|q(a)|2H ≤ C[|û|W(a, b)|wk ]
(
|f |2L2((a, b), H) +

∣∣I|Γc
(pqn− ν〈n · ∇〉q))

∣∣2
G1((a, b), Γ )′

)
(3.4)

for the solution q of system (2.8), with û ∈ W(a, b)|wk, and “the” corresponding pressure function pq.
Now, let G2

av,c((a, b), Γ ) = {γ |Γ | γ ∈ W ((a, b), Vc ∩H2(Ω, R3), L2(Ω, R3))} = {u ∈ G2
av((a, b), Γ ) | u(t) =

0 in Γ \ Γc, for a.e. t ∈ (a, b)}.

Lemma 3.2. Given û ∈ W(a, b)|st and v0 ∈ AK2 , there exists a control ζ = ζ(v0) ∈ G2
av,c((a, b), Γ ) such that,

for the corresponding solution v to system (2.7) with g = 0, we have v(b) = 0. Moreover the control may be
chosen so that the mapping v0 �→ ζ(v0) is linear and continuous: |ζ(v0)|G2

av,c((a, b), Γ ) ≤ C[|û|W(a, b)|st ]|v0|AK2
.

Proof. We follow the proof of Theorem 4.1 in [27]. Write v0 = v0V + v0H where (v0V , v0H) ∈ V × HK2 . Let
γv0H ∈ W ((a, b), Vc∩H2(Ω, R3), L2(Ω, R3)) be defined by γv0H ∈ {γ ∈ W ((a, b), Vc∩H2(Ω, R3), L2(Ω, R3)) |
γ(a) = 0}⊥ and γv0H(a) = v0H. We have that the mapping v0H �→ γv0H is linear and continuous. Now, put
l = b−a

2 and let ξ be a smooth real function, defined in [a, a+ l], taking the value 1 in a neighborhood of t = a,
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and vanishing in a neighborhood of t = a + l. On the interval of time (a, a + l) we apply the control ξγv0H |Γ ;
in this way we arrive to a point v(a + l) ∈ V at time t = a + l. Moreover |v(a + l)|V ≤ C[|û|W(a, a+l)|st ]|v0|AK2

.
Then, in the interval of time (a + l, b) proceeding as in the proof of Theorem 4.1 in [27], we can conclude that
there exists a control γ1 driving the system to zero at time t = b; moreover γ1 = v̄ |Γ is the restriction to Γ of a
suitable v̄ ∈ W ((a+ l, b), Vc ∩H2(Ω, R3), L2(Ω, R3)), and the mapping v(a+ l) �→ γ1 is linear and continuous,
|γ1|G2

av,c((a+l, b), Γ ) ≤ C[|û|W(a+l, b)|st ]|v(a + l)|V .
Therefore the concatenation ζ(v0) := γ1 ◦ ξγv0H |Γ , of the controls ξγv0H |Γ and γ1 drives the system from

v0, at time t = a, to 0 at time t = b. Moreover v0 �→ ζ(v0) is linear and continuous, |ζ(v0)|G2
av,c((a, b), Γ ) ≤

C[|û|W(a, b)|st ]|v0|AK2
�

Remark 3.3. Notice that in the previous proof if v0 ∈ V , then the first control ξγv0H |Γ vanishes and, by
standard arguments taking into account the smoothing property of the system (cf. [5], Eq. (2.6)), we can conclude
that |v(a + l)|V ≤ C[|û|W(a, a+l)|st ]|v0|H . Thus we obtain that the concatenation satisfies |ζ(v0)|G2

av,c((a, b), Γ ) ≤
C[|û|W(a, b)|st ]|v0|H .

Now, from (3.2), we can also obtain that
∣∣(q(a), v0)L2(Ω, R3)

∣∣
R

is bounded by

C1

(
|f |L2((a, b), H) +

∣∣I|Γc
(pqn− ν〈n · ∇〉q)

∣∣
G2((a, b), Γ )′

)(
|v|L2((a, b), L2(Ω, R3)) + |ζ(v0)|G2

av,c((a, b), Γ )

)
and, using (3.3), (2.11c), and Remark 3.3, we derive that for all v0 ∈ V we have

|(q(a), v0)H |
R
≤ C[|û|W(a, b)|st ]

(
|f |2L2((a, b), H) +

∣∣I|Γc
(pqn − ν〈n · ∇〉q))

∣∣2
G2((a, b), Γ )′

)
|v0|H .

Then from the density of the inclusion V ⊂ H , it follows that

|q(a)|2H ≤ C[|û|W(a, b)|st ]
(
|f |2L2((a, b), H) +

∣∣I|Γc
(pqn− ν〈n · ∇〉q))

∣∣2
G2((a, b), Γ )′

)
(3.5)

for the solution q of system (2.8), with û ∈ W(a, b)|st, and “the” corresponding pressure function pq.

Remark 3.4. In inequalities (3.4) and (3.5), we suppose we have fixed a well defined choice of pq, that is known
to be unique up to an additive constant. The constants C[|û|W(a, b)|wk ] and C[|û|W(a, b)|st ] in those inequalities
depend also on Γc and on the length of (a, b) but, they can be taken independent of the choice of pq, because (3.2)
holds independently of the choice of pq. Indeed if we replace pq by p̃ = pq + c, with c ∈ R, then from div v = 0
we derive that (p̃n, v)L2(Γ, R3) = (∇p̃, v)L2(Ω, R3) = (∇pq, v)L2(Ω, R3) = (pqn, v)L2(Γ, R3).

3.2. Choice of the pressure function

Often the pressure function p = pq is chosen to have zero average in Ω but, in the study of specific problems,
as we will see later in Section 5, it may be convenient to set another choice.

Definition 3.5. We say that the linear mapping p �→ cςp := p− ςp
ς1Ω

is an appropriate choice of the pressure
function if ς : H1(Ω, R) → R is a continuous linear function, with ς1Ω �= 0. Here 1Ω stands for the function
1Ω(x) := 1, for all x ∈ Ω.

Remark 3.6. Notice that if ς defines an appropriate choice, then p−cςp = ςp
ς1Ω

is a constant function, cς1Ω = 0,
ςcςp = 0, and cςcςp = cςp. Moreover |ς · |R is a seminorm in H1(Ω, R) and, since ς1Ω �= 0, the norms | · |H1(Ω, R)

and |∇ · |L2(Ω, R3) + |ς · |R are equivalent in H1(Ω, R) (see e.g. [33], Sect. II.1.4). With the above terminology,
the “usual” choice of zero-averaged p in Ω corresponds to ς = ςΩ, p = cςΩp, with ςΩp :=

∫
Ω p dΩ.
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Given an appropriate choice cς , the pressure function p in (2.8) may be supposed, or chosen, to satisfy ςp = 0.
For strong solutions, we know that the choice p = cςΩp is in L2((a, b), H1(Ω, R)). Now, if cς1 and cς2 are two
appropriate choices, then we have that

cς1cς2p = cς2p−
ς1cς2p

ς11Ω
= p− ς2p

ς21Ω
−

ς1
(

p− ς2p
ς21Ω

)
ς11Ω

= cς1p− ς2p
ς21Ω

+
ς1

ς2p
ς21Ω

ς11Ω
= cς1p.

That is, cς1cς2p coincides with the appropriate choice cς1p, which means that we may choose p having zero
average on Γc, which corresponds to ς = ςc, p = cςcp = cςccςΩp, with ςcp :=

∫
Γc

p dΓc.

Remark 3.7. Here we will consider only solutions of system (2.8) with data (3.1); since these solutions are
strong we can guarantee (choosing a priori, e.g., p = cςΩp) that the corresponding pressure function p is in
H1(Ω, R); this is why we have defined “appropriate choice” (p = cςp = cςcςΩp) for this regularity. Of course for
weak regularity, i.e., to the case p ∈ L2(Ω, R), and not necessarily in H1(Ω, R), we should consider continuous
linear functions ς : L2(Ω, R) → R, with ς1Ω �= 0.

3.3. Smoother observability inequalities

We see that the boundary term in inequalities (3.4) and (3.5) vanishes if the “observed” trace pqn−ν〈n ·∇〉q
vanishes in Γc; in this sense we may understand those inequalities as inequalities localized on Γc. However,
the indicator operator I|Γc

would, roughly speaking, suit the case in which we take controls like ζ = I|Γc
η in

system (2.7), and it would destroy all regularity of η we may be interested to (or need to) preserve for ζ across
the boundary of Γc (cf. Prop. 2.17, where the operator η �→ KOη returns us a control with enough regularity
to guarantee the existence of a weak solution for (2.7)).

Here we present a class of observability inequalities localized on open subsets of (a, b) × Γ . In particular we
will see that I|Γc

can be replaced by a general smoother operator. We start by some straightforward corollaries
of Lemmas 3.1 and 3.2.

Corollary 3.8. Given û ∈ W(a, b)|wk, v0 ∈ H, and ∅ �= (c, d) ⊆ (a, b), there exists a control ζ = ζ(v0) ∈
G1

av,c((a, b), Γ ) such that, for the corresponding solution v to system (2.7) with g = 0, we have v(b) = 0.
Moreover the support of the control is contained in [c, d] × Γc, and the mapping v0 �→ ζ(v0) is linear and
continuous: |ζ(v0)|G1

av,c((a, b), Γ ) ≤ C[|û|W(a, b)|wk ]|v0|H .

Proof. If a < c we apply zero boundary control for time t ∈ (a, c). Then we apply the control given in Lemma 3.1
(with (c, d) in the role of (a, b)) driving the system to 0 at time t = d. Finally, if d < b we apply zero control for
time t ∈ (d, b). Now using Theorem 2.11, it is straightforward to check that the proposed concatenated control
satisfy the required properties. �
Corollary 3.9. Given û ∈ W(a, b)|st, v0 ∈ V , and ∅ �= (c, d) ⊆ (a, b), there exists a control ζ = ζ(v0) ∈
G2

av,c((a, b), Γ ) such that, for the corresponding solution v to system (2.7) with g = 0, we have v(b) = 0.
Moreover the support of the control is contained in [c, d] × Γc, and the mapping v0 �→ ζ(v0) is linear and
continuous: |ζ(v0)|G2

av,c((a, b), Γ ) ≤ C[|û|W(a, b)|st ]|v0|V .

Proof. The proof is similar to that of Corollary 3.8; we have just to take the control given in Lemma 3.2 in the
interval (c, d), and use Theorem 2.12 instead. �

Now, proceeding as in Section 3.1, using (3.2) and the controls given by Corollaries 3.8 and 3.9, we can arrive
to the following observability inequalities for the solution q of system (2.8) and the corresponding pressure
function pq:

|q(a)|2H ≤ C[|û|W(a, b)|wk ]
(
|f |2L2((a, b), H) +

∣∣∣ψ̃(pqn − ν〈n · ∇〉q))
∣∣∣2
G1((a, b), Γ )′

)
, if û ∈ W(a, b)|wk; (3.6)

|q(a)|2H ≤ C[|û|W(a, b)|st ]
(
|f |2L2((a, b), H) +

∣∣∣ψ̃(pqn− ν〈n · ∇〉q))
∣∣∣2
G2((a, b), Γ )′

)
, if û ∈ W(a, b)|st; (3.7)
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where ψ̃ ∈ L∞((a, b), L∞(Γ, R)) is any function taking the value 1 in (c, d)×Γc (recall that the support of the
control is contained in [c, d] × Γc).

Next we relax a little the observability inequalities (3.6) and (3.7). We will need the following auxiliary result,
whose proof is given in the Appendix, Section A.4.

Proposition 3.10. Given u ∈ Gi((a, b), Γ ) and ψ ∈ C1([a, b], C2(Γ, R)), then ψu ∈ Gi((a, b), Γ ) and we
have |ψu|Gi((a, b), Γ ) ≤ C|ψ|C1([a, b], C2(Γ, R))|u|Gi((a, b), Γ ), for i ∈ {1, 2}.

Now, let φ be a function satisfying

φ ∈ L∞((a, b), L∞(Γ, R)), and for some (t0, x0) ∈ [a, b] × Γ
φ(t0, x0) �= 0 and φ ∈ C1([t0 − δ, t0 + δ] ∩ [a, b], C2(Nx0 , R)), (3.8)

for some δ > 0 and some neighborhood Nx0 ⊆ Γ of x0.

Theorem 3.11. Let φ satisfy (3.8), and let (q, pq) solve system (2.8), for a fixed appropriate choice of the
pressure function pq. Then,

|q(a)|2H ≤ C[|û|W(a, b)|wk ]
(
|f |2L2((a, b), H) + |φ(pqn − ν〈n · ∇〉q)|2G1((a, b), Γ )′

)
, if û ∈ W(a, b)|wk; (3.9)

|q(a)|2H ≤ C[|û|W(a, b)|st ]
(
|f |2L2((a, b), H) + |φ(pqn− ν〈n · ∇〉q)|2G2((a, b), Γ )′

)
, if û ∈ W(a, b)|st; (3.10)

where now the constants C[|û|W(a, b)|wk ] and C[|û|W(a, b)|st ] depend also on φ.

Proof. We prove (3.9); the proof of (3.10) is completely analogous. First of all, for any h ∈ G1((a, b), Γ )′ and
ψ ∈ C1([a, b], C2(Γ, R)), from the definitions

|ψh|G1((a, b), Γ )′ := sup
v∈G1((a, b), Γ )
|v|G1((a, b), Γ )=1

〈ψh, v〉G1((a, b), Γ )′,G1((a, b), Γ ),

〈ψh, v〉G1((a, b), Γ )′,G1((a, b), Γ ) := 〈h, ψv〉G1((a, b), Γ )′,G1((a, b), Γ ),

and from Proposition 3.10, we obtain

|ψh|G1((a, b), Γ )′ ≤ C|ψ|C1([a, b], C2(Γ, R))|h|G1((a, b), Γ )′ . (3.11)

Next, since φ(t0, x0) �= 0, and φ is regular enough in N× := [t0 − δ, t0 + δ] ∩ [a, b] ×Nx0 , we can set two open
subsets (c, d) ×Oφ and (c1, d1) ×O1

φ such that⎧⎪⎪⎨⎪⎪⎩
Oφ = supp(χ̃φ) and O1

φ = supp(χ̃1
φ), for smooth functions χ̃φ and χ̃1

φ;
(c, d) ×Oφ ⊂ [c, d] ×Oφ ⊂ (c1, d1) ×O1

φ ⊂ [c1, d1] ×O1
φ ⊂ N×;∣∣∣φ([c1, d1] ×O1

φ)
∣∣∣
R

⊆ [ε, +∞), with ε > 0.

