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A CORRECTOR FOR A WAVE PROBLEM WITH PERIODIC COEFFICIENTS
IN A 1D BOUNDED DOMAIN

Juan Casado-Dı́az1, Julio Couce-Calvo1, Faustino Maestre1
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Abstract. We consider a wave problem posed in a bounded open interval of R, where the coefficients,
the initial conditions and the right-hand side are highly oscillating, periodic in the space variable and
almost periodic in the time one. Our purpose is to find not only the corresponding limit equation but a
corrector, i.e. a strong approximation in the H1 topology, which for the wave equation is known to be
non-local. In a previous paper we have studied this problem in the whole R

N , here we consider the case
of a bounded domain in dimension one. Thus the novelty in this paper is the analysis of the boundary
conditions.
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1. Introduction

The homogenization of a wave problem with oscillating coefficients in a bounded open set Ω ⊂ RN such as⎧⎪⎪⎨
⎪⎪⎩
∂t(ρε(x)∂tuε) − divx (Aε(x)∇xuε) = fε in (0, T )×Ω

uε = 0 on (0, T ) × ∂Ω

uε|t=0 = u0
ε, ∂tuε|t=0 = ϑε in Ω,

(1.1)

has been studied in several papers ([5,9,11]). Assuming the coefficients ρε, Aε uniformly elliptic and bounded, the
right-hand side converging strongly in L1(0, T ;L2(Ω)) to some function f and the initial data u0

ε, ϑε converging
weakly in H1

0 (Ω) and L2(Ω) respectively to some functions u0, ϑ, it is known that the solution uε of (1.1)
converges in L∞(0, T ;H1

0 (Ω)) weak-∗ to the solution u of⎧⎪⎪⎨
⎪⎪⎩
∂t(ρ(x)∂tu) − divx(A(x)∇xu) = f in (0, T ) ×Ω

u = 0 on (0, T )× ∂Ω

u|t=0 = u0, ∂tu|t=0 = ϑ in Ω.
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Here the coefficient ρ is the weak-∗ limit of ρε in L∞(Ω) and the coefficient matrix A is the limit of Aε in the
sense of the elliptic homogenization ([13,17,18]). This homogenization result provides a weak approximation of
the derivatives of uε. It is also interesting to get an approximation of these derivatives in the strong topology
of L2((0, T ) ×Ω). This is called a corrector result in homogenization. Since A is the limit of Aε in the sense of
the elliptic homogenization one could expect that the elliptic corrector also provides a corrector for the wave
problem. However it has been proved in [5] that this only holds true if the initial data are “well posed”.

A corrector result for problem (1.1) in the case of periodic coefficients and Ω = RN has been obtained in [6]
and [10]. For the elliptic or parabolic problems the corrector in every point is just obtained from the value of
the derivative of the limit function in such point. In particular initial and boundary conditions do not affect to
the corrector. However for the wave equation the corrector is non-local. In general, its value in a point depends
on the value of the limit function and the right-hand side in the whole domain (or more exactly in a certain
cone of dependence) and of the initial conditions. This is due to the dispersion of the waves in an heterogeneous
domain. Namely, it has been considered in [10] the wave problem{

∂t (ρε(t, x)∂tuε) − divx (Aε(t, x)∇xuε) +Bε(t, x) · ∇t,xuε = fε in (0, T ) × RN

uε|t=0 = u0
ε, ∂tuε|t=0 = ϑε in R

N ,
(1.2)

where the functions ρε, Aε, Bε, fε, u0
ε and ϑε have the following structure

ρε(t, x) = ρ0
(x
ε

)
+ ερ1

(
t, x,

t

ε
,
x

ε

)
, Aε(t, x) = A0

(x
ε

)
+ εA1

(
t, x,

t

ε
,
x

ε

)
, Bε(t, x) = B

(
t, x,

t

ε
,
x

ε

)

fε(t, x) = f

(
t, x,

t

ε
,
x

ε

)
, u0

ε(x) = u0(x) + εu1
(
x,
x

ε

)
, ϑε(x) = ϑ

(
x,
x

ε

)
,

and they are periodic in y = x/ε of period the unitary cube Y in RN and almost-periodic in s = t/ε. Then it
has been proved the corrector result

uε(t, x) − u0(t, x) − εu1

(
t, x,

t

ε
,
x

ε

)
→ 0 in H1((0, T ) × R

N ), (1.3)

where u0, u1 (and some u2) solve⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0∂2
ssu1 − divy(A0(∇xu0 + ∇yu1)) = 0

ρ0∂2
ttu0 − divx(A0∇xu0) + 2ρ0∂2

stu1 − divx(A0∇yu1) − divy(A0∇xu1)

+∂s

(
ρ1(∂tu0 + ∂su1)

)− divy

(
A1(∇xu0 + ∇yu1)

)
+B · (∇t,xu0 + ∇s,yu1) + ρ0∂2

ssu2 − divy(A0∇yu2) = f

u1(t, x, s, y), u2(t, x, s, y) periodic of period Y in y and almost periodic in s

u0|t=0 = u0,
(
∂tu0 + ∂su1

)
|t=s=0

= ϑ, ∂yu1|t=s=0 = ∂yu
1.

(1.4)

Here the second equation is just formal. The corresponding variational formulation consider test functions
ψ = ψ(t, x, s, y) satisfying the wave equation

ρ0∂2
ssψ − divy(A0∇yψ) = 0,

and then the terms containing u2 disappear. Therefore, in this formulation we get a system of two equations
for the two functions u0, u1 which appear in (1.3).

We observe that the second equation in (1.4) contains derivatives of u1 not only in the microscopic variables
(s, y) but also in the macroscopic ones (t, x). This is completely different to the elliptic and parabolic cases and
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as we mentioned above shows that the corrector is non-local for the wave equation. The behavior of u1 in a
point (t, x, s, y) does not only depend on the value of u0 in (t, x). As a consequence of this non-local behavior,
it is proved in [10] that the presence of the first order term Bε(t, x) · ∇uε in (1.2) provides a non-local problem
for the limit u0 of uε. On the other hand, we observe that due to the presence of derivatives in t for u1 in the
second equation of (1.4) we have needed to introduce initial conditions for u1 in t = 0.

An interesting question is if a result like (1.3) holds also true for a bounded domain Ω. In such case a formal
calculus shows that u0, u1 must also satisfy (1.4) where now it would be necessary to introduce some boundary
conditions for u1 on ∂Ω. These boundary conditions must depend on the boundary conditions imposed for uε

in (1.2) and probably on the geometry of Ω. For this reason the problem in a bounded domain seems to be
much more difficult than the problem in R

N . In the present paper we analyze this question in the simplest case
where Ω is a bounded one-dimensional interval (α, β). Our formulation considers Dirichlet, Neumann and mixed
boundary conditions. We show that (1.3) holds still true, but just for a subsequence because the behavior of
the derivatives of uε depends on the relative position of the extremes of the interval (α, β) with respect to the
periodicity cell. The main difficulty is to find the good boundary conditions for u1. They describe the shocks of
the wave with the walls. Namely, we show that u1 can be decomposed as

u1(t, x, s, y) = û1(t, x, y) +
∑
j∈J1

ũj(t, x)Φj(y)eiλjs +
∑
j∈J2

(
ũj1(t, x)Φj1(y) + ũj2(t, x)Φj2(y)

)
eiλjs,

where û1 is the classical elliptic corrector, the numbers λj are the (negative and positive) square roots of the
positive eigenvalues μj of the following problem, with a0 the above function A0 which is now denoted by a
lowercase letter to emphasize that it is a scalar function.

⎧⎪⎪⎨
⎪⎪⎩

− d
dy

(
a0 dΦ

dy

)
= μjρ

0Φ in R

Φ, a0 dΦ
dy

periodic of period Y.
(1.5)

The sets J1 and J2 correspond to the index j such that μj has multiplicity one or two respectively and the
functions Φj , Φj1, Φj2 are a basis of the corresponding eigenfunctions spaces. The boundary conditions for u1 are
in fact given for the functions ũj1, ũj2 associated to the eigenvalues of multiplicity two while boundary conditions
for the functions ũj are not needed. This different behavior corresponds to the fact that the perturbations
associated to simple eigenvalues do not propagate in space while the corresponding to eigenvalues of multiplicity
two travel in space.

We observe that (1.5) corresponds to the eigenvalue problem (2) in [6] for l = 0, where a corrector for
problem (1.1) with Ω = RN and coefficients periodic of period ε is obtained by using the Bloch theory. This is
not surprising because we are studying very related problems but in our case this is the only eigenvalue problem
we need, while in [6] it is necessary to introduce the second parameter l ∈ ZN .

2. Notation

The functions will be assumed valued in the complex field C, with i the imaginary unit. The conjugate of a
vector u ∈ Ck is denoted by u. The real part of a complex number z is denoted by Re(z).

