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AXISYMMETRIC CRITICAL POINTS OF A NONLOCAL ISOPERIMETRIC
PROBLEM ON THE TWO-SPHERE
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Abstract. On the two dimensional sphere, we consider axisymmetric critical points of an isoperimetric
problem perturbed by a long-range interaction term. When the parameter controlling the nonlocal term
is sufficiently large, we prove the existence of a local minimizer with arbitrary many interfaces in the
axisymmetric class of admissible functions. These local minimizers in this restricted class are shown
to be critical points in the broader sense (i.e., with respect to all perturbations). We then explore the
rigidity, due to curvature effects, in the criticality condition via several quantitative results regarding
the axisymmetric critical points.
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1. Introduction

In this article we consider the energy functional

Eγ(u) =
1
2

∫
S2
|∇u| + γ

∫
S2
|∇v|2 dH2, (1.1)

over
BV (S2; {±1}) =

{
u ∈ BV (S2) : H2

({x ∈ S
2 : u(x) �∈ ±1}) = 0

}
subject to the mass constraint

1
4π

∫
S2

u dH2 = m.

Here γ > 0 is a fixed parameter, and v is a solution of the Poisson problem

−Δv = u − m, (1.2)

where −Δ denotes the Laplace–Beltrami operator on S2. Also, throughout this paper, unless noted otherwise,
∇ denotes the gradient relative to S2.
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Note that the first term of the energy is 1/2 times the total variation of u, and, since u takes on only values ±1,
it calculates the perimeter of the set {x ∈ S2 : u(x) = 1}.

The functional Eγ arises, up to a constant factor, as the Γ -limit as ε → 0 of the well-studied Ohta–Kawasaki
sequence of functionals Eε,γ which model microphase separation of diblock copolymers at the diffuse level, [21]:

Eε,γ(u) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
S2

ε

2
|∇u|2 +

(1 − u2)2

4ε
+ γ |∇v|2 dH2 if u ∈ H1(S2)

and
1
4π

∫
S2 u dH2 = m,

+∞ otherwise,

(1.3)

where again v satisfies (1.2).
Pattern formation of ordered structures on curved surfaces arises in systems ranging from biology to material

science: e.g. covering virus and radiolaria architecture, colloid encapsulation for possible drug delivery, etc.
(cf. [11, 12, 16, 31]). From the point of view of diblock copolymers, the self-assembly in thin melt films confined
to the surface of a sphere was investigated in [5] computationally by looking at a model using the self-consistent
mean field theory. In [29] the authors look at the patterns emerging as a result of phase separation of diblock
copolymers numerically on spherical surfaces by using the Ohta–Kawasaki model.

From the point of view of mathematical analysis, previous work on surfaces involves only the local energies,
that is, (1.3) and (1.1) with γ = 0. The authors of [13] look at the local energy Eε,0 and consider the effect of the
Gauss curvature of the domain. On the other hand, for the sharp interface version E0 it was shown that the global
minimizer of the classical isoperimetric problem on S2 is the single cap, i.e., the set with boundary consisting
of a single circle (cf. [17, 26]). Also recently, in [4], the authors established the stability of the isoperimetric
domains on S2 by proving a quantitative version of the isoperimetric inequality on the sphere.

Extensive mathematical analysis of the Ohta–Kawasaki model (1.3) or its sharp interface limit (1.1)
has been carried out on both the flat-tori and bounded domains in the Euclidean space
(cf. [1, 3, 6, 7, 9, 14, 15, 18, 20, 22–25,27, 28] and references therein). However, the analysis on a curved surface
is rare. To our knowledge the only rigorous analysis of (1.1) defined on the two-sphere is carried out in [30].
There the author establishes the regularity of local minimizers of (1.1) and characterizes the global minimizer
of Eγ in the small non-locality parameter regime. Indeed, for γ > 0 small enough the global minimizer of Eγ

agrees with the global minimizer of the local isoperimetric problem posed on the two-sphere, namely it is the
single spherical cap for any mass constraint m ∈ (−1, 1). Moreover, by looking at the second variation of Eγ , a
stability analysis is presented for the single cap and double cap critical points. This analysis relies on the fact
that we have an explicit formula of the Green’s function for the Laplace–Beltrami operator on S2 (see Sect. 2).

In this article we address the nonlocal problem posed on S2, i.e., the minimization of (1.1) over BV (S2; {±1})
subject to a mass constraint. To this end, we focus on axisymmetric critical points Eγ . These patterns are
described by functions

u ∈ BV (S2; {±1}), with u = u(φ)

in standard spherical coordinates (r, θ, φ) where φ denotes the angle between the radius vector and the z-axis
(see Fig. 1 for examples of such patterns and Sect. 2 for a precise definition).

Taking axisymmetry as an ansatz allows us to write the energy in a one dimensional form (see Sect. 3) and
this enables us to understand the effect of the local and nonlocal terms explicitly. Indeed, one might assume
that if we restrict our admissible class to the axisymmetric functions with a finite number of interfaces the
problem becomes straightforward. However, this is not the case due to the nonlinear and oscillatory nature of
the nonlocal term. On the other hand, this one dimensional ansatz essentially turns the nonlocal term into a
local contribution, allowing us to prove the following in Theorem 4.3: for any fixed n ∈ N, if γ is sufficiently large
enough, Eγ admits an axisymmetric local minimizer with n interfaces in the class of axisymmetric competitors.

We establish this result by considering a sequence of elementary moves, i.e., perturbations in the z-variable
restricted to three consecutive interfaces, and by looking at the change in the contribution to the energy by the
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Figure 1. Examples of axisymmetric patterns on the sphere with 2, 3 and 4 interfaces.

perimeter and nonlocal terms as a result of these elementary moves. Here, the local minimality is only with
respect to one dimensional perturbations in the z-variable. However, in Proposition 4.4 we easily show that such
a local minimizer in this restricted class is not only a critical point with respect to one dimensional perturbations
but also a critical point with respect to all perturbations, i.e., it is a solution of the general Euler–Lagrange
equation (2.1).

The axisymmetric patterns on the sphere can be considered as analogs of lamellar patterns on the flat torus
as they depend only on one variable, that is, the polar angle φ: however, our analysis will show that the study
of axisymmetric patterns on the sphere is quite different and far richer than that of lamellar patterns on the flat
domains. This is, of course, due to the curvature effects of the domain. Indeed the distribution of the components
of an axisymmetric critical point is tied to the curvature of the ambient domain. These effects are in particular
evident when one looks at the criticality condition. Unlike the interfaces of lamellar patterns on the flat torus
whose boundary components all have zero mean curvature, though it is equal to a constant on every component,
the geodesic curvature on the interfaces of axisymmetric patterns yields a different constant on each component
of ∂A depending on φ. Because of this fact the criticality condition (2.1) is very rigid. Exploiting this rigidity
we will investigate the axisymmetric critical points of Eγ . Axisymmetric class of critical points are reasonable
candidates to investigate because of inherent symmetries of the problem. However the criticality condition must
be considered among all patterns. Indeed, we do not mean to suggest that the all stable critical points of Eγ are
axisymmetric, and numerical evidence certainly suggests otherwise (cf. Fig. 6 of Sect. 6). We will mostly work
in the regime m = 0 as for axisymmetric patterns on the sphere this is the more interesting regime. Indeed,
for fixed γ > 0 if m is sufficiently close to either −1 or 1 the first term dominates the second one and the
results in [30] can be modified to show that the single spherical cap, that is, the axisymmetric pattern with one
interface, is the global minimizer of Eγ .