Now, let γ ∈ C∞([a, b] × Γ, R) be a smooth function such that γ = 1 in [c, d] × Oφ and γ = 0 in [a, b] ×

Γ \ (c1, d1) × O1
φ. Thus φ−1γ(t, x) :=

{
γ(t, x)
φ(t, x) if φ(t, x) �= 0
0 if φ(t, x) = 0

is a differentiable mapping, that is, φ−1γ ∈

C1([a, b], C2(Γ, R)).
Consider also the subspace G1

φ((a, b), Γ ) :=
{
v ∈ G1((a, b), Γ )

∣∣ v(t) = 0 in Γ \ Oφ for a.e. t ∈ (a, b)
}
. From

inequality (3.6), with Oφ in the role of Γc, we obtain

|q(a)|2H ≤ C[|û|W(a, b)|wk ]
(
|f |2L2((a, b), H) + |γ(pqn − ν〈n · ∇〉q)|2G1((a, b), Γ )′

)
,
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and, since γ = φ−1γφ, from (3.11) it follows that

|γ(pqn − ν〈n · ∇〉q)|2G1((a, b), Γ )′ ≤ C1|φ−1γ|C1([a, b], C2(Γ, R)) |φ(pqn− ν〈n · ∇〉q)|2G1((a, b), Γ )′ .

Therefore, |q(a)|2H ≤ C[|û|W(a, b)|wk ](φ)
(
|f |2L2((a, b), H) + |φ(pqn− ν〈n ·∇〉q)|2G1((a, b), Γ )′

)
, that is, (3.9) holds. �

Remark 3.12. We notice that (3.9) is an observability inequality localized on supp(φ). In many applications,
taking φ ∈ C1((a, b), C2(Γ, R)) instead of (3.8) should be sufficient and sometimes necessary (see the discussion
in the beginning of this Sect. 3.3). We take φ satisfying (3.8) in (3.9) because it does not bring any real additional
difficulties to the proof.

4. Truncated observability inequalities

In the case of finite-dimensional controls, we need suitably truncated observability inequalities, that is, we
need to focus the observation on a suitable finite-dimensional space, closely related to the control space. Inspired
by the work in [5] for the case of internal controls, we show below that if f = 0 and q(b) is finite-dimensional,
then the “observed space” can be truncated, and we still have a boundary observability inequality.

4.1. Auxiliary results

Lemma 4.1. Let X and Y be two Banach spaces, and let L : X → Y be a linear continuous mapping. If
(xn)n∈N is a sequence in X such that xn ⇀ x in X, then Lxn ⇀ Lx in Y .

Proof. Given f ∈ Y ′, the composition f ◦ L is in X ′, which implies 〈f, Lxn〉Y ′, Y =: 〈f ◦ L, xn〉X′, X →
〈f ◦ L, x〉X′, X := 〈f, Lx〉Y ′, Y . �

Now, recall the space HN ⊂ H , defined in (2.4), spanned by the first N eigenfunctions of the Stokes operator.
We have the following:

Lemma 4.2. Let φ ∈ C1((a, b), C2(Γ, R)) be non-identically zero, and let (q, pq) solve system (2.8), with f = 0
and q1 ∈ HN , for a fixed appropriate choice cς for the pressure function pq, i.e., ςpq = 0. Then,

|φ(pqn − ν〈n · ∇〉q)|2
L2((a, b), H

1
2 (Γ,R3))

≤ C[N, |û|W(a, b)|wk]|φ(pqn − ν〈n · ∇〉q)|2G1((a, b), Γ )′ , if û ∈ W(a, b)|wk;

(4.1)

|φ(pqn − ν〈n · ∇〉q)|2
L2((a, b), H

1
2 (Γ,R3))

≤ C[N, |û|W(a, b)|st]|φ(pqn − ν〈n · ∇〉q)|2G2((a, b), Γ )′ , if û ∈ W(a, b)|st; (4.2)

where the constants C[N, |û|W(a, b)|wk ] and C[N, |û|W(a, b)|st ] depend only on N , Ω, φ, on the length of (a, b), and
on the respective norm of û.

Proof. We prove (4.1). The proof of (4.2) is completely analogous. We argue by contradiction. Suppose that
there exists a sequence of pairs

(
(qn

1 , û
n)

)
n∈N

in HN ×W(a, b)|wk with (|ûn|W(a, b)|wk)n∈N bounded, such that the
solution (qn, pqn) of the system

−∂tq
n + B∗(ûn)qn − νΔqn + ∇pqn = 0, div qn = 0,

qn |Γ = 0, qn(b) = qn
1 ∈ HN

(4.3)

satisfies the inequality

|φ(pqnn− ν〈n · ∇〉qn)|2
L2((a, b), H

1
2 (Γ,R3))

> n|φ(pqnn− ν〈n · ∇〉qn)|2G1((a, b), Γ )′ , (4.4)

where the pressure functions pqn are supposed to agree with the fixed choice, i.e., ςpqn = 0, for all n ∈ N. Notice
that qn

1 = 0 implies that qn = 0 and that pqn is a constant function, and from ςpqn = 0, we obtain that pqn = 0;
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in this case (4.4) is not satisfied, i.e., necessarily qn
1 �= 0, for all n ∈ N. On the other hand, since the mapping

sending q(b) to the corresponding solution (q, pq) is linear, there is no loss of generality in assuming that
|qn

1 |V = 1. The boundedness of (|ûn|W(a, b)|wk)n∈N implies that (ûn)n∈N and (∂tû
n)n∈N are bounded sequences

in L∞((a, b), L∞
div(Ω, R3)) and L2((a, b), Lσ(Ω, R3)), respectively. It follows, from Theorem 2.14, that the

sequences (qn)n∈N and (∂tq
n)n∈N are bounded in L2((a, b), D(L)) and L2((a, b), H), respectively. Since, by the

Kakutani’s Theorem (see e.g. [8], Chap. V, Thm. 4.2), a ball in a reflexive Banach space is weakly compact
and, by the Alaoglu’s Theorem (see e.g. [8], Chap. V, Thm. 3.1), a ball in L∞((a, b), L∞

div(Ω, R3)) is compact
in the weak-∗ topology, there exist a subsequence of (qn

1 , q
n, ûn) (for which we preserve the notation), a V -unit

vector q∞1 ∈ HN , q∞ ∈ W ((a, b),D(L), H), and û∞ ∈ W(a, b)|wk such that

qn
1 → q∞1 in HN ;
qn ⇀ q∞ in L2((a, b), D(L));

∂tq
n ⇀ ∂tq

∞ in L2((a, b), H);
ûn ⇀∗ û∞ in L∞((a, b), L∞

div(Ω, R3));
∂tû

n ⇀ ∂tû
∞ in L2((a, b), Lσ(Ω, R

3)).

Since W ((a, b), H2(Ω, R3), L2(Ω, R3)) ⊂ L2((a, b), H1(Ω, R3)) is a compact inclusion (see e.g. [34], Chap. 3,
Thm. 2.1), we can suppose (taking again a subsequence) that

qn → q∞ in L2((a, b), V ).

Now, |∇pqn |2L2(Ω, R3) = (∇pqn , ∂tq
n − B∗(ûn)qn + νΔqn)L2(Ω, R3) = (∇pqn , −B∗(ûn)qn + νΔqn)L2(Ω, R3), im-

plies that |∇pqn |2L2(Ω, R3) ≤ C[
|ûn|L∞((a, b), L∞

div(Ω, R3))

] |∇pqn |L2(Ω, R3)|qn|H2
div(Ω, R3). Necessarily, |∇pqn |L2(Ω, R3) ≤

C[
|ûn|L∞((a, b), L∞

div(Ω, R3))

] |qn|H2
div(Ω, R3), and we can conclude that (∇pqn)n∈N is bounded in L2((a, b), L2(Ω, R3)).

Furthermore since ςpqn = 0 we obtain that (pqn)n∈N is bounded in L2((a, b), H1(Ω, R)) (see Rem. 3.6). Thus,
there exists p∞ ∈ L2((a, b), H1(Ω, R)) such that (taking a subsequence and using Lem. 4.1)

pqn ⇀ p∞ in L2((a, b), L2(Ω, R))
∇pqn ⇀ ∇p∞ in L2((a, b), L2(Ω, R3)) , and p∞ = cςp

∞ ∈ L2((a, b), H1(Ω, R)). (4.5)

Next step is to pass to the limit in (4.3), for that we will need some preliminary computations. Let us rewrite

B∗(ûn)qn − B∗(û∞)q∞ = B∗(ûn)(qn − q∞) + B∗(ûn − û∞)q∞

and let us be given v ∈ L2((a, b), L2(Ω, R3)); we find

|(B∗(ûn)(qn − q∞), v)L2((a, b), L2(Ω, R3))|R ≤ C|ûn|L∞((a, b), L∞
div(Ω, R3))|qn − q∞|L2((a, b), V )|v|L2((a, b), L2(Ω, R3)) → 0

and, from Remark 2.7, we also obtain

(B∗(ûn − û∞)q∞, v)L2((a, b), L2(Ω, R3)) =
∫ b

a

(∫
Ω

(〈(ûn − û∞) ·Ds〉q∞) · v dΩ
)

dt

=
∫ b

a

(∫
Ω

(〈v ·Ds〉q∞) · (ûn − û∞) dΩ
)

dt = 〈ûn − û∞, 〈v ·Ds〉q∞〉L1((a, b), L1(Ω, R3))′, L1((a, b), L1(Ω, R3)) → 0

and can conclude that
B∗(ûn)qn ⇀ B∗(û∞)q∞ in L2((a, b), L2(Ω, R

3)). (4.6)

From Lemma 4.1 it also follows that Δqn ⇀ Δq∞ in L2((a, b), L2(Ω, R3)), and then we can pass to the weak
limit in (4.3) and obtain (for pq∞ := p∞)

−∂tq
∞ + B∗(û∞)q∞ − νΔq∞ + ∇pq∞ = 0, div q∞ = 0,

q∞ |Γ = 0, q∞(b) = q∞1 ∈ HN .
(4.7)
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Accordingly to Propositions 2.5 and 3.10, given v ∈ G1((a, b), Γ ), we can extend φv ∈ G1((a, b), Γ ) to
Ee

1φv ∈ W ((a, b), H1
div(Ω, R3), H−1(Ω, R3)) ⊕H

3
4 ((a, b), R)Θ, with φv = Ee

1φv|Γ ; hence we can derive

〈φ(pqnn − ν〈n · ∇〉qn), v〉G1((a, b), Γ )′,G1((a, b), Γ ) = 〈pqnn− ν〈n · ∇〉qn, φv〉G1((a, b), Γ )′,G1((a, b), Γ )

= (∇pqn − νΔqn, Ee
1φv)L2((a, b), L2(Ω, R3)) + (pqn , div(Ee

1φv))L2((a, b), L2(Ω, R))

+ (−ν∇qn, ∇(Ee
1φv))L2((a, b), L2(Ω, R9))

and, taking the limit, we obtain

〈φ(pqnn− ν〈n · ∇〉qn), v〉G1((a, b), Γ )′,G1((a, b), Γ )

→ (∇pq∞ − νΔq∞, Ee
1φv)L2((a, b), L2(Ω, R3)) + (pq∞ , div(Ee

1φv))L2((a, b), L2(Ω, R))

+ (−ν∇q∞, ∇(Ee
1φv))L2((a, b), L2(Ω, R9)) = 〈φ(pq∞n − ν〈n · ∇〉q∞), v〉G1((a, b), Γ )′,G1((a, b), Γ ),

that is, φ(pqnn− ν〈n · ∇〉qn)⇀∗ φ(pq∞n− ν〈n · ∇〉q∞) in G1((a, b), Γ )′. In particular we have |φ(pq∞n− ν〈n ·
∇〉q∞)|G1((a, b), Γ )′ ≤ lim infn→+∞ |φ(pqnn−ν〈n ·∇〉qn)|G1((a, b), Γ )′ . Therefore, from (4.4), we can conclude that
|φ(pq∞n − ν〈n · ∇〉q∞)|2G1((a, b), Γ )′ ≤ lim infn→+∞ 1

n |φ(pqnn− ν〈n · ∇〉qn)|
L2((a, b), H

1
2 (Ω, R3))

, which implies

|φ(pq∞n − ν〈n · ∇〉q∞)|2G1((a, b), Γ )′ = 0,

because φ(pqnn− ν〈n · ∇〉qn) is bounded in L2((a, b), H
1
2 (Γ, R3)).

Applying now the observability inequality (3.9) to system (4.7) considered on the interval (a + r, b) with
0 ≤ r < b − a, we conclude that q∞(t) = 0 for a ≤ t < b. Since q∞ ∈ C([a, b], V ), we obtain q∞1 = q∞(b) = 0.
This contradicts the fact that q∞1 ∈ HN is a V -unit vector. The contradiction proves that (4.1) holds. �

4.2. Truncation in space variable

Let O ⊆ Γ = ∂Ω be an open connected smooth submanifold, and recall the orthogonal projection PO
M :

L2(O, R3) → L2
M (O, R3), and extension EO

0 , defined in Section 2.2.

Theorem 4.3. Let N ∈ N0 and let (q, pq) solve system (2.8) with q1 ∈ HN and f = 0. Fix also an ap-
propriate choice for the pressure function pq. Let us be given also two differentiable functions φ and φ̃ in
C1([a, b], C2(Γ, R)) with nonempty support, and ε > 0 such that supp(φ) ⊆ [a, b]×O and |φ̃(t, x)|R ≥ ε for all
(t, x) ∈ supp(φ). Then, if û ∈ W(a, b)|wk there exists a positive integer M = C[N, |û|W(a, b)|wk ] such that

|q(a)|2H ≤ C[|û|W(a, b)|wk ]

∣∣∣φ̃E
O
0 P

O
M (φ(pqn − ν〈n · ∇〉q)|O)

∣∣∣2
G1((a, b), Γ )′

(4.8)

and, if û ∈ W(a, b)|st there exists a positive integer M = C[N, |û|W(a, b)|st ] such that

|q(a)|2H ≤ C[|û|W(a, b)|st ]

∣∣∣φ̃E
O
0 P

O
M (φ(pqn− ν〈n · ∇〉q)|O)

∣∣∣2
G2((a, b), Γ )′

, (4.9)

where the constants C[|û|W(a, b)|wk ] and C[|û|W(a, b)|st ] depend only on Ω, O, φ, φ̃, b − a, and on the respective
norm of û.