In order to write shorter expressions, we will only write the arguments of the functions when it is essential.
For α, β ∈ R, α < β, we denote by I the interval I = (α, β) ⊂ R.
For T > 0, we denote by QT the open set (0, T )× I.
We denote by Oε an arbitrary sequence which converges to zero when ε tends to zero and which can change

from line to line.
We denote by Y the unitary interval (0, 1).
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For functions defined in Y , we use the index � to note periodicity with respect to Y (thus the functions are in
fact defined in the whole of R). For example L1

�(Y ) denotes the space of functions in L1
loc(R) which are periodic

of period Y . The integral in Y of a function u in L1
� (Y ) will be denoted by My(u) (mean value).

For functions defined in R, the index � denotes almost-periodicity. Namely, we will use the following spaces
of almost-periodic functions.

1. We denote by C�(R) the space of almost-periodic functions in the Bohr sense, i.e. the closure of the trigono-
metric polynomials u of the form

u(s) =
m∑

j=1

cpj e
ipjs, ∀ s ∈ R, with m ∈ N, pj ∈ R, cpj ∈ C, 1 ≤ j ≤ m, (2.1)

with respect to the uniform convergence topology.
2. We denote by Lp

� (R), 1 ≤ p < +∞ the space of Besicovitch defined as the closure of the trigonometric
polynomials as above with respect to the norm

‖u‖Lp
� (R) =

(
lim

R→∞
1

2R

∫ R

−R

|u(s)|pds
) 1

p

.

Indeed, ‖ · ‖Lp
� (R) is not a norm but a seminorm. In order to have a structure of normed space in Lp

� (R) it is
necessary to work with a quotient space, i.e. to identify functions u, v ∈ Lp

� (R) such that ‖u− v‖Lp
� (R) = 0.

It is well known that every function u in the space L1
� (R) has a mean value Ms(u) ∈ C, which is defined by

lim
ε→0

∫
E

u
(s
ε

)
ds = Ms(u)|E|, ∀E ⊂ R, bounded and measurable.

3. We denote by Hk
� (R), k ∈ R (in the paper we just use k = −1, 0, 1) by

Hk
� (R) =

⎧⎨
⎩
∑
p∈R

cpe
ips : cp ∈ C, ∀ p ∈ R,

∑
p∈R\{0}

|cp|2|p|2k <∞
⎫⎬
⎭ .

It is a Hilbert space endowed with the norm∥∥∥∥∥∥
∑
p∈R

cpe
ips

∥∥∥∥∥∥
Hk

� (R)

=

⎛
⎝|c0|2 +

∑
p∈R\{0}

|cp|2|p|2k

⎞
⎠

1
2

.

We remark that H0
� (R) = L2

� (R). Moreover, we have Hk
� (R)′ = H−k

� (R).
In Hk

� (R) we define the derivative operator d
ds : Hk

� (R) → Hk−1
� (R) just by

d
ds

⎛
⎝∑

p∈R

cpe
ips

⎞
⎠ =

∑
p∈R

ipcpe
ips.

We will also use the index � for functions defined in R×Y to denote periodicity with respect to Y and almost
periodicity with respect to R. Namely, we will work with the spaces C�(R × Y ), Lp

� (R × Y ), Hk
� (R × Y ), which

are constructed as above but starting from functions of the form

u(s, y) =
m∑

j=1

cpjnj e
i(pjs+2πnjy), ∀ (s, y) ∈ R × Y,

m ∈ N, pj ∈ R, nj ∈ Z, cpjnj ∈ C, 1 ≤ j ≤ m.

The mean value of a function u in L1
� (R × Y ) will be denoted by Ms,y(u) = Ms(My(u)) = My(Ms(u)).
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Along the paper we will consider two fixed periodic real functions ρ0 ∈ L∞
� (Y ) and a0 ∈ L∞

� (Y ), such that

inf
y∈Y

ess ρ0(y) > 0, inf
y∈Y

ess a0(y) > 0. (2.2)

Then, we introduce the spaces Wk, k ∈ R by

Wk =

⎧⎨
⎩
∑
p∈R

cp(y)eips ∈ Hk
� (R × Y ) : c0 ≡ 0, ρ0∂2

ssw − ∂y

(
a0∂yw

)
= 0

⎫⎬
⎭ . (2.3)

A spectral decomposition for the elements of Wk can be obtained in the following way: we introduce μ0 = 0 <
μ1 < μ2 < · · · as the numbers (eigenvalues) μj ∈ [0,+∞) satisfying that the space

Wj =
{
Φ ∈ H1

� (Y ) : − d
dy

(
a0 dΦ

dy

)
= μjρ

0Φ in R

}
(2.4)

does not reduce to the null space. For an eigenvalue μj , we denote

W−j = Wj , λj =
√
μj , λ−j = −√

μj . (2.5)

Then,

Wk =

⎧⎪⎨
⎪⎩

∞∑
j=−∞

j �=0

cj(y)eiλjs : cj ∈ Wj , ∀ j ∈ Z,

∞∑
j=−∞

j �=0

‖cj‖2
L2

�(Y )|λj |2k <∞

⎫⎪⎬
⎪⎭ . (2.6)

We remark that with our definitions, the space H1
� (R × Y ) is not contained in L2

� (R × Y ) since

∑
p∈R\{0}

‖cp‖2
L2

�
(Y )|p|2 <∞ ⇒

∑
p∈R\{0}

‖cp‖2
L2

�
(Y ) <∞,

but W1 is contained in W0 because

∞∑
j=−∞

j �=0

‖cj‖2
L2

�(Y ) ≤
1
λ2

1

∞∑
j=−∞

j �=0

‖cj‖2
L2

�(Y )|λj |2.

We also recall the following well known result: If Φ1, Φ2 are two solutions of the differential equation

− d
dy

(
a0 dΦ

dy

)
= μjρ

0Φ in R (2.7)

then

a0

(
Φ1 dΦ2

dy
− Φ2 dΦ1

dy

)
is constant in R, (2.8)

where the constant is zero if and only if Φ1, Φ2 are linearly dependent.
Taking into account that the spaces Wj can be of dimension one or two, we denote

J1 = {j ∈ Z \ {0} : dim(Wj) = 1}, J2 = {j ∈ Z \ {0} : dim(Wj) = 2},

and
J+

1 = J1 ∩ Z
+, J+

2 = J2 ∩ Z
+.
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For a function

u =
∞∑

j=−∞
j �=0

cj(y)eiλjs ∈ W0,

we define P1u, P2u by
P1u =

∑
j∈J1

cj(y)eiλjs, P2u =
∑
j∈J2

cj(y)eiλjs.

Besides of the functions ρ0, a0, we will also consider functions ρ1 ∈ L∞(QT ;C�(R×Y )), a1 ∈ L∞(QT ;C�(R×
Y )), ρ1, a1 real, such that

∂tρ
1, ∂sρ

1, ∂ta
1, ∂sa

1 ∈ L∞(QT ;C�(R × Y )), (2.9)

and a function B ∈ L∞(QT ;C�(R × Y ))2.
With these functions, and ε > 0, we will define ρε, aε ∈W 1,∞(0, T ;L∞(I)), Bε ∈ L∞(QT )2 by

aε(t, x) = a0
(x
ε

)
+ εa1

(
t, x,

t

ε
,
x

ε

)
(2.10)

ρε(t, x) = ρ0
(x
ε

)
+ ερ1

(
t, x,

t

ε
,
x

ε

)
(2.11)

Bε(t, x) = B

(
t, x,

t

ε
,
x

ε

)
, (2.12)

a.e. (t, x) ∈ QT .
We denote by cα, dα, cβ , dβ complex constants such that

|cα| + |dα| > 0, |cβ | + |dβ | > 0.

With these constants, we define the space V by

V =
{
v ∈ H1(I) : v(α) = 0 if cα = 0 and v(β) = 0 if cβ = 0

}
.

The space V is endowed with the H1(I) norm.

3. Main results

For u0
ε, ϑε and fε bounded in V , L2(I) and L2(QT ) respectively, we consider the wave problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t(ρε∂tuε) − ∂x(aε∂xuε) +Bε · ∇t,xuε = fε in QT(− cαaε∂xuε + dαuε

)
|x=α

= 0,
(
cβaε∂xuε + dβuε

)
|x=β

= 0 in (0, T )

uε|t=0 = u0
ε, ∂tuε|t=0 = ϑε in I

uε ∈ L∞(0, T ;V ), ∂tuε ∈ L∞(0, T ;L2(I)).