The role of the parameter γ is crucial when considering critical points of Eγ . Unlike the lamellar patterns on
flat surfaces, here, the criticality of the axisymmetric patterns depends on the magnitude of the non-locality.
Also, a priori, for any fixed γ > 0 one would expect uniformly distributed axisymmetric patterns to be critical
points (see Def. 2.2 for the definition of uniform distribution); however, due to the curvature effects, this is not
the case for Eγ on S2. In particular, in this article, we prove that;

• Given any γ > 0 an axisymmetric critical point u cannot have arbitrarily many interfaces, that is, the
number of interfaces that u has is bounded from above (Prop. 5.1).

• The only axisymmetric critical points of Eγ for an interval of γ-values are the single cap and the symmetric
double cap (Prop. 5.2).

• Any uniformly distributed pattern with the number of interfaces greater than 4 is not a critical point
(Prop. 5.4).
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• For any axisymmetric critical point of Eγ with n � 2 interfaces where z1 denotes the first interface the
diameter of the polar cap determined by z1 is bounded from below by a constant multiple of 1/γ (Prop. 5.5).

• In general, the distance between two interfaces, |zk+1 − zk| is bounded below by a constant multiple of
max{|zk|, |zk+1|}/γ (Rem. 5.6).

These results provide only a partial picture about the axisymmetric critical points. An important question
which remains open is about the distribution of the interfaces of an axisymmetric critical point for large values
of γ > 0. For given γ > 0, suppose u is an axisymmetric critical point with n interfaces where n is the greatest
possible integer determined by Proposition 5.1. Even though the nonlocal term prefers a periodic distribution of
the interfaces in the z-variable, thanks to Proposition 5.4, we know that this is not the case. Then the natural
question pertains to the distribution of interfaces, in particular where they are more dense. Since, due to the
axisymmetry ansatz, the sphere is almost flat in small neighborhoods around z = 0 we conjecture that for any
large γ > 0 the interfaces of the corresponding stable axisymmetric critical point are periodic in z not with
respect to the Lebesgue measure dz but with respect to a weighted measure dμ = 1

1−z2 dz, i.e., they accumulate
around the equator of S2.

It is, of course, the next natural question to ask whether the axisymmetric patterns are local minimizers with
respect to all perturbations. As a first step in this direction, a stability argument can be used where the second
variation of Eγ about any critical point with respect to any perturbation f is given in (2.2). However, as noted
in Section 6, simple stability arguments are not helpful here as we lack the knowledge of the exact location of
the interfaces of an axisymmetric critical point.

2. Preliminaries and notation

Let H1 and H2 denote, respectively, one and two dimensional Hausdorff measure. As noted in the introduction,
the first term of the energy Eγ is defined using the total variation of u. For a smooth Riemannian manifold M,
a function u ∈ L1

loc(M) is said to be of bounded variation if the following quantity, called the total variation
of u, is finite: ∫

M
|∇u| := sup

φ∈Xc(M)

〈u, div φ〉
‖φ‖∞ ,

where Xc(M) is the set of all compactly supported smooth vector fields on M. The space of functions of bounded
variations is denoted by BV (M). We are interested in the subset of BV (M), consisting of functions taking only
the values ±1, which can be defined by

BV (M,±1) =
{
u ∈ BV (M) : H2

({x ∈ M : u(x) �∈ ±1}) = 0
}

.

The nonlocal term involving v in (1.1) can be written explicitly using the Green’s function G = G(x, y)
associated with the Poisson problem (1.2). For each x ∈ S2, G(x, y) satisfies

−ΔyG(x, y) = δx − 1
4π

on S
2,

∫
S2

G(x, y) dH2
x = 0,

where δx is a delta-mass measure supported at x, and, in particular, one can show, by writing out the Laplace–
Beltrami operator in spherical coordinates explicitly, that for x, y ∈ S

2

G(x, y) = − 1
2π

log |x − y|,

where | · | denotes the Euclidean norm, that is, |x − y| is the chordal distance between x and y in R3. The
functions G and v are then related by

v(x) = − 1
2π

∫
S2

log(|x − y|)u(y) dH2
y.
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Next we recall from [8, 30] the first and second variations of Eγ . Denoting by A := {x ∈ S2 : u(x) = 1}, we
see that if u is a critical point of Eγ such that ∂A is C2, then we have

κg(x) + 4γ v(x) = λ for all x ∈ ∂A, (2.1)

where λ is a constant and κg denotes the signed geodesic curvature of ∂A with respect to the outer normal of
to A (cf. [10]). Moreover, the second variation of Eγ about the critical point u is given by

J(f) :=
∫

∂A

|∇∂Af |2 − (1 + κ2
g)f

2 dH1
x

+ 8γ

∫
∂A

∫
∂A

(
− 1

2π
log(|x − y|R3)

)
f(x)f(y) dH1

xdH1
y

+ 4γ

∫
∂A

(∇v · ν)f2 dH1
x,

(2.2)

where f is any smooth function on ∂A satisfying the condition∫
∂A

f(x) dH1
x = 0.

Here ∇∂Af denotes the gradient of f relative to the manifold ∂A and ν denotes the unit tangent of S2 which
is normal to ∂A pointing out of A (see [8, 30] for details).

Remark 2.1 (Scaling of the radius). Here we have fixed the radius of the domain sphere. Here we remark
that by scaling, this choice is without loss of generality, i.e., one can choose either γ as the free parameter and
consider the problem on the unit sphere S2, or fix γ = 1, and let the radius of the sphere vary. To this end,
consider the energy on a sphere of radius R, denoted by S2

R, and let the radius R be the free parameter in the
energy

ER(ũ) =
1
2

∫
S2

R

|∇ũ| +
∫

S2
R

|∇ṽ|2 dH2.

Here ũ ∈ BV (S2
R; {±1}) and satisfies the mass constraint

1
4πR2

∫
S2

R

u dH2 = m.

However, by looking at the scaling
u(x) := ũ(x/R) ∈ BV (S2; {±1})

we see that
ER(ũ) =

R

2

∫
S2
|∇u| + R4

∫
S2
|∇v|2 dH2

= RER3(u);

hence, considering ER on S2
R is equivalent to considering the energy Eγ on S2 with γ = R3.

Let us now give a precise definition of an axisymmetric pattern on S2 and fix some notation. A function
u ∈ BV (S2; {±1}) which depends only on the polar angle φ in standard spherical coordinates can be expressed
as a function u : [−1, 1] → {±1} by considering the change of coordinates

z = cosφ.

Although u is originally defined on the sphere, here with an abuse of notation we use u also to denote the
associated function of the one variable z.
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Definition 2.2. For −1 = z0 < z1 < . . . < zn < zn+1 = 1, the piecewise constant function

u(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if − 1 � z < z1

1 if z1 � z < z2

...
...

(−1)n+1 if zn � z � 1

(2.3)

is called an axisymmetric pattern on S
2 with n interfaces located at zk for k = 1, . . . , n.

An axisymmetric pattern u is said to be uniformly distributed with respect to the z-coordinate if the distance
between each interface is a fixed constant, i.e., zk+1 − zk = C for all k = 1, . . . , n − 1.

