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SHARP INTERFACE LIMIT FOR TWO COMPONENTS BOSE−EINSTEIN
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Abstract. We study a double Cahn−Hilliard type functional related to the Gross−Pitaevskii energy
of two-components Bose−Einstein condensates. In the case of large but same order intercomponent
and intracomponent coupling strengths, we prove Γ -convergence to a perimeter minimisation functional
with an inhomogeneous surface tension. We study the asymptotic behavior of the surface tension as the
ratio between the intercomponent and intracomponent coupling strengths becomes very small or very
large and obtain good agreement with the physical literature. We obtain as a consequence, symmetry
breaking of the minimisers for the harmonic potential.
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1. Introduction

For V a given trapping potential (see Hypothesis 3.1 below for more precise requirement) and a fixed constant
ε > 0 let ηε be the (unique) positive minimiser of the Gross−Pitaevskii functional

Eε(η) :=
1
2

∫
Rn

|∇η|2 +
1
ε2
V |η|2 +

1
2ε2

|η|4 dx, (1.1)

under the constraint ‖η‖2 = 1, where ‖η‖2 denotes the L2(Rn) norm of η. We then consider for β, α1 and α2

positive constants, with α1 + α2 = 1, the double Cahn−Hilliard type functional

Fε,β(v, ϕ) :=
1
2

∫
Rn

η2
ε |∇v|2 +

1
2ε2

η4
ε(1 − v2)2 +

1
4
η2

εv
2 |∇ϕ|2 +

1
4ε2

βη4
εv

4 sin2 ϕdx, (1.2)

under the mass constraints∫
Rn

η2
εv

2 dx = α1 + α2 = 1 and
∫

Rn

η2
εv

2 cosϕdx = α1 − α2, (1.3)

and study its behavior when the parameter ε tends to zero.
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This functional arises in the description of two-components Bose−Einstein condensates with equal intracom-
ponent coupling strengths (see Sect. 3). The parameter 1

ε2 represents the intracomponent coupling strength
whereas 1 + β is the ratio between the intercomponent and intracomponent coupling strengths.

The Gross−Pitaevskii functional (1.1), which describes the energy of a single component condensate with
density |ηε|2, has been extensively studied in the literature [1, 2, 17, 18]. As ε goes to zero, ηε converges to the
Thomas–Fermi profile

√
ρ, given by

ρ(x) := (λ2 − V (x))+ (1.4)

with λ determined by the constraint
∫

Rn

ρ dx = 1. The support of ρ is a domain denoted by D and corresponds

to the region where the density of the single component condensate does not vanish as ε→ 0.
The main result of the paper is the Γ -convergence [11,12] of εFε,β to a perimeter minimisation problem with

an inhomogeneous surface tension σβ , defined in D by σβ(x) := ρ(x)3/2σβ with

σβ := inf
{

1
2

∫ +∞

−∞
v′2 +

1
2
(
1 − v2

)2
+

1
4
v2ϕ′2 +

β

4
v4 sin2 ϕdt : lim−∞ϕ = 0 and lim

+∞ϕ = π

}
, (1.5)

where in the infimum, the function v (respectively ϕ) denotes a function from R to [0, 1] (respectively from R

to [0, π]).

Theorem 1.1 (Γ -convergence). Let β > 0 be fixed. Under the Hypothesis 3.1, the Γ -limit in L1
loc(D)×L1

loc(D)
as ε→ 0 of εFε,β with mass constraint (1.3) is given by the functional Fβ defined as

Fβ(v, ϕ) :=

⎧⎪⎨⎪⎩
∫
D

σβ

π
|Dϕ| if v = 1 a.e. in D and ϕ ∈ BVloc(D; {0, π})

+∞ otherwise,

(1.6)

with mass constraint ∫
Rn

ρ cosϕdx = α1 − α2. (1.7)

Since Fβ is finite only for v = 1, we will denote by Fβ(ϕ) := Fβ(1, ϕ). It is worth noticing that since

Fβ(ϕ) =
σβ

π

∫
D
ρ3/2|Dϕ|, the minimizers of Fβ do not depend on β. This fact, which is quite peculiar to BEC

interfaces, was already well-known in the physics literature (see [32]). The functional Fε,β shares at the same
time some features with the celebrated Ambrosio–Tortorelli functional which is approximating the Mumford–
Shah functional (see [4, 5]), and some other with functionals appearing in the study of phase transitions such
as the Modica−Mortola energy [26] (also known as Cahn−Hilliard or Allen−Cahn functional) or more general
weighted functionals [10] (see also [11,12]). Indeed, Fε,β consists of the sum of two singularly perturbed, weighted
double-well potentials which are coupled together. As in [3, 5, 10, 11] our proof is based on the slicing method
described in Section 2.2.

In experiments realised with two-components Bose−Einstein condensates [16, 25, 29], the segregation of the
components is observed for large values of the intercomponent coupling strengths. This has also been supported
by numerical simulations in respectively, one ([20]), two ([19, 23]) and three ([28]) space dimensions. In our
setting, at the level of Fε,β this means that for large values of β, ϕ takes approximately only values 0 and
π while v is almost everywhere close to one. Moreover, for the harmonic potential V = |x|2 in dimension
n = 2 [23, 25], one also observes a symmetry breaking in the sense that while V is radially symmetric, the
support of each component (which correspond respectively to A := {ϕ = π} and D\A = {ϕ = 0}) are not. The
numerical simulations also show that near ∂A, the function v is close to a small positive constant. For β < 0
the two components do not segregate and their densities are both proportional to ρ.
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We mention that segregation of two-components condensates has been widely studied for bounded intra-
component coupling strengths and large intercomponent coupling strength. In [30] segregation and symmetry
breaking is proven in R2 for small intracomponent coupling strengths. In [33], working on a bounded domain
of R2 and taking the trapping potential V to be zero, the authors show segregation and local uniform conver-
gence of the two components. In [15, 27] the regularity of ∂A is studied for the same model. The profile of the
components near ∂A is analysed in [8, 9].

In [3] the functional Fε,β is studied for n = 2 when β goes to +∞ as ε tends to zero. The authors also
prove Γ -convergence to a perimeter minimisation problem with an inhomogeneous surface tension. The main
difference with our setting is that for β → +∞, the limiting energy is given by the first two terms of εFε,β

while the last two terms go to zero as ε → 0. This leads to some decoupling of the energy which allows to
compute explicitly the limiting surface tension. In our case, all the terms in the energy εFε,β are of the same
order so that the surface tension is given by the one dimensional optimal transition problem (1.5). Thus, we
need to precisely analyse the behavior of σβ and of the associated optimal profile. We prove existence and
qualitative properties of minimisers of σβ , an equipartition of the energy and compare our results with the
physical literature [6,7,24,31,32]. In particular, we prove that minimisers (v, ϕ) of σβ satisfy inf v = m(β) > 0,
as was expected from numerical simulations. We remark that we are unable to prove uniqueness of the optimal
profile. We study the asymptotic behavior of σβ when β tends to zero or infinity. On the one hand, we prove that
when β → +∞, we recover the functional derived in [3]. We show that in this regime, σβ � β−1/4 as predicted
by formal asymptotic expansions [32]. This estimate follows from the fact that m(β) ∼ β−1/4 (see Prop. 4.3).
This fact is related to some open questions raised in [8] (see also the discussion in [3]). On the other hand,
we show that as expected from [6, 7, 24, 31], σβ � √

β when β goes to zero. The fact that σβ vanishes in this
limit, reflects the non segregation of the two components. Finally, in Proposition 6.6, we extend the symmetry
breaking result for minimizers of F∞ (for the harmonic potential V = |x|2) obtained in [3] to space dimensions
n = 1 and n = 3. We notice that since the minimizers of Fβ coincide with the minimizers of F∞, this symmetry
breaking result extends to any β > 0 and by Γ−convergence to minimizers of the original functional Fε,β for ε
small enough.