(3.1)

Our purpose in the present paper is to study the asymptotic behavior of uε when ε tends to zero. First we
remark that since for ε > 0 small enough, ρε, aε, are uniformly elliptic and bounded in W 1,∞(0, T ;L∞(I)), Bε

is bounded in L∞(QT )2, and u0
ε, ϑε, fε bounded in V , L2(I) and L2(QT ) respectively, we immediately have

Theorem 3.1. For ε > 0 small enough, problem (3.1) has a unique solution. Moreover, there exists C > 0 such
that

‖uε‖L∞(0,T ;V ) + ‖∂tuε‖L∞(0,T ;L2(I)) ≤ C. (3.2)



A CORRECTOR FOR A WAVE PROBLEM WITH PERIODIC COEFFICIENTS IN A 1D BOUNDED DOMAIN 471

Theorem 3.1 implies that, at least for a subsequence, there exists the limit u0 of uε in the weak-∗ topology
of L∞(0, T ;V ). In order to characterize this limit and to obtain a corrector result for problem (3.1), let us use
the two-scale convergence theory.

Definition 3.2. We say that a sequence vε ∈ L2(I) two-scale converges to a function v ∈ L2(I;L2
� (Y )) and we

write vε
2e
⇀ v, if for every ψ ∈ Cc(I;C�(Y )) we have

lim
ε→0

∫
I

vεψ
(
x,
x

ε

)
dx =

∫
I

My(vψ) dx. (3.3)

Analogously, we say that a sequence vε ∈ L2(QT ) two-scale converges to a function v ∈ L2(QT ;L2
�(R × Y ))

and we write vε
2e
⇀ v, if for every ψ ∈ Cc(QT ;C�(R × Y )) we have

lim
ε→0

∫
QT

vεψ

(
t, x,

t

ε
,
x

ε

)
dtdx =

∫
QT

Ms,y(vψ) dtdx. (3.4)

The interest of the two-scale convergence follows from the classical compactness results which establishes the
existence of a two-scale limit for bounded sequences in L2 (see [1,7,8,14–16]). As a consequence of these results
and u0

ε, ϑε, fε bounded in V , L2(I) and L2(QT ), there exist u0 ∈ V , u1 ∈ L2(I;H1
� (Y )), ϑ ∈ L2(I;L2

� (Y )) and
f ∈ L2(QT ;L2

� (R × Y )) such that, up to a subsequence, we have

u0
ε ⇀ u0 in V, ∂xu

0
ε

2e
⇀ ∂xu

0 + ∂yu
1, ϑε

2e
⇀ ϑ, fε

2e
⇀ f. (3.5)

The main result of the paper is given by Theorem 3.4 below which provides the limit function u0 of the solution
uε of (3.1) and the two-scale limit of the sequence ∇t,xuε. Related results have been obtained in [2–6,9, 11, 12].
Here the novelty is the analysis of the boundary conditions which (because the waves travel and shock with the
walls) influence the behavior of uε at the interior of Ω.

Although the problem is periodic, we will prove that the two-scale limit for the whole sequence ∇t,xuε does
not exist, instead we will need to consider a subsequence of ε such that there exist α∗, β∗ ∈ R/Z satisfying

α

ε
→ α∗,

β

ε
→ β∗ in R/Z. (3.6)

Associated to this subsequence, we define the following spaces which will appear in Theorem 3.4.

Definition 3.3. For a subsequence of ε such that (3.6) holds, we define the spaces V1 and V2 by

V1 = H1
0

(
0, T ;L2

(
I;P1

(W1
)))

(3.7)

V2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
ψ ∈ H1(QT ;P2(W1)) : ψ|t=0 = ψ|t=T = 0,

(a0∂yψ)| x=α
y=α∗ = 0 if cα = 0,

ψ|x=α,y=α∗ = 0 if cα = 0

(a0∂yψ)| x=β
y=β∗ = 0 if cβ = 0

ψ|x=β,y=β∗ = 0 if cβ = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (3.8)

Theorem 3.4. We consider a subsequence of ε, still denoted by ε such that (3.5) and (3.6) hold. Then, the
sequence uε satisfies

uε
∗
⇀ u0 in L∞(0, T ;V ) (3.9)

∇t,xuε
2e
⇀ ∇t,xu0 + ∇s,yu1, (3.10)



472 J. CASADO-DÍAZ ET AL.

where u0, u1 are the unique solutions of the variational system

u0 ∈ L∞(0, T ;V ), ∂tu0 ∈ L∞(0, T ;L2(I)) (3.11)

u1 ∈ L∞(0, T ;L2(I;H1
� (R × Y ))), Ms,y(u1) = 0 a.e. in QT (3.12)

u0|t=0 = u0,
(
∂tu0 + ∂su1

)
|t=s=0

= ϑ, ∂yu1|t=s=0 = ∂yu
1 (3.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
QT

Ms,y

(− ρ0(∂tu0∂tv0 + ∂su1∂sv1) + a0(∂xu0 + ∂yu1)(∂xv0 + ∂yv1)
)
dtdx

+
dα

cα

∫
{x=α}

u0v0 dt+
dβ

cβ

∫
{x=β}

u0v0 dt

+
∫

QT

Ms,y

(
B · (∇t,xu0 + ∇s,yu1)v0

)
dtdx =

∫
QT

Ms,y(fv0
)
dtdx

∀ v0 ∈W 1,1
0 (0, T ;L2(I)) ∩ L1(0, T ;V ), ∀ v1 ∈ L2(QT ;H1

� (R × Y ))

(3.14)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
QT

Ms,y

(− 2ρ0∂su1∂tψ − ρ1(∂tu0 + ∂su1)∂sψ + a1(∂xu0 + ∂yu1)∂yψ
)
dtdx

+
∫

QT

Ms,y

(
B · (∇t,xu0 + ∇s,yu1)ψ

)
dtdx =

∫
QT

Ms,y(fψ)dtdx, ∀ψ ∈ V1

(3.15)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
QT

Ms,y

(− 2ρ0∂su1∂tψ + a0∂yu1∂xψ − a0∂2
x,yψ u1

)
dtdx

+
∫

QT

Ms,y

(−ρ1(∂tu0 + ∂su1)∂sψ + a1(∂xu0 + ∂yu1)∂yψ
)
dtdx

+
∫

QT

Ms,y

(
B · (∇t,xu0 + ∇s,yu1)ψ

)
dtdx =

∫
QT

Ms,y(fψ)dtdx, ∀ψ ∈ V2.

(3.16)

Remark 3.5. In the case where cα = 0, the term

dα

cα

∫
{x=α}

u0v0 dt

which appears in (3.14) must be understood as zero. Observe that in this case, the functions u0 and v0 vanish
at x = α. Analogously, if cβ = 0, the term

dβ

cβ

∫
{x=β}

u0v0 dt

is defined as zero.

Remark 3.6. In order to have uniqueness for u1 we have taken it satisfying Ms,y(u1) = 0. Clearly, (3.10) still
holds adding to u1 any function independent of the variables (s, y).

Remark 3.7. Observe that the two-scale limit of the solution uε of (3.1) depends on the position of the extremes
of I with respect to the periodic cell, which correspond to the points α∗ and β∗ given by (3.6).
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Remark 3.8. In equations (3.15) and (3.16) the function ψ applies QT into the spaces P1(W1) and P2(W1)
respectively. This shows that the behavior of elementary waves associated to simple or multiple eigenvalues
of (2.4) is different.

Remark 3.9. From (3.14), with v0 = 0, we deduce the equation

ρ0∂2
ssu1 − ∂y(a0(∂xu0 + ∂yu1)) = 0 in R × R, a.e. in QT . (3.17)

A solution of this problem independent of s is given by the elliptic corrector û1 (see e.g. [1,4,14]) solution of{
û1 ∈ L∞(0, T ;L2(I;H1

� (Y ))), My(û1) = 0 a.e. (t, x) ∈ QT

−∂y(a0(∂xu0 + ∂yû1)) = 0 in R, a.e. in QT ,
(3.18)

or equivalently

∂yû1(t, x, y) = a0
h

(
1

a0(y)
− 1
a0

h

)
∂xu0(t, x), a.e. (t, x, y) ∈ QT ,×R, My(û1) = 0, (3.19)

with a0
h the homogenized coefficient corresponding to a0, i.e.

a0
h =

1
My( 1

a0 )
· (3.20)

From (3.17) and (3.18), we deduce that u1 can be decomposed as

u1 = û1 + ũ1, (3.21)

with
ũ1 ∈ L∞(0, T ;L2(I;W1)). (3.22)

Remark 3.10. Taking v1 = 0 in (3.14) and using (3.21), (3.19) and Ms(ũ1) = 0, which is a consequence
of (3.22), we deduce that u0 satisfies⎧⎪⎪⎨