Proof. Again we prove (4.8), the proof of (4.9) is completely analogous. Consider the Laplace–de Rham operator,
defined by:

ΔO : H2(O, R3) ∩H1
0 (O, R3) → L2(O, R3)

u = (u · n)n + ut �→ (ΔO(u · n))n + ΔOut
(4.10)

mapping H2(O, R3) ∩H1
0 (O, R3) onto L2(O, R3); see Section 2.2.
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Denote by D(Δs
O) := {u ∈ L2(O, R3) | Δs

Ou ∈ L2(O, R3)}, the domain of its fractional power Δs
O, s ∈ [0, 1].

Notice that, for u =
∑

i∈N0
ui
nπin +

∑
i∈N0

ui
tτi, we may write Δs

Ou =
∑

i∈N0
ui
nβ

s
i πin +

∑
i∈N0

ui
tγ

s
i τi, where

βi and γi are the eigenvalues associated with πi and τi, respectively. Moreover we can endow D(Δs
O) with the

scalar product (u, v)D(Δs
O) := (u, v)L2(O, R3) + (Δs

Ou, Δ
s
Ov)L2(O, R3). Notice that the system {πin, τi | i ∈ N0}

is orthogonal in D(Δs
O), for all s ∈ [0, 1]. We find

|EO
0 (1 − PO

M )(φ(pqn− ν〈n · ∇〉q)|O)|2G1((a, b), Γ )′ ≤ C|EO
0 (1 − PO

M )(φ(pqn− ν〈n · ∇〉q)|O)|2L2((a, b), L2(Γ, R3))

= C|(1 − PO
M )(φ(pqn− ν〈n · ∇〉q)|O)|2L2((a, b), L2(O, R3)).

(4.11)

On the other side, let 0 ≤ k ≤ 2. Since the mapping f �→ φf |O is in the intersection

L
(
L2((a, b), L2(Γ, R

3)) → L2((a, b), L2(O, R
3))

)
∩ L

(
L2((a, b), H2(Γ, R

3)) → L2((a, b), H2
0 (O, R

3))
)
,

by an interpolation argument, we can conclude (e.g., using Thm. A.4 and Lem. A.6) that it also maps
L2((a, b), Hk(Γ, R

3)) = [L2((a, b), H2(Γ, R
3)), L2((a, b), L2(Γ, R

3))]1− k
2

continuously into

[L2((a, b), H2
0 (O, R

3)), L2((a, b), L2(O, R
3))]1− k

2
= L2

(
(a, b), [H2

0 (O, R
3), L2(O, R

3)]1− k
2

)
⊆ L2

(
(a, b), [D

(
Δ1

O
)
, D

(
Δ0

O
)
]1− k

2

)
= L2

(
(a, b), D

(
Δ

k
2
O
))

.

Then, from (4.11), we can write in particular

|EO
0 (1 − PO

M )(φ(pqn− ν〈n · ∇〉q)|O)|2G1((a, b), Γ )′ ≤ C1

1+θ
1
3
M

|(1 − PO
M )(φ(pqn − ν〈n · ∇〉q)|O)|2

L2

(
(a, b), D

(
Δ

1
6
O

))
≤ C1θ

− 1
3

M |φ(pqn− ν〈n · ∇〉q)|O |2
L2

(
(a, b), D

(
Δ

1
6
O

))

where θM = min{βi, γi | i > M}. Now, from [H2
0 (O, R), L2(O, R)]1− 1

6
⊆ D

(
Δ

1
6
O
)
⊆ [H2(O, R), L2(O, R)]1− 1

6
,

we can conclude (cf. [23], Chap. 1, Thms. 9.6 and 11.6) that D
(
Δ

1
6
O
)

= H
1
3 (O, R3), with equivalent norms. Thus

we can write |EO
0 (1 − PO

M )(φ(pqn− ν〈n · ∇〉q)|O)|2G1((a, b), Γ )′ ≤ C2θ
− 1

3
M |φ(pqn − ν〈n · ∇〉q)|O |2

L2((a, b), H
1
3 (O, R3))

and, from the continuity of the restriction to O, from H1(Γ, R3) onto H1(O, R3) and from L2(Γ, R3) onto
L2(O, R3), again by an interpolation argument, we conclude that it is also continuous from H

1
3 (Γ, R3) onto

H
1
3 (O, R3) (cf. Sect. A.6). Therefore

|EO
0 (1 − PO

M )(φ(pqn − ν〈n · ∇〉q)|O)|2G1((a, b), Γ )′ ≤ C2θ
− 1

3
M |φ(pqn− ν〈n · ∇〉q)|2

L2((a, b), H
1
3 (Γ, R3))

and, using the inequality (4.1) in Lemma 4.2, we arrive to

|EO
0 (1 − PO

M )φ(pqn− ν〈n · ∇〉q)|2G1((a, b), Γ )′ ≤ θ
− 1

3
M C[N, |û|W(a, b)|wk ]|φ(pqn − ν〈n · ∇〉q)|2G1((a, b), Γ )′ . (4.12)

Now let ξ ∈ C∞([a, b], C∞(Γ, R)) be a nonnegative function taking the value 1 if |φ̃|R ≥ ε and vanishing if
|φ̃|R ≤ ε

2 . In particular ξφ = φ and φ̃−1ξ = ξ

φ̃
∈ C1([a, b], C2(Γ, R). Hence

|φ(pqn− ν〈n · ∇〉q)|2G1((a, b), Γ )′ = |φ̃φ̃−1ξφ(pqn− ν〈n · ∇〉q)|2G1((a, b), Γ )′

= |φ̃φ̃−1ξEO
0 (φ(pqn− ν〈n · ∇〉q)|O)|2G1((a, b), Γ )′

≤ 2C3|φ̃−1ξ|2C1([a, b], C2(Γ, R)|φ̃E
O
0 P

O
M (φ(pqn − ν〈n · ∇〉q)|O)|2G1((a, b), Γ )′

+ 2C3|ξ|2C1([a, b], C2(Γ, R)|EO
0 (1 − PO

M )(φ(pqn − ν〈n · ∇〉q)|O)|2G1((a, b), Γ )′

≤ C4|φ̃E
O
0 P

O
M (φ(pqn− ν〈n · ∇〉q)|O)|2G1((a, b), Γ )′ + θ

− 1
3

M C5|φ(pqn − ν〈n · ∇〉q)|2G1((a, b), Γ )′
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and, choosing the integer M so large that θ
− 1

3
M C5 = θ

− 1
3

M C[N, |û|W(a, b)|wk ]|ξ|
2
C1([a, b], C2(Γ, R) ≤ 1

2 , we obtain

|φ(pqn − ν〈n · ∇〉q)|2G1((a, b), Γ )′ ≤ 2C4|φ̃EO
0 P

O
M (φ(pqn − ν〈n · ∇〉q)|O)|2G1((a, b), Γ )′ . Combining this with (3.9)

(with f = 0), we arrive to the required inequality (4.8). �

Remark 4.4. Notice that the integer M in Theorem 4.3, depends on N but, the constants in the observability
inequalities (4.8) and (4.9) do not. We can, of course, take φ̃ = 1 identically; however, as we will see in the
example in Section 5, it is useful to consider the more general case.

4.3. Further truncation in time variable

In [29], an observability inequality truncated in both space and time variables was used to derive suitable
results for the stochastic Navier–Stokes equations perturbed by an internal random force localized in a subset
of the domain Ω. Inspired by these results, here we show that we can also truncate the observability inequality
in time variable. We will need the following proposition, whose proof is given in the Appendix, Section A.7.

Proposition 4.5. The inclusion G1((a, b), Γ ) ⊆ H
1
4

(
(a, b), H− 1

4
(
Γ, R3

))
holds and is continuous.

Let us consider the Laplace–de Rham operator in (a, b) with homogeneous Dirichlet boundary conditions:

Δt : H2((a, b), R) ∩H1
0 ((a, b), R) → L2((a, b), R)

f �→ −∂t∂tf.

It is well known that the orthonormal system of eigenfuntions, and corresponding eigenvalues, are given by{
s̄n := ( 2

b−a )
1
2 sin(nπ(x−a

b−a )) | n ∈ N0

}
, and

{
λn = ( nπ

b−a )2 | n ∈ N0

}
; Δts̄n = λns̄n. Next, given a Hilbert space

X , we define the following mapping P t
M in L2((a, b), X)

P t
Mf(t) :=

M∑
n=1

(∫ b

a

s̄n(τ)f(τ) dτ

)
s̄n.

Proposition 4.6. The mapping P t
M is an orthogonal projection both in L2((a, b), X) and in H1

0 ((a, b), X),

onto P t
ML2((a, b), X) =

∑M
n=1 s̄nX. Moreover we may write f =

∑
n∈N0

(∫ b

a
s̄n(τ)f(τ) dτ

)
s̄n =

limM→+∞ P t
Mf , |f |2L2((a, b), X) =

∑
n∈N0

∣∣∣∫ b

a s̄n(τ)f(τ) dτ
∣∣∣2
X

, and |f |2
H1

0 ((a, b), X)
=

∑
n∈N0

(1 +

λn)
∣∣∣∫ b

a s̄n(τ)f(τ) dτ
∣∣∣2
X

.

The proof of this proposition is straightforward, though nontrivial; for the sake of completeness we present it
in the Appendix, Section A.8.

Now, for simplicity, given a finite orthogonal sequence S = {vi | i = 1, 2, . . . , k} ⊆ X in the Hilbert space
X , let F = spanS and define the operator Δt,F : H2((a, b), F) ∩ H1

0 ((a, b), F) → L2((a, b), F), sending
f(t) =

∑k
i=1 fi(t)vi to

∑k
i=1 Δtfi(t)vi. It turns out that Δs

t,Ff(t) =
∑k

i=1(Δ
s
tfi(t))vi, and

|f |2
D(Δs

t,F ) =
k∑

i=1

|fi|2D(Δs
t )|vi|2X ; for s ∈ [0, 1]. (4.13)

Theorem 4.7. Let N ∈ N0 and let (q, pq) solve system (2.8) with q1 ∈ HN and f = 0, for an appropriate choice
for the pressure function pq. Let us be given also two differentiable functions φ, φ̃ ∈ C1([a, b], C2(Γ, R)), with
nonempty support, an open connected smooth submanifold O ⊆ Γ , and ε > 0 such that supp(φ) ⊆ [a, b]×O and
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|φ̃(t, x)|R ≥ ε for all (t, x) ∈ supp(φ). Then, if û ∈ W(a, b)|wk there exists a positive integer M = C[N, |û|W(a, b)|wk ]
such that

|q(a)|2H ≤ C[|û|W(a, b)|wk ]

∣∣∣φ̃P t
ME

O
0 P

O
M (φ(pqn− ν〈n · ∇〉q)|O)

∣∣∣2
G1((a, b), Γ )′

(4.14)

and, if û ∈ W(a, b)|st there exists a positive integer M = C[N, |û|W(a, b)|st ] such that

|q(a)|2H ≤ C[|û|W(a, b)|st ]

∣∣∣φ̃P t
ME

O
0 P

O
M (φ(pqn − ν〈n · ∇〉q)|O)

∣∣∣2
G2((a, b), Γ )′

, (4.15)

where the constants C[|û|W(a, b)|wk ] and C[|û|W(a, b)|st ] depend only on Ω, O, φ, φ̃, b − a, and on the respective
norm of û.

Proof. Again we prove (4.14), the proof of (4.15) is completely analogous (e.g., starting by using the continuity
of the inclusion G1(a, b), Γ )′ ⊂ G2(a, b), Γ )′). From Proposition 4.5, we can derive

|(1 − P t
M )EO

0 P
O
M (φ(pqn− ν〈n · ∇〉q)|O)|2G1((a, b), Γ )′

≤ C|(1 − P t
M )EO

0 P
O
M (φ(pqn − ν〈n · ∇〉q)|O)|2

H− 1
4 ((a, b), H

1
4 (Γ, R3))

and, from the continuity of the extension by zero outside O, from Hs(O, R3) into Hs(Γ, R3) for 0 ≤ s < 1
2

(cf. [23], Chap. 1, Sect. 11.3), we can write

|(1 − P t
M )EO

0 P
O
M (φ(pqn− ν〈n · ∇〉q)|O)|2G1((a, b), Γ )′

≤ C|(1 − P t
M )PO

M (φ(pqn− ν〈n · ∇〉q)|O)|2
H− 1

4 ((a, b), H
1
4 (O, R3))

,

Now, set F := L2
M (O, R3) = PO

ML2(O, R3). By an analogous argument as in the proof of Theorem 4.3 we can

prove that H
1
4 (O, R

3) = D
(
Δ

1
8
O
)
, H

1
4 ((a, b), F) = D(Δ

1
8
t,F ), and H− 1

4 ((a, b), F) = D(Δ− 1
8

t,F ), with equivalent
norms. Thus, using (4.13), we can derive

|(1 − P t
M )EO

0 P
O
M (φ(pqn − ν〈n · ∇〉q)|O)|2G1((a, b), Γ )′ ≤ C1|(1 − P t

M )PO
M (φ(pqn− ν〈n · ∇〉q)|O)|2

D

(
Δ

− 1
8

t,F 1
8

)

= C1|Δ
− 1

8
t,F 1

8

(1 − P t
M )PO

M (φ(pqn− ν〈n · ∇〉q)|O)|2
D

(
Δ0

t,F 1
8

) ≤ C1Θ
− 1

4
t,M |PO

M (φ(pqn − ν〈n · ∇〉q)|O)|2
D

(
Δ0

t,F 1
8

)

≤ C1Θ
− 1

4
t,M |φ(pqn− ν〈n · ∇〉q)|O |2

L2

(
(a, b), D

(
Δ

1
8
O

))

where θt,M = min{λi|i〉M} =
(

(M+1)π
b−a

)2

, and F 1
8

means that F is endowed with the D
(
Δ

1
8
O
)
-norm. Proceeding

as in the proof of Theorem 4.3, and using (4.1), we obtain

|(1 − P t
M )EO

0 P
O
M (φ(pqn− ν〈n · ∇〉q)|O)|2G1((a, b), Γ )′ ≤ C2Θ

− 1
4

t,M |φ(pqn− ν〈n · ∇〉q)|2
L2((a, b), H

1
4 (Γ, R3))

≤ Θ
− 1

4
t,MC[N, |û|W(a, b)|wk ]|φ(pqn− ν〈n · ∇〉q)|2G1((a, b), Γ )′ . (4.16)

Next, again as in the proof of Theorem 4.3, we set ξ ∈ C∞([a, b], C∞(Γ, R)) be a nonnegative function taking
the value 1 if |φ̃|R ≥ ε and vanishing if |φ̃|R ≤ ε