Due to the polar symmetries of the sphere, we have Eγ(−u) = Eγ(u) for any axisymmetric pattern u; and,
Eγ(ũ) = Eγ(u) for ũ(z) := u(−z). For a function u of the form (2.3), the mass constraint becomes

1
4π

∫
S2

u dH2 =
1
2

n+1∑
k=1

(−1)k(zk − zk−1) = m. (2.4)

In spherical coordinates the Laplacian on S
2 is given by

Δ =
∂2

∂φ2
+ cotφ

∂

∂φ
·

By the change of coordinates z = cosφ, we obtain

Δ =
∂

∂z
(1 − z2)

∂

∂z
·

Given that u ∈ BV (S2) depends only on z, the problem (1.2) can be solved by repeated integration. In fact,
one integration will suffice since we only need ∇v in the energy. Since∫

S2
u dH2 = 2π

∫ 1

−1

u(z) dz,

u is absolutely integrable on [−1, 1]. Therefore the function

ξ(z) = ξ(−1) +
∫ z

−1

(u(t) − m) dt, (2.5)

is absolutely continuous on [−1, 1], and ∂zξ(z) = u(z) for a.e. z ∈ (−1, 1). This means that

v(z) =
∫ z

0

ξ(t)
1 − t2

dt

satisfies
∂z((1 − z2)∂zv) = u − m,

almost everywhere. By uniqueness, all other solutions of (1.2) are obtained by adding constants to v. Turning
to the nonlocal term in the energy, we have∫

S2
|∇v|2 dH2 = 2π

∫ 1

−1

(√
1 − z2|∂zv(z)|)2 dz = 2π

∫ 1

−1

ξ(z)2

1 − z2
dz.

Note again the abuse of notation in using v (and u) both as a function on S2 and as a function on z ∈ [−1, 1].
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Since u as a function of z is bounded, elliptic regularity gives v as a function of z in W 2,p for any p < ∞.
Thus by the Sobolev embedding theorem, we have v ∈ C1,α for some α ∈ (0, 1).

For an axisymmetric critical point, the Euler–Lagrange equation (2.1) becomes

κg(zk) + 4γv(zk) = λ (2.6)

at each interface zk where u changes sign, and it holds with the same constant λ on the right-hand side which
is determined by the mass constraint and depends only on u and γ. The geodesic curvature at an interface,
κg(zk), is given by

(κg(zk))2 =
z2

k

1 − z2
k

, (2.7)

where the sign of κg(zk) depends on the unit normal vector on the interface {z = zk} tangent to S2 pointing
outward from the sets where u = 1.

The condition (2.6) is still a general criticality condition in the sense that it captures the criticality of an
axisymmetric pattern with respect to every perturbation and not only with respect to axisymmetric perturba-
tions.

Remark 2.3. By reducing our problem to 1D and using the triangular wave functions ξ, the nonlocal contribu-
tion of Eγ essentially localizes. We will exploit now this fact, in particular in the proof of the Theorem 4.3 where
we establish the existence of a local minimizer in the axisymmetric setting. A similar connection is associated
with the relationship between the nonlocal Ohta−Kawasaki functional and the local functional studied in [19]
(and later in [2, 32]), and this connection allows one to prove periodicity results for minimizers. Even though
we can formulate the nonlocal term as the L2-norm of ξ with respect to the weighted measure dz/(1 − z2), we
cannot express the perimeter term as a total variation of a 1D function with respect to this weighted measure.
Hence at this point, we are not able to adopt the arguments used in [19] to obtain a periodicity result in the
z-variable.

3. Energy for the axisymmetric case

We first express the energy Eγ of an axisymmetric pattern in terms of the locations of the interfaces.

Proposition 3.1 (Energy of an axisymmetric pattern). Let u be an axisymmetric function on the sphere with
n interfaces located at −1 < z1 < . . . < zn < 1 given by (2.3) satisfying the mass constraint (2.4) for any
m ∈ (−1, 1). Then the energy Eγ is given by

1
π

Eγ(u) = −4γ(1 − m2) + 2
n∑

k=1

√
1 − z2

k

+ γ
n∑

k=0

(ξk − ((−1)k + m)(1 − zk))2 log
1 − zk

1 − zk+1

+ γ

n∑
k=0

(ξk + ((−1)k + m)(1 + zk))2 log
1 + zk+1

1 + zk
· (3.1)

In particular, for m = 0 we have

1
π

Eγ(u) = −4γ + 2
n∑

k=1

√
1 − z2

k + γ

n∑
k=0

(ξk − (−1)k(1 − zk))2 log
1 − zk

1 − zk+1

+ γ

n∑
k=0

(ξk + (−1)k(1 + zk))2 log
1 + zk+1

1 + zk
· (3.2)
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Proof. Let u be given as in (2.3). For such a finite partition −1 = z0 < z1 < . . . < zn < zn+1 = 1, the perimeter
term in the energy is

1
2

∫
S2
|∇u| = 2π

n∑
k=1

√
1 − z2

k,

and the mass constraint
1
4π

∫
S2

u dH2 =
1
2

n+1∑
k=1

(−1)k(zk − zk−1) = m.

Let ξ be given by (2.5), a triangular wave function with slopes alternating between −1−m and +1−m, and
recall that ξ(z) = (1 − z2)∂zv(z). Since v is smooth near the poles, elliptic regularity implies that the values
ξ(−1) and ξ(1) must vanish. Hence we have

√
1 − z2∂zv = ∂φv → 0 as z → ±1.

We first compute

ξk := ξ(zk) =
k∑

i=1

(−1)i(zi − zi−1) − m
k∑

i=1

(zi − zi−1), (3.3)

and
ξ(z) = ξk + ak+1(z − zk)

with ak+1 = (−1)k+1 − m for z ∈ (zk, zk+1). To compute the energy explicitly, we compute∫ zk+1

zk

(ξk + ak+1(z − zk))2

1 − z2
dz = −a2

k+1Δk+1 +
(ξk − ak+1zk + ak+1)2

2
log

1 − zk

1 − zk+1

+
(ξk − ak+1zk − ak+1)2

2
log

1 + zk+1

1 + zk
,

to find ∫ 1

−1

ξ(z)2

1 − z2
dz = −2 + 2m2 +

n∑
k=0

(ξk − ((−1)k + m)(1 − zk))2

2
log

1 − zk

1 − zk+1

+
n∑

k=0

(ξk + ((−1)k + m)(1 + zk))2

2
log

1 + zk+1

1 + zk
· (3.4)

Note that if any of the log-terms becomes infinite because of z0 = −1 or zn+1 = 1, the corresponding factor
also vanishes because of the property ξ(±1) = 0.

Combining the two terms, the energy Eγ is given by

Eγ(u) = 2π

n∑
k=1

√
1 − z2

k + γ 2π

∫ 1

−1

ξ(z)2

1 − z2
dz,

and one obtains the explicit formulas (3.1) and (3.2). �
Remark 3.2. In the case of two interfaces, that is when n = 2 and m = 0 the energy given by

1
π

Eγ(u) = −4γ + 2
2∑

k=1

√
1 − z2

k + 4γ log
2

1 − z1
+ 4γz2

1 log
1 − z1

1 − z2

+ 4γ(1 + z1)2 log
1 + z2

1 + z1
+ 4γ log

2
1 + z2

·

captures the energy calculations in [30]. Moreover, since z2 is determined by the mass constraint z2 − z1 = 1,
we can plot the energy Eγ as a function of z1 and γ (see Fig. 2). Here one sees clearly that when γ is small the
energy Eγ is minimized when either z1 = 0 or z1 = 1, i.e., the axisymmetric minimizer is the single cap with one
interface; however, as γ increases the double cap with interfaces located at −1/2 and 1/2 is the configuration
minimizing the energy.
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Figure 2. Eγ as a function of the first interface z1 and γ.