⎪⎪⎩
My(ρ0)∂2

ttu0 − a0
h∂

2
xxu0 +Bh · ∇t,xu0 +Ms,y(B · ∇s,yũ1) = Ms,y(f) in QT

(−cαa0
h∂xu0 + dαu0)|x=α = 0, (cβa0

h∂xu0 + dβu0)|x=β = 0 in (0, T )

u0|t=0 = u0,

(3.23)

where, denoting by bt, bx the two components of B, the function Bh is given by

Bh = (bh,t, bh,x) with bh,t = Ms,y(bt), bh,x =
Ms,y

(
bx

a0

)
My

(
1
a0

) · (3.24)

If we assume that B satisfies

Ms,y (B · ∇s,yv) = 0, ∀ v ∈ W1, a.e. in QT , (3.25)

then the fourth term in the PDE in (3.23) vanishes providing an equation for u0 (the limit equation). This
holds, for example, if B does not depend on s. In general (3.25) is not satisfied and then, since ũ1 does not
depend locally on u0, we get a non-local equation for u0. An example of this situation is given in [10], where
QT = (0, T ) × RN .
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Remark 3.11. Equation (3.23) for u0 must be completed with initial conditions for u0 and ∂tu0. The first
one is contained in (3.13). The second one can be obtained as follows: Using (3.21), we can write the second
equation in (3.13) as (

∂tu0 + ∂sũ1

)
|t=s=0

= ϑ, (3.26)

where ∂sũ1 is a combination of eigenfunctions of problem (2.7) corresponding to non-vanishing eigenvalues.
Thus My(ρ0∂sũ1) = 0 and therefore, multiplying (3.26) by ρ0 and taking the mean value in y we get

∂tu0|t=0 =
My(ρ0ϑ)
My(ρ0)

· (3.27)

Equation (3.16) implicitly provides boundary conditions for the function ũ1 given by (3.21). This is given by
the following Proposition which shows that P2ũ1 satisfies the boundary conditions imposed to ψ in (3.16).

Proposition 3.12. In the conditions of Theorem 3.4, and defining ũ1 by (3.21), we have

(a0∂yP2ũ1)|x=α,y=α∗ = 0 if cα = 0, P2ũ1|x=α,y=α∗ = 0 if cα = 0,

(a0∂yP2ũ1)|x=β,y=β∗ = 0 if cβ = 0, P2ũ1|x=β,y=β∗ = 0 if cβ = 0.
(3.28)

From Theorem 3.4 it is also possible to obtain a corrector result for problem (3.1). For this purpose, it is
necessary to assume that in (3.5) the two-scale convergence holds in the following strong sense:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

lim
ε→0

∫
I

∂xu
0
εψε dx =

∫
I

My

(
(∂xu

0 + ∂yu
1)ψ
)
dx

lim
ε→0

∫
I

ϑεψε dx =
∫

I

My

(
ϑψ
)
dx

∀ψε bounded in L2(I)N , ψ ∈ L2(I;L2
� (Y )), Ψε

2e
⇀ ψ,

(3.29)

which is possible to prove (see e.g. [1]) that it is equivalent to assume that the second and third assertions
in (3.5) hold and

lim
ε→0

∫
I

|∂xu
0
ε|2dx =

∫
I

My

(|∂xu
0|2 + |∂yu

1|2) dx, lim
ε→0

∫
I

|ϑε|2dx =
∫

I

My

(|ϑ|2) dx.

The corrector result is given by Theorem 3.13 below. Its proof is very similar to the one of Theorem 3.7
in [10] and then it will not be given here. The main idea consists in using Theorem 3.4 to pass to the limit in
the energy identity for problem (3.1).

Theorem 3.13. We assume that in Theorem 3.4, the sequences u0
ε and ϑε satisfy (3.29), then, for every

sequence Γε ∈ L2(QT )2 which two-scale converges strongly to ∇s,yu1, we have

lim
ε→0

∫
QT

|∇t,x(uε − u0) − Γε|2 dxdt = 0. (3.30)

Remark 3.14. If the function ∇s,yu1 is in L2(QT ;C0
� (R × Y )2), then we can take in (3.30)

Γε = ∇s,yu1

(
t, x,

t

ε
,
x

ε

)
·

In this case Theorem 3.13 asserts

∇t,xuε −∇t,xu0 −∇s,yu1

(
t, x,

t

ε
,
x

ε

)
→ 0 in L2(QT )2,
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which assuming further regularity in u1 reads as

uε − u0 − εu1

(
t, x,

t

ε
,
x

ε

)
→ 0 in H1(QT ).

We finish this section with a simplified model of (3.1) where we can explicitly obtain the function u1 which
appears in Theorem 3.4 from u0, the initial data and the right-hand side. For this purpose, let us consider an
orthonormal basis of the spaces Wj composed by real functions. Namely:

If j ∈ J1, we consider a real eigenfunction Φj ∈Wj such that

My(ρ0|Φj |2) = 1. (3.31)

If j ∈ J2, we consider two real eigenfunctions Φj1, Φj2 ∈Wj such that

My

(
ρ0ΦjkΦjl

)
= δkl, k, l ∈ {1, 2}. (3.32)

Since Wj = W−j for every j ∈ Z \ {0}, we can also assume

Φj = Φ−j , ∀ j ∈ J1, Φj1 = Φ−j1, Φj2 = Φ−j2, ∀ j ∈ J2. (3.33)

Moreover, we remark that these functions Φj , Φj1, Φj2 with j ∈ Z+ are a basis of L2
� (Y )/R and H1

� (Y )/R.
Taking into account that f belongs to L2(QT ;C�(R × Y )), and then to the space L2(QT ;L2

� (R × Y )), that
u1 belongs to L2(I;H1

� (Y )), and can be chosen with zero mean value in y, and that ϑ belongs to L2(I;L2
� (Y )),

we can decompose these functions as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(t, x, s, y)
ρ0(y)

=
∑

j∈J1
fj(t, x)Φj(y)eiλjs

+
∑
j∈J2

(
fj1(t, x)Φj1(y)+fj2(t, x)Φj2(y)

)
eiλjs+f∗(t, x, s, y)

(3.34)

u1(x, y) =
∑

j∈J+
1

u1
j(x)Φj(y) +

∑
j∈J+

2

(
u1

j1(x)Φj1(y) + u1
j2(x)Φj2(y)

)
(3.35)

ϑ(x, y) =
∑

j∈J+
1

ϑj(x)Φj(y) +
∑

j∈J+
2

(
ϑj1(x)Φj1(y) + ϑj2(x)Φj2(y)

)
+My(ϑ), (3.36)

with
Ms,y(ρ0f∗v) = 0 a.e. in QT , ∀ v ∈ W0 (3.37)

∑
j∈J1

‖fj‖2
L2(QT ) +

∑
j∈J2

(‖fj1‖2
L2(QT ) + ‖fj2‖2

L2(QT )

)
< +∞ (3.38)

∑
j∈J+

1

λ2
j‖u1

j‖2
L2(I) +

∑
j∈J+

2

λ2
j

(‖u1
j1‖2

L2(I) + ‖u1
j2‖2

L2(I)

)
< +∞ (3.39)

∑
j∈J+

1

‖ϑj‖2
L2(I) +

∑
j∈J+

2

(‖ϑj1‖2
L2(I) + ‖ϑj2‖2

L2(I)

)
< +∞. (3.40)
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We also denote (recall that by (2.8) the definition of κj below does not depend on y)

mj = My(a0∂yΦj), j ∈ J1, mjl = My(a0∂yΦjl), j ∈ J2, l ∈ {1, 2} (3.41)

κj = a0(y)
(
Φj1(y)

dΦj2

dy
(y) − Φj2(y)

dΦj1

dy
(y)
)
, a.e. y ∈ R (3.42)

μα∗
jl = Φjl(α∗), μβ∗

jl = Φjl(β∗), j ∈ J2, l ∈ {1, 2} (3.43)

να∗
jl =

(
a0

dΦjl

dy

)
(α∗), νβ∗

jl =
(
a0

dΦjl

dy

)
(β∗), j ∈ J2, l ∈ {1, 2}. (3.44)

Theorem 3.15. We assume that the functions ρ1, a1, B in Theorem 3.4 vanish. Then the function u1 is given
by (3.21), where the functions û1 and ũ1 can be written as

û1(t, x, y) =
∑

j∈J+
1

ûj(t, x)Φj(y) +
∑

j∈J+
2

(
ûj1(t, x)Φj1(y) + ûj2(t, x)Φj2(y)

)
(3.45)

ũ1(t, x, s, y) =
∑
j∈J1

ũj(t, x)Φj(y)eiλjs +
∑
j∈J2

(
ũj1(t, x)Φj1(y) + ũj2(t, x)Φj2(y)

)
eiλjs, (3.46)

with

sup
t∈(0,T )

ess

⎛
⎝∑

j∈J+
1

λ2
j‖ûj(t, x)‖2

L2(I) +
∑

j∈J+
2

λ2
j

(
‖ûj1(t, x)‖2

L2(I) + ‖ûj2(t, x)‖2
L2(I)