2 . Writing

φ̃φ̃−1ξφ(pqn− ν〈n · ∇〉q) = φ̃φ̃−1ξEO
0 (φ(pqn− ν〈n · ∇〉q)|O)

= φ̃φ̃−1ξP t
ME

O
0 P

O
M (φ(pqn − ν〈n · ∇〉q)|O) + φ̃φ̃−1ξ(1 − P t

M )EO
0 P

O
M (φ(pqn− ν〈n · ∇〉q)|O)

+ φ̃φ̃−1ξEO
0 (1 − PO

M )(φ(pqn− ν〈n · ∇〉q)|O)
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and using (4.12), (4.16), and φ̃φ̃−1ξφ = φ, we find

|φ(pqn− ν〈n · ∇〉q)|2G1((a, b), Γ )′ ≤ C3|φ̃−1ξ|2C1([a, b], C2(Γ, R))|φ̃P t
ME

O
0 P

O
M (φ(pqn− ν〈n · ∇〉q)|O)|2G1((a, b), Γ )′

+
(
Θ

− 1
4

t,M + Θ
− 1

3
M

)
|ξ|2C1([a, b], C2(Γ, R))C[N, |û|W(a, b)|wk ]|φ(pqn − ν〈n · ∇〉q)|2G1((a, b), Γ )′

and, choosing M ∈ N0 so large that
(
Θ

− 1
3

M + Θ
− 1

4
t,M

)
|ξ|2C1([a, b], C2(Γ, R))C[N, |û|W(a, b)|wk ] ≤

1
2 , we obtain |φ(pqn −

ν〈n · ∇〉q)|2G1((a, b), Γ )′ ≤ C4(φ,φ̃)|φ̃P t
MEO

0 P
O
M (φ(pqn− ν〈n · ∇〉q)|O)|2G1((a, b), Γ )′ . Combining this with (3.9) (with

f = 0), we arrive to the required inequality (4.14). �

5. Examples of application

Recall the spaces E i
M = χEO

0 P
O
χ⊥P

O
MϑGi((a, b), Γ )|O, i ∈ {1, 2} defined in (2.6) and in (2.13). Here we use

the truncated observability inequalities (4.9) and (4.15) to derive two controllability results for the Oseen–Stokes
system (2.7), where the control ζ is taken in (a subspace of) E2

M .
It turns out that, while inequality (4.9) is appropriate to deal with the control space E2

M , inequality (4.15) is
(taking φ = ϕχ and φ̃ = ϕ̃ϑ, for suitable functions ϕ and ϕ̃) appropriate to deal with controls in

GM := ϕχE
O
0 P

O
χ⊥P

O
MP t

M ϕ̃ϑG2((a, b), Γ )|O := {ζ | ζ = ϕχE
O
0 P

O
χ⊥P

O
MP t

M (ϕ̃ϑη|O) and η ∈ G2((a, b), Γ )}.

Let ϕ ∈ C1((a, b), R) be such that supp(ϕ) �= ∅ and ϕ(t) vanishes in a neighborhood of {a, b}, say ϕ(t) = 0
for some 0 < δ < b−a

2 and all t ∈ [a, a + δ] ∪ [b − δ, b]. Also, let ϕ̃ ∈ C1([a, b], R) ∩H1
0 ((a, b), R) be a function

such that |ϕ̃(t)|R ≥ ε > 0 for all t ∈ supp(φ). Consider the operator

η �→ KO
t η := ϕχE

O
0 P

O
χ⊥P

O
MP t

M (ϕ̃ϑη|O). (5.1)

Proposition 5.1. KO
t ∈ L(Gi((a, b), Γ ) → Gi

av((a, b), Γ )), for i ∈ {1, 2}.

The Proof of Proposition 5.1 will be given in the Appendix, Section A.9.
Next, we recall also the space HN and the orthogonal projection ΠN : H → HN ; see Section 2.2.

Theorem 5.2. For each N ∈ N there exists an integer M = C[N, |û|W(a, b)|st ] ∈ N0 such that, for every v0 ∈
H, we can find η = η(v0) ∈ G2((a, b), Γ ), depending linearly on v0, such that the boundary control ζ =
ϕχEO

0 PO
χ⊥P

O
M (ϑη|O) drives the system (2.7), with g = 0, to a vector v(b) ∈ V such that ΠNv(b) = 0. Moreover,

there exists a constant C[|û|W(a, b)|st ], depending on |û|W(a, b)|st , ϕ, and b − a but, not on the pair (N, v0), such

that |η|2G2((a, b), Γ ) ≤ C[|û|W(a, b)|st ]|v0|2H .

Theorem 5.3. For each N ∈ N there exists an integer M = C[N, |û|W(a, b)|st ] ∈ N0 such that, for every v0 ∈
H, we can find η = η(v0) ∈ G2((a, b), Γ ), depending linearly on v0, such that the boundary control ζ =
ϕχEO

0 PO
χ⊥P

O
MP t

M (ϕ̃ϑη|O) drives the system (2.7), with g = 0, to a vector v(b) ∈ V such that ΠNv(b) = 0.
Moreover, there exists a constant C[|û|W(a, b)|st ], depending on |û|W(a, b)|st , ϕ, ϕ̃, and b − a but, not on the
pair (N, v0), such that

|η|2G2((a, b), Γ ) ≤ C[|û|W(a, b)|st ]|v0|2H . (5.2)

The proofs of Theorems 5.2 and 5.3 are completely analogous. So we will prove only Theorem 5.3 where
we shall use the observability inequality (4.15); to prove Theorem 5.2 we can use (4.9) instead. We start by
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recalling the following:

Lemma 5.4. Let Z be a Banach space such that Z = X ⊕ Y , where X and Y are closed subspaces of Z. Then
we can rewrite, in a unique way, each z ∈ Z as z = zX + zY with (zX , zY ) ∈ X × Y , and the projections
z �→ zX , and z �→ zY are continuous. Moreover the norms | · |Z and | · |X⊕Y are equivalent in Z.

Proof. Consider the graph GX = {(z, w) ∈ Z × Z | z ∈ Z and w = zX} of the projection onto X . It is
straightforward to prove that GX is closed, then by the Closed Graph Theorem (see e.g. [8], Sect. III.12) it
follows the continuity of the projection z �→ zX , and also that of the projection z �→ zY = z − zX . Finally, from
|z|2Z ≤ (|zX |Z + |zY |Z)2 ≤ 2(|zX |2Z + |zY |2Z) = 2|z|2X⊕Y ≤ C|z|2Z , we have the equivalence of the norms. �
Lemma 5.5. If q ∈ D(L), then 〈n · ∇〉q is tangent to Γ .

Proof. Since q |Γ = 0 we have that ∇qj = αjn on Γ , for a suitable function αj and for each j ∈ {1, 2, 3}.
Then we can derive that ∂xiqj = αjni and (〈n ·∇〉q) ·n =

∑3
j=1

(∑3
i=1 ni∂xiqj

)
nj =

∑3
j=1

(∑3
i=1 n2

iαj

)
nj =∑3

j=1 αjnj , on the boundary Γ . On the other hand, from 0 = div q =
∑3

j=1 ∂xjqj , we obtain that 0 = (div q)|Γ =∑3
j=1 αjnj . Therefore, we have (〈n · ∇〉q) · n = 0 on Γ . �

Proof of Theorem 5.3. We shall follow the idea in the proof of Lemma 3.2 in [5]. First, we extend the or-
thogonal projection Π : L2(Ω, R3) → H to a projection mapping Π : H−1(Ω, R3) → V ′ by setting
〈Πf, u〉V ′,V := 〈f, u〉H−1(Ω, R3),H1

0 (Ω, R3). Recall that we can write H−1(Ω, R3) = V ′ ⊕ {∇p | p ∈ L2(Ω, R)}
(see [34], Chap. 1, Sect. 1.4, Prop. 1.1 and Rem. 1.9). Observe that, given p ∈ L2(Ω, R), we have 〈Π∇p, u〉V ′,V =
〈∇p, u〉H−1(Ω, R3),H1

0 (Ω, R3) = 0, that is, Π∇p = 0; in other words, Π coincides with the projection in
V ′ ⊕ {∇p | p ∈ L2(Ω, R)} onto the component V ′. In particular, from Lemma 5.4, Π is continuous.

Then, we fix ε > 0 and consider the following minimization problem:

Problem 5.6. Given M,N ∈ N and v0 ∈ H , find the minimum of the quadratic functional

Jε(v, η) := |η|2G2((a, b), Γ ) + 1
ε |ΠNv(b)|2H ,

subject to the constraint F (v, η) = (0, 0, 0), in the space

X := WH((a, b), H1
div(Ω, R

3), H−1(Ω, R
3)) ×G2((a, b), Γ ),

where F is defined as
{
F : X → Y := H × L2((a, b), V ′) ×G1

av, H((a, b), Γ )
(v, η) �→

(
v(a) − v0, Π (vt − νΔv + B(û)v) , v|Γ −KO

t η
), with

WH((a, b), H1
div(Ω, R

3), H−1(Ω, R
3)) := {u ∈ W ((a, b), H1

div(Ω, R
3), H−1(Ω, R

3)) | u(a) ∈ H};
G1

av, H((a, b), Γ ) := {u|Γ | u ∈ WH((a, b), H1
div(Ω, R

3), H−1(Ω, R
3))}.

Since the constraint can be rewritten as A(v, η) = (v0, 0, 0) where A is the linear mapping A(v, η) :=
F (v, η)+(v0, 0, 0), we have that Problem 5.6 has a unique minimizer (v̄ε, η̄ε), which linearly depends on v0 ∈ H
(e.g., using Lem. A.14 and Rem. A.15 in the Appendix, Sect. A.10; together with Prop. 5.1 and Thm. 2.11).
By the Karush–Kuhn–Tucker Theorem (e.g., see [5], Sect. A.1), it follows that there is a Lagrange multiplier
(με, qε, ρε) ∈ Y ′ = H × L2((a, b), V ) ×G1

av, H((a, b), Γ )′ such that

dJε(v̄ε, η̄ε) + (με, qε, ρε) ◦ dF (v̄ε, η̄ε) = 0,

where the symbol “◦” stands for the composition of two linear operators. It follows that, for all (z, ξ) ∈ X ,

0 = 2 1
ε (ΠN v̄ε(b), z(b))H + (με, z(a))H +

∫ b

a

〈zt + B(û)z − νΔz, qε〉H−1(Ω, R3),H1
0 (Ω, R3) dt

+ (ρε, z |Γ )G1
av, H ((a, b), Γ )′, G1

av, H((a, b), Γ ), (5.3)

0 = 2(η̄ε, ξ)G2((a, b), Γ ) + (ρε, −KO
t ξ)G1

av, H((a, b), Γ )′, G1
av, H((a, b), Γ ). (5.4)
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Letting z run over W ((a, b), V, V ′) (e.g., proceeding as in the proof of Lem. 3.2 in [5]) we can verify that
relation (5.3) implies that qε solves system (2.8) with f = 0, qε(b) = − 2

εΠN v̄ε(b), and a suitable pressure
function pqε . Further, qε(a) = με.

Next, we let z run over WH((a, b), H1
div(Ω, R3), H−1(Ω, R3)) in (5.3); we can derive that ρε = pqεn−〈n·∇〉qε

and, in particular, we have that ρε ∈ L2((a, b), L2(Γ, R
3)). Therefore, we can obtain

(ρε, KO
t ξ)G1

av, H((a, b), Γ )′, G1
av, H((a, b), Γ ) = (ρε, ϕχE

O
0 PO

χ⊥P
O
MP t

M (ϕ̃ϑξ |O))L2((a, b), L2(Γ, R3))

= (ϕ̃ϑP t
ME

O
0 P

O
MPO

χ⊥(ϕχρε |O), ξ)L2((a, b), L2(Γ, R3))

and, from (5.4), it follows that necessarily 2Aη̄ε = ϕ̃ϑP t
MEO

0 P
O
MPO

χ⊥(ϕχρε |O), where A is the natural isomor-
phism

〈Au, v〉G2((a, b), Γ )′, G2((a, b), Γ ) := (u, v)G2((a, b), Γ ) (5.5)

from G2((a, b), Γ ) onto G2((a, b), Γ )′. Notice that the mapping v �→ (u, v)G2((a, b), Γ ) is in G2((a, b), Γ )′,
and (5.5) just says that we denote this mapping by Au. That A is, indeed, bijective follows from the Lax–Milgram
Lemma (cf. [34], Chap. 1, Thm. 2.2; [24], Chap. 1, Sect. 3.1).