4. Existence of a local minimizer restricted to the class of axisymmetric

competitors

In this section, we establish the existence of an axisymmetric local minimizer of Eγ given in (3.1) with
respect to axisymmetric perturbations for a fixed number of interfaces. We then note that this axisymmetric
local minimizer is not only a critical point in its restricted class of axisymmetric perturbations but it is also
a critical point of Eγ over BV (S2; {±1}), namely, it is a solution of the Euler–Lagrange equation (2.6). For
simplicity, let us assume m = 0, and without loss of generality let us consider an axisymmetric pattern with 2n
interfaces which are symmetric with respect to the equator z = 0. Note that Eγ , then, must be minimized over
z = (z1, z2, . . . , zn) ∈ Rn satisfying 0 < z1 < . . . < zn < 1 and the mass constraint. The mass constraint (2.4)
defines an affine subspace of Rn

M :=

{
z ∈ R

n :
n∑

k=1

(−1)kzk = −1/2

}

that has a nontrivial intersection with the simplex Z = {z ∈ Rn : 0 < z1 < . . . < zn < 1}; hence, the existence
of a minimizer of 2n interfaces would follow if we could show that given any boundary point z ∈ M ∩ ∂Z, one
can reduce the energy by going into the interior M ∩ Z (e.g. Fig. 3 shows M ∩ Z when n = 3).

Let 0 = z0 � z1 � . . . � zn � zn+1 = 1 be a configuration satisfying zk < zk+1 < zk+2 < zk+3 for some
k ∈ {0, . . . , n − 2}. Then we consider movements of the form (zk+1, zk+2) �→ (zk+1 + t, zk+2 + t) for small t.
We call these movements elementary moves. Note that the mass is automatically conserved under elementary
moves. For convenience, we introduce the variables α = zk+zk+1

2 , β = zk+2+zk+3
2 , and x = zk+1+zk+2

2 , which are
the roots of ξ in the interval [zk, zk+3]. Under the elementary move we are considering, α and β will be fixed,
but x will vary. In fact, we will make x our primary variable, and consider the other variables as a function
of x. For example, we have zk+1 = α+x

2 and zk+2 = β+x
2 . Now we want to look at the dependence of the energy

on x. The part of the perimeter term that varies is

ep(x) =

√
1 −
(

α + x

2

)2

+

√
1 −
(

β + x

2

)2

,

where we omit the factor 2π. For the nonlocal term, it suffices to consider

enl(x) =
∫ β

α

ξ(z)2

1 − z2
dz.

Up to the factor 2πγ, this is the contribution of the interval (α, β) to the nonlocal energy.
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z1

z3

z2

Figure 3. M ∩ Z for n = 3 is shown by the shaded plane.

Lemma 4.1. We have

enl(x) =
α − x

2
f

(
α + x

2

)
+

x − β

2
f

(
x + β

2

)
+ C,

where C is a constant depending on α and β, and

f(x) = (1 − x) log(1 − x) + (1 + x) log(1 + x).

Proof. Up to a sign, suppose ξ(z) = z − α in (α, zk+1), ξ(z) = −(z − x) in (zk+1, zk+2), and ξ(z) = z − β in
(zk+2, β), with zk+1 = α+x

2 and zk+2 = β+x
2 . Then making use of the formula

∫ b

a

(z − c)2

1 − z2
dz = −(b − a) +

(1 − c)2

2
log

1 − a

1 − b
+

(1 + c)2

2
log

1 + b

1 + a
,

we can compute

enl(x) = − (β − α) +
(1 − α)2

2
log

1 − α

1 − zk+1
+

(1 + α)2

2
log

1 + zk+1

1 + α

+
(1 − x)2

2
log

1 − zk+1

1 − zk+2
+

(1 + x)2

2
log

1 + zk+2

1 + zk+1

+
(1 − β)2

2
log

1 − zk+2

1 − β
+

(1 + β)2

2
log

1 + β

1 + zk+2
·

Now letting

C := −(β − α) +
(1 + α)2

2
log(1 − α) − (1 + α)2

2
log(1 + α) − (1 − β)2

2
log(1 − β) +

(1 + β)2

2
log(1 + β)
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and by writing the logarithms of the ratios as differences of logarithms and grouping the same logarithm terms
together we obtain

2(enl(x) − C) = − (1 − α)2 log(1 − zk+1) + (1 + α)2 log(1 + zk+1)

+ (1 − x)2 log
1 − zk+1

1 − zk+2
+ (1 + x)2 log

1 + zk+2

1 + zk+1

+ (1 − β)2 log(1 − zk+2) − (1 + β)2 log(1 + zk+2)

= [(1 − x)2 − (1 − α)2] log(1 − zk+1) + [(1 + α)2 − (1 + x)2] log(1 + zk+1)
+ [(1 − β)2 − (1 − x)2] log(1 − zk+2) + [(1 + x)2 − (1 + β)2] log(1 + zk+2),

which is the desired conclusion. �

Our local analysis will depend on the contribution of the interval (α, β) to the total energy Eγ . To this end,
let us denote it by

e(x; α, β, γ) := ep(x) + γ enl(x) (4.1)

where we also emphasize the dependence of e on α, β and clearly on γ.
Note that when β is 1, an interesting situation arises (see Figs. 4g−4i). Because the perimeter term has

a derivative tending to −∞ like −x/
√

1 − x2, and this cannot be counterbalanced by the nonlocal term, any
interface that is too close to a pole would be sucked into the pole and disappear. However, if γ is large, poles
are repulsive at larger distance. The next technical lemma characterizes the behavior of e(x; α, β, γ) near the
boundary β = 1.

Lemma 4.2. For any α ∈ (0, 1) there exists x ∈ (α, 1) such that when γ is large enough

min
x∈(α,1)

e(x; α, 1, γ) < L,

where
L := lim

x→1
e(x; α, 1, γ)

is a positive constant depending on α and γ.

Proof. Let α ∈ (0, 1) be fixed. To simplify the notation we will drop the dependence on α. First, note that,
because of the structure of the nonlocal contribution we have

lim
x→α

enl(x) = lim
x→1

enl(x)

and
enl(x) − lim

x→1
enl(x) < 0

for all x ∈ (α, 1). Also, writing out the perimeter term explicitly, we see that

ep(x) − lim
x→1

ep(x) > 0

for all x ∈ (α, 1).
Now consider

e(x; α, 1, γ) − L =
(
ep(x) − lim

x→1
ep(x)

)
+ γ
(
enl(x) − lim

x→1
enl(x)

)
. (4.2)

Take x = (1 + α)/2. Since e′p((1 + α)/2) < 0 and is finite, for large enough γ the second term on the right-hand
side of (4.2) is dominant and yields that e((1+α)/2; α, 1, γ)−L < 0. On the other hand, since the derivative of
e′p is −∞ at x = 1 and e(1; α, 1, γ) − L = 0, for x2 sufficiently close to 1 the first term in (4.2) dominates and
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Figure 4. Examples of e(x; α, β, γ) with varying α, β and γ. The first and second rows show
how the energy contribution changes under an elementary move in a typical situation. The
third row illustrates the behavior near the poles.

e(x2; α, 1, γ)−L > 0. Moreover, as limx→α enl(x) = limx→1 enl(x) and ep(x) is a strictly decreasing function on
(α, 1), for some x1 sufficiently close to α we have e(x1; α, 1, γ) − L > 0. This means that the function

e(x; α, 1, γ) − L

is positive at x = x1 > α, negative at x = (1 + α)/2 and again positive at x = x2 < 1. Thus by differentiability
of e(x; α, 1, γ) on (α, 1) the result follows. �

Now we prove the existence of an axisymmetric local minimizer.