)⎞⎠ <∞ (3.47)

sup
t∈(0,T )

ess

⎛
⎝∑

j∈J1

λ2
j‖ũj(t, x)‖2

L2(I) +
∑
j∈J2

λ2
j

(‖ũj1(t, x)‖2
L2(I) + ‖ũj2(t, x)‖2

L2(I)

)⎞⎠ <∞. (3.48)

The coefficients ûj and ûjl are given by

mj∂xu0 + λ2
j ûj = 0, a.e. in I, ∀ t ∈ [0, T ], ∀ j ∈ J+

1 (3.49)

mjl∂xu0 + λ2
j ûjl = 0, a.e. in I, ∀ t ∈ [0, T ], ∀ j ∈ J+

2 , ∀ l ∈ {1, 2}. (3.50)

For j ∈ J+
1 , the coefficients ũj , ũ−j are given by

ũj(t, x) =
1
2

(
u1

j(x) +
mj

λ2
j

∂xu0(0, x) − ϑj(x)
λj

i

)
− i

2λj

∫ t

0

fj(τ, x) dτ, a.e. in QT (3.51)

ũ−j(t, x) =
1
2

(
u1

j(x) +
mj

λ2
j

∂xu0(0, x) +
ϑj(x)
λj

i

)
− i

2λj

∫ t

0

fj(τ, x) dτ, a.e. in QT . (3.52)

The coefficients ũjl are the solutions of the system{
2iλj∂tũj1 − κj∂xũj2 = fj1

2iλj∂tũj2 + κj∂xũj1 = fj2,
(3.53)
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with the boundary conditions⎧⎪⎨
⎪⎩
(
να∗

j1 ũj1 + να∗
j2 ũj2

)
|x=α

= 0 if cα = 0,
(
μα∗

j1 ũj1 + μα∗
j2 ũj2

)
|x=α

= 0 if cα = 0
(
νβ∗

j1 ũj1 + νβ∗
j2 ũj2

)
|x=β

= 0 if cβ = 0,
(
μβ∗

j1 ũj1 + μβ∗
j2 ũj2

)
|x=β

= 0 if cβ = 0,
(3.54)

and the initial conditions

ũjl |t=0 =
1
2

(
u1

jl +
mjl

λ2
j

∂xu0|t=0 − ϑjl

λj
i

)
, a.e. in I, ∀ j ∈ J+

2 , l = 1, 2 (3.55)

ũ−jl |t=0 =
1
2

(
u1

jl +
mjl

λ2
j

∂xu0|t=0 +
ϑjl

λj
i

)
, a.e. in I, ∀ j ∈ J+

2 , l = 1, 2. (3.56)

Remark 3.16. The existence and uniqueness of solution for system (3.53) with the boundary conditions given
by (3.54) and the initial conditions given by (3.55) and (3.56), follows from Theorem 3.4. It can also be proved
directly. For this purpose we remark that it is easy to obtain an a priori estimate for this problem. Namely,
assume to simplify cα = cβ = 0 (Dirichlet conditions), the other cases are similar. Then, multiplying the first
equation in (3.53) by ¯̃uj1, the second equation by ¯̃uj2, integrating in (α, β), dividing by 2iλj and adding the
two equations, we get∫ β

α

(∂tũj1
¯̃uj1 + ∂tũj2

¯̃uj2) dx+
κji

2λj

∫ β

α

(∂xũj2
¯̃uj1 − ∂xũj1

¯̃uj2) dx = − i

2λj

∫ β

α

(fj1
¯̃uj1 + fj2

¯̃uj2) dx. (3.57)

In the second term an integration by parts shows∫ β

α

(∂xũj2
¯̃uj1 − ∂xũj1

¯̃uj2) dx = 2
∫ β

α

Re(∂xũj2
¯̃uj1) dx − ũj1(t, β)¯̃uj2(t, β) + ũj1(t, α)¯̃uj2(t, α). (3.58)

Now, we observe that if μα∗
j1 = 0 then ũj2(t, α) = 0 by (3.54) and therefore

ũj1(t, α)¯̃uj2(t, α) = 0 ∈ R.

If μα∗
j1 = 0, then, multiplying the first equation in (3.54) by ¯̃uj2(t, α) we have

ũj1(t, α)¯̃uj2(t, α) = −μ
α∗
j2

μα∗
j1

|ũj2(t, α)|2 ∈ R.

So, we always have that the third term on the right-hand side of (3.58) is real. Analogously, we can also show
that the second term is real and therefore (3.58) shows that the second term in (3.57) is purely imaginary. Thus,
taking the real part in (3.57) we get

1
2

d
dt

∫ β

α

(|ũj1|2 + |ũj2|2
)
dx ≤ 1

2λj

∫ β

α

(|fj1|2 + |fj2|2
) 1

2
(|ũj1|2 + |ũj2|2

) 1
2 dx.

This estimate allows us to use Gronwall’s inequality to deduce the a priori estimate

2∑
k=1

‖ũjk‖L∞(0,T ;L2(α,β) ≤ C

λj

2∑
k=1

‖fjk‖L2(QT ) + C‖u1
j‖L2(α,β) +

C

λj
‖θ1j‖L2(α,β) +

C

λ2
j

‖∂xu0|t=0‖L2(α,β).

Then, thanks to this a priori estimate and using for example a Galerkin approximation, is now easy to prove
existence and uniqueness of solution for (3.53)–(3.56).
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Remark 3.17. From (3.53), we can deduce that the functions ũj1, ũj2 are the solutions of the wave equations

4λ2
j∂

2
ttũj1 − κ2

j∂
2
xxũj1 = −2iλj∂tfj1 − κj∂xfj2 (3.59)

4λ2
j∂

2
ttũj2 − κ2

j∂
2
xxũj2 = κj∂xfj1 − 2iλj∂tfj2, (3.60)

combined with some boundary and initial conditions which can also be deduced from (3.54) and (3.55), (3.56).
The right-hand side of (3.59) and (3.60) has a lack of smoothness (something similar happens for the initial and
the boundary conditions), the corresponding solution can be defined by transposition.

Remark 3.18. In Theorem 3.15 we can observe how the physical behavior of the elementary waves correspond-
ing to frequencies λj is completely different in the case of simple or multiple eigenvalues. Namely, if λj belongs
to J1 the corresponding coefficient ũj of ũ satisfies the equation (see 3.51)

2λji∂tũj = fj .

It corresponds to a perturbation which does not moves in space, such as it can be observed in (3.51) which
provides a value for ũj in a point (t, x) depending only on the values of the data for the same spatial point x.
Thus, the behavior of these wave does not depend on the boundary conditions.

When λj is an eigenvalue of multiplicity two, the equations corresponding to the coefficients ũj1, ũj2 are
given by (3.59) and (3.60). They correspond to waves moving in the space at a velocity κj/(2λj) through the
characteristic

x = ± κj

2λj
t.

Thus, perturbations originated in a certain point of (α, β) arrive to the boundary in a finite time and there,
they are reflected depending on the chosen boundary conditions.

4. Proof of the results

This section is devoted to show the different results stated in the previous one.
In order to prove Theorem 3.4, we need the following lemma which is a particular case of Lemma 4.1 in [10]

and then it is given without proof.

Lemma 4.1. We consider a bounded sequence ζε in H1(0, T ;L2(I)) such that there exist ζ0 ∈
H1(0, T ;L2(I;L2

� (Y )) and ζ1 ∈ L2(0, T ;L2(I;H1
� (R;L2

�(Y ))) satisfying

ζε
2e
⇀ ζ0, ∂tζε

2e
⇀ ∂tζ0 + ∂sζ1. (4.1)

Then,
ζε(t, .)

2e
⇀ ζ0(t, ., .), ∀ t ∈ [0, T ]. (4.2)

Besides, for every ϕ ∈ C1(QT ), ϕ|t=0 = ϕ|t=T = 0, h ∈ L2
� (Y ) and g ∈W 1,∞(R), periodic with period S, for

some S > 0, and zero mean value, we have

∃ lim
ε→0

1
ε

∫
QT

ζε(t, x)ϕ(t, x)g
(
t

ε

)
h
(x
ε

)
dtdx =

∫
QT

Ms,y (ζ1(t, x, s, y)ϕ(t, x)g(s)h(y)) dtdx. (4.3)

Proof of Theorem 3.4. We split the proof in several steps.