Therefore, we obtain
2Aη̄ε = ϕ̃ϑP t

ME
O
0 P

O
MPO

χ⊥(ϕχ(pqεn− 〈n · ∇〉qε)|O). (5.6)

Combining the above identities, we can arrive to

d
dt

(qε, v̄ε)L2(Ω, R3) = (qε
t , v̄

ε)L2(Ω, R3) + 〈qε, v̄ε
t 〉H1

0 (Ω, R3),H−1(Ω, R3)

= (pqεn − 〈n · ∇〉qε, v̄ε |Γ )L2(Γ, R3) = (pqεn − 〈n · ∇〉qε, KO
t η̄ε)L2(Γ, R3)

=
(
ϕ̃ϑP t

ME
O
0 P

O
MPO

χ⊥(ϕχ(pqεn − 〈n · ∇〉qε)|O), η̄ε
)
L2(Γ, R3)

and, integrating in time over the interval (a, b),

(qε(b), v̄ε(b))H − (qε(a), v̄ε(a))H =
(
ϕ̃ϑP t

ME
O
0 P

O
MPO

χ⊥(ϕχ(pqεn − 〈n · ∇〉qε)|O), η̄ε
)
L2((a, b), L2(Γ, R3))

= (2Aη̄ε, η̄ε)L2((a, b), L2(Γ, R3)) = 2|η̄ε|2G2((a, b), Γ );

so, from qε(b) = − 2
εΠN v̄ε(b), we obtain

2|η̄ε|2G2((a, b), Γ ) + 2
ε |ΠN v̄ε(b)|2H = −(qε(a), v̄ε(a))H . (5.7)

We wish to use the truncated observability inequality (4.15) to estimate the right-hand side of (5.7); to this end,
it will be convenient to choose the pressure function pqε in a suitable way (cf. Sect. 3.2). We choose pqε such
that ς(pqε) :=

∫
Γ
χ2pqε dΓ = 0. Then, using also Lemma 5.5, we observe that PO

χ⊥(ϕχ(pqεn − 〈n · ∇〉qε)|O) =
ϕPO

χ⊥ (χpqεn|O) − ϕχ〈n · ∇〉qε |O = ϕχ(pqεn − 〈n · ∇〉qε)|O, and by the observability inequality (4.15), with
φ(t, x) = ϕ(t)χ(x) and φ̃(t, x) = ϕ̃(t)ϑ(x) for (t, x) ∈ [a, b] × Γ , there exists an integer M such that

|qε(a)|2H ≤ C[|û|W(a, b)|st ]|ϕ̃ϑP
t
ME

O
0 P

O
M (ϕχ(pqεn − ν〈n · ∇〉qε)|O)|2G2((a, b), Γ )′

= C[|û|W(a, b)|st ]|2Aη̄ε|2G2((a, b), Γ )′ . (5.8)

Further, from (5.7), for every α > 0 we can write

4|η̄ε|2G2((a, b), Γ ) + 4
ε |ΠN v̄ε(b)|2H ≤ α|qε(a)|2H + 1

α |v̄
ε(a)|2H ≤ 4αC[|û|W(a, b)|st ]|Aη̄ε|2G2((a, b), Γ )′ + 1

α |v̄
ε(a)|2H

and, setting α =
(
2C[|û|W(a, b)|st ]

)−1

, we obtain

|η̄ε|2G2((a, b), Γ ) + 2
ε |ΠN v̄ε(b)|2H ≤ C[|û|W(a, b)|st ]|v0|2H . (5.9)
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In particular, the family {η̄ε | ε > 0} is bounded in G2((a, b), Γ ), from which it follows the boundedness of the
family {v̄ε | ε > 0} in WH((a, b), H1

div(Ω, R3), H−1(Ω, R3)). Indeed, we notice that the constraint F (v̄ε, η̄ε) =
(0, 0, 0) means that the triple (v, g, ζ) = (v̄ε, 0, KO

t η̄ε) solves (2.7), with v(a) = v0 and then the boundedness
follows from Proposition 5.1 and Theorem 2.11.

Thus, we can find a decreasing sequence εn ↘ 0 such that ηεn ⇀ η0 in G2((a, b), Γ ) and v̄εn ⇀ v0

in WH((a, b), H1
div(Ω, R3), H−1(Ω, R3)). From this, it follows (e.g., from Lemma 4.1) that v̄εn ⇀ v0 in

L2((a, b), H1
div(Ω, R3)), v̄εn

t ⇀ v0
t in L2((a, b), H−1(Ω, R3)), and v̄εn(b) ⇀ v0(b) in H . A standard limiting

argument shows that also (v, g, ζ) = (v0, 0, KO
t η0) solves (2.7), with v(a) = v0. Furthermore, from (5.9),

we have 2|ΠN v̄ε(b)|2H ≤ εC[|û|W(a, b)|st ]|v0|2H → 0 as ε → 0. Now, the fact that ΠN v̄εn(b) ⇀ ΠNv0(b) in

H , implies that |ΠNv0(b)|H ≤ lim infn→+∞ |ΠN v̄εn(b)|H = 0. Analogously, it follows from (5.9) that η = η0

satisfies (5.2): |η0|2G2((a, b), Γ ) ≤ lim infn→+∞ |η̄εn |2G2((a, b), Γ ) ≤ C[|û|W(a, b)|st ]|v0|2H .
It remains to show that the control η may be chosen depending linearly on v0. For that we follow the idea in

the proof of Lemma 3.5 in [5]: let N ∈ N0 and let M be the integer in (5.8); consider the following variation of
Problem 5.6.

Problem 5.7. Given v0 ∈ H , find the minimum of the quadratic functional J∞(v, η) := |η|2G2((a, b), Γ ) subject

to the constraint Ã(v, η) = (v0, 0, 0, 0), in the space X , where
{
Ã : X → Ỹ := ÃX ⊆ Y ×HN

(v, η) �→
(
A(v, η), ΠNv(b)

) .

It follows (using again Lemma A.14 and Remark A.15) that Problem 5.7 has an unique minimizer (v̄, η̄)(v0)
depending linearly on v0. Notice that necessarily |η̄|2G2((a, b), Γ ) ≤ |η0|2G2((a, b), Γ ) ≤ C[|û|W(a, b)|st ]|v0|2H . �

Constancy of the control. Notice that the control ζ = KO
t η = KO

t η̄, given in Theorem 5.3 (and minimizing
Problem 5.7), can be “realized” by an element κ ∈ R2M2

:

KO
t η(t, x) = K̆κ =

M∑
i,j=1

κi,jϕ(t)s̄i(t)χ(x)EO
0 PO

χ⊥(πjn)|x +
M∑

i,j=1

κi,M+jϕ(t)s̄i(t)χ(x)EO
0 τj |x ,

where s̄i (see Sect. 4.3), πj , and τj (see Sect. 2.2) are eigenfunctions and eigenvector fields of the Dirichlet
Laplacean operator in (a, b) and in O. Notice that if K̆ has a nontrivial kernel N (K̆) = {κ ∈ R2M2 | K̆κ = 0},
then κ is not unique but, for given κ ∈ R2M2

we can set the unique κ̆ ∈ R2M2
solving

K̆κ̆ = K̆κ and κ̆ ∈ N (K̆)⊥

where N (K̆)⊥ stands for the orthogonal complement, in R2M2
, of the kernel N (K̆). In this way |κ̆|

R2M2 and
|K̆κ̆|G2

av((a, b), Γ ) are two norms in the finite-dimensional space N (K̆)⊥; it follows that for κ̆(v0) ∈ N (K̆)⊥ with
K̆κ̆(v0) = KO

t η̄(v0), we have |κ̆(v0)|2
R2M2 ≤ C [M ]|KO

t η̄(v0)|2G2
av((a, b), Γ ) ≤ C[N, |û|W(a, b)|st ]|v0|2H .

6. Final remarks

6.1. On further plausible consequences

Departing from a theorem analogous to Theorem 5.2, in [5] it was proven the internal feedback stabilization
to a nonstationary solution for the Navier–Stokes equations. We can conjecture that the analogous result holds
in the boundary control case. Of course, there are details that must be checked that we prefer to address in a
future paper; here, we confine the illustration of applications of the observability inequalities to the examples
in Theorems 5.2 and 5.3.

For applications it is also important to have an estimate, as sharp as possible, for the dimension M of the
feedback stabilizing controller. This study has been started, for the simpler case of the viscous 1D Burgers
equation with internal controls, in [21] where results of some numerical simulations can also be found.



746 S.S. RODRIGUES

Also, Theorem 4.7 is inspired by the work in [29] concerning the randomly forced Navier–Stokes equation
with space-time internal localized noise. From a localized internal observability inequality, analogous to the
boundary inequalities in Theorem 4.7, and using appropriate controls, it was proven in [29] that the Markov
process generated by the restriction of solutions to the instants of time proportional to the period possesses a
unique stationary distribution, which is exponentially mixing. Then we can also conjecture that the analogous
result holds with space-time boundary localized noise, as a consequence of the observability inequalities in
Theorem 4.7. Again, there are details to be checked.

6.2. On some of the regularity assumptions

In Section 2.2 we suppose we are able to apply a control through a subset Γc ⊆ Γ , that is the support of a
given function χ ∈ C∞(Γ, R). Then, we (must) choose an open superset O ⊇ Γc for which we have/know the
existence of the systems of eigenfunctions and eigenvector fields of the Laplace–de Rham operator. This freedom
to choose an auxiliary superset on the support of the controls can be important for applications. Moreover, the
asked smoothness of ∂O may be not necessary; for example if Γc ⊂ R ⊂ Γ where R is an open flat rectangle,
we can find the corresponding systems of smooth eigenfunctions and eigenvector fields. Indeed, identifying

R ∼ [0, s] × [0, r], we find the system of eigenfunctions F =
{

2

(sr)
1
2

sin(n1πz1
s ) sin(n2πz2

r )
∣∣∣∣n = (n1, n2) ∈ N2

0

}
,

and the system of eigenvector fields (F , 0) ∪ (0, F), with (z1, z2) ∈ [0, s]× [0, r] being “the” coordinates in R.
In Section 2, we suppose C∞ regularity for the boundary ∂Ω because we use some results that have been

derived for C∞-smooth Riemannian manifolds, namely results from [1,14,28,31]. The derivation of the necessary
results for less regular boundaries is out of the scope of this work. Anyway, concerning the control space in
Section 5, the C∞-regularity is only needed for the auxiliary subset O ⊆ Γ containing the support Γc of the
admissible boundary controls; away from O ⊆ Γ the C4-regularity is sufficient (to use, in Sect. 3, the results
from [27]).

Appendix

A.1. Laplace–de Rham operator

Familiarity with basic tools from differential geometry is assumed. We refer to [7, 9, 20, 35]. Below, the
nonfamiliar reader may suppose for simplicity that O is flat, say O ⊂ Γ ∩ {(x1, x2, x3) ∈ R3 | x3 = 0}.

Let Ω ⊂ R
3 be a connected bounded domain of class C∞ located locally on one side of its boundary Γ = ∂Ω.

More precisely, we suppose that each point p ∈ Γ has a tubular neighborhood Tp ⊂ R3 that is diffeomorphic to
a cylinder Cp := {(w1, w2, w3) ∈ R3 | (w1)2 + (w2)2 < ρp and |w3|R < εp}, for suitable ρp, εp > 0. That is, we
suppose that there is a bijective mapping Φp as follows:

•
{

Φp : Cp → Tp

(w1, w2, w3) �→
(
w1, w2, Φ0

p(w
1, w2)

)
+ w3nΦ0

p(w1, w2)
;

• both Φp, its inverse Φ−1
p : Tp → Cp, and Φ0

p are of class C∞;
• nΦ0

p(w1, w2) is the unit outward normal vector to Γ at (w1, w2, Φ0
p(w1, w2)) ∈ Γ ;

•
{
Φp(C0

p) = Tp ∩ Γ,
Φp(C−

p ) = Tp ∩Ω
, where

{
C

0
p := {(w1, w2, w3) ∈ Cp | w3 = 0}

C−
p := {(w1, w2, w3) ∈ Cp | w3 < 0}.

n
���

w3

��� Cp

Tp

Γ

Ω

We recall (cf. [27], Rem. A.1) that we may see the open subset Tp ⊂ R3 with its induced Euclidean metric as
the Riemannian manifold (Cp, g) with the following metric tensor g = gijdwi ⊗ dwj .

g =
(
1 +

(
∂Φ0

p

∂w1

)2
)

dw1 ⊗ dw1 + ∂Φ0
p

∂w1
∂Φ0

p

∂w2

(
dw1 ⊗ dw2 + dw2 ⊗ dw1

)
+

(
1 +

(
∂Φ0

p

∂w2

)2
)

dw2 ⊗ dw2 + dw3 ⊗ dw3.

The Euclidean volume element in Tp may then be written as dCp =
(

1 +
(

∂Φ0
p

∂w1

)2

+
(

∂Φ0
p

∂w2

)2
)1

2

dw1 ∧dw2∧dw3.
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Let O ⊆ Γ be a smooth connected two-dimensional manifold, either with or without boundary. The Laplace–
de Rham operator ΔO on O, is defined locally in Tp ∩O by means of compositions of the Hodge star ∗, exterior
derivative d, sharp � and flat � mappings: for a given k-differential form α we put ΔOα := −(∗d ∗ d + d ∗ d∗)α.
ΔO maps k-forms into k-forms. A function f is a 0-form, and it turns out that for functions we have d ∗ f = 0
so ΔOf = −∗d∗df . To compute the Laplacean (Laplace–de Rham) of a vector field v ∈ TO we use in addition
the sharp � and flat � mappings:

ΔOv := (ΔOv�)�. (A.1)
We recall that � maps vector fields into 1-forms, and � maps 1-forms into vector fields: for a vector field
V =

∑3
i=1 V

i ∂
∂wi and a 1-form α =

∑3
i=1 αidwi, we have V � :=

∑3
i,j=1 gijV

idwj and α� :=
∑3

i,j=1 g
ijαi

∂
∂wj ,

where [gij ] stands for the inverse matrix of [gij ]. It turns out that " and # are inverse to each other: (V �)� = V
and (α�)� = α. 2

Eigenfunctions and eigenvector fields

We are interested in functions and vector fields vanishing outside a submanifold O ⊆ Γ . Since we need some
regularity for those functions and vector fields, two cases must be considered: ∂O �= ∅ and ∂O = ∅.
• The case ∂O �= ∅. Consider the Laplace–de Rham operator ΔO:

ΔO : H2(O, Y ) ∩H1
0 (O, Y ) → L2(O, Y )

u �→ ΔOu,
where H1

0 (O, Y ) is the closure of the space of smooth mappings C∞
c (O, Y ), having a compact support contained

in O, in the H1(O, Y )-norm.
For the case of functions and 1-forms, respectively Y = R and Y = T ∗O, it follows that ΔO is an isomorphism

(see e.g. [28], Thm. 3.4.10). See also Section 5.1 of [31], for the particular case of functions.
Notice that we consider that the 1-forms satisfy the (homogeneous) Dirichlet boundary conditions w|∂O = 0,

where the restriction has the same meaning as in [28], i.e., w|∂O : ∪p∈∂O TpΓ → R, (w|∂O)|p (v) := w|p (v), for
any v ∈ TpΓ , p ∈ ∂O. 3

For vector fields, i.e., in the case Y = TO, from (A.1) follows that ΔOV = U if, and only if, ΔOV � = U � and,
then ΔO : H2(O, Y ) ∩H1

0 (O, Y ) → L2(O, Y ) is also a isomorphism in this case. Notice that from well known
properties of the Hodge star, wedge product and interior product mappings (cf. [31] or [26], Sect. 5.7), we can
write ∗(α ∧ ∗β) = −ια� ∗ ∗β = β(α�) = g(β�, α�), from which we conclude that (α, β)L2(O, T∗O) :=

∫
O α ∧ ∗β =∫

O ∗(α ∧ ∗β) dO =
∫
O g(β�, α�) dO =: (α�, β�)L2(O, TO).