Theorem 4.3. Given n ∈ N the energy Eγ admits a local minimizer in the set M ∩ Z provided γ > 0 is
sufficiently large.

Proof. We start with a point at the boundary of M ∩ Z, and show that there exists an elementary move that
brings us to the interior and reduces the energy. First note that since dim(Z) = n and dim(M) = n− 1 we have
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that dim(M ∩ ∂Z) = n− 2. Let z ∈ M ∩ ∂Z and suppose that z is given by 0 < z1 < z2 < . . . < zn−2 < zn−1 <
zn = 1. Let

α =
zn−2 + zn−1

2
, x =

zn−1 + zn

2
, β =

zn + 1
2

= 1.

Consider the elementary move σt : (zn, zn−1) �→ (zn− t, zn−1− t) for t > 0 small. Note that this move creates an
interface at zn; hence, moves the point z into the interior of M ∩Z. Since for small t > 0 this elementary move
creates an interface near the pole z = 1, Lemma 4.2 shows that when γ is sufficiently large there exists t0 > 0 such
that the image of x under σt0 , namely x− t0, corresponds to arg minx∈(α,1) e(x; α, 1, γ). Thus the energy Eγ has
an axisymmetric local minimizer in M∩Z with interfaces given by 0 < z1 < . . . < zn−2 < zn−1−t0 < zn−t0 < 1.

Now let z ∈ M ∩ ∂Z determined by interfaces located at 0 � z1 � z2 � . . . � zn < 1 where zk = zk+1 for a
single index k ∈ {0, 1, . . . , n − 2} and for any other index the inequality is strict, i.e., zi < zi+1 for i �= k. Let

α =
zk−2 + zk−1

2
, x =

zk−1 + zk

2
, β =

zk+1 + zk+2

2
·

Since k � n−2, β is away from the pole z = 1. Consider the elementary move σt : (zk−1, zk) �→ (zk−1− t, zk− t).
Note that σt keeps zk+1 fixed and by moving the line segment between zk−1 and zk it creates another interface
at zk− t for t > 0 different than zk+1. Thus, σt moves the point z on the boundary of M ∩Z towards its interior.

A basic observation on why this elementary move reduces the energy if we place the interfaces more or less
evenly is that

2e′nl(x) = −f

(
α + x

2

)
+ f

(
x + β

2

)
+

α − x

2
f ′
(

α + x

2

)
+

x − β

2
f ′
(

x + β

2

)
= f2(x) − f1(x),

where f1(x) is the linear Taylor approximation of f evaluated at x, with the base point of the Taylor expansion
located at α+x

2 , and f2(x) is an analogous approximation with the base point at x+β
2 . Since f is a strictly convex

function, it is clear that when x is near the left endpoint α then e′nl(x) < 0, and similarly if x is close to the
right endpoint β then e′nl(x) > 0. What this means is that the nonlocal energy increases under an elementary
move if one tries to place a strip of material too far from the middle of the allowed space. On the other hand,
the perimeter tries to move the strip away from the equator since ep is a decreasing function on (α, β). However,
since e′p is bounded on (α, β), we can choose γ large enough such that

argmin
x∈(α,β)

e(x; α, β, γ) < β.

Examples of choices of γ, depending on α and β, satisfying this condition are illustrated in Figures 4a–4f. So,
taking t0 such that x− t0 = arg minx∈(α,β) e(x; α, β, γ) we see that the elementary move σt0 reduces the energy
Eγ to a local minimum. �

Next we will show that the critical points found in this restricted class consisting of only axisymmetric
patterns are actually contained in the set of critical points of Eγ with respect to all perturbations.

Proposition 4.4. Let u(z) be an axisymmetric critical point of Eγ with respect to one dimensional perturbations
in the z-variable. Then u(z) as a function on S2 is a critical point of Eγ in the sense that it is a solution of the
Euler–Lagrange equation (2.6).

Proof. Suppose u(z) has n-interfaces located at −1 < z1 < · · · < zn < 1. Let A be the axisymmetric set where
u = 1, and let Γk be the components of the boundary of A, i.e., ∂A =

⋃n
k=1 Γk with Γk located at zk in

z-variables. Since the geodesic curvature of each component Γk is equal to a constant, we have

κg(zk) + 4γv(zk) = λk (4.3)

for some constant λk.
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Following [8], the first variation of Eγ is calculated by taking perturbations of the set A with respect to
its outer normal vector. Indeed, for any smooth function f : ∂A → R such that

∫
∂A f(x) dH2 = 0, we define

perturbations of A by letting A flow via the gradient field defined as

X(x) = f(x) ν(x)

for x ∈ ∂A where ν denotes the unit outer normal to A. Then, the calculations yield the following weak
formulation: ∫

∂A

(κg(x) + 4γv(x))f(x) dH1 = 0. (4.4)

To find the first variation of Eγ about an axisymmetric pattern with respect to axisymmetric perturba-
tions only, f is taken to be a constant on each boundary component Γk. Then for an axisymmetric u(z) with
n-interfaces, criticality implies the following condition: for all c1, . . . , cn ∈ R such that

n∑
k=1

ck H1(Γk) = 0, (4.5)

we have
n∑

k=1

ckλk H1(Γk) = 0. (4.6)

Note that the condition (4.6) is simply a discrete version of the weak condition (4.4).
To show that u(z) is also a critical point with respect to general perturbations, i.e. a solution to (2.1), we

need to show that there exists a constant λ such that

κg(zk) + 4γv(zk) = λk = λ for all k = 1, . . . , n.

To this end, suppose that for some i �= j we have λi �= λj . Let c > 0 be an arbitrary constant, and choose the
constants c1, . . . , cn to be all zero except for

ci = c and cj = −cH1(Γi)
H1(Γj)

·

Clearly the set of numbers c1, . . . , cn satisfies (4.5), and hence by (4.6) we have

(λi − λj)cH1(Γi) = 0.

But this contradicts the fact that λi − λj �= 0. Hence we must have λk = λ for all k = 1, . . . , n. �

5. Rigidity of the criticality condition

By Theorem 4.3 and Proposition 4.4 we know there exists at least one critical point of Eγ with arbitrary
number of interfaces provided γ is sufficiently large. In other words, the equation (2.1), or in particular (2.6)
has a solution. However, due to the curved nature of the sphere, this criticality condition (2.1) is a rather rigid
condition. In this section we exploit this rigidity to obtain quantitative results on the axisymmetric critical
points.

We first show that for any fixed γ > 0 one only has axisymmetric critical patterns with a finite bounded
number of interfaces.

Proposition 5.1 (Number of interfaces). If for any given γ > 0 an axisymmetric pattern u with n interfaces is
a critical point of Eγ then there exists a number Nγ ∈ N depending on γ such that n � Nγ, that is, the number
of interfaces that u has is bounded from above.
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Proof. Let γ > 0 be fixed and let u(z) be an axisymmetric critical point with at least n interfaces. Let δ1 > 0
be an arbitrary number. Assume, for a contradiction, that

|zi − zj | < δ1

for all i, j = 1, . . . , n. Then, in particular, two consecutive interfaces zi and zi+1 are at most δ1 apart, i.e.,

|zi+1 − zi| < δ1.