The paper is organised as follows: in Section 2 we recall the definition and main properties of functions of
bounded variation and the slicing method. In Section 3, we explain how the functional Fε,β arises from the
coupled Gross−Pitaevskii energy of a two-components Bose−Einstein condensate. In Section 4 we study the
variational problem (1.6) and β > 0, and prove existence and qualitative properties of minimisers. In Section 5,
we prove our main Γ -convergence theorem. Finally, in Section 6 we analyse the asymptotic behavior of σβ when
β tends to zero or infinity and prove as a consequence symmetry breaking of the minimisers.

2. Notation

For x ∈ Rn and r > 0, we denote by Br(x) the ball of radius r centered at x and simply write Br when x = 0.
We let Sn−1 be the unit sphere in Rn and for k ∈ [0;n], we denote by Hk the k-dimensional Hausdorff measure.
Given a set E ⊂ Rn, we let 1E be the characteristic function of the set E. The letters, c, C denote universal
constants which can vary from line to line. We also make use of the usual o and O notation. For a and b real
numbers we let a∧ b := min(a, b) and a∨ b := max(a, b). Throughout the paper, with a small abuse of language,
we call sequence a family (uε) of functions labeled by a continuous parameter ε ∈ (0, 1]. A subsequence of (uε)
is any sequence (uεk

) such that εk → 0 as k → +∞. We mention that ρ will denote a positive constants in
Sections 4 and 6, while in the rest of the paper it will be the function given in (1.4).

2.1. BV (Ω) functions

For Ω an open set of Rn, let BV (Ω) be the space of functions u ∈ L1(Ω) having as distributional derivative
Du a measure with finite total variation. For u ∈ BV (Ω), we denote by Su the complement of the Lebesgue set

of u. That is, x /∈ Su if and only if limr→0+
1

|Br|
∫

Br(x)

|u(y) − z| dy = 0 for some z ∈ R. We say that x is an
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approximate jump point of u if there exist ν ∈ Sn−1 and distinct a, b ∈ R such that

lim
r→0

1
|B+

r (x, ν)|
∫

B+
r (x,ν)

|u(y) − a| dy = 0 and lim
r→0

1
|B−

r (x, ν)|
∫

B−
r (x,ξ)

|u(y) − b| dy = 0,

where B±
r (x, ν) := {y ∈ Br(x) : ±〈y−x, ν〉 > 0}. Up to a permutation of a and b and a change of sign of ν, this

characterizes the triplet (a, b, ν) which is then denoted by (u+, u−, νu). The set of approximated jump points is
denoted by Ju. The following theorem holds [4].

Theorem 2.1. The set Su is countably Hn−1-rectifiable and Hn−1(Su\Ju) = 0. Moreover Du Ju = (u+ −
u−)νuHn−1 Ju.

We indicate by Du = ∇u dx + Dsu the Radon−Nikodym decomposition of Du. Setting Dcu := Dsu (Ω\Su)
we get the decomposition

Du = ∇u dx + (u+ − u−)νuHn−1 Ju + Dcu,

where denotes the restriction. In particular, if u = π1E ∈ BV (Ω, {0, π}) then Du = πνEHn−1 ∂∗E, where
∂∗E is the reduced boundary of E defined by

∂∗E :=
{
x ∈ Spt(|D1E |) : νE(x) := − lim

r↓0
D1E(Br(x))
|D1E |(Br(x))

exists and |νE(x)| = 1
}

and νE is the outward measure theoretic normal to the set E which is countably Hn−1-rectifiable. When n = 1
we use the symbol u′ in place of ∇u, and u(x±) to indicate the right and left limits at x.

2.2. Slicing method

In this section we recall the slicing method for functions with bounded variation (see [11], Chap. 4) which
will be used in the proof of the lower Γ -limit. Consider an open set A ⊂ Rn and let ν ∈ Sn−1. We call Πν

the hyperplane orthogonal to ν and Aν the projection of A on Πν . We define the one dimensional slices of A,
indexed by x ∈ Aν , as

Aνx := {t ∈ R ; x+ tν ∈ A}.
For every function f in Rn, we note fνx the restriction of f to the slice Aνx, defined by fνx(t) := f(x+ tν) .

Functions in BV (Ω) can be characterised by one-dimensional slices (see [11]).

Theorem 2.2. Let u ∈ BV (A). Then for all ν ∈ Sn−1 we have

uνx ∈ BV (Aνx) for Hn−1 − a.e. x ∈ Aν .

Moreover, for such points x, we have

u′νx(t) = 〈∇u(x+ tν), ν〉 for a.e. t ∈ Aνx, (2.1)

Juνx = {t ∈ R : x+ tν ∈ Ju}, (2.2)

and
uνx(t±) = u±(x + tν) or uνx(t±) = u∓(x+ tν), (2.3)

according to whether 〈νu, ν〉 > 0 or 〈νu, ν〉 < 0. Finally, for every Borel function g : A→ R,∫
Aν

∑
t∈Juνx

gνx(t) dHn−1(x) =
∫

Ju

g |〈νu, ν〉| dHn−1. (2.4)
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Conversely if u ∈ L1(A) and if for all ν ∈ {e1, . . . , en}, where (e1, . . . , en) is a basis of Rn, and almost every
x ∈ Aν we have uνx ∈ BV (Aνx) and ∫

Aν

|Duνx|(Aνx) dHn−1(x) < +∞,

then u ∈ BV (A).

3. Derivation of the energy Fε,β from the coupled Gross−Pitaevskii

functional

A two-components condensate is described by two functions u1 and u2, where |u1|2 and |u2|2 respectively
represent the densities of the first and second component. The energy of the two-components condensate is given
by a coupled Gross−Pitaevskii functional. When the intracomponent coupling strength of each component is
equal to 1/ε2, and when the intercomponent coupling strength is equal to (1 + β)/ε2, the functional is given by

Eε(u1, u2) := Eε(u1) + Eε(u2) +
1 + β

2ε2

∫
Rn

|u1|2|u2|2 dx,

where Eε is defined in (1.1). Assuming that the mass of each component is preserved, the functional Eε is
minimised under the restrictions∫

Rn

|u1|2 dx = α1 and
∫

Rn

|u2|2 dx = α2 (3.1)

with α1, α2 > 0 and α1 + α2 = ‖η‖2 = 1.
Standard arguments used in the study of a single component condensate yield that the minimisers of Eε under

the constraint (3.1) are smooth positive functions, up the multiplication by constant terms of modulus 1, with
L∞ norm uniformly bounded with respect to ε (see [1, 3, 17, 18]). Notice also that for a radial potential V , if
(u1, u2) is a minimiser, then for any rotation R of the space, (u1 ◦ R, u2 ◦ R) is also a minimiser. In the single
component case, the Euler−Lagrange equations imply uniqueness of the minimiser from which one can infer its
radial symmetry. For two components condensates, this is not the case anymore.

The relation between Eε and Fε,β was established in [3]. Using the nonlinear sigma model representa-
tion [19, 23] and the Lassoued−Mironescu trick to decompose the energy of a rotating single condensate [21],
the authors introduced the change of variables

v :=

√|u1|2 + |u2|2
ηε

and
ϕ

2
:= Arg

(
|u1| + i|u2|√|u1|2 + |u2|2

)
(3.2)

for any pair (u1, u2) such that Eε(u1, u2) <∞ and |u1|2 + |u2|2 > 0. The equality

Eε(u1, u2) = Fε,β(v, ϕ) + Eε(ηε) (3.3)

then holds, and the mass constraints in (3.1) rewrite as in (1.3). Let us point out that in [3], only the case
n = 2 is considered but the proof carries over verbatim to any space dimension. As seen from (3.3) and the
expression (1.2) of Fε,β, there are two main advantages of the formulation of the problem in terms of the
functions (v, ϕ). On the one hand, it naturally identifies the leading order term Eε(ηε). On the other hand, it
clearly shows that the second order contribution Fε,β is a singular perturbation type functional.