Moreover, ΔO is self-adjoint and have compact inverse. We can deduce the existence of a system of eigenvalues
0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . , with λk → +∞, and corresponding eigenforms ΔOζk = λkζk, forming a complete
orthonormal system {ζk | k ∈ N0} in L2(O, Y ). That the first eigenvalue is nonzero follows from the fact that
ΔOw = 0 and w|∂O = 0 imply that 0 = (ΔOw, w)L2(O, Y ) = (dw, dw)L2(ΓO, Y ) + (divw, divw)L2(O, Y ), i.e.,
dw = 0 = divw, where divw := − ∗ d ∗w, and by [28], Theorem 3.4.4, it follows that w = 0, necessarily. In the
case of functions, Y = R, we have also that the first eigenfunction does not change sign in O (see [31], Chap. 5,
Prop. 2.4). The eigenforms are C∞-smooth due to Theorem 3.4.10 of [28].

• The case ∂O = ∅. In this case O is a connected component of Γ . In the boundaryless case we still have the
existence of a system of eigenvalues 0 = λ1 ≤ λ2 ≤ λ3 ≤ . . . , with λk → +∞, and corresponding smooth
eigenforms ζk, with ΔOζk = λkζk, forming a complete orthonormal system {ζk | k ∈ N0} in L2(O, Y ). The
finite-dimensional eigenspace corresponding to the first eigenvalue λ1 = 0, is the space of harmonic forms w,
defined by dw = 0 if w is a function, and by dw = 0 and divw = 0 if w is a 1-form. For more details see
Section 5.8 of [31].

2 In some works the roles of � and � are changed. The Laplace–de Rham operator is defined to have nonnegative eigenvalues; in
Euclidean (flat) domains it coincides with the symmetric of the “usual” Laplacean, ΔO = −Δ, in O.

3 As we see, to define w|∂O , we essentially need w|p to be well defined in TpΓ , for p ∈ ∂O. Notice also that, for some authors,

the terminology “Dirichlet boundary conditions”, for 1-forms, stand for different boundary conditions as in Section 5.9 of [31]; the
meaning we use here coincides, in the Euclidean case, to say that of all coordinate components of the 1-form w must vanish.
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A.2. On Interpolation and fractional Sobolev-Bochner spaces

Here we recall some results on Interpolation, mainly from [23]. Given a Banach space X , the norm of the
Sobolev-like space Hs((a, b), X) can be defined by means of the Fourier transform. First Hs((a, b), X) can
be defined as Hs((a, b), X) := {ũ|(a, b) | ũ ∈ Hs(R, X)}; and the Fourier transform, in the (time) variable

t ∈ (a, b), of ũ is defined by Ft(ũ)(τ) := (2π)−
1
2
∫

R
e−iτrũ(r) dr. Then, the space Hs(R, X) is endowed with the

norm
|ũ|Hs(R, X) := |(1 + |τ |2) s

2Ft(ũ)|L2(R, X), (A.2)

and the space Hs((a, b), X) with the (quotient) norm

|u|Hs((a, b), X) := inf
Fs

{
|Fsu|Hs(R, X)

∣∣∣Fsu|(a, b) = u
}
, (A.3)

where Fs runs over L(Hs((a, b), X) → Hs(R, X)) (cf. [23], Chap. 1, Sects. 7.1 and 9.1).

Remark A.1. Let m ∈ N0. Then, a continuous extension F̂m : Hm((a, b), X) → Hm(R, X), u �→ F̂mu can be
constructed from a standard procedure; for example, for l = b− a > 0, we can define the function ū as follows:{
ū(a− t) :=

∑m
i=1 λiu

(
a + t

i

)
, if t ∈ (0, l)

ū(t) := u(t), if t ∈ (a, b). Similarly we can construct an extension to (b, b+ l), and we arrive

to an extension û to (a− l, b+ l). Now we may multiply by a C∞-smooth function φ supported in
[
a− l

2 , b + l
2

]
and taking the value 1 in [a, b]. Then, the obtained extension u �→ F̂mu := φû satisfies

F̂m ∈ L(Hj((a, b), X) → Hj(R, X)), for all j ∈ N, j ≤ m,

if the constants λi (i ∈ {1, 2, . . . , m}) solve the system 1 =
∑m

i=1(−1)k−1 λi

ik−1 , k = 1, 2, . . . , m (cf. [15],
Sect. 2.1; see also [23], Chap. 1, Sect. 8.1).

Remark A.2. Notice that the extension ū in Remark A.1 is well defined for functions in L2((a, b), X), indeed
we can suppose that u(a + t) is defined for all t ∈ (0, l) \ N where N is a set of measure zero. Then ū(a− t) is
defined for all t ∈ (0, l) \ ∪m

i=1iN , that is, ū(a− t) is well defined for a.e. t ∈ (0, l).

Definition A.3. A pair of Hilbert spaces (X, Y ) is said an interpolation pair if X ⊆ Y , and the inclusion is
dense and continuous4.

Theorem A.4 (Interpolation Theorem). Let us be given two interpolation pairs (X, Y ) and (X1, Y1). If L is
a linear and continuous operator both from X into Y and from X1 into Y1, then it is also linear and continuous
from [X, Y ]θ into [X1, Y1]θ, 0 < θ < 1. Moreover |L|L([X, Y ]θ→[X1, Y1]θ) ≤ C max{|L|L(X→X1), |L|L(Y →Y1)}.

This theorem can be found in [23], Chapter 1, Theorem 5.1. The estimate follows from the last equation in
the proof of the theorem and from Remark 4.2 in the same chapter.

Remark A.5. From Chapter 1, Theorem 4.2 of [23], for 0 < θ < 1, we have the following trace characterization:
[X, Y ]θ = {f(0) | Ftf ∈ L2(R, X) and |τ |(2θ)−1Ftf ∈ L2(R, Y )}. This characterization is used in [18] as
definition of the interpolation space.

Lemma A.6. Let s1 ≥ s2 and let (X, Y ) be an interpolation pair. It follows that (Hs1(I, X), Hs2(I, Y )) is
also an interpolation pair and that [Hs1(I, X), Hs2(I, Y )]θ = H(1−θ)s1+θs2(I, [X, Y ]θ).

4 In the Literature we can find more general definitions for interpolation pair.
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Proof. Though a bit long, the proof of the fact that (Hs1(I, X), Hs2(I, Y )) is an interpolation pair is straight-
forward; we skip it. To prove the interpolation identity we can follow ([23], Chap. 1, Sect. 2.1): first we
notice that we can identify X with the domain of a suitable auto-adjoint, positive and unbounded opera-
tor Λ : X → Y ; then we can make use of the operator Ftu �→ Λ̂Ftu := (1 + |τ |2)s1−s2ΛFtu, defined in
Hs2(I, Y ), to prove the identity [Hs1(R, X), Hs2(R, Y )]θ = H(1−θ)s1+θs2(R, [X, Y ]θ); the analogous iden-
tity for a given interval I will follow by a restriction and interpolation argument. Notice that we can iden-
tify [Hs1(R, X), Hs2(R, Y )]θ with F−1

t D(Λ̂1−θ), and from Λ̂1−θ = (1 + |τ |2)(s1−s2)(1−θ)Λ1−θ we have that
D(Λ̂1−θ) = {Ftu ∈ L2(R, Y ) | (1 + |τ |2)s2+(1−θ)(s1−s2)Λ1−θFtu ∈ L2(R, Y )}, from which it follows that
F−1

t D(Λ̂1−θ) = H(1−θ)s1+θs2(R, D(Λ1−θ)). Finally, from the identity D(Λ1−θ) = [X, Y ]θ, we can conclude that
[Hs1(R, X), Hs2(R, Y )]θ = H(1−θ)s1+θs2(R, [X, Y ]θ). �

Remark A.7. The identity [Hs1(I, X), Hs2(I, Y )]θ = H(1−θ)s1+θs2(I, [X, Y ]θ) can be found in [23], Chap-
ter 1, Section 9.4. However, to be coherent with our definition of interpolation space –and with the setting in
([23], Chap. 1, Sect. 2.1)– we need to impose the condition s1 ≥ s2. Just to give an idea, set I = (0, 1); then for
any x̄ ∈ X ⊆ Y , we have that the function t �→ t

1
2 x̄ is in H0(I, X) \H1(I, Y ). That is, (H0(I, X), H1(I, Y ))

is not an interpolation pair.

A.3. Proofs of Propositions 2.4 and 2.5

Lemma A.8. Given v ∈ Gs
n((a, b), Γ ), we have that

∫
Γ
v dΓ ∈ Hrn,1(s)((a, b), R). Moreover, the mapping

IΓ : v �→
∫

Γ
v dΓ is in L(Gs

n((a, b), Γ ) → Hrn,1(s)((a, b), R)).

Proof. For a given u ∈ Gs
n(R, Γ ), we find that

|IΓu|2Hrn,1(s)(R, R)
=

∫
R

(1 + |τ |2)rn,1(s)|FtIΓu(τ)|2
R

dτ =
∫

R

(1 + |τ |2)rn,1(s)

∣∣∣∣∫
Γ

Ftu(τ, x) dΓ
∣∣∣∣2
R

dτ

=
∫

R

(1 + |τ |2)rn,1(s)
∣∣∣〈Ftu(τ, x), 1Γ 〉Hrn,2(s)(Γ, R), H−rn,2(s)(Γ, R)

∣∣∣2
R

dτ

≤
∫

R

(1 + |τ |2)rn,1(s)|Ftu(τ, x)|2
Hrn,2(s)(Γ, R)

|1Γ |2H−rn,2(s)(Γ, R)
dτ

= |1Γ |2H−rn,2(s)(Γ, R)
|u|2

Hrn,1(s)(R, Hrn,2(s)(Γ, R))
≤ |1Γ |2H−rn,2(s)(Γ, R)

|u|2Gs
n(R, Γ ).

Now, we observe that Gs
n((a, b), Γ ) = Gs

n(R, Γ )|(a, b), and
∫

Γ u|(a, b) dΓ =
(∫

Γ u dΓ
)
|(a, b), for each

u ∈ Gs
n(R, Γ ); therefore,

∫
Γ
Gs

n((a, b), Γ ) dΓ =
∫

Γ
Gs

n(R, Γ )|(a, b) dΓ =
(∫

Γ
Gs

n(R, Γ ) dΓ
)
|(a, b) ⊆

Hrn,1(s)((a, b), R). The linearity of the mapping IΓ is clear. Now, we observe that the extension F̂1 constructed
in Remark A.1, satisfies F̂1 ∈ L(Hρ((a, b), X) → Hρ(R, X)) for all 0 ≤ ρ ≤ 1, and any Banach space X (e.g.,
we can use a suitable interpolation argument, with Thm. A.4 and Lem. A.6). Then, since 0 ≤ rn,1(s) ≤ 1,
we can write |IΓ v|2Hrn,1(s)((a, b), R)

= infF |IΓFv|2
Hrn,1(s)(R, R)

≤ |1Γ |2H−rn,2(s)(Γ, R)
|F̂1v|2Gs

n(R, Γ ) ≤ C|v|2Gs
n((a, b), Γ ),

where F runs over L(Hrn,1(s)((a, b), R), Hrn,1(s)(R, R)). �

Proof of Proposition 2.4. Given u ∈ Gs
n((a, b), Γ ) we write u = (u − κu) + κu, with κu = 1∫

Γ
dΓ

∫
Γ
u dΓ .

By Lemma A.8, we have that κu ∈ Hrn,1(s)((a, b), R); we also observe that κu is independent of x ∈ Γ ,
κu(t, x) = κu(t) for all (t, x) ∈ (a, b) × Γ , thus

|κu|2Hr1 ((a, b), Hr2 (Γ, R)) = inf
Ē

∫
R

(1 + |τ |2)r1 |Ft(Ēκu)(τ, x)|2Hr2 (Γ, R) dτ

≤ inf
E

∫
R

(1 + |τ |2)r1 |Ft(Eκu)(τ)|2Hr2 (Γ, R) dτ = inf
E

∫
R

(1 + |τ |2)r1 |Ft(Eκu)(τ)|2
R
|1Γ |2Hr2 (Γ, R) dτ

= |1Γ |2Hr2 (Γ, R)|κu|2Hr1 ((a, b), R),
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where Ē runs over all continuous extensions Hr1((a, b), Hr2(Γ, R)) → Hr1(R, Hr2(Γ, R)), and E runs over
all continuous extensions Hr1((a, b), R) → Hr1(R, R). Now, setting (r1, r2) = (0, s − 1

2 ), from 0 < rn,1(s)
we can conclude that κu ∈ L2((a, b), Hs− 1

2 (Γ, R)), and setting (r1, r2) = (rn,1(s), rn,2(s)) we obtain
κu ∈ Hrn,1(s)((a, b), Hrn,2(s)(Γ, R)); it follows that κu ∈ Gs

n((a, b), Γ ) and u − κu ∈ Gs
n, av((a, b), Γ ).

Therefore, we have that Gs((a, b), Γ ) = Gs
av((a, b), Γ ) ⊕ Hrn,1(s)((a, b), R)n. Notice that Gs

av((a, b), Γ ) ∩
Hrn,1(s)((a, b), R)n = {0}, because for each v in the intersection, we have v = κn with κ ∈ Hrn,1(s)((a, b), R),
and 0 =

∫
Γ v · n dΓ , which implies 0 = κ

∫
Γ dΓ , i.e., κ = 0. From the proof of Lemma A.8, we can also

conclude the continuity of the projection u �→ κu in Gs
n((a, b), Γ ). Thus, since v �→ v · n is continuous from

Gs((a, b), Γ ) onto Gs
n((a, b), Γ ), it follows also the continuity of v �→ πvn from Gs((a, b), Γ ) onto itself, where

πv := 1∫
Γ

dΓ

∫
Γ
v · n dΓ . �

Proof of Proposition 2.5. Clearly Ee
s extends Es, that is, Ee

su = Esu for all u ∈ Gs
av((a, b), Γ ); the linearity

also follows straightforwardly. Notice that W ((a, b), Hs
div(Ω, R

3), Hs−2(Ω, R
3)) ∩Hrn,1(s)((a, b), R)Θ = {0},

because for each w in the intersection, we have w = κΘ, with κ ∈ Hrn,1(s)((a, b), R) and divw = 0,
from which we obtain 0 = div(κΘ) = κ

( ∫
Γ

dΓ∫
Ω

dΩ

)
, i.e., κ = 0. Next, for simplicity we denote Ss :=

W ((a, b), Hs
div(Ω, R3), Hs−2(Ω, R3)) ⊕Hrn,1(s)((a, b), R)Θ, and we find

|Ee
su|Ss ≤ |Esuav|Ss + |πuΘ|Ss = |Esuav|W ((a, b), Hs

div(Ω, R3), Hs−2(Ω, R3)) + |πuΘ|Hrn,1(s)((a, b), R)Θ

≤ C|uav|Gs
av((a, b), Γ ) + |πu|Hrn,1(s)((a, b), R)

and, from Proposition 2.4, we obtain |Ee
su|Ss ≤ C1|u|Gs((a, b), Γ ).

