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BIAXIALITY IN THE ASYMPTOTIC ANALYSIS OF A 2D
LANDAU−DE GENNES MODEL FOR LIQUID CRYSTALS

Giacomo Canevari
1

Abstract. We consider the Landau−de Gennes variational problem on a bounded, two dimensional
domain, subject to Dirichlet smooth boundary conditions. We prove that minimizers are maximally
biaxial near the singularities, that is, their biaxiality parameter reaches the maximum value 1. Moreover,
we discuss the convergence of minimizers in the vanishing elastic constant limit. Our asymptotic analysis
is performed in a general setting, which recovers the Landau−de Gennes problem as a specific case.

Mathematics Subject Classification. 35J25, 35J61, 35B40, 35Q70.

Received December 16, 2013. Revised May 12, 2014.
Published online December 3, 2014.

1. Introduction

Nematic liquid crystals are an intermediate phase of matter, which shares some properties both with solid
and liquid states. They are composed by rigid, rod-shaped molecules which can flow freely, as in a conventional
liquid, but tend to align locally along some directions, thus recovering, to some extent, long-range orientational
order. As a result, liquid crystals behave mostly like fluids, but exhibit anisotropies with respect to some optical
or electromagnetic properties, which makes them suitable for many applications.

In the mathematical and physical literature about liquid crystals, different continuum theories have been
proposed. Some of them – like the Oseen–Frank and the Ericksen theories – postulate that, at every point, the
molecules tend to align along a preferred direction, so that the resulting configuration has an axis of rotational
symmetry. Such a behavior is commonly referred to as uniaxiality. In contrast, the Landau−de Gennes theory,
which is considered here, allows biaxiality. In a biaxial arrangement, there is no axis of rotational symmetry,
but there are three orthogonal axes of reflection symmetry. There is experimental evidence for biaxiality in
thermotropic materials, that is, materials whose phase transitions are induced by temperature (see [1,22]). For
more details about uniaxial and biaxial arrangements, the reader might consult [28].

In the Landau−de Gennes theory (or, as it is sometimes informally called, the Q-tensor theory), the local
configuration of the liquid crystal is modeled with a real 3 × 3 symmetric traceless matrix Q(x), depending
on the position x. The configurations are classified according to the eigenvalues of Q. More precisely, Q = 0
corresponds to an isotropic phase (i.e., completely lacking of orientational order), matrices Q �= 0 with two
identical eigenvalues represent uniaxial phases, and matrices whose eigenvalues are pairwise distinct describe

Keywords and phrases. Landau−de Gennes model, Q-tensor, convergence, biaxiality.
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Figure 1. The space of Q-tensors. The unit sphere and the uniaxial cones, corresponding to
r = 0 and r = 1, are represented. The vacuum manifold is the intersection between the sphere
and the cone r = 0.

biaxial phases. Every Q-tensor can be represented as follows:

Q = s

{(
n⊗2 − 1

3
Id
)

+ r

(
m⊗2 − 1

3
Id
)}

(1.1)

with 0 ≤ r ≤ 1, s ≥ 0 and (n, m) is a positively oriented orthonormal pair in R3. The parameters s and r are
respectively related to the “degree of order” and the biaxiality of the local configuration (in particular, Q is
uniaxial if and only if r ∈ {0, 1}). The vectors n and m describe the orientation of the symmetry axes. In the
uniaxial case, the director of the rotational symmetry axis is either n (when r = 0) or n ∧ m (when r = 1),
whereas in the biaxial case the axes of reflection symmetry are identified by (n, m, n∧m). Here, ∧ denotes the
vector product in R3. The geometry of the space of Q-tensors is represented in Figure 1.

In this paper, we consider a two-dimensional model. The material is contained in a bounded, smooth domain
Ω ⊆ R2, subject to smooth Dirichlet boundary conditions. The configuration parameter Q is assumed to
minimize the Landau−de Gennes energy functional, which can be written, in its simplest form, as

Eε(Q) =
∫

Ω

{
1
2
|∇Q|2 +

1
ε2

f(Q)
}

. (1.2)

Here, |∇Q|2 =
∑

i,j,k Q2
ij, k is a term penalizing the inhomogeneities in space, and f is the bulk potential,

given by

f(Q) =
α(T − T ∗)

2
trQ2 − b trQ3 + c

(
tr Q2

)2
. (1.3)

The parameters α, b and c depend on the material, T is the absolute temperature, which we assume to be
constant, and T ∗ is a characteristic temperature of the liquid crystal. We work here in the low temperature
regime, that is, T < T ∗. It can be proved (see [2], Prop. 9) that f attains its minimum on a manifold N ,
called the vacuum manifold, whose elements are exactly the matrices having s = s∗, r = 0 in the representation
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formula (1.1) (s∗ is a parameter depending only on α, b, c, T ). The potential energy ε−2f(Q) can be regarded as
a penalization term, associated to the constraint Q ∈ N . In particular, as we will explain further on, biaxiality
is penalized. The parameter ε2 is a material-dependent elastic constant, which is typically very small (of the
order of 10−11 J m−1): this motivates our interest in the limit as ε ↘ 0.

Due to the form of the functional (1.2), there are some similarities between this problem and the
Ginzburg−Landau model for superconductivity, where the configuration space is the complex field C 
 R2,
the energy is given by

Eε(u) =
∫

Ω

{
1
2
|∇u|2 +

1
4ε2

(
1 − |u|2

)2
}

and the vacuum manifold is the unit circle. The convergence analysis for this model is a widely addressed issue
in the literature (see, for instance, [6] for the study of the 2D case). A well-known phenomenon is the appearance
of the so-called topological defects. Depending on the homotopic properties of the boundary datum, there might
be an obstruction to the existence of smooth maps Ω → N . Boundary data for which this obstruction occurs
will be referred to as homotopically non trivial (see Sect. 2.1). In this case, the image of minimizers fails to lie
close to the vacuum manifold on some small set which correspond, in the limit as ε ↘ 0, to the singularities of
the limit map.

In the Ginzburg−Landau model, the whole configuration space C can be recovered as a topological cone over
the vacuum manifold. In other words, every configuration u ∈ C\{0} is identified by its modulus and phase, the
latter being associated with an element of the vacuum manifold. Defects are characterized as the regions where
|u| is small. This structure is found in other models: for instance, let us mention the contribution of Chiron [10],
who replaced C by a cone over a generic compact, connected manifold.

In contrast, this property is lost in the Landau−de Gennes model (1.2) and (1.3). As a result, for the
minimizers Qε of the Landau−de Gennes functional several behaviors near the singularities are possible. For
instance, one might ask whether the image of Qε lies entirely in the cone over the vacuum manifold or not. In
view of the representation formula (1.1), these alternatives correspond, respectively, to uniaxiality and biaxiality.

Numerical simulations suggest that we might expect biaxiality in the core of defects. Schopohl and Sluckin
(see [34]) claimed that the core is heavily biaxial at all temperatures, and that it does not contain isotropic
liquid. In the 3D case, a special biaxial configuration, known as “biaxial torus”, has been identified in the core of
point defects (see [13,18,19,35]). Gartland and Mkaddem [13] proved that, when Ω = B(0, R) ⊆ R3 with R large
enough, and the boundary data is radially symmetric, the radially symmetric uniaxial configurations become
unstable for sufficiently low temperature, hence minimizers cannot be purely uniaxial. Similar conclusions have
been drawn by Henao and Majumdar [16], by Ignat et al. [17] and, in the 2D case, by Lamy [20].

However, these results do not exclude that minimizers are “almost uniaxial”, i.e., their degree of biaxiality is
small everywhere, so that they do not differ significantly from a pure uniaxial state. The first goal of this paper
is to rule out this possibility.

To this end, we need to express the degree of biaxiality of a given configuration by means of a suitable quantity.
The parameter r, indroduced in (1.1), would be a natural choice. Another possibility, which is well-established
in the literature and more convenient for computations, is the so-called biaxiality parameter β (see Sect. 3.1).
To each tensor Q �= 0, we associate a number β(Q) ranging between 0 and 1, in such a way that β(Q) = 0 if
and only if Q is a uniaxial tensor, and β(Q) = 1 represents the maximal degree of biaxiality.

We are able to prove that minimizers are maximally biaxial somewhere, in the low temperature regime
T � T∗. More precisely, we have the following

Theorem 1.1. Assume that the boundary datum is a smooth function g : ∂Ω → N and is not homotopically
trivial. There exist t0 > 0 and ε0 = ε0(α, b, c, T∗ − T ) such that, if the conditions

αc(T∗ − T )
b2

≥ t0 and ε ≤ ε0
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hold, then any minimizer Qε of the Landau−de Gennes model (1.2) and (1.3) satisfies

min
Ω

|Qε| > 0 and max
Ω

β(Qε) = 1.

Theorem 1.1 prevents the isotropic phases (Q = 0) from appearing in minimizers, in the low temperature
regime. This is a remarkable difference between the Landau−de Gennes theory and the popular Ericksen model
for liquid crystals: in the latter, defects are always associated with isotropic melting, since biaxiality is not taken
into account. Remark that Theorem 1.1 is in agreement with the conclusions of [34].

The proof of this result relies on energy estimates. With the help of the coarea formula, we are able to bound
from below the energy of any uniaxial configuration. Then, we provide an explicit example of maximally biaxial
solution, whose energy is smaller than the bound we have obtained, and we conclude that uniaxial minimizers
cannot exist.

Another topic we discuss in this paper is the convergence of minimizers as ε ↘ 0. It turns out that a
convergence result for the minimizers of (1.2) and (1.3) can be established without any need to exploit the
matricial structure of the configuration space, nor the precise shape of f and N . For this reason, we introduce
a more general problem, where the set of matrices is replaced by the Euclidean space Rd, N is any compact,
connected submanifold of Rd, and f : Rd → [0, +∞) is a smooth function, vanishing on N , which satisfies the
Assumptions H1–H5 listed in Section 2. To avoid confusion, we denote by u : Ω → Rd the unknown for the new
problem, and we let uε be a minimizer.

Proposition 1.2. Assume that conditions H1–H5 hold. There exist some ε-independent constants λ0, δ0 > 0
and, for each δ ∈ (0, δ0), a finite set Xε = Xε(δ) ⊂ Ω, whose cardinality is bounded independently of ε, such
that

dist(x, Xε) ≥ λ0ε implies that dist(uε(x), N ) ≤ δ.

The set Xε is empty if and only if the boundary datum is homotopically trivial. In the Landau−de Gennes
case (1.2) and (1.3), Proposition 1.2 and Theorem 1.1, combined, show that a minimizer Qε is “almost uniaxial”
everywhere, except on k balls of radius comparable to ε, where biaxiality occurs. Actually, we will prove that
k = 1 (see Prop. 1.4).

We can show that the minimizers converge, as ε ↘ 0, to a map taking values in N , having a finite number
of singularities. Moreover, due to the variational structure of the problem, the limit map is optimal, in some
sense, with respect to the Dirichlet integral v �→ 1

2

∫
Ω
|∇v|2.

Theorem 1.3. Under the Assumptions H1–H5, there exists a subsequence of εn ↘ 0, a finite set X ⊂ Ω and
a function u0 ∈ C∞(Ω \ X, N ) such that

uεn → u0 strongly in H1
loc ∩ C0(Ω \ X, Rd).

On every ball B ⊂⊂ Ω \ X, the function u0 is minimizing harmonic, which means

1
2

∫
B

|∇u0|2 = min
{

1
2

∫
B

|∇v|2 : v ∈ H1(B, N ), v = u0 on ∂B

}
.

In particular, u0 is a solution of the harmonic map equation

Δu0(x) ⊥ Tu0(x)N for all x ∈ Ω \ X,

where Tu0(x)N is the tangent plane of N at the point u0(x) and the symbol ⊥ denotes orthogonality.
We can provide some information about the behavior of u0 around the singularity. For the sake of simplicity,

we assume here that N is the real projective plane RP2 (this is the case, for instance, of the Landau−de Gennes
potential (1.3)); however, the analytic tools we use carry over to a general manifold.
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Proposition 1.4. In addition to H1–H4, assume that N 
 RP2 and the boundary datum is not homotopically
trivial (see Def. 2.3). Then, X reduces to a singleton {a}. For ρ ∈ (0, dist(a, ∂Ω)), consider the function
S1 → N given by

cρ : θ �→ u0

(
a + ρeiθ

)
.

Up to a subsequence ρn ↘ 0, cρn converges uniformly (and in C0, α for α < 1/2) to a geodesic c0 in N , which
minimizes the length among the non homotopically trivial loops in N .

Unfortunately, we have not been able to prove the convergence for the whole family (cρ)ρ>0, which remains
still an open question.

An interesting question, related to the topics we discuss in this paper, is the study of the singularity profile
for defects in the Landau−de Gennes model. Consider a singular point a ∈ X , and set Pε(x) := Qε(a + εx) for
all x ∈ R2 for which this expression is well-defined. Then Pε is a bounded family in L∞ (see Lem. 4.1) and it is
clear, by scaling arguments, that

‖∇Pε‖L2(K) ≤ C for all K ⊂⊂ R2.