Step 1. From (3.2), we know that, at least for a subsequence, there exists u0 ∈ L∞(0, T ;V ), with ∂tu0 ∈
L∞(0, T ;L2(I)) such that

uε
∗
⇀ u0 in L∞(0, T ;V ), ∂tuε

∗
⇀ ∂tu0 in L∞(0, T ;L2(I)). (4.4)
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Moreover, the compactness property of the two-scale convergence (see [1,7,8,14–16]) implies the existence of
u1 ∈ L∞(0, T ;L2(I;H1

� (R × Y ))), u1 = u1(t, x, s, y), such that

∇t,xuε
2e
⇀ ∇t,xu0 + ∇s,yu1. (4.5)

The problem is to characterize these functions. For this purpose, as it is usual in the two-scale convergence
method we take as test function in (3.1) the sequence

vε(t, x) = v0(t, x) + εv1

(
t, x,

t

ε
,
x

ε

)
,

with v0 ∈ C∞
c (0, T ;V ), v1 ∈ C∞

c (QT ;C∞
� (R × Y )). Passing to the limit when ε tends to zero we easily deduce

that u0, u1 satisfy (3.14). However this is not enough to characterize the function u1 and then we need to use
another type of test functions. For this purpose, we reason as in [10]. Namely, for j ∈ Z \ {0}, Φ ∈ Wj and
ϕ ∈ C∞([0, T ];C∞

c (I)), ϕ|t=T = 0 we take as test function in (3.1) the sequence

vε(t, x) = ϕ(t, x)eiλj
t
εΦ
(x
ε

)
, a.e. (t, x) ∈ QT .

Then, the same calculus which appears in Step 3 of the proof of Theorem 3.5 in [10] shows

−
∫

I

My

(
ϑϕ(0, x)Φ

)
dx− 2

∫
QT

Ms,y

(
ρ0 ∂su1∂tϕ eiλjs Φ

)
dtdx

+
i

λj

∫
I

My

(
a0∂yu

1 dΦ
dy

ϕ(0, x)
)

dx− iλj

∫
QT

Ms,y

(
ρ1(∂tu0 + ∂su1)ϕ eiλjs Φ

)
dtdx

+
∫

QT

Ms,y

(
a0∂yu1∂xϕ eiλjs Φ

)
dtdx −

∫
QT

Ms,y

(
a0 dΦ

dy
∂xϕu1 eiλjs

)
dtdx

− i

λj

∫
I

My

(
a0 dΦ

dy

)
∂xϕ(0, x)u0(0, x) dx+

∫
QT

Ms,y

(
a1(∂xu0+∂yu1)

dΦ
dy

ϕ eiλjs

)
dtdx

+
∫

QT

Ms,y

(
B · (∇t,xu0 + ∇s,yu1)ϕ eiλjs Φ

)
dtdx =

∫
QT

Ms,y

(
f ϕ eiλjs Φ

)
dtdx,

(4.6)

which combined to (3.14) allows us to prove (see [10] for more details) that u0, u1 satisfy the variational equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
QT

Ms,y

(− 2ρ0∂su1∂tψ + a0∂yu1∂xψ − a0∂2
xyψ u1

)
dtdx

+
∫

QT

Ms,y

(−ρ1(∂tu0 + ∂su1)∂sψ + a1(∂xu0 + ∂yu1)∂yψ
)
dtdx

+
∫

QT

Ms,y

(
B · (∇t,xu0 + ∇s,yu1)ψ

)
dtdx =

∫
QT

Ms,y(fψ)dtdx, ∀ψ ∈ H1
0 (QT ;W1)

(4.7)

and the initial conditions (3.13).
Contrarily to [10] where the wave equation was considered in the whole space R

N , problem (3.1) is stated
in a bounded interval with boundary conditions. Thus, besides of equations (3.14), (4.7) and the initial condi-
tions (3.13) we need to obtain some boundary conditions for u1 in order to determine the functions u0, u1. This
is the main novelty with respect to Theorem 3.5 in [10] and it is carried out in the next step.

Step 2. Let us extend (4.7) to more general functions ψ which do not necessarily vanish in x = α, x = β. Since
we consider functions ψ from QT into W1, they are a linear combination of functions of the type gj(t, x, y)eiλjs,
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with gj(t, x, .) ∈ Wj . By linearity it is enough to assume that ψ is just of the form ψ = gj(t, x, y)eiλjs for a
particular j. We distinguish the cases j ∈ J1 or j ∈ J2 and we take special functions gj in every case.

• j ∈ J1: By (3.14) (see Rem. 3.9), we can decompose u1 as û1 + ũ1, where û1 does not depend on s and
ũ1 ∈ L∞(0, T ;L2(I;W1)) can be written as

ũ1(t, x, s, y) =
∑

l∈Z\{0}
hl(t, x, y)eiλls, (4.8)

for some functions hl ∈ L∞(0, T ;L2(I;Wl)) satisfying

sup
t∈(0,T )

ess
∑

l∈Z\{0}
λ2

l

∫
I×Y

|hl|2dxdy < +∞.

Then, taking in (4.7) ψ = ψ(t, x, s, y) = ϕ(t, x)Φ(y)e−iλj s, with ϕ ∈ H1
0 (QT ), Φ ∈Wj , Φ ≡ 0 and using (4.8),

and Ms(eips) = 0 if p = 0, Ms(eips) = 1 if p = 0, we have∫
QT

Ms,y

(
a0∂yu1∂xψ − ∂x(a0∂yψ)u1

)
dtdx =

∫
QT

∂xϕMy

(
a0∂yû1 Φ− a0∂yΦ û1

)
Ms(eiλjs)dtdx

+
∑

l∈Z\{0}

∫
QT

∂xϕMy

(
a0 ∂yhl Φ− a0 ∂yΦhl

)
Ms(ei(λl−λj)s)dtdx

=
∫

QT

∂xϕMy

(
a0

(
∂yhjΦ− hj

dΦ
dy

))
dtdx,

but since dim(Wj) = 1 the function hj satisfies hj(t, x, y) = cj(t, x)Φ(y), with cj ∈ L∞(0, T ;L2(I)) and thus

∫
QT

∂xϕMy

(
a0

(
∂yhjΦ− hj

dΦ
dy

))
dtdx = 0.

So, for such ψ, equation (4.7) reduces to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
QT

Ms,y

(− 2ρ0∂su1∂tψ − ρ1 (∂tu0 + ∂su1) ∂sψ + a1 (∂xu0 + ∂yu1) ∂yψ
)
dtdx

+
∫

QT

Ms,y

(
B · (∇t,xu0 + ∇s,yu1)ψ

)
dtdx =

∫
QT

Ms,y(fψ)dtdx.

By the density of H1
0 (I) into L2(I), this equation holds true for ψ(t, x, s, y) = ϕ(t, x)Φ(y)e−iλjs, with ϕ ∈

H1
0 (0, T ;L2(I)) and not only in H1

0 (QT ). Reasoning then by linearity and density, we deduce (3.15).

• j ∈ J2: Since dim(Wj)=2, we can consider a basis {Φ, Ψ} of Wj , such that

⎧⎨
⎩
a0(α∗)

dΦ
dy

(α∗) = 0, a0(α∗)
dΨ
dy

(α∗) = 0 if cα = 0

Φ(α∗) = 0, Ψ(α∗) = 0 if cα = 0.
(4.9)

For ϕ ∈ H1(QT ) such that ϕ|t=0 = ϕ|t=T = ϕ|x=β = 0 we define

vε(t, x) = ϕ(t, x)
(
Φ
(x
ε

)
− μεΨ

(x
ε

))
eiλj

t
ε ,
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with

με =

⎧⎪⎪⎨
⎪⎪⎩

dΦ
dy

(α
ε

)
/
dΨ
dy

(α
ε

)
if cα = 0

Φ
(α
ε

)
/Ψ
(α
ε

)
if cα = 0.

Observe that thanks to Φ, Ψ , a0 dΦ
dy , a0 dΨ

dy continuous and (3.6), we have that με is well defined for ε small
enough and satisfies

με → 0. (4.10)

Taking vε as test function in (3.1), we get

−
∫

QT

ρε ∂tuε ∂t ϕ eiλj
t
εΦ
(x
ε

)
dtdx − iλj

ε

∫
QT

ρε ∂tuε ϕ eiλj
t
ε

(
Φ
(x
ε

)
− μεΨ

(x
ε

))
dtdx

+
dα

cα

∫
{x=α}

uεϕeiλj
t
ε

(
Φ
(α
ε

)
− μεΨ

(α
ε

))
dt+

∫
QT

aε∂xuε∂xϕ eiλj
t
εΦ
(x
ε

)
dtdx

+
1
ε

∫
QT

aε∂xuε

(
dΦ
dy

(x
ε

)
− με

dΨ
dy

(x
ε

))
ϕ eiλj

t
ε dtdx+

∫
QT

Bε · ∇t,xuε ϕ eiλj
t
εΦ
(x
ε

)
dtdx

=
∫

QT

fε ϕ eiλj
t
εΦ
(x
ε

)
dtdx+Oε, (4.11)

where Oε is due to (4.10) and where the third term is defined as zero in the case where cα = 0 because by
definition of με, we have Φ(α

ε ) − μεΨ(α
ε ) = 0 if cα = 0.