Notice that since the minimisers (u1, u2) are uniformly bounded and ηε does not vanish, for every compact
set K of D, there exists a constant C(K) such that 0 < v ≤ C(K) in K. Moreover, it is readily seen from the
definition that ϕ ∈ [0, π]. We are thus naturally led to minimize Fε,β in the class

Y (D) := {(v, ϕ) : for every compact set K ⊂ D, 0 < v ≤ C(K) in K and ϕ ∈ [0, π]}
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under the mass constraints (1.3). For a subset A of D, we introduce the localised version of Fε,β:

Fε,β(v, ϕ;A) :=
1
2

∫
A

η2
ε |∇v|2 +

1
2ε2

η4
ε(1 − v2)2 +

1
4
η2

εv
2 |∇ϕ|2 +

1
4ε2

βη4
εv

4 sin2 ϕdx,

and
Y (A) := {(v, ϕ) : for every compact set K ⊂ D, 0 < v ≤ C(K) in K ∩A and ϕ ∈ [0, π]} .

Notice that, for any (v, ϕ) ∈ Y (D), defining

u1 := ηεv cos(ϕ/2) and u2 := ηεv sin(ϕ/2) (3.4)

relation (3.3) holds and we have |u1|2 + |u2|2 > 0.
In the following we are going to make the following assumptions on V :

Hypothesis 3.1. V is such that V (x) → +∞ when |x| → +∞ and there exist C, a, b, c > 0 such that if ρ is
the Thomas–Fermi profile defined in (1.4),

‖ηε‖∞ < C (3.5)

‖ηε‖L2(Rn\D) ≤ C εa (3.6)

|ηε(x) −√
ρ(x)| ≤ C εc if dist(x, ∂D) > Cεb (3.7)

We remark that for the harmonic potential V (x) = |x|2, it was proven in [17] that these conditions hold true
in dimension n = 2. Moreover, it can be checked that their proof carries over almost verbatim to any space
dimension. Recently, Karali and Sourdis [18], obtained that if n = 2, Hypothesis 3.1 holds if V satisfies:

(i) V is nonnegative and C1,
(ii) there exist C > 1, p ≥ 2 such that 1

C (1 + |x|p) ≤ V (x) ≤ C(1 + |x|p),
(iii) D is a simply connected bounded domain containing the origin with smooth boundary and such that

∂V
∂ν > 0 on ∂D.

Notice that in their paper, Karali and Sourdis prove that ‖ηε − √
ρ‖L∞(R2) ≤ Cε1/3 ([18], Rem. 4.4) which is

stronger than (3.7). They also claim that their proof should extend to any space dimension (see [18], Rem. 3.12)
and that the fact that D is simply connected is superfluous (see [18], Rem. 1.1).

4. The surface tension at finite β > 0

In this section, for β > 0 fixed, we study the following variational problem:

σβ := inf
{
Gβ(v, ϕ) : v ≥ 0, 0 ≤ ϕ ≤ π, lim−∞ϕ = 0 and lim

+∞ϕ = π

}
, (4.1)

where

Gβ(v, ϕ) :=
1
2

∫ +∞

−∞
v′2 +W (v) +

1
4
v2ϕ′2 +

β

4
v4 sin2 ϕdt, (4.2)

with W (v) := 1
2

(
1 − v2

)2. Let us point out that if Gβ(v, ϕ) is finite then limx→±∞ v(x) = 1.
We start by evaluating the energy necessary to connect v from a given value m > 0 to 1.
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Lemma 4.1. Let m ∈ [0, 1] then

inf
{∫ +∞

0

v′2 +W (v) dt : v(0) = m

}
=

√
2
(

2
3
−m+

m3

3

)
,

and the optimal profile is given by vm := tanh

(√
1
2
t+ cm

)
where cm := tanh−1(m).

Proof. As in the usual Modica−Mortola problem,

inf
v(0)=m

∫ +∞

0

v′2 +W (v) dt =
√

2
∫ 1

m

(1 − t2)dt =
√

2
(

2
3
−m+

m3

3

)
· �

We now prove that we can restrict ourselves to functions v which stay away from zero.

Proposition 4.2. For every β > 0, there exists m∗ = m∗(β) > 0 such that

σβ = inf
{
Gβ(v, ϕ) : v ∈ [m∗, 1], lim−∞ϕ = 0 and lim

+∞ϕ = π

}
. �

Proof. First, let us notice that by truncation, we can reduce ourselves to minimise among functions v ∈ [0, 1].
Up to translation we can also assume that infR v = v(0). Let m ≥ 0, then for every function v such that
infR v = v(0) = m and every admissible ϕ,

Gβ(v, ϕ) ≥ 1
2

[
inf

v(0)=m

∫ 0

−∞
v′2 +W (v) dt

]
+

1
2

[
inf

v(0)=m

∫ +∞

0

v′2 +W (v) dt
]

+
1
2

∫
R

1
4
v2ϕ′2 +

β

4
v4 sin2 ϕdt

≥
[

inf
v(0)=m

∫ +∞

0

v′2 +W (v) dt
]

+
1
4

∫
R

β1/2v3| sinϕ||ϕ′| dt

≥
√

2
(

2
3
−m+

m3

3

)
+
β1/2m3

4

∫
R

| sinϕ||ϕ′| dt

=
√

2
(

2
3
−m+

m3

3

)
+
β1/2m3

4

∫ π

0

| sinx| dx

=
√

2
(

2
3
−m+m3

(
1
3

+
β1/2

2
√

2

))
·

Now, for m ≥ 0 and T > 0, consider the test functions defined by

vm,T :=

⎧⎪⎨⎪⎩
vm(−t− T ) t < −T
m t ∈ [−T, T ]
vm(t− T ) t ≥ T

and ϕT :=

⎧⎪⎨⎪⎩
0 t < −T
π
2T (t+ T ) t ∈ [−T, T ]
π t ≥ T,

then

Gβ(vm,T , ϕT ) =
√

2
(

2
3
−m+

m3

3

)
+
T

2
(1 −m2)2 +

m2π2

16T
+

1
4
βm4

∫ T

0

sin2
( π

2T
(t+ T )

)
dt

=
√

2
(

2
3
−m+

m3

3

)
+
T

2
(1 −m2)2 +

m2π2

16T
+
β

8
m4T. (4.3)
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Figure 1. The function Ψ .

Optimizing in T we find Tm := mπ
2
√

2((1−m2)2+ β
4 m4)1/2 and

Gβ(vm,Tm , ϕTm) =
√

2
(

2
3
−m+

m3

3

)
+

√
2

4
mπ

(
(1 −m2)2 +

β

4
m4

)1/2

. (4.4)

Let now (see Fig. 1)

Ψ(m) :=
(
m3

3
−m

)
+

1
4
mπ

(
(1 −m2)2 +

β

4
m4

)1/2

so that Gβ(vm,Tm , ϕTm) =
√

2 (Ψ(m) + 2
3 ) and let

m := argmin
m∈[0,1]

Ψ(m).

Let us first notice that since Ψ(0) = 0 and Ψ ′(0) = π
4 − 1 < 0, the minimum of Ψ is negative for every β > 0.

The function m3

3 −m is decreasing in [0, 1] and Ψ(m) > − 2
3 hence there exists a unique m∗(β) ∈ (0, 1) such

that m∗(β)3

3 −m∗(β) = Ψ(m). We claim that

σβ = inf
{
Gβ(v, ϕ) : inf v ≥ m∗(β), lim−∞ϕ = 0 and lim

+∞ϕ = π

}
.

Indeed, if v is such that inf v ≤ m∗(β) and if ϕ is any admissible function, then letting m := inf v, there holds

Gβ(vm,Tm
, ϕTm

) =
√

2
(
Ψ(m) +

2
3

)
<

√
2
(
m3

3
−m+

2
3

)
≤√

2
(

2
3
−m+m3

(
1
3

+
β1/2

2
√

2

))
≤ Gβ(v, ϕ)

so that we can construct a competitor with smaller energy than (v, ϕ). �

In the regime β → +∞, we can prove a more precise bound on inf v. Notice that in the case β = +∞, [3]
proved that inf v = 0.
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Proposition 4.3. There exist constants B,C > 0 such that if β ≥ B,

σβ = inf
{
Gβ(v, ϕ) :

1
C
β−1/4 ≤ inf v ≤ Cβ−1/4, lim−∞ϕ = 0 and lim

+∞ϕ = π

}
.