Since u(z) is a critical point, by (2.6), we have that

κg(zi+1) − κg(zi) + 4γ (v(zi+1) − v(zi)) = 0. (5.1)

Let ε > 0 be another arbitrary number. Since v(z) is uniformly continuous on [−1, 1], there exists δ2 > 0 such
that

|v(zi+1) − v(zi)| <
ε

8γ

provided |zi+1 − zi| < δ2.

Now we are going to look at two cases:
Case 1. (The interfaces at zi and zi+1 are on the same hemisphere). Since zi, zi+1 ∈ (−1, 0) or zi, zi+1 ∈ (0, 1),
recalling (2.7), the geodesic curvatures κg(zi) and κg(zi+1) have the opposite sign. Therefore, for ε > 0, there
exists δ3 > 0 such that

|κg(zi+1) − κg(zi)| > ε

for |zi+1 − zi| < δ3. Let
δ := min{δ1, δ2, δ3}.

Then, for |zi+1 − zi| < δ, we have

|κg(zi+1) − κg(zi)| � ε and 4γ|v(zi+1) − v(zi)| < ε/2;

hence,
(κg(zi+1) − κg(zi)) + 4γ (v(zi+1) − v(zi))

is either strictly positive or strictly negative. This contradicts the equation (5.1) and the criticality of u.

Case 2. (The interfaces at zi and zi+1 are on different hemispheres.) In this case, we assume, without loss of
generality, that −1 < zi < 0 < zi+1 < 1. This implies that κg has the same sign at zi and zi+1. Also, by (5.1),
we have

κg(zi+1) − κg(zi)
zi+1 − zi

+ 4γ
v(zi+1) − v(zi)

zi+1 − zi
= 0. (5.2)

Looking at the first term, we see that for ε > 0, there exists δ4 > 0 such that

∣∣∣∣κg(zi+1) − κg(zi)
zi+1 − zi

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣

− z2i√
1 − z2

2i

− z2i−1√
1 − z2

2i−1

z2i − z2i−1

∣∣∣∣∣∣∣∣∣∣
> 1 − ε (5.3)

when |zi+1 − zi| < δ4. Also, since ∂zv(z) is uniformly continuous on [−1, 1], there exists δ5 > 0 such that∣∣∣∣v(zi+1) − v(zi)
zi+1 − zi

∣∣∣∣ < ε

8γ
· (5.4)



262 R. CHOKSI ET AL.

for |zi+1 − zi| < δ5. Letting
δ := min{δ1, δ4, δ5}

this time, and combining (5.3) and (5.4) we reach a contradiction with the equation (5.2) and the criticality
of u.

These two cases show that for fixed γ > 0, any two interfaces zi and zj of an axisymmetric critical point
cannot be arbitrarily close to each other. Hence we conclude that n is bounded from above. Note, of course,
that our argument eliminates the possibility of infinitely many interfaces. �

The next result emphasizes the rigidity of (2.6) insofar as axisymmetric patterns maintaining their criticality
for an interval of γ-values can only have one or two interfaces.

Proposition 5.2. The only axisymmetric critical points of Eγ for an interval of γ-values are the single cap
and the symmetric double cap, that is, the critical points with one interface and with two symmetric interfaces,
respectively.

Proof. Clearly, if u is an axisymmetric critical point of Eγ with only one interface then the criticality condi-
tion (2.6) is trivially satisfied for all γ > 0. To investigate the criticality of axisymmetric patterns with more
than one interface, we will need to calculate v(zk) explicitly. Note that, since

v(zk+1) =
∫ zk+1

−1

ξ(z)
1 − z2

dz,

we will need to evaluate integrals of ξ(z)
1−z2 on the intervals (zk, zk+1).

Using the notation of Proposition 3.1, one calculates∫ zk+1

zk

ξk + ak+1(z − zk)
1 − z2

dz =
∫ zk+1

zk

ξk + ak+1(1 − zk)
2(1 − z)

dz +
∫ zk+1

zk

ξk − ak+1(1 + zk)
2(1 + z)

dz

=
ξk + ak+1(1 − zk)

2
log

1 − zk

1 − zk+1
+

ξk − ak+1(1 + zk)
2

log
1 + zk+1

1 + zk
·

and, since

v(zk+1) =
k∑

i=0

∫ zi+1

zi

ξ(z)
1 − z2

dz,

we get that

v(zk+1) − v(zk) =
ξk + ak+1(1 − zk)

2
log

1 − zk

1 − zk+1
+

ξk − ak+1(1 + zk)
2

log
1 + zk+1

1 + zk
· (5.5)

Now for an axisymmetric critical point u with a partition −1 = z0 < z1 < . . . < zn+1 = 1 determining the
interfaces, looking at the criticality condition (2.6) at two consecutive interfaces we see that the equation

(κg(zk+1) − κg(zk)) + 4γ (v(zk+1) − v(zk)) = 0 (5.6)

is satisfied for an interval of γ-values if, and only if, both κg(zk+1) − κg(zk) and v(zk+1) − v(zk) vanish simul-
taneously. But, by (2.7), κg(zk+1) − κg(zk) = 0 implies that zk+1 = −zk. Then, (5.5) becomes

v(−zk) − v(zk) = (ξk − ak+1zk) log
1 − zk

1 + zk
· (5.7)

For z ∈ (zk,−zk), we have that ξ(z) = ak+1z; hence, in particular, ξ(zk) = ξk = ak+1zk. Plugging this in (5.7)
yields that

v(−zk) − v(zk) = 0;
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hence, satisfying the condition (5.6) for all γ > 0. This implies that for an axisymmetric critical pattern to be a
critical point for an interval of γ-values consecutive interfaces have to be symmetric with respect to the equator
on the sphere. However, this is only possible if the pattern has two interfaces, that is, it is a double cap. �

Remark 5.3. We note that both propositions above point out a major difference between the one dimensional
patterns on the two-sphere and the n-dimensional flat torus Tn. In the latter case, a lamellar pattern with any
number of interfaces is a critical point of the energy Eγ for all γ > 0 whereas the rigidity of the criticality
condition induced by the curvature of the domain does not allow this to happen either in terms of the number
of interfaces one can fit (Prop. 5.1) or in terms of the γ-values for which a pattern of certain number of interfaces
stays as a critical point (Prop. 5.2).

Proposition 5.2 shows that for any axisymmetric critical point with more than two interfaces the location of
those interfaces changes with γ. For any fixed γ > 0 they are in fact determined by the system of equations (2.6).
In the proceeding discussion we will look at this system a little more closely, and demonstrate the difficulty of
solving this finite dimensional system of equations by providing explicit calculations in the case of three and
four interfaces. These calculations will also show that the uniformly distributed patterns with 3 and 4 interfaces
where the locations of the interfaces are given by{

−1
2
, 0,

1
2

}
and

{
−3

4
,−1

4
,
1
4
,
3
4

}
(5.8)

are critical points for γ-values

−1
2
√

3 log(3/4)
and

3/
√

7 + 1/
√

15
3 log(5/7) + log 3

, (5.9)

respectively. As we will show in Proposition 5.4, these uniformly distributed patterns are indeed special since,
along with the single and double cap, they are the only critical points of Eγ with uniformly distributed interfaces.