Thus, up to a subsequence, Pε converges weakly in H1
loc(R

2) to some P∗. It is readily seen that, for each R > 0, P∗
minimizes in B(0, R) the functional E1 among the functions P ∈ H1(B(0, R)) satisfying P = P∗ on ∂B(0, R),
and consequently it solves in R2 the Euler−Lagrange equation associated with E1.

A function P∗ obtained by this construction is called a singularity profile. Understanding the properties
of such a profile will lead to a deeper comprehension of what happens in the core of defects, and vice-versa.
Remark that, in view of Theorem 1.1, strong biaxiality has to be found in singularity profiles corresponding
to low temperatures. Profiles of point defects in the two-dimensional Landau−de Gennes model have been
studied in detail by Di Fratta et al., in a recent preprint [12]. For the three-dimensional case, let us mention the
paper by Henao and Majumdar [16], where a spherical droplet, with radially symmetric boundary conditions,
is considered. Restricting the problem to the class of uniaxial Q-tensors, the authors proved convergence to a
radial hedgehog profile. (Actually, Lamy has recently claimed a stronger result, namely, the radial hedgehog is
the only uniaxial critical point for the Landau−de Gennes energy – see [20], Thm. 5.1).

This paper is organized as follows. In Section 2 we present in detail our general problem, we set notations,
and we introduce some tools for the subsequent analysis. More precisely, in Section 2.1 we define the energy cost
of a defect, and in Subsection 2.2 we discuss the nearest point projection on a manifold. Section 3 specifically
pertains to the Q-tensor model, and contains the proof of Theorem 1.1. The asymptotic analysis, with the proof
of Proposition 1.2 and Theorem 1.3, is provided in Section 4. Finally, Section 5 deals with Proposition 1.4.

Note added in proof. While preparing this paper, we were informed that Golovaty and Montero [14] have
recently obtained similar results about the convergence of minimizers in the Q-tensor model.

2. Setting of the general problem and preliminaries

As we mentioned in the introduction, our asymptotic analysis will be carried out in a general setting, which
recovers the Landau−de Gennes model (1.2) and (1.3) as a particular case. In this section, we detail the problem
under consideration. The unknown is a function Ω → Rd, where Ω is a smooth, bounded (and possibly not simply
connected) domain in R2. Let g : ∂Ω → Rd be a boundary datum, and define the Sobolev space H1

g (Ω, Rd) as
the set of maps in H1(Ω, Rd) which agrees with g on the boundary, in the sense of traces. We are interested in
the problem

min
u∈H1

g (Ω; Rd)
Eε(u) (2.1)

where

Eε(u) := Eε(u, Ω) =
∫

Ω

{
1
2
|∇u|2 +

1
ε2

f(u)
}

and f : Rd → R is a non negative, smooth function, satisfying the assumptions below.
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The existence of a minimizer for Problem (2.1) can be easily inferred via the Direct Method in the calculus
of variations, whereas we do not claim uniqueness. If uε denotes a minimizer for Eε, then uε is a weak solution
of the Euler−Lagrange equation

−Δuε +
1
ε2

Df(uε) = 0 in Ω. (2.2)

Via elliptic regularity theory, it can be proved that every solution of (2.2) is smooth.

Assumptions on the potential and on the boundary datum. Denote, as usual, by Sd−1 the unit sphere
of Rd, and by dist(v, N) the distance between a point v ∈ Rd and a set N . We assume that f : Rd → R is a
smooth function (at least of class C2, 1), satisfying the following conditions:

(H1) The function f is non-negative, the set N := f−1(0) is non- empty, and N is a smooth, compact and
connected submanifold of Rd, without boundary. We assume that N is contained in the closed unit ball
of Rd.

(H2) There exist some positive constants δ0 < 1, m0 such that, for all v ∈ N and all normal vector ν ∈ Rd to
N at the point v,

Df(v + tν) · ν ≥ m0t, if 0 ≤ t ≤ δ0.

(H3) For all v ∈ Rd with |v| > 1, we have

f(v) > f

(
v

|v|
)

.

The set N will be referred as the vacuum manifold. Concerning the boundary datum, we assume

(H4) g : ∂Ω → Rd is a smooth function, and g(x) ∈ N for all x ∈ ∂Ω.

For technical reasons, we impose a restriction on the homotopic structure of N . A word of clarification: by
conjugacy class in a group G, we mean any set of the form {axa−1 : a ∈ G}, for x ∈ G.

(H5) Every conjugacy class in the fundamental group of N is finite.

Remark 2.1. The Assumption H2 holds true if, at every point v ∈ N , the Hessian matrix D2f(v) restricted
to the normal space of N at v is positive definite. Hence, H2 may be interpreted as a non-degeneracy condition
for f , in the normal directions.

We can provide a sufficient condition, in terms of the derivative of f , for H3 as well: namely,

v · Df(v) > 0 for |v| > 1

(indeed, this implies that the derivative of t ∈ [1, +∞) �→ f(tv) is positive). Hypothesis H3 is exploited uniquely
in the proof of the L∞ bound for the minimizer uε.

Assumption H5 is trivially satisfied if the fundamental group π1(N ) is abelian or finite. This covers many
cases, arising from other models in condensed matter physic: Besides rod-shaped molecules in nematic phase,
we mention planar spins (N 
 S1) and ordinary spins (N 
 S2), biaxial molecules in nematic phase (N 

SU(2)/H , where H is the quaternion group), superfluid He-3, both in dipole-free and dipole-locked phases
(N 
 (SU(2) × SU(2))/H and N 
 RP3, respectively).

The Landau−de Gennes model. In this model, the configuration parameter belongs to the set S0 of matrices,
given by

S0 :=
{
Q ∈ M3(R) : QT = Q, tr Q = 0

}
.

This is a real linear space, whose dimension, due to the symmetry and tracelessness constraints, is readily seen
to be five. The tensor contraction Q : P =

∑
i,j QijPij defines a scalar product on S0, and the corresponding

norm will be denoted | · |. Clearly S0 can be identified, up to an equivalent norm, with the Euclidean space R5.
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The bulk potential is given by

f(Q) := k − a

2
trQ2 − b

3
trQ3 +

c

4
(
tr Q2

)2
for all Q ∈ S0, (2.3)

where a, b, c are positive parameters and k is a properly chosen constant, such that inf f = 0. (We have set
a := −α(T −T∗) in formula (1.3)). It is clear that the minimization problem (2.1) does not depend on the value
of k. This model is considered in detail, for instance, in [24], where Ω is assumed to be a bounded domain of R3.

In the Euler−Lagrange equation for this model, Df has to be intended as the intrinsic gradient with respect
to S0. Since the latter is a proper subspace of the 3× 3 real matrices, Df contains an extra term, which acts as
a Lagrange multiplier associated with the tracelessness constraint. Therefore, denoting by Qε any minimizer,
equation (2.2) reads

−ε2ΔQε − aQε − b

{
Q2

ε −
1
3
(tr Q2

ε) Id
}

+ cQε tr Q2
ε = 0, (2.4)

where 1
3b tr Q2

ε Id is the Lagrange multiplier. We will show in Subsection 3.1 that this problem fulfills H1–H5,
and thus can be recovered in the general setting.

2.1. Energy cost of a defect

By the theory of continuous media, it is well known (see [25]) that topological defects of codimension two are
associated with homotopy classes of loops in the vacuum manifold N . Now, following an idea of [10], we are
going to associate to each homotopy class a non negative number, representing the energy cost of the defect.

Let Γ (N ) be the set of free homotopy classes of loops S1 → N , that is, the set of the path-connected
components of C0(S1, N ) – here, “free” means that no condition on the base point is imposed. As is well-
known, for a fixed base point v0 ∈ N there exists a one-to-one and onto correspondence between Γ (N ) and
the conjugacy classes of the fundamental group π1(N , v0). As the latter might not be abelian, the set Γ (N )
is not a group, in general. Nevertheless, the composition of paths (denoted by ∗) induces a map

Γ (N ) × Γ (N ) → P (Γ (N )) , (α, β) �→ α · β (2.5)

in the following way: for each v ∈ N , fix a path cv connecting v0 to v. Then, for α, β ∈ Γ (N ) define

α · β :=
{
homotopy class of the loop ((cf(1) ∗ f) ∗ c̃f(1)) ∗ ((cg(1) ∗ g) ∗ c̃g(1)) : f ∈ α, g ∈ β

}
,

where c̃f(1), c̃g(1) are the reverse paths of cf(1), cg(1) respectively. If we regard α, β as conjugacy classes
in π1(N , v0), we might check that

α · β = {conjugacy class of ab : a ∈ α, b ∈ β}

(in particular, we see that α · β does not depend on the choice of (cv)v∈N ). As α, β are finite, due to H5, the
set α ∗ β is finite as well.

The set Γ (N ), equipped with this product, enjoys some algebraic properties, which descend from the group
structure of π1(N , v0). The resulting structure is referred to as the polygroup of conjugacy classes of π1(N , v0),
and was first recognized by Campaigne (see [8]) and Dietzman (see [11]). We remark that, even if π1(N , b) is
not abelian, we have α · β = β · α for all α, β ∈ Γ (N ). This follows from ab = a(ba)a−1, which holds true for
all a, b ∈ π1(N , v0).

The geometric meaning of the map (2.5) is captured by the following proposition. By convention, let us
set
∏1

i=1 γi := {γ1}.
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Figure 2. The geometry of D′ in Lemma 2.2.

Lemma 2.2. Let D be a smooth, bounded domain in R2, whose boundary has k ≥ 2 connected components,
labeled C1, . . . , Ck. For all i = 1, . . . , k, let gi : Ci → N be a smooth boundary datum, whose free homotopy
class is denoted by γi. If the condition

h∏
i=1

γi ∩
k∏

i=h+1

γi �= ∅ (2.6)

holds for some index h, then there exists a smooth function g : D → N , which agrees with gi on every Ci.
Conversely, if such an extension exists then the condition (2.6) holds for all h ∈ {1, . . . , k}.

Proof. Throughout the proof, given a path c we will denote the reverse path by c̃.
Assume that (2.6) holds. We claim that the boundary data can be extended continuously on D. It is convenient

to work out the construction in the subdomain

D′ := {x ∈ D : dist(x, D) > δ} ,

where δ > 0 is small, so that D and D′ have the same homotopy type. Up to a diffeomorphism, we can suppose
that D′ is a disk with k holes, and C1 is the exterior boundary. It is equally fair to assume that there exists a
path B, homeomorphic to a circle, which splits D′ into two regions, D1 and D2, with

∂D1 = B ∪
h⋃

i=1

Ci, ∂D2 = B ∪
k⋃

i=h+1

Ci.

This configuration is illustrated in Figure 2. Let b : B → N be a loop whose free homotopy class belongs to∏h
i=1 γi ∩

∏k
i=h+1 γi.

We wish, at first, to extend the boundary data to a continuous function defined on D1. Let c1, . . . , ch be
mutually non intersecting paths [0, 1] → D1, connecting a fixed base point x0 ∈ D1 with C1, . . . , Ch respectively,
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and let Σ denote the union of C1, . . . , Ch and the images of c1, . . . , ch. The set Σ can be parametrized by the
loop

α := ((c1 ∗ α1) ∗ c̃1) ∗ ((c2 ∗ α2) ∗ c̃2) ∗ · · · ∗ ((ch ∗ αh) ∗ c̃h) ,

where αi : [0, 1] → Ci is a parametrization of Ci proportional to arc length.
Next, we “push forward” α to a loop in N . Since b ∈ ∏h

i=1 γi, there exists a loop σ, freely homotopic to b,
which can be written as

σ := ((σ1 ∗ g′1) ∗ σ̃1) ∗ ((σ2 ∗ g′2) ∗ σ̃2) ∗ · · · ∗ ((σh ∗ g′h) ∗ σ̃h) ,

where g′i ∈ γi and σi is a path in N connecting a fixed base point v0 ∈ N with g′i(1), for each i ∈ {1, 2, . . . , h}.
We can regard σ as a map Σ → N : more precisely, we can set t ∈ [0, 1] �→ σ(α−1(t)) and check that this mapping
is well-defined. By construction, there exists a homotopy between b and σ, which provides a continuous extension
of the boundary data g′1, . . . , g′h, b to a mapping v1 : D1 → N .

We perform the same construction on the subdomain D2, obtaining a continuous function v2. Pasting v1

and v2 we get a continuous map v′ : D
′ → N , whose trace on each Ci is homotopic to gi. As D \ D′ is just

a small neighborhood of ∂D, it is not difficult to extend v′ to a continuous function v : D → N , such that
v|Ci

= gi for all i. Smoothness can be recovered, for instance, via a standard approximation argument.
Conversely, assume that an extension g exists, and let B, D1, D2, Σ be as before, for h arbitrary. Then, g|D1

provides a free homotopy between g|B and g|Σ , so the homotopy class of g|B belongs to
∏h

i=1 γi. Similarly, the
class of g|B belongs to

∏k
i=h+1 γi, and hence the condition 2.6 holds. �

For each γ ∈ Γ (N ), we define its length as

λ(γ) := inf

{(
2π

∫
S1
|c′(θ)|2 dθ

)1/2

: c ∈ γ ∩ H1(S1, N )

}
. (2.7)

First, the set γ ∩ H1(S1, N ) is not empty since the embedding H1(S1, N ) ↪→ C0(S1, N ) is compact and
dense. Then, notice the infimum in (2.7) is achieved, and all the minimizers c are geodesics. Thus, |c′| is constant,
and λ(γ) = 2π |c′| coincides with the length of a minimizing geodesic.