It remains to prove the continuity of the trace. We know that the trace mapping is continuous from
W ((a, b), Hs

div(Ω, R3), Hs−2(Ω, R3)) onto Gs
av((a, b), Γ ) ⊂ Gs((a, b), Γ ) and, on the other hand, we also

have that |κΘ|Γ |Gs((a, b), Γ ) = |κn|Gs((a, b), Γ ) = |κ|Gs
n((a, b), Γ ) ≤ C|κ|Hrn,1(s)((a, b), R) = C|κΘ|Hrn,1(s)((a, b), R)Θ.

Therefore the continuity of the trace v �→ v|Γ = vdiv |Γ + κΘ|Γ follows from the continuity of the projections
v �→ vdiv ∈ W ((a, b), Hs

div(Ω, R3), Hs−2(Ω, R3)) and v �→ κΘ ∈ Hrn,1(s)((a, b), R)Θ (cf. Lem. 5.4). �

A.4. Proof of Proposition 3.10

The proof will follow from a reiteration-like argument. We start with the following auxiliary result:

Lemma A.9. Let v ∈ Hk((a, b), Hj(Γ, Z)), with {k, j} ∈ {0, 1} × {−2, −1, 0, 1, 2}, where Z is either R or
TΓ . Let also ψ ∈ C1([a, b], C2(Γ, R)). Then Ψ : v �→ ψv maps Hk((a, b), Hj(Γ, Z)) into itself, and we have
the estimate |ψv|Hk((a, b), Hj(Γ, Z)) ≤ C|ψ|C1([a, b], C2(Γ, R))|v|Hk((a, b), Hj(Γ, Z)).

Proof. If j is nonnegative, it is straightforward to check that ψv ∈ Hk((a, b), Hj(Γ, Z)) and to find the estimate
|ψv|Hk((a, b), Hj(Γ, Z)) ≤ C|ψ|Ck([a, b], Cj(Γ, R))|v|Hk((a, b), Hj(Γ, Z)). In the case j < 0, we recall that, for each t ∈
(a, b) and each ξ ∈ C−j(Γ, R), we have 〈ξv(t), ·〉Hj(Γ, Z), H−j(Γ, Z) := 〈v(t), ξ·〉Hj (Γ, Z), H−j(Γ, Z) and that, for k ∈
{0, 1}, we may write |ψv|Hk((a, b), Hj(Γ, Z)) = |ψv|L2((a, b), Hj(Γ, Z)) + |k∂t(ψv)|L2((a, b), Hj(Γ, Z)). Then, we obtain
|ψv|Hk((a, b), Hj(Γ, Z)) ≤ C|ψ|Ck([a, b], C−j(Γ, R))|v|L2((a, b), Hj(Γ, Z)) + C|ψ|C0([a, b], C−j(Γ, R))|k∂tv|L2((a, b), Hj(Γ, Z)),
from which we derive |ψv|Hk((a, b), Hj(Γ, Z)) ≤ C|ψ|C1([a, b], C2(Γ, R))|v|Hk((a, b), Hj(Γ, Z)). �

Now, from Lemma A.6, we observe that

L2((a, b), H
3
2 (Γ, Z)) = [L2((a, b), H2(Γ, Z)), L2((a, b), L2(Γ, Z))] 1

4
,

H1((a, b), H− 1
2 (Γ, R)) = [H1((a, b), L2(Γ, R)), H1((a, b), H−1(Γ, R))] 1

2
,

H
3
4 ((a, b), L2(Γ, TΓ )) = [H1((a, b), L2(Γ, TΓ )), L2((a, b), L2(Γ, TΓ ))] 1

4
,

from which, using the Interpolation Theorem and Lemma A.9, we can conclude that Proposition 3.10 holds for
i = 2. Indeed, we obtain that Ψ : v �→ ψv maps L2((a, b), H

3
2 (Γ, Z)) into itself, and that, for a suitable constant



BOUNDARY OBSERVABILITY INEQUALITIES FOR THE 3D OSEEN–STOKES SYSTEM AND APPLICATIONS 751

C > 0, |Ψ |L(L2((a, b), H
3
2 (Γ, Z))→L2((a, b), H

3
2 (Γ, Z)))

≤ C maxS∈{L2((a, b), H2(Γ, Z)), L2((a, b), L2(Γ, Z))}
{
|Ψ |L(S→S)

}
,

that is, |ψv|
L2((a, b), H

3
2 (Γ, Z))

≤ C1|ψ|C1([a, b], C2(Γ, R))|v|L2((a, b), H
3
2 (Γ, Z))

. By a similar reasoning we can obtain

similar estimates |ψv|S ≤ C|ψ|C1([a, b], C2(Γ, R))|v|S , where S is either the space H1((a, b), H− 1
2 (Γ, R)) or the

space H
3
4 ((a, b), L2(Γ, TΓ )). These estimates imply that

|ψv|G2((a, b), Γ ) ≤ C|ψ|C1([a, b], C2(Γ, R))|v|G2((a, b), Γ ). (A.4)

Analogously, we can derive that

L2((a, b), H
1
2 (Γ, Z)) = [L2((a, b), H1(Γ, Z)), L2((a, b), L2(Γ, Z))] 1

2
,

H
3
4 ((a, b), H−1(Γ, R)) = [H1((a, b), H−1(Γ, R)), L2((a, b), H−1(Γ, R))] 1

4
,

H
1
2 ((a, b), H− 1

2 (Γ, TΓ )) = [H1((a, b), L2(Γ, TΓ )), L2((a, b), H−1(Γ, TΓ ))] 1
2

and, arguing as above, we can conclude that |ψv|S ≤ C|ψ|C1([a, b], C2(Γ, R))|v|S , where S stands is either for
L2((a, b), H

1
2 (Γ, Z)), for H

3
4 ((a, b), H−1(Γ, R)), or for H

1
2 ((a, b), H− 1

2 (Γ, TΓ )); which allow us to conclude
that

|ψv|G1((a, b), Γ ) ≤ C|ψ|C1([a, b], C2(Γ, R))|v|G1((a, b), Γ ). (A.5)

From (A.4) and (A.5), it follows the statement of Proposition 3.10. �

A.5. Proof of Proposition 2.17

Lemma A.10. Let r ≥ 0 and 0 ≤ s ≤ 2, then KO : η �→ KOη := χEO
0 PO

χ⊥P
O
M (ϑη|O) maps Hr(R, Hs(Γ, R3))

into itself, linearly and continuously.

Proof. We find

|KOη|2Hr(R, Hs(Γ, R3)) =
∫

R

(1 + |τ |2)r|FtK
Oη(τ, ·)|2Hs(Γ, R3) dτ

=
∫

R

(1 + |τ |2)r|FtχE
O
0 P

O
χ⊥P

O
M (ϑη|O (τ, ·))|2Hs(Γ, R3) dτ. (A.6)

Using analogous arguments as in Section A.4 we can derive that

|FtχE
O
0 P

O
χ⊥P

O
M (ϑη|O (τ, ·))|2Hs(Γ, R3) = |χE

O
0 P

O
χ⊥P

O
M (ϑFtη|O (τ, ·))|2Hs(Γ, R3)

= |EO
0 χ|O PO

χ⊥P
O
M (ϑFtη|O (τ, ·))|2Hs(Γ, R3) ≤

∣∣∣χ|O PO
χ⊥P

O
M (ϑFtη|O (τ, ·))

∣∣∣2
Hs(O, R3)

≤ 2|χ|2C2(Γ, R)

(
|PO

M (ϑFtη|O (τ, ·))|2Hs(O, R3) +
∣∣∣∣ (PO

M (ϑFtη|O(τ, ·)), χn)L2(O, R3)∫
O χ2dO χn

∣∣∣∣2
Hs(O, R3)

)
≤ C

(
|PO

M (ϑFtη|O (τ, ·))|2Hs(O, R3) + |PO
M (ϑFtη|O (τ, ·))|2L2(O, R3)

)
≤ C1|PO

M (ϑFtη|O (τ, ·))|2Hs(O, R3).

Further using some interpolation arguments, we have that D
(
Δ

s
2
O
)

⊆ Hs(O, R3) is a continuous inclusion,

where D
(
Δ

s
2
O
)

is the fractional domain of the (Dirichlet) Laplacean, defined in (4.10). In particular, using the

orthogonality of the eigenfunctions πi and eigenvector fields τi in D
(
Δ

s
2
O
)
, we can write

|FtχE
O
0 P

O
χ⊥P

O
M (ϑη|O (τ, ·))|2Hs(Γ, R3) ≤ C2|PO

M (ϑFtη|O (τ, ·))|2
D

(
Δ

s
2
O

) ≤ C2|ϑFtη|O (τ, ·))|2
D

(
Δ

s
2
O

) .
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Again, by interpolation arguments, we can also derive that z �→ ϑz |O maps Hs(Γ, R3) into D
(
Δ

s
2
O
)

continuously,

from which it follows |FtχEO
0 P

O
χ⊥P

O
M (ϑη|O (τ, ·))|2Hs(Γ, R3) ≤ C3|Ftη(τ, ·))|2Hs(Γ, R3) and, from (A.6), we can

arrive to |KOη|2Hr(R, Hs(Γ, R3)) ≤ C3|η|2Hr(R, Hs(Γ, R3)). �

Lemma A.11. If r ≥ 0 and −1 ≤ s < 0, there is a constant C > 0 such that, for any η ∈ Hr(R, L2(Γ, R3)),
we have |KOη|2Hr(R, Hs(Γ, R3)) ≤ C|η|2Hr(R, Hs(Γ, R3)).

Proof. We just notice that, for ξ ∈ H−s(Γ, R3),

〈FtK
Oη, ξ〉Hs(Γ, R3), H−s(Γ, R3) = (FtK

Oη, ξ)L2(Γ, R3) = (Ftη, ϑE
O
0 P

O
MPO

χ⊥(χξ |O))L2(Γ, R3)

= 〈Ftη, ϑE
O
0 P

O
MPO

χ⊥(χξ |O)〉Hs(Γ, R3), H−s(Γ, R3)

and, using an argument similar to that in the proof of Lemma A.10, we have |ϑEO
0 P

O
MPO

χ⊥(χξ |O)|2H−s(Γ, R3) ≤
C|PO

MPO
χ⊥(χξ |O)|2H−s(O, R3) ≤ C1|PO

M

(
χξ |O − (

(χξ|O, χn)L2(O, R3)∫
O χ2dO )χn

)
|2
D(Δ

s
2
O)

≤ C2|ξ|2H−s(Γ, R3). It follows that

|FtK
Oη|2Hs(Γ, R3) ≤ C2|Ftη|2Hs(Γ, R3), and |KOη|2Hr(R, Hs(Γ, R3)) ≤ C2|η|2Hr(R, Hs(Γ, R3)). �

Next, we show that from Lemmas A.10 and A.11 we can derive that KO ∈ L(Gi(R, Γ ) → Gi
av(R, Γ )),

i ∈ {1, 2}. Indeed, for given η ∈ Gi(R, Γ ), we find

|KOη|2Gi
av(R, Γ ) = |KOη|2

L2(R, Hi− 1
2 (Γ, R3))

+ |n ·KOη|2
Hrn,1(i)(R, H

rn,2(i)
av (Γ, R))

+ |KOη − (n ·KOη)n|2
Hrt,1(i)(R, Hrt,2(i)(Γ, TΓ ))

; (A.7)

and from the identities

n ·KOη = n · χE
O
0

M∑
i=1

(πin, ϑη|O)L2(O, R3)P
O
χ⊥(πin)

= n · χE
O
0

M∑
i=1

(πin, ϑ(n · η)n|O)L2(O, R3)P
O
χ⊥(πin) = n ·KO((n · η)n); (A.8)

KOη − (n ·KOη)n = KO(η − (n · η)n + (n · η)n) − (n ·KO((n · η)n))n

= KO(η − (n · η)n) + KO((n · η)n) − (n ·KO((n · η)n))n = KO(η − (n · η)n); (A.9)

it follows that |KOη|2Gi
av(R, Γ ) ≤ |KOη|2

L2(R, Hi− 1
2 (Γ, R3))

+ C|n|2C1(Γ, R3)|KO((n · η)n)|2
Hrn,1(i)(R, Hrn,2(i)(Γ, R3))

+

|KO(η − (n · η)n)|2
Hrt,1(i)(R, Hrt,2(i)(Γ, TΓ ))

. Using appropriately Lemmas A.10 and A.11 we obtain

|KOη|2Gi
av(R, Γ ) ≤ C1|η|2

L2(R, Hi− 1
2 (Γ, R3))

+ C1|(n · η)n|2
Hrn,1(i)(R, Hrn,2(i)(Γ, R3))

+ C1|η − (n · η)n|2
Hrt,1(i)(R, Hrt,2(i)(Γ, TΓ ))

≤ C2|η|2Gi(R, Γ )

and we can conclude that Proposition 2.17 holds with R in the role of (a, b).
Finally, using the idea in Remark A.1 (cf. proof of Lem. A.8), we notice that we can construct an extension

F ∈ L(Gi((a, b), Γ ) → Gi(R, Γ )) ∩ L(Gi
av((a, b), Γ ) → Gi

av(R, Γ )). Moreover we will have FKO = KOF ,
roughly speaking, because KO does not depend on the time variable, while F depends essentially on the time
variable. Then we obtain

|KOη|2Gi
av((a, b), Γ ) ≤ inf

E∈L(Gi
av((a, b), Γ )→Gi

av(R, Γ ))
|EKOη|2Gi

av(R, Γ ) ≤ |FKOη|2Gi
av(R, Γ )

= |KOFη|2Gi
av(R, Γ ) ≤ C2|Fη|2Gi(R, Γ ) ≤ C3|η|2Gi((a, b), Γ ),

which proves the Proposition 2.17. �
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A.6. On the definitions of the Sobolev spaces on the boundary

We can see the space Hs(Γ, R) (s > 0) as the space of traces on Γ of the functions in Hs+ 1
2 (Ω, R) (see for

example [24], Chap. 2, Sect. 5). Alternatively, say for s ∈ [0, 2], we can identify Hs(Γ, R) with the domain, in
L2(Γ, R), of the domain of Laplace–de Rham operator ΔΓ on the manifold Γ , that is,

Hs(Γ, R) = D
(
(1 + ΔΓ )

s
2
)

=
[
D

(
(1 + ΔΓ )1

)
, D

(
(1 + ΔΓ )0

)]
1− s

2
;

see for example [10]. The space Hs(Γ, R) can be endowed with the norm

|f |Hs(Γ, R) =
∣∣(1 + ΔΓ )

s
2
∣∣
L2(Γ, R)

; (A.10)

and the Sobolev space Hs(O, R) can be identified with Hs(Γ, R)|O, and endowed with the (quotient) norm
|g|Hs(O, R) := inff|O=g |f |L2(Γ, R); see also the discussion in Section A.2.