Proof. Let M := {m ∈ [0, 1] : m3
(

1
3 + β1/2

2
√

2

)
−m > Ψ(m)} then arguing as in the previous proof, we obtain

σβ = inf
{
Gβ(v, ϕ) : inf v /∈ M, lim−∞ϕ = 0 and lim

+∞ϕ = π

}
.

The claim is thus proven provided we can show that for β large enough, and for m ∈ [0, 1] such that m ≤ 1
C β

−1/4

or m ≥ Cβ−1/4 then m ∈ M. We notice first that if β is large then if m ≥ Cβ−1/4, m3
(

1
3 + β1/2

2
√

2

)
−m > 0 >

Ψ(m) hence m ∈ M. Taking m = m̃β−1/4 with 0 < m̃ <
(
4
[

16−π2

π2

])1/4

so that 1
4π
(
(1 −m2)2 + β

4m
4
)1/2

< 1,

we obtain Ψ(m) ≤ − 1
C β

−1/4 and therefore, for m ≤ 1
Cβ

−1/4, we have m3
(

1
3 + β1/2

2
√

2

)
− m > Ψ(m), that is

m ∈ M. �

We can now prove the existence of an optimal profile.

Proposition 4.4. For every β > 0 there exists a minimiser of σβ. Moreover, it is smooth and satisfies the
Euler−Lagrange equations

− v′′ − (1 − v2)v +
1
4
vϕ′2 +

β

2
v3 sin2 ϕ = 0 (4.5)

−(v2ϕ′)′ + βv4 sinϕ cosϕ = 0. (4.6)

Proof. Let (vn, ϕn) be a minimising sequence. Up to translation, we can assume that ϕ(0) = π
2 . Let us notice

that up to truncating vn, we can also assume that vn ∈ [0, 1]. Therefore, since v′n is uniformly bounded in
L2(R), up to extraction, the sequence vn converges locally uniformly to some continuous function v. Moreover,
by lower semicontinuity, ∫

R

v′2 +W (v)dt ≤ lim
n→+∞

∫
R

v′2n +W (vn)dt.

Since ∫
R

(1 − v)2dt ≤
∫

R

(1 − v2)2dt ≤ C and
∫

R

(1 − v)′2 ≤ C,

the function (1 − v) is in H1(R) and therefore lim±∞(1 − v) = 0, i.e. lim±∞ v = 1. Thanks to Proposition 4.2,
inf vn ≥ m∗ from which we obtain that ϕ′

n is bounded in L2(R) and thus ϕn also converges locally uniformly
to some continuous function ϕ with ϕ(0) = π

2 . By lower semicontinuity, there holds∫
R

1
4
v2ϕ′2 +

β

4
v4 sin2 ϕdt ≤ lim

n→+∞

∫
R

1
4
v2

nϕ
′2
n +

β

4
v4

n sin2 ϕn dt.

Since sin2 ϕ ∈ H1(R), the function sin2 ϕ converges to 0 both at plus and minus infinity so that ϕ has a limit
at infinity which is either 0 or π. Moreover, since ϕ(0) = π

2 we see that ϕ cannot be constantly equal to 0 or π
on R. If limx→−∞ v(x) = limx→+∞ v(x) then assuming that∫ 0

−∞
v′2 +W (v) +

1
4
v2ϕ′2 +

β

4
v4 sin2 ϕdt ≤

∫ +∞

0

v′2 +W (v) +
1
4
v2ϕ′2 +

β

4
v4 sin2 ϕdt
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and setting

ṽ(x) :=

{
v(x) x < 0
v(−x) x ≥ 0

and ϕ̃(x) :=

{
ϕ(x) x < 0
π − ϕ(−x) x ≥ 0,

we see that Gβ(ṽ, ϕ̃) ≤ Gβ(v, ϕ) and up to symmetrising again, limx→−∞ ϕ̃ = 0 and limx→+∞ ϕ̃ = π so that
(ṽ, ϕ̃) is a minimiser of Gβ .

From the integrated form of the Euler−Lagrange equations we see that (v2ϕ′) is in H1
loc(R) with derivative

equal to βv4 sinϕ cosϕ which is continuous. Hence, v2ϕ′ ∈ C1 which implies (by continuity of v) that ϕ′ ∈ C0

and thus ϕ ∈ C1. From this, we can use the first equation to infer higher regularity of v and then a simple
bootstrapping argument gives the smoothness of (v, ϕ). �

Remark 4.5. Arguing as in [5], we could have obtained the existence of an optimal profile even without using
the fact that inf v > 0.

We can now study some qualitative properties of the minimisers of Gβ at fixed β > 0.

Proposition 4.6. For every minimising pair (v, ϕ) of Gβ, the function ϕ is increasing. Moreover there exists
a minimising pair (v, ϕ) such that ϕ(−t) = π − ϕ(t) and v(−t) = v(t), v is increasing on R

+, ϕ is convex on
R− and concave on R+. For every minimising function v, the minimiser of

min
{∫

R

1
4
v2ϕ′2 +

β

4
v4 sin2 ϕdt : lim−∞ϕ = 0 and lim

+∞ϕ = π

}
(4.7)

is unique and vice versa, for every admissible ϕ, the minimiser of

min
{∫

R

v′2 +W (v) +
1
4
v2ϕ′2 +

β

4
v4 sin2 ϕdt

}
(4.8)

is unique. Finally, for every minimising pair (v, ϕ), there is equipartition of the energy in the sense that

v′2 +
1
4
v2ϕ′2 = W (v) +

1
4
βv4 sin2 ϕ (4.9)

Proof. Let (v, ϕ) be a minimising pair of Gβ and let us prove that ϕ is increasing. Let t− be the first point such
that ϕ(t) = π

2 and similarly, let t+ be the last point such that ϕ(x) = π
2 . If t− �= t+ then assuming that∫ t−

−∞
v′2 +W (v) +

1
4
v2ϕ′2 +

β

4
v4 sin2 ϕdt ≥

∫ +∞

t+
v′2 +W (v) +

1
4
v2ϕ′2 +

β

4
v4 sin2 ϕdt,

letting

ṽ(t) :=

{
v(t+ t+) t ≥ 0
v(t+ − t) t ≤ 0

and ϕ̃(t) :=

{
ϕ(t+ t+) t ≥ 0
π − ϕ(t+ − t) t ≤ 0,

there holds Gβ(ṽ, ϕ̃) < Gβ(v, ϕ) which gives a contradiction. From this, we see that ϕ can take the value π
2

in only one point which up to translation can be assumed to be 0. From this, it follows that ϕ > π
2 in R+

hence from (4.6), we see that v2ϕ′ is decreasing in R
+. Since limx→+∞ ϕ(x) = π and ϕ(x) ≤ π, there must be

arbitrarily large x such that ϕ′(x) ≥ 0 from which we infer that ϕ′ is non-negative in R+. Similarly we can prove
that ϕ′ is also non-negative in R−. Let us notice that the symmetrisation made above, constructed a minimising
pair (ṽ, ϕ̃) which satisfies ϕ̃(−t) = π − ϕ̃(t) and ṽ(−t) = ṽ(t). From now on, let us drop the tildes for the sake
of clarity and assume that (v, ϕ) is a symmetric minimising pair.

Let us now prove that we can further modify v, respectively ϕ, on R
+ and get an increasing, respectively

a concave, function on R+ while decreasing the energy. For this, we use standard rearrangement techniques
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(see [22]). For a function f vanishing at infinity, let us denote by f∗ its decreasing rearrangement (see [22]).
Analogously, for a function g with limit α at infinity let us denote by g∗ its increasing rearrangement i.e.
f∗ := α − (α − f)∗. From Theorem 3.4 of [22], we see that for two nonnegative functions f and g such that f
vanishes at infinity and g has a limit at infinity, there holds∫

R+
f∗g∗ dt ≤

∫
R+
fg dt.