Given a fixed γ > 0, to determine the exact location of the interfaces zk of an axisymmetric critical point
one needs to solve the highly nonlinear but finite system of equations given by (2.6). Letting −1 = z0 < z1 <
. . . < zn < zn+1 = 1 denote the interfaces, we first note that, for any zi, zj , and zk, the set of equations

(κ(zi) − κ(zj)) + 4γ (v(zi) − v(zj)) = 0
(κ(zj) − κ(zk)) + 4γ (v(zj) − v(zk)) = 0

implies that
(κ(zi) − κ(zk)) + 4γ (v(zi) − v(zk)) = 0.

Hence, the system (2.6) reduces to

(κ(zn) − κ(zn−1)) + 4γ (v(zn) − v(zn−1)) = 0
(κ(zn−1) − κ(zn−2)) + 4γ (v(zn−1) − v(zn−2)) = 0

... +
... =

...
(κ(z2) − κ(z1)) + 4γ (v(z2) − v(z1)) = 0

(5.10)

along with the mass constraint

−(1 − zn) − (z1 + 1) +
n∑

i=2

(−1)i(zi − zi−1) = 0. (5.11)
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Taking the sign of κg(zk) into account, and recalling (5.5), the system (5.10) becomes

⎛
⎝− zn√

1−z2
n

− zn−1√
1−z2

n−1

⎞
⎠+ 4γ

(
ξn−1 + an(1−zn−1)

2
log

1−zn−1

1−zn
+

ξn−1 − an(1+zn−1)
2

log
1+zn

1+zn−1

)
=0

⎛
⎝ zn−1√

1−z2
n−1

+
zn−2√
1−z2

n−2

⎞
⎠+4γ

(
ξn−2 + an−1(1−zn−2)

2
log

1−zn−2

1−zn−1
+

ξn−2 − an−1(1+zn−2)
2

log
1+zn−1

1+zn−2

)
=0

... +
... =

...(
− z2√

1−z2
2

− z1√
1−z2

1

)
+ 4γ

(
ξ1 + a2(1−z1)

2
log

1−z1

1−z2
+

ξ1 − a2(1+z1)
2

log
1+z2

1+z1

)
=0,

(5.12)
where ξi is defined in (3.3), and ai = (−1)i − m. Together with (5.11) this nonlinear system contains n

equations involving the variables z1, . . . , zn.
Next we will show how we can find patterns with 3 or 4 interfaces by using explicit calculations. These

calculations also show that for these patterns to be critical points the parameter γ needs to be sufficiently large.
Let us start with the pattern with 3 interfaces. Suppose that the interfaces are located at

{−z1, 0, z1}
for some 0 < z1 < 1. Note that the geodesic curvatures at these interfaces are

κg(−z1) =
−z1√
1 − z2

1

, κg(0) = 0, and κg(z1) =
z1√

1 − z2
1

taking into account that u = −1 on [0,−z1].
Then, if this pattern is a critical point for a γ-value, it will satisfy the criticality condition

(κg(z1) − κg(0)) + 4γ(v(z1) − v(0)) = 0;

hence, using (5.5), we get that
z1√

1 − z2
1

+ 4γ[z1 log(1 + z1) − (z1 − 1) log(1 − z1)] = 0.

Solving for γ, then, yields

γ =
−z1/

√
1 − z2

1

4[z1 log(1 + z1) − (z1 − 1) log(1 − z1)]
· (5.13)

It is easy to see that as z1 approaches 0+ (i.e., as −z1 → 0−), γ approaches 1/4. Also, the curve defined above
has vertical asymptotes at z1 ≈ ±0.69 (see the Fig. 5a), and we see that for any value of γ > 1/4 there exists a
location for the first interface −1 < −z1 < 0 such that the pattern with 3 interfaces is a critical point.

For the pattern with 4 symmetric interfaces let the interfaces be located at{
−z1,

1
2
− z1, z1 − 1

2
, z1

}

for some 1/2 < z1 < 1.
It is easy to check that due to the symmetry assumption the difference between the criticality conditions on

any two interfaces is equivalent to the difference between two consecutive interfaces, that is, if this pattern is a
critical point for some γ > 0 it satisfies the equation

[κg(z1) − κg(z1 − 1/2)] + 4γ[v(z1) − v(z1 − 1/2)] = 0.
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Figure 5. The curve γ in the (−z1, γ)-plane for 3 and 4 interfaces, respectively.

Again, using (5.5) for the second term, and solving for γ yields

γ =

z1√
1 − z2

1

+
z1 − 1/2√

1 − (z1 − 1/2)2

4
(
−z1 log

(
1 + z1

1/2 + z1

)
− (z1 − 1) log

(
3/2 − z1

1 − z1

)) · (5.14)

This curve has two asymptotes at z1 ≈ ±0.78554. This shows that for any γ > 0, the first and the last
interfaces are away from the poles. Moreover, γ → 1

2
√

3 log(4/3)
≈ 1.00345 (see Fig. 5b) as −z1 → −1/2− or

z1 → 1/2+. Therefore for any γ > 1
2
√

3 log(4/3)
there exists a critical point with 4 interfaces.

Looking at these calculations, it is then easy to determine the exact γ-values given in (5.9) for which the
uniformly distributed axisymmetric patterns with 3 and 4 interfaces given by (5.8) are critical points.

Next we show that the patterns with one, two, three or four interfaces are the only ones with uniform interface
distribution.

Proposition 5.4 (Uniform interface distribution). Any uniformly distributed pattern with the number of inter-
faces greater than 4 is not a critical point.

Proof. Clearly the single and double cap, and the patterns given by (5.8) are uniformly distributed axisymmetric
critical points of Eγ . Suppose u is a uniformly distributed axisymmetric pattern with more than 4 interfaces.
First, suppose that u(z) has 2n−1 interfaces with n � 3. Then there are 2n regions where u = 1 and 2n regions
where u = −1 each having a height of 1/n. That is, the locations of the interfaces are given by zi = −1 + i/n in
z-coordinates. Let us concentrate on the interval (z2, z3) on which u = −1. Note that z3 = −1 + 3/n � 0 since
n � 3. By (5.6), we have that

(κg(z3) − κg(z2)) + 4γ (v(z3) − v(z2)) = 0. (5.15)

As u = −1 on (z2, z3), the unit normals to the interfaces point inwards; hence,

κg(z3) − κg(z2) < 0.

On the other hand, since z1 − (−1) = z2 − z1 because of the uniform area distribution, the function ξ(z) is
negative on the interval (z2, z3). Thus,

v(z3) − v(z2) =
∫ z3

z2

ξ(z)
1 − z2

dz < 0,

which yields that the equation (5.15) cannot be satisfied for any γ > 0.
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Next, suppose that u(z) has 2n interfaces with n � 3; that is, there are n regions where u = 1 and n + 1
regions where u = −1. For equal area distribution, we choose the interfaces such that the interval (−1, z1) and
(z2n, 1) have length 1

2n , and the interval (zi, zi+1) have length 1
n for i = 1, . . . , 2n − 1. Therefore the locations

of the interfaces are given by the formula

zi = −1 +
2i − 1

2n

for i = 1, . . . , 2n.
Writing the criticality conditions between the interfaces z1 and z2, and between z2 and z3 as in (5.6), and

assuming that there is a γ-value satisfying both equations, we obtain

κg(z1) − κg(z2)
v(z2) − v(z1)

=
κg(z2) − κg(z3)
v(z3) − v(z2)

·

For the choices of z1, z2, and z3 given above for equal area distribution, this equation, then, becomes

1 − 2n

2n√
1 −
(

1 − 2n

2n

)2
+

3 − 2n

2n√
1 −
(

3 − 2n

2n

)2

(
2n − 1

2n

)
log
(

4n − 1
4n − 3

)
− 1

2n
log 3

=

−
3 − 2n

2n√
1 −
(

3 − 2n

2n

)2
−

5 − 2n

2n√
1 −
(

5 − 2n

2n

)2

(
1 − n

n

)
log
(

4n − 3
4n − 5

)
− 1

n
log
(

5
3

)

which has no solution for n � 3. Therefore any axisymmetric pattern with more than four uniformly distributed
interfaces is not a critical point of Eγ . �

Finally, we will make use of the rigidity of the criticality condition to establish a lower bound on the polar
cap diameter of an axisymmetric critical point when m = 0.