In the definition of the energy cost of a defect, it is convenient take into account the product we have endowed
Γ (N ) with. For each γ ∈ Γ (N ) we set

λ∗(γ) := inf

{
1
4π

k∑
i=1

λ(γi)2 : k ∈ N, γi ∈ Γ (N ), γ ∈
k∏

i=1

γi

}
, (2.8)

where the order of the product is not relevant. It is worth pointing out that the infimum in (2.8) is, in fact, a
minimum. Indeed, since N is compact manifold, its fundamental group is finitely generated; on the other hand,
γ contains only a finite number of elements of π1(N , v0), by H5. As a result, we see that the infimum in (2.8)
is computed over finitely many k-uples (γ1, . . . , γk).

Roughly speaking, the number λ∗(γ) can be regarded as the energy cost of the defect γ. For example, when
N = S1 we have Γ (S1) 
 π1(S1) 
 Z, that is, the homotopy classes in Γ (S1) are completely determined by their
degree d ∈ Z. Besides, λ(d) = 2π |d| and λ∗(d) = π |d|, the infimum in (2.8) being reached by the decomposition

γ1 = γ2 = · · · = γ|d| = sign d = ±1.

Hence, in this case decomposing the defect is energetically favorable. This is related to the quantization of
singularities in the Ginzburg−Landau model (see [6]).

By definition, λ∗ enjoys the useful property

λ∗(γ) ≤
k∑

i=1

λ∗(γi) if γ ∈
k∏

i=1

γi with γi ∈ Γ (N ). (2.9)
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We conclude this subsection by coming back to our main problem (2.1), and fixing some notation that will
be used throughout this work.

Definition 2.3. A continuous function g : ∂Ω → N will be called homotopically trivial if and only if it can be
extended to a continuous function Ω → N .

In case Ω is a simply connected domain, thus homeomorphic to a disk, being homotopically trivial is equivalent
to being null-homotopic, that is, being homotopic to a constant. By contrast, these notions do not coincide
any longer for a general domain. For instance, suppose that Ω is an annulus, bounded by two circles C1

and C2, and that g1, g2 are smooth data, defined on C1, C2 respectively and taking values in N . If g1, g2

are in the same homotopy class, then the boundary datum is homotopically trivial in the sense of the previous
definition, although each gi, considered in itself, might not be null-homotopic. We will provide a characterization
of homotopically trivial boundary data, for general domains, with the help of the tools we have described in
this section.

Label the connected components of ∂Ω as C1, . . . , Ck, and denote by γi, for i ∈ {1, . . . , k}, the free homotopy
class of the boundary datum g restricted to Ci. Define

κ∗ := inf

{
λ∗(γ) : γ ∈

k∏
i=0

γi

}
,

where λ∗ has been introduced in (2.8). By definition of λ∗, we have

κ∗ = inf

⎧⎨⎩ 1
4π

m∑
j=1

λ(ηj)2 : m ∈ N, ηj ∈ Γ (N ),
m∏

j=1

ηj ∩
k∏

i=1

γi �= ∅
⎫⎬⎭ . (2.10)

In both formulae, the infima are taken over finite sets, and hence are minima.
As a straightforward consequence of Lemma 2.2, we obtain the following result, characterizing trivial boundary

data. The proof is left to the reader.

Corollary 2.4. Let D ⊆ R2 be a smooth, bounded domain, and let gi, γi be as in Lemma 2.2. Then, the
following conditions are equivalent:

(i) the boundary datum (gi)k
i=1 is homotopically trivial;

(ii) denoting by ε the free homotopy class of any constant map in N , we have

ε ∈
k∏

i=1

γi ;

(iii) κ∗ = 0.

2.2. The nearest point projection onto a manifold

In this subsection, we discuss briefly a geometric tool which will be exploited in our analysis: the nearest
point projection on a manifold.

Let N be a compact, smooth submanifold of Rd, of dimension n and codimension k (that is, d = n+k). It is
well known (see, for instance, [27], Chap. 3, p. 57) that there exists a neighborhood U of N with the following
property: for all v ∈ U , there exists a unique point π(v) ∈ N such that

|v − π(v)| = dist(v, N ). (2.11)

The mapping v ∈ U �→ π(v), called the nearest point projection onto N , is smooth, provided that U is small
enough. Moreover, v−π(v) is a normal vector to N at each point v ∈ N (all this facts are proved, e.g., in [27]).

Throughout this work, we will assume that π is well-defined and smooth on the δ0-neighborhood of N , where
δ0 is introduced in H2.
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Remark 2.5. With the help of π, we can easily derive from H2 some useful properties of f and its derivatives.
Let v ∈ Rd be such that dist(v, N ) ≤ δ0. Then,

m0 dist(u, N ) ≤ Df(u) · (u − π(u)) ≤ M0 dist(u, N ).

Indeed, the lower bound is given by H2, whereas the upper bound is obtained by a Taylor expansion of Df
around the point π(u) (remind that Df(π(u)) = 0 because f is minimized on N ). As N is compact, the
constant M0 can be chosen independently of v. Via the fundamental theorem of calculus, we infer also

1
2
m0 dist2(u, N ) ≤ f(u) =

∫ 1

0

Df (π(u) + t(u − π(u))) · (u − π(u)) dt ≤ 1
2
M0 dist2(u, N ).

The following lemma establishes a gradient estimate for the projection of mappings.

Lemma 2.6. Let u ∈ C1(Ω, Rd) be such that dist(u(x), N ) ≤ δ0 for all x ∈ Ω, and define

σ(x) := dist(u(x), N ), v(x) := π(u(x))

for all x ∈ Ω. Then, the estimates

(1 − Mσ) |∇v|2 ≤ |∇u|2 ≤ (1 + Mσ) |∇v|2 + |∇σ|2 (2.12)

hold, for a constant M depending only on N , k.

Proof. Fix a point x ∈ Ω. Let ν1, ν2, . . . , νk be a moving orthonormal frame for the normal space to N , defined
on a neighborhood of v(x). (Even if N is not orientable, such a frame is locally well-defined). Then, for all y in
a neighborhood of x, there exist some numbers α1(y), α2(y), . . . , αk(y) such that

u(y) = v(y) +
k∑

i=1

αi(y)νi(v(y)). (2.13)

The functions v, αi are as regular as u. Differentiating the equation (2.13), and raising to the square each side
of the equality, we obtain

|∇u|2 − |∇v|2 =
k∑

i=1

{
α2

i |∇νi(v)|2 + |∇αi|2

+ 2αi∇v : ∇νi(v) + 2∇v : (νi(v) ⊗∇αi) + 2αi∇νi(v) : (νi(v) ⊗∇αi)
}
. (2.14)

The fourth term in the right-hand side vanishes, because ∇v is tangent to N . The last term vanishes as well
since, differentiating νi = 1, we have (∇νi)νi = 0. For the first term of the right-hand side, we set

M := 1 + sup
1≤i≤k

‖∇νi‖2
L∞

and we remark that
k∑

i=1

α2
i |∇νi(v)|2 ≤ M

k∑
i=1

α2
i |∇v|2 = Mσ2 |∇v|2 .

By the Cauchy−Schwarz inequality and
∑k

i=1 αi ≤ Ck

(∑k
i=1 α2

i

)1/2

, we can write∣∣∣∣∣
k∑

i=1

αi∇v : ∇νi(v)

∣∣∣∣∣ ≤ M

k∑
i=1

αi |∇v|2 ≤ Mσ |∇v|2 , (2.15)
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up to modifying the value of M in order to absorb the factor Ck. Furthermore, since σ ≤ δ0 < 1, from (2.14)
and (2.15) we infer

(1 − Mσ) |∇v|2 +
k∑

i=1

|∇αi|2 ≤ |∇u|2 ≤ (1 + Mσ) |∇v|2 +
k∑

i=1

|∇αi|2 . (2.16)

The lower bound in (2.12) follows immediately, and we only need to estimate the derivatives of αi to conclude.
It follows from (2.13) that αi = (u− v) · νi(v). Differentiating and raising to the square this identity, and taking
into account that (∇νi)νi = 0, we deduce

k∑
i=1

|∇αi|2 =
k∑

i=1

{
|∇(u − v) · νi(v)|2 + |(u − v) · ∇νi(v)|2

}
.

Then
k∑

i=1

|∇αi|2 ≤ M
{
|∇(u − v)|2 + σ2 |∇v|2

}
. (2.17)

Computing the gradient of σ = |u − v| by the chain rule yields |∇σ| = |∇(u − v)|. Therefore, the estimates (2.15)
and (2.17) imply the upper bound in (2.12).

Notice that our choice of the constant M depends on the neighborhood where the frame (νi)1≤i≤k is defined.
However, since N is compact, we can find a constant for which the inequality (2.12) holds globally. �

3. Biaxiality phenomena in the Landau−de Gennes model

We focus here on the Landau−de Gennes model (2.1) and (2.3). To stress that this discussion pertains to
a specific case, throughout the section we use Q instead of u to denote the unknown. In constrast, the other
notations – the symbols for the potential and the vacuum manifold, in particular – are still valid.

In this section, we aim to prove Theorem 1.1. This can be achieved independently of the asymptotic analysis:
we need only to recall a well-known property of minimizers.

Property 3.1. Any minimizer Qε for problem (2.1) and (2.3) is of class C∞ and fulfills

‖Qε‖L∞(Ω) ≤
√

2
3
s∗,

where s∗ is the constant defined in (3.4).

The proof will be given further on (see Lem. 4.1).

3.1. Useful properties of Q-tensors

Our first goal is to show that the Landau−de Gennes model satisfies H1–H5, so that it fits to our general
setting. In doing so, we recall some classical, useful facts about Q-tensors. Let us start by the following well-
known definition: we set

β(Q) := 1 − 6

(
trQ3

)2
(trQ2)3

for Q ∈ S0 \ {0}.

This defines a smooth, homogeneous function β, which will be termed the biaxiality parameter. It could be
proved that 0 ≤ β ≤ 1 (see, for instance, [24], Lem. 1 and Appendix and the references therein).

Definition 3.2. Let Q : Ω → S0 be a continuous function. We say that Q is maximally biaxial if and only if

max
Ω

β(Q) = 1.



BIAXIALITY IN A 2D LANDAU−DE GENNES MODEL 113

Another classical fact about Q-tensors is the following representation formula, which turns out to be useful
in several occasions.

Lemma 3.3. For all fixed Q ∈ S0 \ {0}, there exist two numbers s ∈ (0, +∞), r ∈ [0, 1] and an orthonormal
pair of vectors (n, m) in R3 such that

Q = s

{
n⊗2 − 1

3
Id +r

(
m⊗2 − 1

3
Id
)}

. (3.1)

Furthermore, labeling the eigenvalues of Q as λ1 ≥ λ2 ≥ λ3, if (s, r, n, m) satisfies the conditions above then

s = 2λ1 + λ2, r =
λ1 + 2λ2

2λ1 + λ2
, (3.2)

and n, m are eigenvectors associated to λ1, λ2, respectively.

Sketch of the proof. Let (s, r, n, m) be a set of parameters with the desired properties, and denote by p the
vector product of n and m, so that (n, m, p) is a positive orthonormal basis of R3. Exploiting the identity
Id = n⊗2 + m⊗2 + p⊗2, we can rewrite (3.1) as

Q =
s

3
(2 − r)n⊗2 +

s

3
(r − 1)m⊗2 − s

3
(1 + r)p⊗2.

The constraints s ≥ 0, 0 ≤ r ≤ 1 entail
s

3
(2 − r) ≥ s

3
(r − 1) ≥ −s

3
(1 + r).

We conclude that
λ1 =

s

3
(2 − r), λ2 =

s

3
(r − 1), λ3 = −s

3
(1 + r),

and that n, m, p are eigenvectors associated to λ1, λ2, λ3 respectively. The identities (3.2) follow by straight-
forward computations. Conversely, it is easily checked that the parameters defined by (3.2) satisfy (3.1). �
Remark 3.4. The limiting cases r = 0 and r = 1 correspond, respectively, to λ1 = λ2 and λ2 = λ3. In the
literature, these cases are sometimes referred to as prolate and oblate uniaxiality, respectively. The modulus
and the biaxiality parameter of Q can be expressed in terms of s, r as follows (compare, for instance, [24],
Eq. (187)):

|Q|2 =
2
3
s2
(
r2 − r + 1

)
, β(Q) =

27r2 (1 − r)2

4 (r2 − r + 1)3
·

In particular, one has

s(Q) ≥
√

3
2
|Q| . (3.3)

Also, remark that Q is maximally biaxial if and only if there exists a point x ∈ Ω such that r(Q(x)) = 1/2.