Consider now v∗ the increasing rearrangement of v then W (v∗) = W (v)∗, (v2)∗ = (v∗)2, (v4)∗ = (v∗)4 and∫
R+
v′2∗ dt ≤

∫
R+
v′2dt. Let finally ϕ̃ :=

π

2
+
∫ x

0

(ϕ′)∗(t)dt be the primitive of the decreasing rearrangement of

ϕ′. Notice that ϕ̃ is increasing and concave and for x ∈ R+, there holds

ϕ̃(x) =
π

2
+
∫ x

0

(ϕ′)∗(t)dt =
π

2
+
∫

R+
(ϕ′)∗(t)1[0,x](t)dt

=
π

2
+
∫

R+
(ϕ′)∗(t)1∗

[0,x](t)dt ≥
π

2
+
∫

R+
ϕ′(t)1[0,x](t)dt

≥ ϕ(x),

from which sin2(ϕ̃(x)) ≤ sin2(ϕ(x)) and by symmetry the same inequality holds in R−. From this, we infer that∫
R

(v∗)4 sin2(ϕ̃)dt ≤
∫

R

v4 sin2 ϕdt and
∫

R

(v∗)2(ϕ̃′)2dt ≤
∫

R

v2(ϕ′)2dt. Putting all this together, we find that

Gβ(v∗, ϕ̃) ≤ Gβ(v, ϕ).

Let v be a fixed minimising function and let us prove that the minimiser of (4.7) is unique. For this we use an
observation of [13] (see also [14]) and let ψ := sinϕ. The functional takes then the form∫

R

1
4
v2 ψ′2

1 − ψ2
+
β

4
v4ψ2 dt

which is a strictly convex functional in ψ. From this we deduce that sinϕ is unique and since (v, ϕ) is minimis-
ing Gβ , the function ϕ is increasing from which we infer that ϕ is also unique.

Similarly, if ϕ is any admissible function, then using the celebrated Brenier trick in optimal transportation,
we let w := v2 and notice that the functional can now be written as∫

R

w′2

w
+

1
2
(1 − w)2 +

1
4
wϕ′2 +

β

4
w2 sin2 ϕdt

which is strictly convex in w. Hence, w is unique from which it follows that v is also unique.
Finally, the equipartition of the energy (4.9) follows simply by differentiating for instance the right handside

and then using (4.5) and (4.6). �

Remark 4.7. If v is any admissible function we cannot in general infer that a minimising ϕ of (4.7) is increasing.
In this case, we can however still conclude that sinϕ is unique.

Remark 4.8. The uniqueness of the minimising pairs (v, ϕ) seems to be a difficult question. Let us notice that
the functional ∫

R

w′2

w
+

1
2
(1 − w)2 +

1
4
w

ψ′2

1 − ψ2
+
β

4
w2ψ2 dt
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is not convex in (w,ψ). Moreover, due to the non monotonicity of v, the sliding technique (see [9]) seems to be
difficult to use here. We also mention that using the change of variables in (3.4) with ηε replaced by

√
ρ, the

uniqueness of the minimising pair (v, ϕ) would be equivalent to the uniqueness of minimising pairs of

1
2

∫
R

u′21 + u′22 +
1
2
(u2

1 + u2
2 − ρ)2 + βu2

1u
2
2

with constraints

lim
+∞u1 = lim−∞u2 = ρ and lim−∞u1 = lim

+∞u2 = 0.

5. Γ -convergence of Fε,β for β > 0

In this section we study the Γ -convergence of the functionals εFε,β as ε→ 0 and prove Theorem 1.1.

5.1. Lower bound and compactness

We start by proving the compactness of sequences with bounded energy.

Proposition 5.1 (Compactness). Let (vε, ϕε) ∈ Y (D) be a sequence of functions such that

sup
ε>0

εFε,β(vε, ϕε) <∞. (5.1)

Then, as ε→ 0,

(vε, ϕε) → (v, ϕ) in L1
loc(D) × L1

loc(D),

where v = 1 a.e. in D and ϕ ∈ BVloc(D; {0, π}). Moreover, if (vε, ϕε) satisfy the mass constraint (1.3), then ϕ
satisfies (1.7).

Proof. Let K be an open set relatively compact in D. From (3.7), there is c = c(K) > 0 such that for ε small
enough ηε > c > 0 in K, so

∫
K

|1 − vε|2 + βv4
ε sin2 ϕε ≤ 8

c4
ε2Fε,β(vε, ϕε) = oε→0(1).

Hence, vε → 1 in L2(K) and sin2(ϕε) → 0 a.e. in K. We also observe that

εFε,β(vε, ϕε) ≥ c3

4

∫
K

|∇vε| |1 − v2
ε | + v3

ε |∇ϕε| sinϕε ≥ c′(K)
∫

K

|∇ψ(vε, ϕε)|,

where ψ(s, t) := g(t)v3(4/3 − v) with g(t) :=
∫ t

0
sin z dz = 1 − cos t. The functions ψ(vε, ϕε) are uniformly

bounded in BV (K), so ψ(vε, ϕε) → ψ0 in L1(K). We derive that g(ϕε) → 3ψ0, which implies that ϕε → ϕ =
g−1(3ψ0) ∈ L1(K; {0, π}), since g is monotone and sin2(ϕε) → 0. Then, since ψ0 ∈ BV (K; {0, 2/3}), we obtain
that ϕ ∈ BV (K; {0, π}).

Finally, if (vε, ϕε) satisfy (1.3), then since
∫
D ρdx = 1, there is rK > 0 going to zero as dist(K, ∂D) → 0, such

that
∫
D\K

ρdx = rK . Also, from (3.7) we have
∫

K
η2

εv
2
ε dx − ∫

K
ρdx = rε,K = oε→0(1). Combining these and∫

Rn η
2
εv

2
εdx = 1, we obtain

∣∣∣∫
Rn\K η2

εv
2
ε cosϕεdx

∣∣∣ ≤ ∫
Rn\K η2

εv
2
εdx = rK + rε,K , which yields∣∣∣∣∫

K

ρ cosϕdx− (α1 − α2)
∣∣∣∣ = lim

ε→0

∣∣∣∣∫
K

η2
εv

2
ε cosϕεdx− (α1 − α2)

∣∣∣∣ = lim
ε→0

∣∣∣∣∣
∫

Rn\K

η2
εv

2
ε cosϕεdx

∣∣∣∣∣ ≤ rK

and finishes the proof. �
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In order to apply the slicing method we need to define the one dimensional restriction of the energy. For
this we recall that for A an open set of D, x ∈ A and ν ∈ Sn−1, we set Aνx := {t ∈ R ; x + tν ∈ A}. For
(v, ϕ) ∈ Y (Aνx), we define the one dimensional energy

Fε,β(v, ϕ ;Aνx) :=
1
2

∫
Aνx

η2
νx,εv

′2 +
1

2ε2
η4

νx,ε(1 − v2)2 +
1
4
ηνx,εε

2v2 ϕ′2 +
1

4ε2
βη4

νx,εv
4 sin2 ϕdt.

We also define the limiting one dimensional energy as

Fβ(ϕ;Aνx) :=
∫

Aνx

σνx,β

π
|ϕ′|.

Proposition 5.2 (1d Γ − lim inf). Let x ∈ D, ν ∈ Sn−1 and ϕ ∈ BVloc(Dνx; {0, π}). For any sequence (vε, ϕε):
Rνx → (0, 1]× (0, π) converging as ε→ 0 to (1, ϕ) in L1

loc(Dνx) × L1
loc(Dνx),

lim inf
ε→0

εFε,β(vε, ϕε;Dνx) ≥ Fβ(ϕ;Dνx). (5.2)

Proof. LetB be any open, relatively compact subset of Dνx. Let t0 ∈ B∩Jϕ and δ0 > 0 be such that (t0−δ, t0+δ)
is contained in B. We can choose t± ∈ (t0 − δ, t0 + δ) such that

t− < t0 < t+, ϕ(t+) �= ϕ(t−), ϕε(t±) → ϕ(t±) ∈ {0, π} and vε(t±) → 1

as ε→ 0. Estimate (3.7) and B ⊂ Dνx yield

εFε,β(vε, ϕε; (t+, t−)) =
1
2

∫ t+

t−
εη2

νx,εv
′2
ε +

1
2ε
η4

νx,ε(1 − v2
ε)2 +

1
4
εη2

νx,εv
2
ε ϕ

′2
ε +

1
4ε
βη4

νx,εv
4
ε sin2 ϕεdt

≥ ρνx(t0)
1
2

∫ t+

t−
εv′2ε +

1
2ε
ρνx(t0)(1 − v2

ε)2 +
1
4
εv2

ε ϕ
′2
ε +

1
4ε
βρνx(t0)v4

ε sin2 ϕεdt

− c′ δ + oε→0(1).