Let us pass to the limit in each term of this equality. The calculus is similar to the one in the proof of
Theorem 3.5 in [10] but simplified thanks to the absence of terms at t = 0. We prefer to explicit the calculus
because in [10] the corresponding sequence vε has compact support and then there is not problem in the
integrations by parts, while here we must use the special structure of the test functions vε defined above.

First term. Using the expression (2.11) of ρε, (4.5) and Ms(eiλjs) = 0, we get

−
∫

QT

ρε ∂tuε ∂t ϕ eiλj
t
εΦ
(x
ε

)
dtdx = −

∫
QT

Ms,y

(
ρ0∂su1∂tϕeiλjsΦ

)
dtdx +Oε. (4.12)

Second term. Using the expression (2.11) of ρε, integrating by parts with respect to t the term containg ρ0, and
taking into account ϕ|t=0 = 0, (4.10) and (4.5), we have

− iλj

ε

∫
QT

ρε ∂tuε eiλj
t
εϕ
(
Φ
(x
ε

)
− μεΨ

(x
ε

))
dtdx =

iλj

ε

∫
QT

ρ0
(x
ε

)
uε ∂tϕ eiλj

t
ε

(
Φ
(x
ε

)
− μεΨ

(x
ε

))
dtdx

− λ2
j

ε2

∫
QT

ρ0
(x
ε

)
uε ϕ eiλj

t
ε

(
Φ
(x
ε

)
− μεΨ

(x
ε

))
dtdx

− iλj

∫
QT

Ms,y

(
ρ1(∂tu0 + ∂su1)ϕ eiλjs Φ

)
dtdx+Oε.

In the first term on the right-hand side of this equality we use (4.3) with ζε = uε, which gives

iλj

ε

∫
QT

ρ0
(x
ε

)
uε ∂tϕ eiλj

t
ε

(
Φ
(x
ε

)
− μεΨ

(x
ε

))
dtdx = iλj

∫
QT

Ms,y

(
ρ0 u1 ∂tϕ eiλjs Φ

)
dtdx+Oε

=
∫

QT

Ms,y

(
ρ0 u1 ∂tϕ∂se

iλjs Φ
)
dtdx+Oε = −

∫
QT

Ms,y

(
ρ0 ∂su1 ∂tϕ eiλjs Φ

)
dtdx+Oε.
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Thus, we have proved

− iλj

ε

∫
QT

ρε ∂tuε ϕ eiλj
t
ε

(
Φ
(x
ε

)
− μεΨ

(x
ε

))
dtdx = −

∫
QT

Ms,y

(
ρ0 ∂su1 ∂tϕ eiλjs Φ

)
dtdx

− λ2
j

ε2

∫
QT

ρ0
(x
ε

)
uε ϕ eiλj

t
ε

(
Φ(
x

ε
) − μεΨ

(x
ε

))
dtdx

− iλj

∫
QT

Ms,y

(
ρ1(∂tu0 + ∂su1)ϕ eiλjs Φ

)
dtdx+Oε.

(4.13)

Third term. Taking into account that thanks to the compact imbedding of the trace operator from H1(QT ) into
L2({x = α}), uε converges strongly to u0 in L2((0, T )× {α}) and that Ms(eiλjs) = 0, we get

dα

cα

∫
{x=α}

uεϕeiλj
t
ε

(
Φ
(α
ε

)
− μεΨ

(α
ε

))
dt =

dα

cα

∫
{x=α}

u0ϕMy,s

(
eiλjs

)
Φ (α∗) dt+Oε = Oε. (4.14)

Fourth term. From (4.5) and Ms(eiλjs) = 0, we get∫
QT

aε∂xuε∂xϕ eiλj
t
εΦ
(x
ε

)
dtdx =

∫
QT

Ms,y

(
a0∂yu1∂xϕ eiλjs Φ

)
dtdx+Oε. (4.15)

Fifh term. We reason similarly to the second term, i.e. we use expression (2.10) of aε, then (4.10), then an
integration by parts with respect to x in the term containing a0 and then (4.5). We get

1
ε

∫
QT

aε∂xuε

(
dΦ
dy

(x
ε

)
− με

dΨ
dy

(x
ε

))
ϕ eiλj

t
ε dtdx

= −1
ε

∫
{x=α}

a0
(α
ε

)
uε

(
dΦ
dy

(α
ε

)
− με

dΨ
dy

(α
ε

))
ϕ eiλj

t
ε dt

−1
ε

∫
QT

a0
(x
ε

)
uε

(
dΦ
dy

(x
ε

)
− με

dΨ
dy

(x
ε

))
∂xϕ eiλj

t
ε dtdx

− 1
ε2

∫
QT

uε
d
dy

(
a0
(x
ε

)(dΦ
dy

(x
ε

)
− με

dΨ
dy

(x
ε

)))
ϕ eiλj

t
ε dtdx

+
∫

QT

Ms,y

(
a1(∂xu0 + ∂yu1)

dΦ
dy

ϕ eiλjs

)
dtdx+Oε,

(4.16)

where the first term on the right-hand side vanishes due to

uε|x=α = 0 if cα = 0,
dΦ
dy

(α
ε

)
− με

dΨ
dy

(
α

ε
) = 0 if cα = 0,

and the second term can be estimated using (4.3) with ζε = uε and (4.10), which gives

−1
ε

∫
QT

a0
(x
ε

)
uε

(
dΦ
dy

(x
ε

)
− με

dΨ
dy

(x
ε

))
∂xϕ eiλj

t
ε dtdx = −

∫
QT

Ms,y

(
a0 dΦ

dy
∂xϕu1 eiλjs

)
dtdx+Oε.

Thus, we have proved

1
ε

∫
QT

aε∂xuε

(
dΦ
dy

(x
ε

)
− με

dΨ
dy

(x
ε

))
ϕ eiλj

t
ε dtdx = −

∫
QT

Ms,y

(
a0 dΦ

dy
∂xϕu1 eiλjs

)
dtdx

− 1
ε2

∫
QT

uε
d
dy

(
a0
(x
ε

)(dΦ
dy

(x
ε

)
− με

dΨ
dy

(x
ε

)))
ϕ eiλj

t
ε dtdx

+
∫

QT

Ms,y

(
a1(∂xu0 + ∂yu1)

dΦ
dy

ϕ eiλjs

)
dtdx +Oε.

(4.17)
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Sixth and seventh terms. Using the expression of Bε given in (2.12), the two-scale convergence of fε to f and
Ms(eiλjs) = 0, we have∫

QT

Bε · ∇t,xuε ϕ eiλj
t
εΦ
(x
ε

)
dtdx =

∫
QT

Ms,y

(
B · (∇t,xu0 + ∇s,yu1)ϕ eiλjs Φ

)
dtdx +Oε. (4.18)

∫
QT

fεϕ eiλj
t
εΦ
(x
ε

)
dtdx =

∫
QT

Ms,y

(
fϕ eiλjs Φ

)
dtdx+Oε. (4.19)

Taking into account the estimates obtained for the different terms of (4.11) and

−λ2
jρ

0
(x
ε

)(
Φ
(x
ε

)
− μεΨ

(x
ε

))
− d

dy

(
a0
(x
ε

)(dΦ
dy

(x
ε

)
− με

dΨ
dy

(x
ε

)))
= 0 a.e. in QT ,

(which follows from Φ and Ψ in Wj) we have then proved that (4.7) holds for ψ(t, x, s, y) = ϕ(t, x)eiλjsΦ(y) with
ϕ ∈ H1(QT ), ϕ|t=0 = ϕ|t=T = ϕ|x=β = 0, and Φ ∈Wj , satisfying

a0 (α∗)
dΦ
dy

(α∗) = 0 if cα = 0, Φ (α∗) = 0 if cα = 0.

A similar argument proves that (4.7) also holds for ψ(t, x, s, y) = ϕ(t, x)eiλjsΦ(y) with Φ ∈Wj , such that

a0 (β∗)
dΦ
dy

(β∗) = 0 if cβ = 0, Φ (β∗) = 0 if cβ = 0.

and ϕ ∈ H1(QT ) such that ϕ|t=0 = ϕ|t=T = ϕ|x=α = 0.
Reasoning by linearity and density, we have then proved (3.16).