We can also define the Sobolev spaces by means of the Levi-Civita connection (covariant derivative), as
in [1, 10], or using an atlas of Γ and a partition of unity argument, as in [31].

For compact manifolds, either with or without boundary, all these definitions are essentially equivalent. For
the equivalence of the covariant derivative and domains of fractional powers of (1 + ΔΓ ) approaches we refer
to [10]. For the equivalence of the atlas and domains of fractional powers of (1 + ΔΓ ) (i.e., interpolation)
approaches we refer to [31], Chapter 4, Section 3.

A.7. Proof of Proposition 4.5

From Section 2.1 we have that G1((a, b), Γ ) ⊆ L2((a, b), H
1
2 (Γ, R

3))∩H 1
2 ((a, b), H−1(Γ, R

3)) continuously.
Then, Proposition 4.5 will follow from:

Lemma A.12. Let r1, r2 ≥ 0 and s1, s2 ∈ R be real numbers. Let I be any open interval I ⊆ R (either bounded
or not), then the inclusion Hr1(I, Hs1(Γ, R3)) ∩Hr2(I, Hs2(Γ, R3)) ⊆ H

r1+r2
2

(
I, H

s1+s2
2 (Γ, R3)

)
holds and

is continuous.

Proof. We may suppose that Γ is a connected manifold; if that is not the case, then it is a disjoint union of such
manifolds and the Sobolev spaces in Γ will be just the Cartesian product of the corresponding spaces in each
connected component. We will use the characterization (A.10) (recalling that is is meaningful also for negative
values of s; see also the discussion in [23]). Consider the Laplace–de Rham operator (cf. (4.10)),

ΔΓ : u = (u · n)n + ut �→ (ΔΓ (u · n))n + ΔΓut.

Notice that 1 + ΔΓ , is a symmetric operator, in L2(Γ, R
3), and the same holds for its (fractional) powers,

u =
∑

i∈N0
ui
nπin +

∑
i∈N0

ui
tτi �→ (1 + ΔΓ )su =

∑
i∈N0

ui
n(1 + βi)sπin +

∑
i∈N0

ui
t(1 + γi)sτi. where βi and

γi are the eigenvalues associated with the smooth eigenfunction πi and smooth eigenvector field τi of ΔΓ ,
respectively. For s ≥ 0 we have the characterization

Hs(Γ, R
3) =

{
u ∈ L2(Γ, R

3)

∣∣∣∣∣∑
i∈N0

(ui
n)2(1 + βi)2s + (ui

t)
2(1 + γi)2s < +∞

}
(A.11)

and H−s(Γ, R3) is the completion of L2(Γ, R3) in the norm
(∑

i∈N0
(ui

n)2(1 + βi)−2s + (ui
t)

2(1 + γi)−2s
) 1

2 . From

|u|2
H

r1+r2
2

(
R, H

s1+s2
2 (Γ, R3)

) =
∫

R

(1 + |τ |2)
r1+r2

2 |(1 + ΔΓ )
s1+s2

4 Ftu(τ, x)|2L2(Γ, R3) dτ

≤
2∏

i=1

(∫
R

(1 + |τ |2)ri |(1 + ΔΓ )
si
2 Ftu(τ, x)|2L2(Γ, R3) dτ

) 1
2

= |u|Hr1 (R, Hs1 (Γ, R3))|u|Hr2 (R, Hs2 (Γ, R3))

≤ 1
2

(
|u|2Hr1 (R, Hs1 (Γ, R3)) + |u|2Hr2 (R, Hs2 (Γ, R3))

)
= 1

2 |u|
2
Hr1 (R, Hs1 (Γ, R3))∩Hr2(R, Hs2 (Γ, R3)),
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we conclude that the Lemma holds with I = R. If the interval I is strictly contained in R, we also find

H
r1+r2

2

(
I, H

s1+s2
2 (Γ, R

3)
)

= H
r1+r2

2

(
R, H

s1+s2
2 (Γ, R

3)
)∣∣∣

I

⊇
(
Hr1(R, Hs1(Γ, R

3)) ∩Hr2(R, Hs2(Γ, R
3))

)
|I = Hr1(I, Hs1(Γ, R

3)) ∩Hr2(I, Hs2(Γ, R
3)).

Now (proceeding e.g. as in Remark A.1), setting m ∈ N0 such that m ≥ max{r1, r2}, we can find an extension
F̂m in the intersection ⋂

(ρ1, ρ2)∈
{
(r1, s1), (r2, s2),

(r1+r2, s1+s2)
2

} L(Hρ1(I, Hρ2(Γ, R
3)) → Hρ1(R, Hρ2(Γ, R

3)))

(cf. proof of Lem. A.8). Thus,

|u|2
H

r1+r2
2

(
I, H

s1+s2
2 (Γ, R3)

) := inf
E

|Eu|2
H

r1+r2
2

(
R, H

s1+s2
2 (Γ, R3)

) ≤ |F̂mu|2
H

r1+r2
2

(
R, H

s1+s2
2 (Γ, R3)

)
≤ 1

2 |F̂mu|2Hr1 (R, Hs1 (Γ, R3))∩Hr2 (R, Hs2 (Γ, R3)) ≤ C|u|2Hr1 (I, Hs1 (Γ, R3))∩Hr2 (I, Hs2 (Γ, R3)),

with E running over L
(
H

r1+r2
2

(
I, H

s1+s2
2 (Γ, R3)

)
→ H

r1+r2
2

(
R, H

s1+s2
2 (Γ, R3)

))
. �

A.8. Proof of Proposition 4.6

Let {xj | j ∈ N0} be an orthonormed basis in X ; then F := {s̄nxj | (j, n) ∈ N2
0} is an orthonormed basis in

L2((a, b), X): that F is orthonormed follows from
∫ b

a (s̄nxj , s̄mxi)X dt = (xj , xi)X

∫ b

a s̄ns̄m dt = δ
(i, m)
(j, n) , where

δp2
p1

is the Kronecker delta: δp2
p1

=
{

1, if p1 = p2

0, if p1 �= p2
. On the other side given f ∈ L2((a, b), X) orthogonal to all the

elements of F , we find that 0 =
∫ b

a
s̄n(f, xj)X dt, and that

∫ b

a
|(f, xj)X |2

R
dt ≤

∫ b

a
|f |2X |xj |2X dt =

∫ b

a
|f |2X dt <

+∞, which allow us to conclude that for all j ∈ N0, (f(t), xj)X = 0 for a.e. t ∈ (a, b); which in turn implies that
f(t) = 0 for a.e. t ∈ (a, b), that is, f = 0. Recall that the union of a sequence of sets with Lebesgue measure
zero is still a set of Lebesgue measure zero, see ([30], Chap. 13, Sect. 2) and ([36], Sect. 2.2).

Since L2((a, b), X) is complete, and an orthogonal basis is inconditional, we can write
(∫ b

a
s̄n(t)f(t) dt

)
s̄n =

limk→+∞
∑k

j=1

(∫ b

a
(s̄n(t)xj , f(t))X dt

)
s̄nxj , and f = limM→+∞

∑M
n=1

(∫ b

a
s̄n(t)f(t) dt

)
s̄n. Furthermore,

|f |2L2((a, b), X) =
∑

n, j∈N0

(f, s̄nxj)2L2((a, b), X) =
∑

n∈N0

∑
j∈N0

(∫ b

a

(s̄n(t)xj , f(t))X dt

)2

=
∑

n∈N0

∣∣∣∣∣
(∫ b

a

s̄n(t)f(t) dt

)
s̄n

∣∣∣∣∣
2

L2((a, b), X)

=
∑

n∈N0

∣∣∣∣∣
∫ b

a

s̄n(t)f(t) dt

∣∣∣∣∣
2

X

, for f ∈ L2((a, b), X);

|f |2H1
0((a, b), X) =

∣∣∣∣∣ ∑
n∈N0

(∫ b

a

s̄n(τ)f(τ) dτ

)
s̄n

∣∣∣∣∣
2

L2((a, b), X)

+

∣∣∣∣∣ ∑
n∈N0

(∫ b

a

s̄n(τ)f(τ) dτ

)
∂ts̄n

∣∣∣∣∣
2

L2((a, b), X)

=
∑

n∈N0

(1 + λn)

∣∣∣∣∣
∫ b

a

s̄n(τ)f(τ) dτ

∣∣∣∣∣
2

X

, for f ∈ H1
0 ((a, b), X).

Notice that we have (s̄m, s̄n)L2((a, b), R) = δm
n and (∂ts̄m, ∂ts̄n)L2((a, b), R) = (−∂t∂ts̄m, s̄n)L2((a, b), R) = δm

n λm.
We can also find

|P t
Mf |2L2((a, b), X) =

M∑
n=1

∣∣∣∣∣
∫ b

a

s̄n(t)f(t) dt

∣∣∣∣∣
2

X

; |P t
Mf |2H1

0 ((a, b), X) =
M∑

n=1

(1 + λn)

∣∣∣∣∣
∫ b

a

s̄n(τ)f(τ) dτ

∣∣∣∣∣
2

X

.
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Now, it is straightforward to check that P t
M is an orthogonal projection both in L2((a, b), X) and in

H1
0 ((a, b), X), onto

∑M
n=1 s̄nX . �

A.9. Proof of Proposition 5.1

Setting ψ = φ1Γ , from Propositions 2.17 and 3.10 we have ϕKO = ψKO ∈ L(Gi((a, b), Γ ) → Gi
av((a, b), Γ )),

with i ∈ {1, 2}. Thus, since KO
t = ϕKOP t

M ϕ̃, it follows that it remains to show the continuity of the mapping
η �→ P t

M (ϕ̃η), from Gi((a, b), Γ ) into itself.
From Section 4.3 we know that f �→ P t

Mf is a an orthogonal projection in L2((a, b), X) and in H1
0 ((a, b), X).

It follows that P t
M ϕ̃ ∈ L(H1((a, b), X) → H1

0 ((a, b), X)) ∩ L(L2((a, b), X) → L2((a, b), X)). By an in-
terpolation argument it will follow that P t

M ϕ̃ ∈ L(Hs((a, b), X) → [H1
0 ((a, b), X), L2((a, b), X)]1−s), and

[H1
0 ((a, b), X), L2((a, b), X)]1−s ⊆ Hs((a, b), X).
Notice that for X we can take Hr(Γ, Z) with Z either R or TΓ , and with r ∈ R. Letting the triple

(s, r, Z) run over the set {(0, i− 1
2 , TΓ ), (rt,1(i), rt,1(i), TΓ ), (0, i− 1

2 , R), (rn,1(i), rn,1(i), R)}, from P t
M ϕ̃ ∈

L(Hs((a, b), Hr(Γ, Z)) → Hs((a, b), Hr(Γ, Z))), we can obtain that P t
M ϕ̃ ∈ L(Gi((a, b), Γ ) → Gi((a, b), Γ )),

i ∈ {1, 2}. Recall that rt,1(i), rt,2(i), rn,1(i), and rn,2(i) are defined in Section 2.1. �

A.10. Quadratic functionals with linear constraint

We present some remarks on the Theorem A.2 in [5], just to simplify the exposition in Section 5. Let X and Y
be normed vector spaces, let J̃(x, y) be a bounded symmetric bilinear form on X that is weakly continuous with
respect to each of its arguments, and let A : X → Y be a continuous surjective linear operator. Denote
J(x) := J̃(x, x). Given a vector y ∈ Y, consider the minimization problem

J(x) → min, Ax = y. (A.12)

Definition A.13. We say that x̄ ∈ X is a global minimum for (A.12) if Ax̄ = y and J(x̄) ≤ J(x) for all
x ∈ A−1(y) := {x ∈ X | Ax = y}.

Lemma A.14. Suppose that for each y ∈ Y and c > 0, we have that J is nonnegative and strictly convex on
each affine space A−1(y), and that the set S := {x ∈ A−1(y) : J(x) ≤ c} is weakly compact. Then problem (A.12)
has a unique global minimum x̄ ∈ X , and the function L : Y → X taking y to x̄ is linear.

Proof. For the uniqueness and linearity we may repeat the respective arguments in the proof of Theorem A.2
in [5], while for the existence we just need to adapt/rewrite the respective arguments in there, as follows: let
(xn)n∈N be a minimizing sequence J(xn) → infAx=y J(x), in S. Since S is weakly compact we can assume (taking
a subsequence) that there exists x̄ ∈ A−1(y) such that xn ⇀ x̄, from which we can derive that necessarily x̄ is
a global minimum for J . �

Remark A.15. If X is a reflexive Banach space, it is sufficient to assume the boundedness of the set S in
X , instead of its weak compactness. Indeed, if S ⊆ Br := {x ∈ X | |x|X ≤ r}, for some r > 0, then by the
Kakutani’s Theorem follows that any sequence (xn)n∈N, in S, has a subsequence (xξ(n))n∈N with xξ(n) ⇀ x̄, for
some x̄ ∈ Br. Necessarily we have y = Ax̄, because if that was not the case then, the Hahn–Banach Theorem
would guarantee the existence of f ∈ Y ′ such that 〈f, y − Ax̄〉Y′,Y = 1 (cf. [8], Chap. III, Cor. 6.6) but, by
the continuity of A it follows that the composition f ◦ A is in X ′, and that 〈f, y〉Y′,Y = 〈f, Axξ(n)〉Y′,Y =:
〈f ◦ A, xξ(n)〉X ′,X → 〈f ◦ A, x̄〉X ′,X := 〈f, Ax̄〉Y′,Y , that is, 〈f, y − Ax̄〉Y′,Y = 0, which is a contradiction.
Finally, by 0 ≤ J(xn − x̄) = J(xn) − 2J̃(xn, x̄) + J(x̄) and the weak continuity of J̃ , we have that J(x̄) ≤
lim infn→∞ J(xn) ≤ c. Thus x̄ ∈ S, and we can conclude that S is weakly compact.
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[17] M. González-Burgos, S. Guerrero and J.-P. Puel. Local exact controllability to the trajectories of the Boussinesq system via a

fictitious control on the divergence equation. Commun. Pure Appl. Anal. 8 (2009) 311–333.
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