for some c′ = c′(B) > 0. We define T±
ε := (t± − t0)

√
ρνx(t0)

2ε and f̃(t) := f

(
ε√

ρνx(t0)
t+ t̃0

)
for f =

vε, ϕε, ηνx,ε or ρνx. A change of variables yields

ε

∫ t+

t−
v′2ε +

1
4
v2

ε ϕ
′2
ε dt =

√
ρνx(t0)

∫ T+
ε

T−
ε

ṽ′2ε +
1
4
ṽ2

ε ϕ̃
′2
ε dt

ρνx(t0)
ε

∫ t+

t−

1
2
(1 − v2

ε)2 +
1
4
βv4

ε sin2 ϕεdt =
√
ρνx(t0)

∫ T+
ε

T−
ε

1
2
(1 − ṽ2

ε)2 +
1
4ε
βṽ4

ε sin2 ϕ̃εdt

and thus

Fε,β(vε, ϕε; (t+, t−)) ≥ ρνx(t0)3/2 Gβ(ṽε, ϕ̃ε; (T−
ε , T

+
ε )) − c′ δ + oε→0(1),

where for an interval I and a pair (v, ϕ), Gβ(v, ϕ; I) is the localized version of Gβ defined in (4.2).
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Define now

v̂ε(t) :=

⎧⎪⎨⎪⎩
ṽε(t) if t ∈ (T−

ε , T
+
ε )

linear joint if t ∈ (T+
ε , T

+
ε + δ) ∪ (T−

ε − δ, T−
ε )

1 if t ∈ R \ (T−
ε − δ, T+

ε + δ)

and

ϕ̂ε(t) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ̃ε(t) if t ∈ (T−

ε , T
+
ε )

linear joint if t ∈ (T+
ε , T

+
ε + δ) ∪ (T−

ε − δ, T−
ε )

ϕ(t−) if t ∈ (−∞, T−
ε − δ)

ϕ(t+) if t ∈ (T+
ε + δ,+∞)

.

We have that (v̂ε, ϕ̂ε) is admissible for σβ so

Gβ(ṽε, ϕ̃ε; (T−
ε , T

+
ε )) ≥ σ̄β + oε→0(1).

Hence,

εFε,β(vε, ϕε; (t+, t−)) ≥ σνx,β(t0) + oε→0(1) − c′ δ. (5.3)

Since ϕ ∈ BVloc(Dνx, {0, π}) we have B ∩ Jϕ = {t0, . . . , tN} for some N ∈ N. Consider δ0 > 0 such that for
δ ∈ (0, δ0), the intervals Iδ = (t0 − δ, t0 + δ) are disjoint and contained in B. Reasoning as before and since (5.3)
holds for every δ ∈ (0, δ0), we obtain

εFε,β(vε, ϕε;Dνx) ≥
N∑

i=0

σνx,β(ti) + oε→0(1).

Thus,

lim inf
ε→0

εFε,β(vε, ϕε;Dνx) ≥
∑

t∈B∩Jϕ

σνx,β(t) =
∫

B

σνx,β

π
|ϕ′| = Fβ(v, ϕ;B).

This yields (5.2) since the choice of B was arbitrary. �

We can now prove the Γ -liminf. For any ϕ ∈ BVloc(D), we define the localised lower Γ -limit of εFε,β as the
set function defined in A(D) by

F ′(ϕ;A) := inf
{

lim inf
ε→0

εFε(vε, ϕε ;A) ; (vε, ϕε) → (1, ϕ) in L1
loc(D) × L1

loc(D)
}
,

and we write F ′(ϕ) := F ′(ϕ;D).

Proposition 5.3 (Γ -liminf). For any ϕ ∈ BVloc(D; {0, π}),

F ′(ϕ) ≥ Fβ(ϕ). (5.4)

Proof. Consider any fixed open set A relatively compact in D, ν ∈ Sn−1 and ϕ ∈ BV (A, {0, π}). Let then
(vε, ϕε) be such that vε → 1 and ϕε → ϕ in L1(A) and such that

lim
ε→0

εFε,β(vε, ϕε;A) = F ′(ϕ;A).
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We may assume that F ′(ϕ,A) <∞, so that (5.1) is satisfied. From Fubini’s Theorem, there holds

εFε,β(vε, ϕε ;A) ≥
∫

Aν

εFε,β(vε,νx, ϕε,νx ;Aνx) dHn−1,

with (vε,νx, ϕε,νx) → (1, ϕνx) for a.e. x ∈ Aν . Then, Fatou’s lemma, Fubini’s formula, (2.4) and Proposition 5.2
yield

lim
ε→0

εFε,β(vε, ϕε;A) ≥
∫

Aν

dHn−1(x)
∫

Aνx

σνx,β

π
|ϕ′

νx| =
∫

A∩Jϕ

σβ(x)|〈νϕ, ν〉|dHn−1.

Notice that the last equality holds because ϕ is the characteristic function of a set with finite perimeter in
A. Hence,

F ′(ϕ;A) ≥
∫

A∩Jϕ

σβ(x)|〈νϕ, ν〉|dHn−1.

Since all the functions Fε are local, F ′(ϕ; ·) is super-additive on open sets with disjoint compact closures.
We may apply ([11], Prop. 1.16) with Ω = D, λ = σβ(x)Hn−1 ∂∗{ϕ = π} (where we recall that ∂∗E
denotes the reduced boundary of E) and ψi = |〈νϕ, νi〉|, where {νi} is a dense family in Sn−1. Remarking that
supi |〈νϕ, νi〉| = 1, we obtain

F ′(ϕ;A) ≥
∫

A∩Jϕ

σβ(x)dHn−1 = Fβ(ϕ;A),

which yields (5.4). �

5.2. Γ -limsup

In this section we construct a recovery sequence and prove the Γ -limsup. Using the following lemma, we may
restrict our selves to prove the inequality for the Γ -limsup for functions in

X := {ϕ = π1A ; A relatively compact open set of D of class C∞} .

Lemma 5.4. Let ϕ = π1A ∈ BVloc(D). There exists a sequence {ϕk = π1Ak
}k∈N in X such that:

(i) limk→∞ Ln((Ak ∩D)ΔA) = 0,
(ii) lim supk→∞ Fβ(ϕk) ≤ Fβ(ϕ),
(iii)

∫
Ak
ρdx =

∫
A ρdx .

The proof of Lemma 5.4 uses the continuity of σβ with respect to x and follows closely the proof of [10],
Proposition 4.1, therefore we omit it here.

We first construct in Proposition 5.5 a recovery sequence for functions in X . We then explain in Lemma 5.6
how to take into account the mass constraint (1.3).

Proposition 5.5 (Γ -limsup). Let β > 0 and ϕ = π1A ∈ X, then there exists a sequence of functions (vε, ϕε) ∈
Y (D) such that

(vε, ϕε) → (1, ϕ) in L1
loc(D) × L1

loc(D) (5.5)

and
lim
ε→0

εFε,β(vε, ϕε) ≤ Fβ(ϕ). (5.6)
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Proof. Define the signed distance to ∂A by d(x) := dist(x,A) − dist(x,R2 \A). For sufficiently small t > 0, the
projection Π on ∂A is well defined in the set {x ∈ D ; |d(x)| < t} and d is a Lipschitz function therein with
|∇d| = 1 a.e. . Define also

f(η, v, ϕ, p, q) :=
1
2

(
η2|p|2 +

1
2
η4(1 − v2)2 +

1
4
η2v2 |q|2 +

1
4
βη4v4 sin2 ϕ

)
.

Let (v, ϕ) be a minimiser of σ̄β and for x ∈ D, let vx(t) := v(ρ(x)1/2t), ϕx(t) := ϕ(ρ(x)1/2t) and for � > 0 let

vx,� := (1 + �)vx ∧ 1 and ϕx,� := 0 ∨
((

(1 + 2�)ϕx − �
) ∧ 1

)
.