Step 3. We have shown that u0, u1 satisfy (3.13), (3.14), (3.15) and (3.16). To finish the proof of Theorem 3.4,
it remains to show that this system has a unique solution. Using the decomposition (3.21) of u1 and taking into
account that, thanks to ũ1 ∈ L∞(0, T ;L2(I;W1)), to know ∂su1, ∂yu1 at t = 0 and s = 0 is equivalent to know
u1 at t = 0, we get that the uniqueness is an immediate consequence of Theorem 4.2 below. The proof is not
given here because it is similar to the one of Theorem Appendix B.1 in [10]. �
Theorem 4.2. For I = (α, β) ⊂ R, four real functions ρ0 ∈ L∞

� (Y ), a0 ∈ L∞
� (Y ), ρ1 ∈ L∞(QT ;C�(R × Y )),

a1 ∈ L∞(QT ;C�(R × Y )), satisfying (2.2) and (2.9), and a function B ∈ L∞(QT ;C�(R× Y ))2. Then, for every
g ∈ L1(0, T ;L2(I;L2

� (R×Y ))) and every w0 ∈ L2(I;W1), there exists a unique solution w ∈ L1(0, T ;L2(I;W1))
of the variational problem

w|t=0 = w0⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
QT

Ms,y

(− 2ρ0∂sw∂tψ − ρ1∂sw∂sψ + a1∂yw∂yψ +B · ∇s,ywψ
)
dtdx

=
∫

QT

Ms,y(gψ)dtdx, ∀ψ ∈ V1⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
QT

Ms,y

(− 2ρ0∂sw∂tψ + a0∂yw∂xψ − a0∂2
xyψw − ρ1∂sw∂sψ + a1∂yw∂yψ

)
dtdx

+
∫

QT

Ms,y

(
B · ∇s,ywψ

)
dtdx =

∫
QT

Ms,y(gψ)dtdx, ∀ψ ∈ V2.

Moreover, this solution w is in L∞(0, T ;L2(I;W1)) and satisfies

‖w‖L∞(0,T ;L2(I;W1)) ≤ C
(
‖w0‖L2(I;W1) + ‖g‖L1(0,T ;L2(I;L2

�(Y ×R)))

)
, (4.20)

where the constant C only depends on the ellipticity constant of a0 and ρ0, ‖B‖L∞(QT ;C�(R×Y )2),
‖∂sρ

1‖L∞(QT ;L∞
� (R×Y )), ‖∂sa

1‖L∞(QT ;L∞
� (R×Y )) and T .
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Proof of Proposition 3.12. We take j ∈ J2 and two independent eigenfunctions Φ1, Φ2 ∈Wj such that

a0(α∗)
dΦ1

dy
(α∗) = 0 if cα = 0, Φ1(α∗) = 0 if cα = 0, a0

(
Φ1

dΦ2

dy
− Φ2

dΦ1

dy

)
= 1 in R.

Then, we define h ∈ L∞(0, T ;L2(I;Wj)) as the component of ũ1 corresponding to eiλjs, when we write it as
a Fourier sum with respect to the basis eiλls, l ∈ Z \ {0}, i.e. h is defined by

h = Ms(ũ1e−iλjs), a.e. in QT × Y. (4.21)

Since Φ1, Φ2 are a basis of Wj , the function h can be decomposed as

h(t, x, y) = h1(t, x)Φ1(y) + h2(t, x)Φ2(y), a.e. (t, x, y) ∈ QT × Y. (4.22)

Now, for g ∈ H1(QT ), g|t=0 = g|t=T = 0, g|x=β = 0, we define ψ by

ψ(t, x, s, y) = g(t, x)e−iλjsΦ1(y),

and we observe that the decomposition (3.21) of u1, with û1 independent of s, and definitions (4.21), (4.22) of
h, h1 and h2, imply∫

QT

Ms,y

(
a0∂yu1∂xψ − a0∂2

xyψ u1

)
dtdx

=
∫

QT

My

(
a0
(
h1

dΦ1

dy
+ h2

dΦ2

dy
)
∂xgΦ1 − a0

(
h1(Φ1 + h2Φ2

)
∂xg

dΦ1

dy

)
dtdx =

∫
QT

h2∂xgdtdx.

Therefore, using this function ψ as test function in (3.16), we deduce∫
QT

p∂tg dtdx+
∫

QT

h2∂xg dtdx = −
∫

QT

qg dxdt, ∀ g ∈ H1(QT ), g|t=0 = g|t=T = 0, g|x=β = 0, (4.23)

with
p = Ms,y

(−2ρ0∂su1e−iλjsΦ1

)
,

q = Ms,y

(
e−iλjs

(
iλjρ

1(∂tu0 + ∂su1)Φ1 + a1(∂xu0 + ∂yu1)dΦ1
dy

))
+Ms,y

((
B · (∇t,xu0 + ∇s,yu1) − f

)
e−iλjsΦ1

)
.

Since in (4.23), we have not imposed any boundary condition to g at x = α, this is equivalent to

∂tp+ ∂xh2 = q, h2|x=α = 0.

By (4.22), and the properties of Φ1, we then deduce

(a0∂yh)|x=α,y=α∗ = 0 if cα = 0, h|x=α,y=α∗ = 0 if cα = 0.

Since this holds for every Fourier component of ũ1 relative to a Fourier node λj , with j ∈ J2 we get

(a0∂yP2ũ1)|x=α,y=α∗ = 0 if cα = 0, P2ũ1|x=α,y=α∗ = 0 if cα = 0.

A similar reasoning shows

(a0∂yP2ũ1)|x=β,y=β∗ = 0 if cβ = 0, P2ũ1|x=β,y=β∗ = 0 if cβ = 0. �
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Proof of Theorem 3.15. Taking into account the decomposition u1 = ũ1 + û1 given in Remark 3.9, where û1

does not depend on s and using that the functions in W1 have mean value zero, equations (3.15) and (3.16),
with ρ1, a1 and B vanishing, are reduced to∫

QT

Ms,y

(− 2ρ0∂sũ1∂tψ
)
dtdx =

∫
QT

Ms,y(fψ)dtdx, ∀ψ ∈ V1 (4.24)

∫
QT

Ms,y

(− 2ρ0∂sũ1∂tψ + a0∂yũ1∂xψ − a0∂2
xyψ ũ1

)
dtdx =

∫
QT

Ms,y(fψ)dtdx, ∀ψ ∈ V2. (4.25)

On the other hand, using that û1 belongs to L∞(0, T ;L2(I;H1
� (Y )), and that ũ1 belongs to

L∞(0, T ;L2(I,W1)) we deduce that û1 and ũ1 can be decomposed as in (3.45), (3.46). The problem is now to
determine the coefficients in the series defining û1 and ũ1.

Using as test function in (3.18) Φj if j ∈ J+
1 , or Φjl, l ∈ {1, 2}, if j ∈ J+

2 we deduce that the coefficient ûj

are given by (3.49) and (3.50).
The determination of the coefficients ũj is more involved. We distinguish the cases j ∈ J1, j ∈ J2.

• Case j ∈ J1. We take in (4.24), ψ(t, x, s, y) = ϕ(t, x)Φj(y)e−iλjs, with ϕ ∈ C∞
c (QT ). This gives

−2iλj

∫
QT

ũj∂tϕdtdx =
∫

QT

fjϕdtdx, ∀ϕ ∈ C∞
c (Ω),

and then
2iλj∂tũj = fj in QT . (4.26)

To determine ũj from this equation we also need an initial condition. This can be obtained from (3.13).
Namely, multiplying the second equation in (3.13) by ρ0Φj , taking the mean value in y, and using (3.36), (3.46)
and My(ρ0Φj) = 0, we have

iλj(ũj − ũ−j)|t=0 = ϑj , a.e. in I. (4.27)

Analogously, multiplying the third equation in (3.13) by a0∂yΦj , taking the mean value in y and using
u1 = û1 + ũ1 combined to (3.35), (3.45) and (3.46), we get

(ûj + ũj + ũ−j)|t=0 = u1
j , a.e. in I.

or taking into account (3.49)

(ũj + ũ−j)|t=0 = u1
j +

mj

λ2
j

∂xu0|t=0, a.e. in I. (4.28)

From (4.27) and (4.28) we then get

ũj |t=0 =
1
2

(
u1

j +
mj

λ2
j

∂xu0|t=0 −
ϑj

λj
i

)
, a.e. in I, ∀ j ∈ J+

1 . (4.29)

ũ−j |t=0 =
1
2

(
u1

j +
mj

λ2
j

∂xu0|t=0 +
ϑj

λj
i

)
, a.e. in I, ∀ j ∈ J+

1 , (4.30)

which combined to (4.26) proves (3.51) and (3.52).

• Case j ∈ J2. As above, taking ψ(t, x, s, y) = ϕ(t, x)Φjl(y)e−iλjs, l = 1, 2, ϕ ∈ C∞
c (QT ) as test function

in (4.25) we deduce (3.53).
Reasoning as in the case j ∈ J1 we also deduce that (3.13) implies (3.55) and (3.56). On the other hand, we

recall that by Proposition 3.12, (4.25) implies (3.54). �
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[13] F. Murat, H-convergence. Séminaire d’Analyse Fonctionnelle et Numérique, 1977-78. Université d’Alger;
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