With the help of (3.1), the set of minimizers of the potential f can be described as follows.

Proposition 3.5. Let f be given by (2.3), and set

s∗ :=
1
4c

{
b +
√

b2 + 24ac
}

. (3.4)

Then, the minimizers for f are exactly the matrices which can be expressed as

Q = s∗

(
n⊗2 − 1

3
Id
)

for some unit vector n ∈ R3.

The set of minimizers is a smooth submanifold of S0, homeomorphic to the projective plane RP2, contained in
the sphere

{
Q ∈ S0 : |Q| = s∗

√
2/3
}
. In addition, β(Q) = 0 if Q is a minimizer for f .
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The reader is referred to [24], Propositions 9 and 15 for the proof. Here, we mention only that a diffeomorphism
RP2 → N can be constructed by considering the map

φ : n ∈ S2 �→ s∗

(
n⊗2 − 1

3
Id
)

(3.5)

and quotienting it out by the universal covering S2 → RP2, which is possible because φ(n) = φ(−n). Remark
also that, for all n ∈ S2 and all tangent vector v ∈ TnS2, we have

〈dφ(n), v〉 = s∗ (n ⊗ v + v ⊗ n) , (3.6)

as it is readily seen differentiating the function t �→ φ(n + tv).
It is well-known that the fundamental group of the real projective plane consists of two elements only.

Therefore, Γ (RP2) 
 π1(RP2) 
 Z/2Z, and H5 is trivially satisfied. Hypothesis H1 is fulfilled as well, up to
rescaling the norm in the parameter space, so that the vacuum manifold is contained in the unit sphere. Let us
perform such a scaling: we associate to each map Q ∈ H1(Ω, S0) a rescaled function Q∗, by

Q(x) =

√
2
3
s∗Q∗(x) for all x ∈ Ω.

It is easily computed that

Eε(Q) =
2s2

∗
3

∫
Ω

{
1
2
|∇Q∗|2 +

1
ε2

f∗(Q∗)
}

,

where f∗ is given by

f∗(Q∗) :=
3

2s2∗
f

(√
2
3
s∗Q∗

)
= −a∗

2
trQ2

∗ −
b∗

3
tr Q3

∗ +
c∗

4
(
tr Q2

∗
)2

(3.7)

and

a∗ := a, b∗ :=

√
2
3
s∗b, c∗ :=

2
3
s2
∗c.

Notice that f∗ is minimized by s =
√

3/2, r = 0. Thus, we can assume that the vacuum manifold is contained
in the unit sphere of S0, up to substituting f∗ for f in the minimization problem (2.1).

Lemma 3.6. The potential f∗ defined by (3.7) fulfills H1–H3.

Proof. We know by Proposition 3.5 that H1 is satisfied. We compute the gradient of f∗:

Df∗(Q) = −a∗Q − b∗Q2 − 1
3
b∗(tr Q2) Id +c∗Q trQ2,

where the term −b∗(tr Q2) Id /3 is a Lagrange multiplier, accounting for the tracelessness constant in the defini-
tion of S0. With the help of Remark 2.1, we show that H3 is fulfilled as well. Indeed, one cas use the inequality√

6 tr Q3 ≤ |Q|3 to derive

Df∗(Q) : Q = −a∗ |Q|2 − b∗ trQ3 + c∗ |Q|4 ≥ −a |Q|2 − s∗b
3

|Q|3 +
2s2∗c

3
|Q|4 .

It is readily seen that the right-hand side is positive, for |Q|2 > 1.
Finally, let us check the condition H2. For a fixed Q ∈ N , there exists n ∈ S2 such that Q = φ(n), where φ

is the smooth mapping defined by (3.5). Up to rotating the coordinate frame, we can assume without loss of
generality that n = e3. By formula (3.6), we see that the vectors

Xk =

√
3
2
(ek ⊗ e3 + e3 ⊗ ek), k ∈ {1, 2}
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form a basis for the the tangent plane to N at the point Q. As a consequence, P ∈ S0 is a normal vector to
N at Q if and only if P : X1 = P : X2 = 0 or, equivalently, iff it has the form

P =

⎡⎣p1 p2 0
p2 p3 0
0 0 −p1 − p3

⎤⎦ . (3.8)

It is easily checked that PQ = QP . Now, we compute

Df∗(Q + tP ) : P = −a∗(Q + tP ) : P − b∗(Q + tP )2 : P + c∗ tr(Q + tP )2(Q + tP ) : P

= t
{
−a∗ |P |2 − 2b∗(PQ) : P + 2c∗(tr PQ)2 + c∗ |P |2

}
+ O(t2)

(we have used that Df∗(Q) = 0 and that Q : P = tr PQ). By (3.8), we have

(PQ) : P =
1
3

√
3
2
{
2(p1 + p3)2 − p2

1 − p2
3 − 2p2

2

} ≤ 1
2

√
3
2
(p1 + p3)2, tr PQ = −

√
3
2
(p1 + p3)

and hence

Df∗(Q + tP ) : P ≥ t (−a∗ + c∗) |P |2 + t

(
3c∗ −

√
3
2
b∗
)

(p1 + p3)2 + O(t2).

The coefficients in the right-hand side are readily shown to be non negative: more precisely,

−a∗ + c∗ =
1

12c

{
b2 + b

√
b2 + 24ac

}
> 0, 3c∗ −

√
3
2
b∗ =

1
2
s∗
{√

b2 + 24ac − b
}
≥ 0.

Thus, we have proved that ∂2
P f(Q) ≥ −a∗ + c∗ > 0. �

Finally, let us point out a metric property of N . We know that the parameter κ∗, defined by (2.10), can
take a unique positive value, corresponding to a geodesic loop in N which generates π1(N ). Since we aim to
calculate it, we need to characterize the geodesic of N . Some help is provided by the mapping φ that we have
introduced in (3.5).

Lemma 3.7. For all n ∈ S2 and all tangent vector v ∈ TnS2, it holds that

|〈dφ(n), v〉| =
√

2s∗ |v| , (3.9)

that is, the differential of φ is a homothety at every point. In addition, the geodesics of N are exactly the images
via φ of the geodesics of S2, that is, great circles parametrized proportionally to arc length.

Proof. It follows plainly from (3.6) that

|〈dφ(n), v〉|2 = 2s2
∗
∑
i, j

(nivjnivj + nivjvinj) .

As v is tangent to the sphere at the point n, we have v · n = 0, so the second term in the summation vanishes,
and we recover (3.9).

Denote by g, h the first fundamental forms on S2, N respectively (that is, the metrics these manifolds inherit
from being embedded in an Euclidean space). In terms of pull-back metrics, equation (3.9) reads

φ∗h = 2s2
∗g

and, since the scaling factor 2s2
∗ is constant, the Levi-Civita connections associated with φ∗h and g coincide:

this can be argued, for instance, from the standard expression for Christoffel symbols

Γ i
jk =

1
2
gil

(
∂glj

∂xk
+

∂glk

∂xj
− ∂gjk

∂xl

)
·

As a consequence, we derive the characterization of geodesics in N . �
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Proving the following result is not difficult, once we know what the geodesics in N are. The proof is left to
the reader.

Corollary 3.8. The curve

c∗ : θ ∈ [0, 2π] �→
√

3
2

(
n0(θ)⊗2 − 1

3
Id
)

, (3.10)

where n0(θ) = [cos(θ/2), sin(θ/2), 0]T , minimizes the functional

c ∈ H1(S1, N ) �→ 1
2

∫ 2π

0

|c′(θ)|2 dθ

among the non-homotopically trivial loops in N . In particular,

κ∗ =
3
4
π.

3.2. Energy estimates for a non maximally biaxial map

In this subsection, we aim to establish a lower estimate for the energy of configurations Q such that β(Q) < 1
everywhere. As a first step, we examine the potential f∗, and we provide the following result, which improves
slightly ([24], Prop. 9).

Lemma 3.9. For all Q ∈ S0 with |Q| ≤ 1, the bulk potential is bounded by

f∗(Q) ≥ μ1 (1 − |Q|)2 + σβ(Q) |Q|3 (3.11)

and
f∗(Q) ≤ μ2 (1 − |Q|)2 + 2σβ(Q) |Q|3 , (3.12)

where σ = σ(a, b, c), μi = μi(a, b, c) for i ∈ {1, 2} are explicitly computable positive constants. Moreover,
setting t := ac/b2 we have

σ

a
(t) = O(t−1/2) and

μ1

a
(t) = O(1) as t → +∞. (3.13)

Proof. Set X := 1 − |Q| and Y := s∗
√

2/3 − |Q|, for simplicity. We focus, at first, on the lower bound. The
non-rescaled bulk potential f satisfies the inequality

f(Q) ≥ Y 2

{
a

2
+

s2
∗c
3

+

(
b

3
√

6
− c

√
2
3
s∗

)
Y +

c

4
Y 2

}
+

b

6
√

6
β(Q) |Q|3 , (3.14)

which is a byproduct of the proof of Proposition 9 from [24]. Thus, f∗ fulfills

f∗(Q) ≥ X2

{
a

2
+

s2
∗c
3

+
(

bs∗
9

− 2s2
∗c
3

)
X +

s2
∗c
6

X2

}
+

bs∗
18

β(Q) |Q|3

We set σ := bs∗/18. Now, we pay attention to the terms in brace: our goal is to minimize the mapping

φ : X ∈ [0, 1] �→ A + BX + CX2,

where we have set

A =
a

2
+

s2
∗c
3

, B =
bs∗
9

− 2s2
∗c
3

, C =
s2
∗c
6

,
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in order to recover the lower estimate (3.11) with μ1 := min[0, 1] φ. It can be easily computed that φ attains its
global minimum on R at the point

− B

2C
= 2 − b

3s∗c
= 2 − 4

3
√

1 + 24t + 3
,

and that μ1 ≥ φ(−B/2C) > 0, for all the possible values of a, b, c. We have proved the lower bound for f∗.
We can argue analogously to bound f∗ from above. We consider the proof of Proposition 9 from [24], and

use the inequality

trQ3 = ± |Q|3
√

1 − β(Q)
6

≤ |Q|3√
6

(1 − β(Q))

in equations (133) and (134). With the same calculations as in (135)–(138), we obtain

f(Q) ≤ Y 2

{
a

2
+

cs2
∗

3
+

(
b

3
√

6
− c

√
2
3
s∗

)
Y +

c

4
Y 2

}
+

b

3
√

6
β(Q) |Q|3 ,

in place of the inequality (3.14). Thus, we can establish the upper estimate (3.12), with μ2 := max[0, 1] φ.
Now, we investigate the behavior of μ1 and σ as t = ac/b2 → +∞. When t is large enough, −B/2C > 1 and

μ1 = φ(1) = A + B + C,

where the last expression can be explicitly calculated through simple algebra:

μ1 =
a

2
− s2

∗c
6

+
s∗b
9

=
36ac + b

√
b2 + 24ac + b2

144c
= a

36t +
√

1 + 24t + 1
144t

·

On the other hand,

σ =
s∗b
18

=
b2 + b

√
b2 + 24ac

72c
= a

1 +
√

1 + 24t

72t
,

and we conclude (3.13). �

We see from the estimates (3.11) and (3.12) that μ1, μ2 and σ can be understood as parameters governing
the energy cost of uniaxiality and biaxiality, respectively. Furthermore, (3.13) suggests that biaxial solutions
are energetically favorable when t is large, that is, when b is small, compared to ac.

Remark 3.10. In the limiting case b = 0, we can write f as a function of |Q| only:

f(Q) = k − a

2
|Q|2 +

c

4
|Q|4 .

The associated vacuum manifold is the unit sphere of S0, which we still denote by S4. Since the latter is simply
connected, the set H1

g (Ω, S4) is non empty for every choice of boundary datum. Thus, in the limit as ε → 0 the
solutions of Problem (2.1) are the harmonic maps Ω → S4.

The following lemma shows that a map which is not maximally biaxial must have an isotropy point. This
fact, based on topological properties only, will be crucial for estimating the energy from below.

Lemma 3.11. If Q ∈ C1(Ω, S0) is not maximally biaxial, satisfies Q|∂Ω = g, and the boundary datum g is
not homotopically trivial, then minΩ |Q| = 0.
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Proof. We argue by contradiction, and assume that s0 :=
√

3/2minΩ |Q| > 0. In view of Remark 3.4, the fact
that Q is not maximally biaxial implies that r(Q(x)) �= 1/2 for all x ∈ Ω. Since the image of g lies in the
vacuum manifold, by a connectedness argument we conclude that r0 := maxΩ r(Q) < 1/2. By (3.3), the image
of Q is contained in the set

N0 := {P ∈ S0 : s(P ) ≥ s0, r(P ) ≤ r0 < 1/2} .