Notice that (vx,�, ϕx,�) converges pointwise to (vx, ϕx) as � → 0, and that there exists C > 0 such that for
every � ∈ (0, 1) and x ∈ D,

f(
√
ρ(x), vx,�, ϕx,�, v

′
x,�, ϕ

′
x,�) ≤ Cf(

√
ρ(x), vx, ϕx, v

′
x, ϕ

′
x). (5.7)

Therefore, thanks to the dominated convergence Theorem, for every δ > 0 and every x ∈ D, there exists �x
such that for � ≤ �x, ∫

R

f(
√
ρ(x), vx,�, ϕx,�, v

′
x,�, ϕ

′
x,�)dt ≤ σβ(x) +

δ

2
. (5.8)

Fix from now on such a δ > 0. Thanks to the compactness of ∂A and the continuity of σβ , there is a finite
family {Σi}i∈I of open disjoint subsets of ∂A such that Hn−1 (∂A \ ∪i∈IΣi) = 0 and

σβ(xi) ≤ σβ(x) +
δ

2
in Σi (5.9)

for every i ∈ I. Let then � := (mini∈I �xi) ∧ δ and define Σδ
i := {x ∈ Σi ; dist(x, ∂Σi) > �} so that

Hn−1(Σi \Σδ
i ) = oδ→0(1). (5.10)

For ε, T > 0 define

Wε := {x ∈ R
n ; |d(x)| < εT }

Bi := {x ∈ Wε ; Π(x) ∈ Σδ
i }

Ci := {x ∈ Wε ; Π(x) ∈ Σi \Σδ
i }.

Notice that for every given T , for ε small enoughWε is contained in some fixed compact set of D containing A.
Consider a family {θi}i∈I of smooth functions such that∑

i∈I

θi = 1 on ∂A and θi = 1 in Σδ
i ∀ i ∈ I,

and define

(vε, ϕε)(x) =

⎧⎪⎨⎪⎩
∑

i∈I θi(Π(x))
(
vxi,�

(
d(x)

ε

)
, ϕxi,�

(
d(x)

ε

))
if |d(x)| ≤ εTδ

(1, π) if d(x) ≥ εTδ

(1, 0) if d(x) ≤ −εTδ

; (5.11)

where Tδ is big enough so that vxi,� = 1 in R \ [−Tδ, Tδ], ϕxi,� = 0 in (−∞, Tδ] and ϕxi,� = π in [Tδ,+∞) for
every i ∈ I.
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The functions (vε, ϕε) are Lipschitz continuous and converge to (1, ϕ) in L1
loc(D) × L1

loc(D). Defining

ξε :=
1
ε
f
(
ηε, vε, ϕε, ε

2∇vε, ε
2∇ϕε

)
,

there exists C > 0 such that

|ξε| ≤ Cε−1, (5.12)

and since |∇d| = 1 in Wε,

ξε(x) = |∇d/ε|f (ηε, vxi,� ◦ d/ε, ϕxi,� ◦ d/ε, v′xi,� ◦ d/ε, ϕ′
xi,� ◦ d/ε

)
(5.13)

holds in Bi for all i ∈ I.
Using (5.10) and (5.12) we compute

εFε,β(vε, ϕε) =
∑
i∈I

∫
Bi

ξε(x) dx +
∑
i∈I

∫
Ci

ξε(x) dx

≤
∑
i∈I

∫
Bi

ξε(x) dx +
C

ε
Ln

(⋃
i∈I

Ci

)

=
∑
i∈I

∫
Bi

ξε(x) dx + r1δ (5.14)

where r1δ = oδ→0(1). Using (5.13) and the coarea formula ([10], Prop. 2.4) applied to u = d/ε, we obtain∫
Bi

ξε(x) dx =
∫ Tδ

−Tδ

∫
{|d|=εt}∩Bi

f(ηε(x), vxi,�(t), ϕxi,�(t), v
′
xi,�(t), ϕ

′
xi,�(t)) dHn−1(x) dt.

Since Bi ⊂⊂ D, estimate (3.7) gives

∫
Bi

ξε(x) dx =
∫ Tδ

−Tδ

∫
{|d|=εt}∩Bi

f(
√
ρ(x), vxi,�(t), ϕxi,�(t), v

′
xi,�(t), ϕ

′
xi,�(t)) dHn−1(x) dt+ r2δ,ε

where r2δ,ε = oε→0(1).
Hence, using Fubini’s Theorem, (5.8) and (5.9) we find

lim
ε→0

∫
Bi

ξε(x) dx ≤
∫

Σδ
i

∫ Tδ

−Tδ

f(
√
ρ(xi), vxi,�, ϕxi,�, v

′
xi,�, ϕ

′
xi,�) dt dHn−1(x)

≤
∫

Σδ
i

(σβ(x) + δ)dHn−1(x). (5.15)

Putting together (5.14) and (5.15) we obtain

lim
δ→0

lim
ε→0

εFε,β(vε, ϕε) ≤
∫

∂A

σβdHn−1 = Fβ(ϕ).

Finally, a diagonal argument yields (5.6). �

Lemma 5.6 (mass constraint). Let β > 0 and ϕ = π1A ∈ X satisfying (1.7). Then, there exists a sequence of
functions (vε, ϕε) satisfying (1.3) for every ε > 0 for which (5.5) and (5.6) hold.
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Proof. Notice first that since
∫

A

ρ dx = α2 > 0 and
∫

Ac

ρ dx = α1 > 0, there exist x+ in A and x− in D \ A.

With the notations of Proposition 5.5, consider (vε, ϕε) as in (5.11) with d given by the signed distance to
Aε := (A ∪B+

ε ) \B−
ε , where B±

ε := B(x±, δ±ε ) and

0 ≤ δ±ε ≤ εγ/n with γ ∈ (0, 1). (5.16)

Defining v̂ε = ‖ηεvε‖−1
2 vε, the first equality in (1.3) holds. Using ‖ηε‖2 = 1 we estimate

‖ηεvε‖2
2 = 1 +

∫
Wε

η2
ε(v2

ε − 1) dx = 1 +O(ε). (5.17)

Hence, the sequence (v̂ε, ϕε) converges to (1, ϕ) in L1
loc(D) × L1

loc(D) and inequality (5.6) still holds.
Using estimates (3.5)−(3.7) we get

∫
Rn

η2
εv

2
ε cosϕε dx =

∫
Rn

η2
ε(−1Aε + 1Rn\Aε

) dx+O(ε)

=
∫

Rn

ρ(−1A + 1D\A) dx+ 2
∫

Rn

η2
ε(1B+

ε
− 1B−

ε
) dx+O(ετ )

where τ := min{a, b, c} > 0. Let c > 0 be such that η2
ε > c in B−

ε ∪B+
ε and fix γ ∈ (0, τ). For ε small enough,

thanks to (5.16) and (5.17) we obtain for (δ+ε , δ
−
ε ) = (εγ , 0),∫

Rn

η2
ε v̂

2
ε cosϕε dx ≥ α1 − α2 + 2c|B1| εγ +O(ετ ) > α1 − α2

and for (δ+ε , δ
−
ε ) = (0, εγ),∫

Rn

η2
ε v̂

2
ε cosϕε dx ≤ α1 − α2 − 2c|B1| εγ +O(ετ ) < α1 − α2.

We conclude by continuity that there exists (δ+ε , δ
−
ε ) ∈ [0; εγ] × [0; εγ ] such that the second equality in (1.3) is

satisfied. �

6. Asymptotic analysis of the surface tension

In this section we study the asymptotic behavior of σβ when β tends to zero or infinity.

6.1. Vanishing β

When β goes to zero, we expect the two condensates not to segregate anymore. This can be seen as an
interpretation of the following theorem which shows that in the limit β → 0, the surface tension σβ vanishes.