Proposition 5.5. Let u be an axisymmetric critical point of Eγ with n � 2 interfaces and let z1 denote the
first interface. Then the diameter of the polar cap determined by z1 is bounded from below. More specifically,

z1 � a√
1 + a2

for a := − 6γ
e − 1√

3
.

Proof. Let n � 2 and suppose that z1 � − 1
2 , which implies that z2 � 1

2 by mass constraint. Then the criticality
condition gives

|z1|√
1 − z2

1

� 4γ|v(z2) − v(z1)| + |z2|√
1 − z2

2

� 4γ|v(z2) − v(z1)| + 1√
3
·

Recall that since ‖u‖L∞ � 1, we have v ∈ C1,α(S2) for any α ∈ (0, 1), with |∇v| uniformly bounded independent
of u. Hence there are constants C1 and C2 such that

z2
1

1 − z2
1

� C1γ
2 + C2, (5.16)

leading to

|z1|2 � C1γ
2 + C2

C1γ2 + C2 + 1
= 1 − 1

C1γ2 + C2 + 1
·

This means that ε := z1 + 1 is bounded from below by a constant multiple of 1/γ2, or in other words, that the
diameter � of the polar cap is bounded below by ∼ 1/γ.
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Now we obtain the more quantitative bound. We have

z1√
1 − z2

1

+
z2√

1 − z2
2

= 4γ(v(z2) − v(z1)). (5.17)

On the other hand, (5.5) gives

v(z2) − v(z1) = −z1 log
1 − z1

1 − z2
− (1 + z1) log

1 + z2

1 + z1
> −(1 + z1) log

1 + z2

1 + z1
,

where we have taken into account that ξ1 = −(z1 + 1) = −ε and that z1 < z2. Then assuming that z2 � 1
2 as

before, we can derive the bound

(1 + z1) log
1 + z2

1 + z1
� 3

2e
·

Using this in (5.17), we get that
z1√

1 − z2
1

� −6γ

e
− 1√

3
,

and this, in turn, yields that
z1 � a√

1 + a2

with a = − 6γ
e − 1√

3
as stated. �

Remark 5.6. Similar arguments can be applied to obtain a lower bound on the interfacial distance. Namely,
for any fixed γ > 0, we have that

|zk+1 − zk| � C max{|κg(zk)|, |κg(zk+1)|}
γ

� C max{|zk|, |zk+1|}
γ

for some constant C > 0.

6. Remarks on instability

In this short section, we give a few remarks concerning stability. Instability of the double cap was obtained
in [30] by looking at the second variation of the energy Eγ , and it is natural to explore a similar analysis for
general critical points. Unfortunately, we do not know the exact location of the interfaces for general critical
points and as we explain, this presents many difficulties. For example, consider the following two standard
techniques of obtaining instability of a critical point.

• (Fluctuations of a boundary component) Suppose we have an equatorially symmetric, axisymmetric critical
point with n interfaces given by

−1 < z1 < z2 < . . . < zn < 1.

Then, by Proposition 5.5, we have that

1/2 < zn < C(γ) � 1 (6.1)

where C(γ) is given by

C(γ) =
6γ
e + 1√

3√
1 +
(

6γ
e + 1√

3

)2
·
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Take f defined on ∂A = Γ1 ∪ · · · ∪ Γn using spherical coordinates by

fk(θ) =

{
sin(kθ) on Γn

0 otherwise

for some integer k.
Using (6.1), the second variation (2.2) expressed in z-coordinates becomes

1
π

J(fk) =
k2 − 1√
1 − z2

n

+ 4γ

(
1 − z2

n

k
+ (zn − 1)

)

� k2 − 1√
1 − C2(γ)

+
3γ

k
+ 4γ(C(γ) − 1).

(6.2)

Written out explicitly, this gives us

1
π

J(fk) � (k2 − 1)

√
1 +
(

6γ

e
+

1√
3

)2

+
3γ

k
+

4γ

((
6γ
e + 1√

3

)
−
√

1 +
(

6γ
e + 1√

3

)2
)

√
1 +
(

6γ
e + 1√

3

)2
·

Note that the only negative term above is the third term. For large γ-values the third term is close to zero;
however, since small circles are very stable critical points of the perimeter functional, the first term is very
positive, making it difficult to establish instability. This pathology can also be seen in the first line of (6.2)
where for fixed γ there is only one free parameter, namely k; however, we lack information on the exact
location (hence, it’s closeness to 1) of the last interface zn.

• (Axisymmetric perturbations) Another easy trick to establish instability is to consider an initial perturbation
f of the form

f(x) =

⎧⎪⎨
⎪⎩
−1 on Γn,

1 on Γ1,

0 otherwise.

Then, using the fact that
log(|x − y|) < log 2

for x ∈ Γ1 and y ∈ Γn, the second variation in z-coordinates is given by

1
π

J(f) � −4√
1 − z2

n

+ γ
(
32(1 − z2

n)
(
log 2 − log(

√
1 − z2

n)
))

+ γ(16(zn − 1)).

The above formula shows that we get instability for fixed γ if zn is close enough to 1. We expect that this
will be the case if the number of interfaces n is sufficiently large.

The difficulty of proving stability of an axisymmetric critical pattern lies in the structure of u. There one
needs to consider the interaction between components of ∂A given a general smooth function f on ∂A. Even
for the simplest axisymmetric critical point, namely the symmetric double cap, one encounters integrals of the
form∫ 2π

0

∫ 2π

0

log(5 − 3 cos(θ − α)) cos(nθ) cos(nα) dθdα =
∫ 2π

0

∫ 2π

0

log(5 − 3 cos(θ − α)) sin(nθ) sin(nα) dθdα. (6.3)
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Figure 6. Result of a hybrid numerical simulation of Shahriari, Ruuth, and Choksi. The result
shows a low energy metastable state.

Relying on numerical computations we claim that the integrals in (6.3) are given by the closed formula

− 2π2

n3n
;

however, at this stage, we cannot prove this analytically.
Instability towards spiraling is particularly interesting and should be expected. Indeed Figure 6 shows a

hybrid numerical simulation of a low energy state for (1.3) on S
2. Starting from random initial conditions,

one runs the H−1 gradient flow of (1.3) until a metastable pattern is reached. One then runs motion by mean
curvature for a fixed number of time steps followed again by the gradient flow. This is repeated several times.
The motion by mean curvature flow, which in general increases the overall energy, is there to surmount energy
barriers and to allow us to access as low an energy configuration as possible. The final spiral pattern in Figure 6
is the result of this algorithm.
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