In particular, the boundary datum g is homotopically trivial in N0.
We claim that N0 retracts by deformation on the vacuum manifold N . This entails the conclusion of the

proof: composing Q with the retraction yields a continuous extension of g to a map Ω → N , which contradicts
the nontriviality of g.

To construct a retraction, we exploit the representation formula of Lemma 3.3, and define the functions
K, H : N0 × [0, 1] → N0 by

K(P, t) := n⊗2 − 1
3

Id +rt

(
m⊗2 − 1

3
Id
)

, H(P, t) :=
{
ts + (1 − t)

√
3/2
}

K(P, t).

By the formulae (3.2) and the continuity of the eigenvalues as functions of P , the mapping P �→ (s(P ), r(P ))
is well-defined and continuous on N0. As a consequence, H is well-defined and continuous, if K is. In addition,
H enjoys these properties: for all P ∈ N0, we have H(P, 1) = P and H(P, 0) ∈ N , whereas H(P, t) = P for
all (P, t) ∈ N × [0, 1]. It only remains to check that K is well-defined and continuous.

Remark that each P ∈ N0 has the leading eigenvalue of multiplicity one; in particular, n = n(P ) is uniquely
determined, up to a sign, and n⊗2 is well-defined. In case r = r(P ) �= 0, the second eigenvalue is simple as well,
and the same remark applies to m. If r(P ) = 0 then K(P, t) is equally well-defined, regardless of the choice of
m.

We argue somehow similarly for the continuity. If {(Pk, tk)}k∈N
is a sequence in N0 × [0, 1] converging to a

fixed (P, t), then

|K(Pk, tk) − K(P, t)| ≤ ∣∣n⊗2(Pk) − n⊗2(P )
∣∣+ |tk − t| r(Pk)

∣∣∣∣m⊗2(Pk) − 1
3

Id
∣∣∣∣

+ t
∣∣r(Pk)m⊗2(Pk) − r(P )m⊗2(P )

∣∣+ t |r(Pk) − r(P )| .

As the leading eigenvalue of P ∈ N0 is simple, standard results about the continuity of eigenvectors (see, for
instance, [29], Property 5.5, p. 190) imply n⊗2(Pk) → n⊗2(P ). If r(P ) = 0, this is enough to conclude, since

|K(Pk, tk) − K(P, t)| ≤ tr(Pk)
∣∣m⊗2(Pk)

∣∣+ o(1) → tr(Q) = 0

as k → +∞. On the other hand, if r(P ) �= 0, then all the eigenvalues of P are simple, and hence m⊗2(Pk) →
m⊗2(P ).

Therefore, we can conclude that K is continuous and N0 retracts by deformation on N . �

The following proposition is the key element in the proof of Theorem 1.1. It is adapted from [10], with minor
changes. We report here the proof, for the reader’s convenience.

Proposition 3.12. Assume that a minimizer Qε of problem (2.1) satisfies

min
Ω

|Qε| = 0. (3.15)

Then, it holds that
Eε(Qε) ≥ κ∗ |log ε| + κ∗

2
log μ1 − M1,

where M1 is a constant independent on ε, λ and μ1.



BIAXIALITY IN A 2D LANDAU−DE GENNES MODEL 119

Proof. For t > 0, set

Ωt := {x ∈ Ω : |Qε(x)| > t} , ωt := {x ∈ Ω : |Qε(x)| < t} , Γt := ∂Ωt \ ∂Ω = ∂ωt

Θ(t) :=
∫

Ωt

∣∣∣∣∇( Qε

|Qε|
)∣∣∣∣2 , ν(t) :=

∫
Γt

|∇ |Qε|| dH1.

Given a set K ⊂⊂ R2, let us define the radius of K as

rad(K) := inf

{
n∑

i=1

ri : K ⊆
n⋃

i=1

B(ai, ri)

}
.

Having set these notations, we are ready to face the proof. It is well-known that ∇Qε = 0 a.e. in {Qε = 0},
so we can write ∫

Ω

|∇Qε|2 =
∫
{|Qε|>0}

|∇Qε|2 = lim
t→0+

∫
Ωt

|∇Qε|2 ,

by the monotone convergence theorem. This implies∫
Ω

|∇Qε|2 = lim
t→0+

∫
Ωt

{
|∇ |Qε||2 + |Qε|2

∣∣∣∣∇( Qε

|Qε|
)∣∣∣∣2
}

and, applying the coarea formula, we deduce

Eε(Qε) =
1
2

∫ 1

0

{∫
Γt

(
|∇ |Qε|| + 2f∗(Qε)

ε2 |∇ |Qε||
)

dH1 − 2t2Θ′(t)
}

dt. (3.16)

There is no trouble in dividing by |∇ |Qε|| here. Indeed, combining (3.15) and the Sard lemma we see that for
a.e. t ∈ (0, 1) Γt is a non-empty, smooth curve in Ω, and that |∇ |Qε|| > 0 on Γt. Of course, this implies ν(t) > 0
for a.e. t as well.

Let us estimate the terms in the right-hand side of (3.16), starting from the second one. Taking advantage
of Lemma 3.9 and of the Hölder inequality, we obtain∫

Γt

2f∗(Qε)
ε2 |∇ |Qε|| ≥

2μ1(1 − t)2

ε2

∫
Γt

1
|∇ |Qε|| dH1 ≥ 2μ1(1 − t)2H1(Γt)2

ε2ν(t)
· (3.17)

Moreover, we have
H1(Γt) ≥ 2diam(Γt) ≥ 4rad(ωt) ;

to prove the latter inequality, remark that if x, y ∈ Γt are such that |x − y| = diam(Γt), then ωt is contained in
the ball B((x+ y)/2, |x − y| /2) and hence rad(ωt) ≤ diam(Γt)/2. Combining this result with (3.16) and (3.17),
we find

Eε(Qε) ≥ 1
2

∫ 1

0

{
ν(t) +

32μ1(1 − t)2rad(ωt)2

ε2ν(t)

}
dt −

∫ 1

0

t2Θ′(t) dt

≥
∫ 1

0

4
√

2
ε

μ
1/2
1 (1 − t) rad(ωt) dt −

∫ 1

0

t2Θ′(t) dt,

(3.18)

where we have applied the inequality A2 +B2 ≥ 2AB. Now, we pay attention to the last term, and we integrate
it by parts. For all η > 0, we have

−
∫ 1

η

t2Θ′(t) dt = 2
∫ 1

η

tΘ(t) dt + η2Θ(η) ≥
∫ 1

η

tΘ(t) dt
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and, in the limit as η → 0, by monotone convergence (Θ ≥ 0, −Θ′ ≥ 0) we conclude

−
∫ 1

0

t2Θ′(t) dt ≥ 2
∫ 1

0

tΘ(t) dt.

Consider the set Λ := {x ∈ : dist(Qε(x), N ) ≥ δ0}. On Ωt \ Λ, it is possible to apply the argument of Lem-
mas 4.13 and 4.14, which are based on Theorem 1 of [31], to estimate the energy of Qε/ |Qε| from below:

Θ(t) ≥ −κ∗ log (rad(ωt ∪ Λ)) − C (3.19)

By Proposition 1.2 the set Λ is contained in the union of at most N balls of radius λ0ε, with N and λ0 bounded
independently of ε, so rad(Λ) ≤ Nλ0ε. Moreover, since we have assumed that Qε vanishes at some point and
we know that ‖∇Qε‖L∞(Ω) ≤ Cε−1, we have

rad(ωt) ≥ t

C
ε ≥ t

NCλ0
rad(Λ),

so rad(ωt ∪ Λ) ≤ rad(ωt)(1 + Ct−1) and from (3.19) we obtain

Θ(t) ≥ −κ∗ log rad(ωt) − κ∗ log
(
1 + Ct−1

)− C, (3.20)

where C depends only on Ω and the boundary datum.
The equations (3.18) and (3.20) imply

Eε(Qε) ≥
∫ 1

0

{
4
√

2μ1

ε
(1 − t) rad(ωt) − 2κ∗t log rad(ωt)

}
dt − C.

Minimizing the function r ∈ (0, +∞) �→ 4
√

2μ1ε
−1(1 − t)r − 2κ∗t log r, we obtain the lower bound

Eε(Qε) ≥
∫ 1

0

{
2κ∗t + 2κ∗t log

εκ∗t
2
√

2μ1(1 − t)

}
dt − C,

which implies

Eε(Qε) ≥ −2κ∗
∫ 1

0

{
t log ε − t

2
log μ1 − t log

κ∗t
2
√

2(1 − t)

}
dt − C.

As t �→ t log κ∗t
2
√

2(1−t)
is integrable on [0, 1], we can conclude the proof. �

3.3. Proof of Theorem 1.1

We are now in position to prove our main theorem about biaxiality. For ε > 0 small enough, we will construct
a maximally biaxial function Pε ∈ H1(Ω, S0), which satisfies the estimate

Eε(Pε) ≤ κ∗ |log ε| + κ∗
2

log σ + M2 (3.21)

for a constant M2 independent of ε, a, b and c. We claim that the Theorem follows from (3.21). Indeed, assume
by contradiction that a minimizer Qε satisfy (3.15). In view of (3.13), we can find a number t0 > 0 such that

κ∗
2

log
μ1

a
(t) >

κ∗
2

log
σ

a
(t) + M1 + M2

holds, whenever t ≥ t0. This implies

κ∗
2

log μ1 − M1 >
κ∗
2

log σ + M2
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and, combining this inequality with Proposition 3.12 and (3.21), we obtain that

Eε(Pε) < Eε(Qε),

which is clearly a contradiction. Therefore, minimizers cannot fulfill the conditions (3.15) and, by applying
Lemma 3.11, they are maximally biaxial. Thus, Theorem 1.1 will be proved once the comparison function
in (3.21) is constructed.

At first, we will assume that the domain is a disk and the boundary datum of a special form. Next, we will
extend our construction to the general setting.

The case of a disk. We assume that Ω is a disk in R2, of radius R, and that the boundary datum c is given
by (3.10). Recall that, by Corollary 3.8, c has minimal length, among all the non homotopically trivial loops in
N , and that κ∗ = 3π/4. Adopting polar coordinates on Ω, for (ρ, θ) ∈ (0, R) × [0, 2π] we set

Pε(ρ, θ) :=

√
3
2
(r2

ερ) − rε(ρ) + 1)−1/2

{
n0(θ)⊗2 − 1

3
Id +rε(ρ)

(
m0(θ)⊗2 − 1

3
Id
)}

, (3.22)

where m0(θ) := [− sin(θ/2), cos(θ/2), 0]T and rε is the continuous function

rε(ρ) :=

{
1 − σ1/2ρ/ε if 0 ≤ ρ ≤ σ−1/2ε

0 if σ−1/2ε ≤ ρ ≤ R.

This construction is possible, provided that ε < Rσ1/2. Due to rε(0) = 1, function Pε can be extended continu-
ously in the origin:

lim
ρ→0+

Pε(ρ, θ) = −
√

3
2

{
p⊗2
0 − 1

3
Id
}

,

where p0 := [0, 0, 1]T . By Remark 3.4, we check that |Pε| = 1 over the whole of Ω. Also, the derivatives of Pε

can be computed explicitly. For σ−1/2ε ≤ ρ ≤ R, we obtain

∂Pε

∂ρ
(ρ, θ) = 0 and

∂Pε

∂θ
(ρ, θ) =

3
4
,

whereas for 0 < ρ < σ−1/2ε we have∣∣∣∣∂Pε

∂ρ
(ρ, θ)

∣∣∣∣2 ≤ Cσ

ε2
and

∣∣∣∣∂Pε

∂θ
(ρ, θ)

∣∣∣∣2 ≤ Cσ

ε2
ρ2 .

It follows that

1
2

∫
Ω

|∇Pε|2 = π

∫ R

0

{
ρ

∣∣∣∣∂Pε

∂ρ
(ρ, θ)

∣∣∣∣2 +
1
ρ

∣∣∣∣∂Pε

∂θ
(ρ, θ)

∣∣∣∣2
}

dρ

≤ π

∫ R

σ−1/2ε

3
4ρ

dρ + C =
3
4
π |log ε| + 3

8
π log σ + C

since the integral over the interval (0, σ−1/2ε) can be bounded independently of σ and ε. On the other hand,
we exploit the upper estimate in Lemma 3.9 to bound the potential energy:

1
ε2

∫
Ω

f∗(Pε) ≤ 2σ

ε2
meas(B(0, σ−1/2ε)) = 2π.

Therefore, we conclude that (3.21) holds, in this case.
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A general domain. Now, consider an arbitrary domain Ω, and fix a closed disk B ⊂⊂ Ω. Since, by assumption,
the boundary datum g is non homotopically trivial, in view of Lemma 2.2 it is possible to construct a smooth
map P : Ω \ B → N , such that

P |∂Ω = g and P |∂B = c.

We define the map Pε ∈ H1(Ω, S0) by Pε(x) = P (x) if x ∈ Ω \ B, and by the formula (3.22) if x ∈ B. The
energy of Pε, out of the ball B, is independent of ε and σ, whereas the conclusion of Step 1 provides a bound
for the energy on B. Hence, (3.21) follows.