Theorem 6.1. The functional Gβ Γ -converges when β → 0 to

G0(v, ϕ) :=
1
2

∫
R

v′2 +W (v) +
1
4
v2ϕ′2 dt,

which is defined on all the pairs of functions (v, ϕ) with ϕ ∈ [0, π] (but without conditions at infinity). As a
consequence,

lim
β→0

σβ = 0
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Proof. Since the compactness and Γ−liminf inequality are readily obtained, let us focus on the Γ−limsup. For
this, let (v, ϕ) be such that Gρ,0(v, ϕ) < +∞. Let then vβ := v and

ϕβ(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for t ∈
(
−∞,− 2√

β

]
√
βϕ
(
− 1√

β

)(
t+ 1√

β

)
+ ϕ

(
− 1√

β

)
for t ∈

[
− 2√

β
,− 1√

β

]
ϕ(t) for t ∈

[
− 1√

β
, 1√

β

]
√
β
(
π − ϕ

(
1√
β

))(
t− 1√

β

)
+ ϕ

(
1√
β

)
for t ∈

[
1√
β
, 2√

β

]
π for t ∈

[
2√
β
,+∞

)
.

A simple computation then shows that

|Gβ(vβ , ϕβ) − G0(v, ϕ)| ≤ C
√
β. �

Remark 6.2. From the proof, we see that σβ ≤ C
√
β which is exactly the scaling predicted in the physics

literature [6, 7, 24, 31].

6.2. Study of β → +∞ and symmetry breaking

In this section we study the behavior of the limiting energy when β → +∞. We prove that in this case, we
recover the functional

F∞(ϕ) =
∫
D

σ∞
π

|Dϕ|

derived in [3], where σ∞(x) := 2
√

2
3 ρ3/2(x).

Let us prove that limβ→∞ σβ = σ∞ := 2
√

2
3 with a rate of approximation of the order of β−1/4 as predicted

in the physical literature [32].

Proposition 6.3.
σ∞ ≥ σβ ≥ σ∞ −√

2C β−1/4.

In particular, limβ→+∞ σβ = σ∞.

Proof. The upper bound is a consequence of (4.4) with m = 0. For the lower bound, we first notice that from
Lemma 4.3, we know that for every minimiser vβ of σβ , there holds inf vβ ≤ Cβ−1/4 so that as in the proof of
Proposition 4.2,

σβ ≥ √
2
(

2
3
− inf vβ + (inf vβ)3

(
1
3

+
β1/2

2
√

2

))
≥ σ∞ −√

2C β−1/4. �

We then easily deduce the convergence of the full energy:

Proposition 6.4. The Γ -limit in L1
loc(D) as β → +∞ of Fβ is F∞.

Let us now concentrate on the harmonic potential V = |x|2 and let us study the minimisers of F∞ under the
mass constraint (1.7) to show the symmetry breaking. Let us point out again that since the functional Fβ differs
from F∞ only by a (multiplicative) constant, the minimizers of the two functionals coincide. In particular, they
do not depend on β. To prove symmetry breaking, we closely follow the ideas of Corollary 1.3 from [3], where
such a result was derived for n = 2. Let us first prove that the minimizer among radially symmetric sets is
either the centered ball or the outside annulus.
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Proposition 6.5. Let α ∈ [0, 1] and let 1 ≥ Rα ≥ 0 be such that
∫

BλRα

ρ dx = α then letting f(α) :=

F∞(π1BλRα
),

min{F∞(A) : A radially symmetric and satisfies (1.7)} = min (f(α), f(1 − α))

Proof. Let us first notice that Rα is determined by α = Hn−1(Sn−1)λn+2

∫ Rα

0

(1 − r2)rn−1dr, so that

R′
α =

(Hn−1(Sn−1)λn+2(1 −R2
α)Rn−1

α

)−1
(6.1)

where by a slight abuse of notation we identified Rα with the function α → Rα. A simple computation shows
that for α ∈ (0, 1),

f(α) =
2
√

2
3

Hn−1(Sn−1)λn+2Rn−1
α (1 −R2

α)3/2 (6.2)

and f(0) = f(1) = 0. It then follows from (6.1) that for α ∈ (0, 1),

f ′′(α) = − 2
√

2
3Hn−1(Sn−1)λn+2

(1 −R2
α)−5/2R−(n+1)

α

(
(n− 1)(1 −R2

α) + 3R2
α

)
< 0

and thus f is strictly concave 3.

Let now A(R1, R2) := {λR1 < |x| ≤ λR2} be an annulus with 0 < R1 < R2 < 1 and
∫

A(R1,R2)

ρ dx = α, then

letting

β1 :=
∫

BλR1

ρ dx and β2 :=
∫
D\BλR2

ρ dx

we have β1 + β2 = 1 − α and

f1(β1) := F∞
(
π1A(R1,R2)

)
= f(β1) + f(β1 + α)

is a strictly concave function of β1 and thus attains its minimum for β1 = 0 or β1 = 1 − α. This proves that

inf
R1,R2

F∞(π1A(R1,R2)) = min(f(α), f(1 − α)).

As in [3], by induction it implies that any union ofm ∈ N annuli has energy larger than min(f(α), f(1−α)) which
in turn by approximation implies that any radially symmetric set has energy at least min(f(α), f(1 − α)). �

In order to show symmetry breaking it is thus enough to construct a non radially symmetric set with energy
smaller than min(f(α), f(1 − α)).

Proposition 6.6. Let n = 1, 2 or 3 then there exists α0 ∈ (0, 1/2) such that if α ∈ (α0, 1−α0), the minimizers
of F∞ under the mass constraint (1.7) are not radially symmetric.

Proof. For n = 2, the proof is already given in Corollary 1.3 from [3]. For n = 1, consider the interval Aα :=

(−λ, tα] where tα is chosen so that
∫ tα

−λ

(λ2 − |x|2)dx = α. We then have F∞(π1Aα) = 2
√

2
3

√
λ2 − t2α. By

continuity of F∞(π1Aα) and f with respect to α, it is enough showing that F∞(π1Aα) < min(f(α), f(1 − α))
for α = 1/2 so that on the one hand tα = 0 and F∞(π1Aα) = 2

√
2

3 λ3 and on the other hand f(1/2) =
2
√

2
3 2λ3(1 −R2

α)3/2. It is thus enough checking that

2(1 −R2
α)3/2 > 1.

We find that Rα ≈ 0.35 and thus 2(1 −R2
α)3/2 ≈ 1.65 > 1.

3notice that for n = 1, f is discontinuous at 0 but is still strictly concave since f ≥ f(0) and f is strictly concave in (0, 1).
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For n = 3, let us consider in cylindrical coordinates the set Aα := {(r exp(iθ), z) : r ∈ (0, λ), θ ∈ (0, θα), z ∈
(−λ, λ)} where θα is such that (1.7) is satisfied. It is readily seen that F∞(π1Aα) = 2

√
2

3
2π
5 λ

5 (notice that it
does not depend on α). As for n = 1, it is enough to compare it with f(1/2) = 2

√
2

3 4πλ5R2
α(1 −R2

α)3/2 so that
we are left to check that

10R2
α(1 − R2

α)3/2 > 1.

We find Rα ≈ 0.64 and thus 10R2
α(1 − R2

α)3/2 ≈ 1.86 > 1. �

Using the properties of Γ -convergence we derive the analogous result for the minimisers of Fε,β with ε small
enough:

Corollary 6.7. Let n = 1, 2 or 3 and V = |x|2. There exists δ0 ∈ (0, 1/2) such that for α1 ∈ [δ0, 1 − δ0] and
β > 0, there exists ε(β) > 0 such that for 0 < ε < ε(β), the minimisers of Fε,β under the constraint (1.3) are
not radially symmetric.

Acknowledgements. We thank P. Bella for pointing out the paper [14] and for suggesting the equipartition of the energy
for the optimal profile. We are very grateful to B. Van Schaeybroeck for drawing our attention to the physics literature
concerning the computation of the surface tension. The authors wish to warmly thank the hospitality of the ‘Max Planck
Institut für Mathematik’ in Leipzig, where this work was started. We thank B. Merlet for pointing out a small mistake
in Proposition 4.6.

References

[1] A. Aftalion, Vortices in Bose−Einstein Condensates, vol. 67 of Progr. Nonlin. Differ. Eq. Appl. Birkhäuser (2006).
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