Remark 3.13. Since this argument does not provide an explicit lower bound for |Qε|, we cannot infer that
singularity profiles are bounded away from zero (for the definition of singularity profiles, see the Introduction).

4. Asymptotic analysis of the minimizers

This section investigates the behavior of minimizers of (2.1) as ε ↘ 0, and contains the proofs of Proposi-
tion 1.2 and Theorem 1.3. We start by recalling some well-known properties of minimizers.

Lemma 4.1. If uε is a minimizer for Problem (2.1), then

‖uε‖L∞(Ω) ≤ 1 and ‖∇uε‖L∞(Ω) ≤
C

ε
.

Proof. The L∞ bound on uε can be easily established via a comparison argument. Assume, by contradiction,
that |uε(x0)| > 1 for some x0 ∈ Ω, and define

vε(x) :=

⎧⎨⎩uε(x) if |uε(x)| ≤ 1
uε(x)
|uε(x)| otherwise.

Clearly |∇vε| ≤ |∇uε| and, by H3, f(vε) ≤ f(uε), with strict equality at least at the point x0. Thus, we infer
Eε(vε) < Eε(uε), which contradicts the minimality of uε. The estimate on the gradient can be deduced from
equation (2.2), with the help of the previous bound and Lemma A.2 of [5]. �

Lemma 4.2 (Pohozaev identity). Let G ⊆ R2 be any subdomain of Ω, and x0 ∈ G. Denote by ν the unit
external normal to ∂G and by τ the unit tangent to ∂G, oriented so that (τ, ν) is direct. Then, any solution uε

of equation (2.2) satisfies

1
ε2

∫
G

f(uε) +
1
2

∫
∂G

(x − x0) · ν
∣∣∣∣∂uε

∂ν

∣∣∣∣2 dH1

=
∫

∂G

{
1
2
(x − x0) · ν

∣∣∣∣∂uε

∂τ

∣∣∣∣2 − (x − x0) · τ ∂uε

∂ν
:

∂uε

∂τ
+ (x − x0) · ν 1

2ε2
f(uε)

}
dH1.

(4.1)

Proof. The lemma can be proved arguing exactly as in Theorem III.2 of [6]. �

Remark 4.3. When considering the Landau−de Gennes equation (2.4), the additional term b(trQ2
ε) Id /3 does

not play any role in the proof of the Pohozaev identity. Indeed, assume x0 = 0, multiply both sides of (2.4) by
xkQij, k, sum over i, j, k and integrate over G. We obtain

−
∫

G

Qε, ij, ll xkQε, ij, k dx +
1

2ε2

∫
G

∂f(Qε)
∂Qε, ij

Qε, ij, k xk dx +
1
3
b

∫
G

xkQε, ii, k trQ2
ε dx = 0,

and the third integral vanishes, since Qε, ii = 0. The proof follows exactly as in the previous case; the reader is
referred to Lemma 2 of [24], for more details.
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Lemma 4.4. Let Ω ⊆ R2 and let uε be a minimizer for Problem (2.1). Then, there exists a constant C,
depending on Ω and G, such that

Eε(uε) ≤ κ∗ |log ε| + C.

Proof. The proof of this lemma is a slightly different version of Theorem III.1 from [6] (see also [10]). Let
(η1, η2, . . . , ηm) ∈ Γ (N )m be an m-uple which achieve the minimum in (2.10), that is,

m∏
j=1

ηj ∩
k∏

i=1

γi �= ∅, 1
4π

m∑
j=1

λ(ηj)2 = κ∗, (4.2)

and for each j ∈ {1, . . . , m} choose a loop bj ∈ ηj , of minimal length (i.e., λ(ηj) = 2π|b′j|). Let B1, . . . , Bm be
mutually disjoint, closed disks in Ω, of radius r. Applying Lemma 2.2, we find a smooth function v : Ω\∪m

j=1Bj →
N , such that v = g on ∂Ω and v = bj on ∂Bj, for each j.

We extend v to a function vε : Ω → N in the following way. On Ω \ ∪m
j=1Bj , set v = vε, whereas on each

ball Bj , denoting by (ρ, θ) the polar coordinates around the center xj of the ball, set

vε(x) :=

{
ε−1ρ bj

(
xj + reiθ

)
if 0 < ρ < ε

bj

(
xj + reiθ

)
if ε ≤ ρ < r.

Since vε ∈ H1
g (Ω, Rk), the minimality of uε entails Eε(uε) ≤ Eε(vε). Computing Eε(vε) will be enough to

conclude (2.10). We find

Eε(vε; Ω \
m⋃

j=1

Bj) =
1
2

∫
Ω\⋃m

j=1 Bj

|∇v|2 = C,

Eε(vε; Bj) ≤
∫

Bj

Cε−2 ≤ C,

and, passing to polar coordinates,

Eε(vε; Bj \ Bε(xj)) =
1
2

∫ r

ε

dρ

ρ

∫
S1

dω
∣∣b′j(ω)

∣∣2 ≤ 1
4π

λ(ηj)2 |log ε| + C.

Combining these bounds, with the help of (4.2) we conclude. �

4.1. Localizing the singularities

In this subsection, we will prove Proposition 1.2. Namely, we will show that the image of uε lies close to the
vacuum manifold, except on the union of a finite number of small balls. Analogous results have been established
for the Ginzburg−Landau model in [6], in case the domain Ω ⊆ R2 is star-shaped. This technical assumption
has been removed in [7, 36] (see also [4] for more details).

We introduce a (small) parameter 0 < α ≤ 1, whose value is going to be adjusted later, and we set

eε(uε) =
1
2
|∇uε|2 +

1
ε2

f(uε).

We claim the following

Proposition 4.5. Let δ ∈ (0, δ0) be fixed. For all ε > 0, there exists a finite set Xε = {x1, . . . , xk} ⊂ Ω, whose
cardinality is bounded independently of ε, such that

dist(uε(x), N ) ≤ δ if dist(x, Xε) > λ0ε, (4.3)

where λ0 > 0 is a constant independent of ε, and

ε4αeε(uε)(x) ≤ Cα if dist(x, Xε) > εα. (4.4)
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Proposition 4.5 clearly implies Proposition 1.2. As a first step in the proof, we show that eε(uε) solves an
elliptic inequality, in the regions where uε lies close to the vacuum manifold.

Lemma 4.6. Assume ω ⊂ Ω is an open set, such that dist(uε(x), N ) ≤ δ holds for all x ∈ ω and all ε > 0.
Then, eε(uε) solves pointwise in ω the inequality

−Δeε(uε) ≤ Ce2
ε(uε).

Proof. Reminding that uε is a solution of equation (2.2), we compute plainly

−1
2
Δ |∇uε|2 = −∇ (Δuε) · ∇uε −

∣∣∇2uε

∣∣2 = − 1
ε2

∇uε : D2f(uε)∇uε −
∣∣∇2uε

∣∣2 ,

where
∣∣∇2uε

∣∣2 =
∑

i, j |∂i∂juε|2, and

− 1
ε2

Δf(uε) = − 1
ε2

∇ (Df(uε)) · ∇uε − 1
ε2

Df(uε) · Δuε

= − 1
ε2

∇uε : D2f(uε)∇uε − 1
ε4

|Df(uε)|2 .

Adding these contributions, we obtain

−Δeε(uε) +
∣∣∇2uε

∣∣2 +
1
ε4

|Df(uε)|2 = − 2
ε2

∇uε : D2f(uε)∇uε. (4.5)

Hypothesis H2 provides
1
ε4

|Df(uε)|2 ≥ m0

ε4
dist2(uε, N ). (4.6)

Moreover, the image uε(ω) lies close to N by assumption, so the right-hand side of (4.5) can be estimated by
the local Lipschitz continuity of D2f :

− 2
ε2

∇uε : D2f(uε)∇uε ≤ − 2
ε2

∇uε : D2f(π(uε))∇uε +
2
ε2

∣∣D2f(uε) − D2f(π(uε))
∣∣ |∇uε|2

≤ − 2
ε2

∇uε : D2f(π(uε))∇uε +
C

ε2
dist(uε, N ) |∇uε|2

≤ C

ε2
dist(uε, N ) |∇uε|2 .

For the latter inequality, remind that every point p ∈ N is a minimizer for f , so D2f(p) ≥ 0. We infer

− 2
ε2

∇uε : D2f(uε)∇uε ≤ m0

ε4
dist2(uε, N ) + C |∇uε|4

and the first term can be reabsorbed in the left-hand side of (4.5), by means of (4.6). This concludes the
proof. �

Our next ingredient is a Clearing Out lemma, which relies crucially on H2.

Proposition 4.7 (Clearing Out). There exist some positive constants λ0 and μ0 with the following property:
for all x0 ∈ Ω and all l ∈ [λ0ε, 1], if the minimizer uε satisfies

1
ε2

∫
B(x0, 2l)∩Ω

f(uε) ≤ μ0 (4.7)

then
dist(uε(x), N ) ≤ δ for all x ∈ Ω ∩ B(x0, l). (4.8)
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Proof. Set
f0 := min {f(v) : dist(v, N ) ≥ δ, |v| ≤ 1} ,

and remark that f0 > 0, because it is the minimum of a strictly positive function on a compact set. We define

λ0 :=
δ

2C
, μ0 :=

π

2
λ2

0 min
{

f0,
1
8
m0δ

2

}
, (4.9)

where C is a constant such that |∇uε| ≤ Cε−1 (such a constant exists, by Lem. 4.1). We are going to check that
this choice of λ0, μ0 works. To do so, we proceed by contradiction and assume there is some point x ∈ B(x0, l)
such that dist(uε(x), N ) > δ. Firstly, we remark that this assumption implies dist(x, ∂Ω) > λ0ε. Indeed, if it
were dist(x, ∂Ω) ≤ λ0ε then, in view of H4, we would have

dist(uε(x), N ) ≤ ‖∇uε‖L∞ dist(x, ∂Ω) ≤ Cλ0 =
δ

2
.

It follows that the ball B(x, λ0ε) is entirely contained in Ω ∩ B(x0, 2l). In addition, for all y ∈ B(x, λ0ε) we
have

dist(uε(y), N ) ≥ dist(uε(x), N ) − |uε(x) − uε(y)| > δ − λ0ε ‖∇uε‖L∞ ≥ δ

2
.

Due to Remark 2.5 and Lemma 4.1, this implies

1
ε2

∫
Ω∩B(x0, 2l)

f(uε) ≥ 1
ε2

∫
B(x, λ0ε)

f(uε) ≥ πλ2
0 min

{
f0,

1
8
m0δ

2

}
= 2μ0,

which contradicts the hypothesis (4.7). �

The two following results can be found in Section IV.5 of [4]. The proofs carry over to our setting, without
any change.

Lemma 4.8. Let x0 ∈ Ω. There exists a constant Cα, depending only on α, g and Ω, such that

1
ε2

∫
B(x0, εα)∩Ω

f(uε) ≤ Cα.

Proposition 4.9. There exists a constant ηα > 0, independent of ε, with the following property: if a point
x0 ∈ Ω verifies ∫

B(x0, 2εα)∩Ω

|∇uε|2 ≤ ηα |log ε| + C (4.10)

then dist(uε(x), N ) ≤ δ for all x ∈ B(x0, εα).

Proposition 4.9 provides a concentration result for the energy, which will be crucial in our argument. Reducing,
if necessary, the value of ηα, we are able to show another estimate for minimizers satisfying (4.10). This will be
the final ingredient in our proof of Proposition 4.5.

Proposition 4.10. There exist constants ηα, Cα > 0 (with Cα depnding only on α, ηα) such that, if uε verifies
the condition (4.10) for some x0 ∈ Ω, then

ε4αeε(uε)(x0) ≤ Cα.
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Proof. We suppose, at first, that B(x0, εα) ⊂ Ω. In view of Proposition 4.9, we can assume that dist(uε, N ) ≤ δ
on B(x0, εα). Furthermore, (4.10) and Lemma 4.8 provide

Eε(uε, B(x0, εα) ∩ Ω) ≤ ηα |log ε| + Cα. (4.11)

We claim that there exists a radius r ∈ (ε2α, εα) such that∫
∂B(x0, r)∩Ω

{
|∇uε|2 +

1
ε2

f(uε)
}

≤ 2ηα

αr
. (4.12)

Indeed, if (4.12) were false, integrating over (ε2α, εα) we would obtain

Eε(uε, B(x0, εα) ∩ Ω) ≥ 2ηα

α

∫ εα

ε2α

dr

r
= 2ηα |log ε| ,

which contradicts (4.11), for ε � 1. Thus, the claim is established.
Set

ε := ε/r and vε(x) := uε

(x

r
+ x0

)
for x ∈ B := B(0, 1).

As a consequence of the scaling, we deduce eε(vε) = r2eε(uε), hence

Eε(vε, B) = Eε(uε, B(x0, r))

and vε minimizes the energy Eε among the maps w ∈ H1(B, Rd), with w|∂B = vε|∂B. Moreover, (4.12)
transforms into ∫

∂B

eε(vε) ≤ 2ηα

α
· (4.13)

We will take advantage of the following property, whose proof is postponed.

Lemma 4.11. The energy of vε is controlled by ηα, that is,∫
B

eε(vε) ≤ Cαηα.

Recall also that, due to Lemma 4.6, eε(vε) solves an elliptic inequality. Thus, we are in position to invoke a
result by Chen and Struwe ([9] – the reader is also referred to [32], Thm. 2.2): provided that ηα is small enough,
Lemma 4.11 implies the estimate

r2eε(uε)(x0) = eε(vε)(x) ≤
∫

B

eε(vε) ≤ Cαηα.

This concludes the proof, in case B(x0, εα) does not intersect the boundary.
We still have to cover the case B(x0, εα) � Ω, but this entail no significant change in the proof (nor in the

proof of Lem. 4.11). As we deal with a local result, we can straighten the boundary and assume that Ω coincides
locally with the set Rn

+. In place of the Chen–Struwe result we can exploit ([32], Thm. 2.6), which deals with
the Dirichlet boundary condition. �

Proof of Lemma 4.11. We split the proof in steps, for clarity.

Step 1 (Construction of the harmonic extension). The composition π(vε) is well defined, since the image of vε

lies close to the vacuum manifold. Set σε := dist(vε, N ) = |vε − π(vε)|, and denote by ωε an harmonic extension
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of π(vε)|∂B on B. The existence of such an extension is a classical result by Morrey (see, for instance, [26]).
Lemma 4.2 in [33] and (4.11) imply that∫

B

|∇ωε|2 ≤ C

∫
∂B

eε(vε) ≤ Cαηα. (4.14)

We wish to use ωε as a comparison map, in order to obtain the H1 bound for vε; to do so, we have to take care
of the boundary condition on ∂D.

Step 2 (An auxiliary map). It will be useful to introduce an auxiliary map ϕε. Using polar coordinates on D,
we define ϕε by the formula

ϕε(ρ, θ) =

{
ε−1(ρ − 1 + ε)σε(θ) if 1 − ε ≤ ρ ≤ 1
0 if ρ < 1 − ε,

We claim that ∫
B

{
|∇ϕε|2 +

1
ε2

ϕ2
ε

}
≤ Cε (4.15)

and check it by a straightforward computation. Indeed,∫
B

{
|∇ϕε|2 +

1
ε2

ϕ2
ε

}
≤
∫ 2π

0

dθ

∫ 1

1−ε

dρ

{
1
ε2

ρ |σε(θ)|2 +
1
ρ
|σ′

ε(θ)|2 + ρ |σε(θ)|2
}

≤ 1
ε2

(
ε − ε2

2

)
‖σε‖2

L2(S1) − log(1 − ε) ‖σ′
ε‖2

L2(S1) +
(

ε − ε2

2

)
‖σε‖2

L2(S1)

and (4.15) follows from (4.13), since |σ′
ε| ≤ |∇(vε − π(vε))| and σ2

ε ≤ Cf(vε).

Step 3 (Construction of a normal field on N ). By construction, (vε − ωε)|∂B is a normal field on N , whose
modulus is given by σε. We want to extend it to a map νε : B → Rd, so that νε(x) is orthogonal to N at the
point ωε(x) and |νε(x)| = ϕε(x), for all x ∈ D. At first, one may work locally, near a point x0 ∈ ∂Ω, and exploit
the existence of an orthonormal frame of normal vectors, defined on some neighborhood of ωε(x0). Then, the
construction of νε is completed by a partition of the unity argument.

Step 4 (Construction of a comparison map). Set ω̃ε := ωε +νε. It follows from the previous steps that ω̃ε enjoys
these properties:

ω̃ε|∂B = vε|∂B ,

π(ω̃ε(x)) = vε(x) and dist(ω̃ε(x), N ) = ϕε(x) for all x ∈ B.

In particular, ω̃ε is an admissible comparison map for vε. By this information and Lemma 2.6, we infer a bound
for the gradient of ω̃ε:

|∇ω̃ε|2 ≤ (1 + Cϕε) |∇ωε|2 + C
(
|∇ϕε|2 + ϕ2

ε

)
Since |ϕε| ≤ δ by construction, integrating this inequality over D and exploiting (4.13) we obtain

‖∇ω̃ε‖2
L2(D) ≤ (1 + δ) ‖∇ωε‖2

L2(D) + Cε. (4.16)

The potential energy of ω̃ε is estimated by means of Remark 2.5:

1
ε2

∫
B

f(ω̃ε) ≤ M0

2ε2

∫
B

ϕ2
ε .

Combining this inequality with (4.15) and (4.16), we deduce∫
B

eε(vε) ≤
∫

B

e(ω̃ε) ≤ (1 + δ) ‖∇ωε‖2
L2(D) + Cε. (4.17)

With this estimate and (4.14), we complete the proof. �
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Having established all these preliminary results, Proposition 4.5 follows easily from a covering argument as,
for instance, the one in [4] (see also [6], Chap. IV).

Proof of Proposition 4.5. By Vitali covering lemma, we can find a finite family of points {yi}i∈I such that

Ω ⊆
⋃
i∈I

B(yi, 3εα)

and
B(yi, εα) ∩ B(yj , εα) = ∅ if i �= j.

Let ηα = ηα(α, δ) be given by Proposition 4.10. Define Jε as the subset of indexes i ∈ I for which the inequality∫
B(yi, 3εα)

|∇uε|2 ≥ ηα (|log ε| + 1)

holds; then, by Lemma 4.4, we have

ηα (|log ε| + 1) card(Jε) ≤
∑
j∈Jε

∫
B(yi, 3εα)

|∇uε|2 ≤ C (|log ε| + 1) (4.18)

(to prove the last inequality, recall that there is a universal constant C such that each point of Ω is covered by at
most C balls of radius 3εα). It follows that card(Jε) is bounded independently of ε. Moreover, Propositions 4.9
and 4.10 imply that

dist(uε(x), N ) ≤ δ if x ∈ B(yi, 3εα) and i ∈ I \ Jε

ε4αeε(uε)(x) ≤ Cα if x ∈ B(yi, εα) and i ∈ I \ Jε.

Now, let us fix an index i ∈ Jε, and let us focus on B(yi, 3εα). Being λ0 = λ0(δ) and μ0 = μ0(δ) given by
Proposition 4.7, we consider a finite covering {B(xi

m, 3λ0ε) : m ∈ Λε, i} of B(yi, 3εα), such that

B(xi
m, λ0ε) ∩ B(xi

n, λ0ε) = ∅ if m �= n,

and we define the set Lε, i of indexes m ∈ Λε, i such that

1
ε2

∫
B(xi

m, 3λ0ε)

f(uε) > μ0.

Since ε−2
∫

B(xi, 3εα) f(uε) is controlled by Lemma 4.8, we can bound the cardinality of Lε, i, independently of ε,
exactly as in (4.18). By Proposition 4.7, we have that dist(uε(x), N ) ≤ δ if x ∈ B(xi

m, 3λ0ε) and m /∈ Lε, i.
Combining all these facts, we conclude easily. �

Denote by xε
1, xε

2, . . . , xε
kε

the elements of Xε. For any given sequence εn ↘ 0 we can extract a renamed
subsequence, such that kεn is independent of n (say, kεn = N ′) and

xεn

i → Li for i ∈ {1, 2, . . . , N ′},
for some point Li ∈ Ω Some of the points Li might coincide; therefore, we relabel them as a1, a2, . . . , aN ,
with N ≤ N ′, in such a way that ai �= aj if i �= j.

For the time being, we cannot exclude the possibility that ai ∈ ∂Ω, for some index i. To deal with this
difficulty, we enlarge a little the domain Ω and consider a smooth, bounded domain Ω′ ⊇ Ω, with the same
homotopy type as Ω – for instance, we can define Ω′ as a r-neighborhood of Ω, for r small enough. Also, we
fix a smooth function g : Ω′ \Ω → N , such that g = g on ∂Ω and ‖∇g‖L2(Ω′\Ω) ≤ C ‖g‖H1(∂Ω). From now on,
we extend systematically any function v : Ω → N with v = g on ∂Ω to a map v : Ω′ → N , by setting v = g on
Ω′ \ Ω.
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4.2. An upper estimate away from singularities

Fix a number ρ > 0 small enough, say,

ρ < dist(Ω, Ω′), ρ <
1
2

min
i�=j

|ai − aj | ,

so that the disks B(ai, ρ) are mutually disjoint and contained in Ω′. The aim of the following subsection is to
prove the following upper bound for energy of the minimizers, away from the singularities.

Proposition 4.12. There exists a constant C, independent of n and ρ, and a number Nρ such that for every
n ≥ Nρ we have

1
2

∫
Ω′\⋃ i B(ai, ρ)

|∇uεn |2 ≤ κ∗ |log ρ| + C.

Before facing the proof, we fix some notations. For a fixed i, define Λi as the set of indexes j ∈ {1, 2, . . . , N1}
such that xεn

j → ai. For n sufficiently large, we have B(ai, ρ) ⊇ B(xεn

j , λ0εn) if and only if j ∈ Λi. We introduce
the sets

Ωi,n := B(ai, ρ) \
⋃

j∈Λi

B(xεn

j , λ0εn).

Recall that, by Proposition 4.5, we have dist(uεn(x), N ) ≤ δ for all x ∈ Ωi,n. Thus, we can define vεn , σεn by

vεn := π(uεn |Ωi,n
), σεn := dist(uεn |Ωi,n

, N ).

and notice that vεn , σεn ∈ H1(Ωi,n, N ). Denote by ηj,n the free homotopy class of vεn , restricted
to ∂B(xεn

j , λ0εn), and set

κi,n := inf
{

λ∗(γ) : γ ∈
∏

j∈Λi

ηj,n

}
,

The continuity of vεn and Lemma 2.2 imply

N1∏
j=1

ηj,n ∩
k∏

i=1

γi �= ∅.

By the definition (2.10) of κ∗ we infer

κ∗ ≤
N∑

i=1

κi,n, for all n ∈ N. (4.19)

We can assume without loss of generality that κi,n > 0 for all i, n. Indeed, if κi,n = 0 then there is
no topological obstruction to the construction of Lemma 4.11. Arguing in a similar way, we can exhibit a
comparison map ũεn , with ũεn |∂B(ai, ρ) = uεn |∂B(ai, ρ), such that

Eε(uεn , B(ai, ρ)) ≤ Eε(ũεn , B(ai, ρ)) ≤ C.

Applying the Chen and Struwe’s result on some small ball contained in B(ai, ρ), we obtain eε(uε) ≤ C
on B(ai, ρ). In turns, this forces

dist2(uεn(x), N ) ≤ Cf(uεn(x)) ≤ Cε2
n ≤ δ,

for all x ∈ B(ai, ρ) and n large enough. Therefore, no singularity is contained in B(ai, ρ) if κi,n = 0, and the
point ai can be dropped out.

After this preliminaries, we are ready to face the proof of Proposition 4.12. In fact, we will give an indirect
proof, based on a lower estimate for the energy near the singularities.
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Lemma 4.13. There exists a constant C, independent of n and ρ, such that for all function v ∈ H1(Ωi,n, N )
the estimate

1
2

∫
Ωi,n

|∇v|2 ≥ κi,n

(
log

ρ

εn
− C

)
holds.

Sketch of the proof. The lemma can be established arguing exactly as in [31], Theorem 1 (the reader is also
referred to [10]). At first, one has to consider the case Ωi,n is an annulus Bρ \ Bε, with 0 < ε < ρ; then, κi,n

reduces to λ∗(η), where η is the homotopy class of v|∂Bρ
. Assuming that v is smooth, a computation in polar

coordinates gives

1
2

∫
Bρ\Bε

|∇v|2 =
1
2

∫ ρ

ε

dr

∫ 2π

0

dθ

{
r

∣∣∣∣∂v

∂r

∣∣∣∣2 +
1
r

∣∣∣∣∂v

∂θ

∣∣∣∣2
}

≥ 1
2

∫ ρ

ε

dr

r

∫ 2π

0

dθ

∣∣∣∣∂v

∂θ

∣∣∣∣2
and, since the definition (2.7) of λ implies

2π

∫ 2π

0

∣∣∣∣∂v

∂θ

∣∣∣∣2 dθ ≥ λ(η)2,

we deduce
1
2

∫
Bρ\Bε

|∇v|2 ≥ λ(η)2

4π
log

ρ

ε
≥ λ∗(η) log

ρ

ε
· (4.20)

Having proved the lemma in this simple case, we can repeat the same argument as [31], the only difference
being κi,n in place of the degree. We exploit the property (2.9) instead of the triangle inequality for the degrees.
Finally, since we may assume

dist(B(xεn

j , λ0εn), ∂B(ai, ρ)) > ρ/2

for j ∈ Λi and n large enough, we can prove the analogous of [31], Proposition, which reads

1
2

∫
Ωi,n

|∇v|2 ≥ κi,n log
(

ρ/4
λ0εn

)
·

This concludes the proof. �

Lemma 4.14. There exists a constant C, independent of n and ρ, and a number Nρ such that for every n ≥ Nρ

and every i we have
1
2

∫
Ωi,n

|∇uεn |2 ≥ κi,n

(
log

ρ

εn
− C

)
− C.

Proof. The energy of vεn on Ωi,n is bounded by below by Lemma 4.13; moreover, the lower bound provided
by (2.12) entails

|∇uεn |2 ≥ (1 − Cσεn) |∇vεn |2 .

If we knew ∫
Ωi,n

σεn |∇vεn |2 ≤ C, (4.21)

then the lemma would follow. Therefore, let us introduce the set

Yn := {x ∈ Ω : dist(x, Xεn) ≤ εα
n}

and split the proof of (4.21) in two cases.
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Case 1 (Estimate out of Yn). Let x ∈ Ωi,n \ Yn. Then, by Propositions 4.5 and 4.10 we have

eεn(uεn)(x) ≤ Cαε4α
n .

Since |∇vεn | ≤ C |∇uεn |, this entails∫
Ωi,n

σεn |∇vεn |2 ≤ C

∫
Ωi,n

σεn |∇uεn |2 ≤ Cε1−6α
n

which implies (4.21) if we choose α < 1/6.

Case 2 (Estimate on Yn). We apply the Hölder inequality:∫
Yn

σεn |∇vεn |2 ≤ C

∫
Yn

σεn |∇uεn |2 ≤ C ‖σεn‖L2(Yn) ‖∇uεn‖2
L4(Yn) . (4.22)

The norm of the gradient is estimated by the Gagliardo Niremberg interpolation inequality and standard elliptic
regularity results. We obtain

‖∇uεn‖L4(Yn) ≤ C ‖Δuεn‖1/2
L2(Yn) ‖uεn‖1/2

L∞(Yn) ,

which reduces to
‖∇uεn‖L4(Yn) ≤ Cε−1

n ‖∇uf(uεn)‖1/2
L2(Yn) (4.23)

since uεn verifies the equation (2.2) and its L∞ norm is bounded by Lemma 4.1. For a fixed v ∈ N , a Taylor
expansion of f around the point π(v) (see Rem. 2.5) yields

|Df(v)| ≤ M0 dist(v, N ). (4.24)

Thus, combining the equations (4.22), (4.23) and (4.24) with H2, we infer∫
Yn

σεn |∇vεn |2 ≤ Cε−2
n ‖σεn‖2

L2(Yn) ≤ M0ε
−2
n

∫
Yn

f(uεn).

Finally, since Yn is a finite union of balls of radius εα, Lemma 4.8 implies the desired estimate (4.21), for a
constant depending on α. �

Proposition 4.12 follows now easily from Lemmas 4.4 and 4.14, with the help of (4.19). Let us point out some
consequences of the previous results. For a fixed a compact set K ⊆ Ω′\{ai}1≤i≤N , we know by Proposition 4.12
that

1
2

∫
K

|∇uεn |2 ≤ CK ,

∫
K

dist2(uεn , N ) ≤ Cε2
n (4.25)

at least for n ≥ NK . Hence, up to a renamed subsequence, by a diagonal procedure we can assume

uεn → u0 a.e. and weakly in H1
loc(Ω

′ \ {a1, . . . , aN}).

Passing to the limit in the second condition of (4.25), by Fatou’s lemma we deduce that

u0(x) ∈ N for a.e. x ∈ Ω′ \ {a1, . . . , aN}.

We are now in position to prove that the points ai, for i ∈ {1, . . . , N}, do not belong to the boundary of Ω. As
a byproduct of the proof, we obtain a condition for the quantities κi,n.
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Proposition 4.15. For all i ∈ {1, . . . , N}, the point ai is in the interior of Ω. In addition, it holds that

N∑
i=1

κi,n = κ∗. (4.26)

Proof. We adapt the proof of Lemma 3 from [6]; the reader may see also [10].
Assume, by contradiction, that ai = 0 ∈ ∂Ω for some i ∈ {1, . . . , N}. Then, computing in polar coordinates

as we did in Lemma 4.13, we obtain the inequality

1
2

∫
Ω∩(Bρ\Bε)

|∇u0|2 ≥ λ(η)2

2π
(1 + oρ→0(1)) log

ρ

ε

in place of (4.20). The factor approximately equal to (2π)−1, instead of (4π)−1, is due to the angular variable,
which spans an interval of length π + oρ→0(1). Arguing as in ([31], Theorem) we can conclude

1
2

∫
Ω\∪iB(ai, ρ)

|∇u0|2 ≥
(

N∑
i=1

αiκi,n

)
(1 + oρ→0(1)) |log ρ| − C (4.27)

for a radius ρ > 0 small enough, so that the balls B(ai, ρ) are mutually disjoint, and the coefficients αi are
given by

αi :=

{
1 if ai /∈ ∂Ω

2 if ai ∈ ∂Ω.

On the other hand, the weak H1
loc convergence of uεn and Proposition 4.12 imply

1
2

∫
Ω\∪iB(ai, ρ)

|∇u0|2 ≤ lim inf
n→+∞ Eεn(uεn , Ω \ ∪iB(ai, ρ)) ≤ κ∗ |log ρ| + C. (4.28)

Combining (4.27) and (4.28), dividing by |log ρ| then passing to the limit as ρ → 0, we deduce

N∑
i=1

αiκi,n ≤ κ∗.

In view of the inequality (4.19), we have
N∑

i=1

αiκi,n = κ∗

and, since κi,n > 0 for all i and n, it must be αi = 1 for all i, that is, the points ai do not belong to the
boundary. The equality (4.26) also follows. �

4.3. Proof of Theorem 1.3

The proof is, essentially, a refined version of the argument we used for Proposition 4.10. Since the result we
want to prove is local, we fix a closed disk D ⊆ Ω′ \ {a1, . . . , aN} and restrict our attention to D. (D may
intersect the boundary of Ω).

By Proposition 4.12, and changing the radius of the disk if necessary, we can assume that∫
∂D

{
1
2
|∇uεn |2 +

1
ε2

n

f(uεn)
}

≤ C.
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This is always possible, up to a subsequence. Indeed, denoting by a, R the center and the radius of D, by Fatou
lemma we have∫ R

0

dρ lim inf
n→+∞

∫
∂B(a, ρ)

dHn−1

{
1
2
|∇uεn |2 +

1
ε2

n

f(uεn)
}

≤ lim inf
n→+∞ Eεn(uεn , D) ≤ C.

Hence, clearly it exists ρ ∈ (0, R) such that

lim inf
n→+∞

∫
∂B(a, ρ)

{
1
2
|∇uεn |2 +

1
ε2

n

f(uεn)
}

dHn−1 ≤ C.

Due to the compact inclusion H1(∂D) ↪→ C0(∂D), we have the uniform convergence uεn → u0 on ∂D. We
perform the same construction of Lemma 4.11, and we obtain a sequence ωεn : D → N of minimizing harmonic
maps, and another sequence ω̃εn : D → Rd such that

ωεn |∂D = π(uεn)|∂D , ω̃εn |∂D = uεn |∂D

and
Eεn(ω̃εn ; D) ≤ 1

2
(1 + on→+∞(1)) ‖∇ωεn‖2

L2(D) + Cεn (4.29)

(compare with (4.16), (4.17)). The functions ωεn are bounded in H1(D), since uεn are, hence we can apply the
strong compactness result of [21] and deduce, up to subsequences,

ωεn → ω0 strongly in H1(D), (4.30)

where ω0 is a minimizing harmonic map. Passing to the limit in the boundary condition for ωεn , we see
that ω0|∂D = u0|∂D.

As {uεn}n∈N converges weakly in H1(D), we deduce
1
2
‖∇u0‖2

L2(D) ≤
1
2

lim inf
n→+∞ ‖∇uεn‖2

L2(D)

but, on the other hand, (4.29) and (4.30) give
1
2

lim sup
n→+∞

‖∇uεn‖2
L2(D) ≤ lim sup

n→+∞
Eεn(uεn ; D) ≤ 1

2
‖∇ω0‖2

L2(D) ≤
1
2
‖∇u0‖2

L2(D) .

These inequalities, combined, yield

lim
n→+∞ ‖∇uεn‖L2(D) =

1
2
‖∇u0‖2

L2(D) =
1
2
‖∇ω0‖2

L2(D) .

As a consequence, the convergence uεn → u0 holds in H1(D) and the limit map u0 is minimizing harmonic. In
particular, u0 solves the harmonic map equation in D, and the regularity theory of Morrey (see [26]) applies,
entailing u0 ∈ C∞(D). Also, as a byproduct of this argument, we obtain

1
ε2

n

∫
D

f(uεn) → 0 as n → +∞. (4.31)

Finally, we check the locally uniform convergence. Owning to the strong convergence in H1(D) and (4.31),
for all η > 0 we can find a radius r > 0, such that the inequality∫

B(x0, r)

eεn(uεn) ≤ η

holds for all x0 ∈ 1
2D and all n ∈ N. Then, choosing η small enough, we apply the Chen and Struwe’s result, to

infer
eεn(uεn)(x0) ≤ Eεn(uεn ; D) ≤ C for all x ∈ 1

2
D.

This provides a bound for uεn in W 1,∞(D), which allows us to conclude the proof, by means of the Ascoli−Arzelà
theorem.
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5. The behavior of u0 near the singularities

In this section, we analyze the behavior of u0 near the singularities: our aim is to prove Proposition 1.4. As
we already mentioned in the Introduction, we consider here just the case N = RP2. This provide a remarkable
simplification in the arguments, due to the simple homotopic structure of the real projective plane, whose
fundamental group consists of two elements only. Hence, there is a unique class of non homotopically trivial
loops.

This property reflects on the structure of the limit map. Remind that, for all i and n, we have set

κi,n = λ∗

⎛⎝∏
j∈Λi

ηj,n

⎞⎠ ,

where ηj,n is the free homotopy class of π(uεn), restricted to ∂B(xεn

j , λ0εn). It follows from Lemma 2.2 that∏
j∈Λi

ηj,n is the homotopy class of π(uεn) restricted to ∂B(ai, ρ), for a small radius ρ > 0. Since the homotopy
class is stable by uniform convergence, from Theorem 1.3 we deduce

κi,n = λ∗
(
homotopy class of u0|∂B(ai, ρ)

)
,

that is, κi,n is independent of n. On the other hand, there is a unique non zero value that κi,n and κ∗ can
assume, corresponding to the unique class of non trivial loops. As a consequence, from (4.26) we infer that that
there is at most one index i such that κi,n �= 0, and we prove the following

Lemma 5.1. In case N 
 RP2, there exists a point a ∈ Ω such that u0 ∈ C∞(Ω \ {a}).
Assume now that the boundary datum is non homotopically trivial. Up to a translation, we can suppose that

the unique singular point of u0 is the origin, and we fix a radius r > 0 such that B(0, r) ⊆ Ω. We also introduce
the functions R, S ∈ C∞(0, r) by

R(ρ) :=
1
2

∫
∂Bρ

∣∣∣∣∂u0

∂ν

∣∣∣∣2 dH1

and
S(ρ) :=

1
2ρ

∫
∂Bρ

|∇T u0|2 dH1

where ∇T denotes the tangential derivation. These functions are obviously non negative; in fact, S is bounded
by below by κ∗. Indeed, by definition of λ we have for all ρ ∈ (0, r)

4πS(ρ) = 2π

∫ 2π

0

∣∣c′ρ(θ)∣∣2 dθ ≥ λ2(γ),

where cρ is the function considered in Proposition 1.3, and

S(ρ) ≥ λ2(γ)
4π

= κ∗.

Lemma 5.2. The function ρ �→ ρ−1(S(ρ) − κ∗) is summable over (0, r). In particular,

lim inf
ρ→0

S(ρ) = κ∗.

Proof. Let 0 < ρ0 < min{r, 1}. With the help of Theorem 1.3, we can pass to the limit as n → +∞ in
Proposition 4.12, to obtain

1
2

∫
Br(0)\Bρ0 (0)

|∇u0|2 ≤ κ∗ |log ρ0| + C



BIAXIALITY IN A 2D LANDAU−DE GENNES MODEL 135

and, expressing the left-hand side in polar coordinates,∫ r

ρ0

{
R(ρ) +

1
ρ
S(ρ)
}

dρ ≤ κ∗ |log ρ0| + C. (5.1)

Taking advantage of this bound, we compute∫ r

ρ0

1
ρ

(S(ρ) − κ∗) dρ =
∫ r

ρ0

S(ρ)
ρ

dρ − κ∗ |log ρ0| − κ∗ log r ≤ C.

Letting ρ0 ↘ 0, we deduce the summability of ρ �→ ρ−1(S(ρ) − κ∗) which, in turns, forces the inferior limit of
S − κ∗ to vanish. �

Proposition 1.4 follows easily from this lemma. Indeed, we can pick a sequence ρn ↘ 0 such that S(ρn) → κ∗:
this is a minimizing sequence for the length-squared functional

c ∈ H1(S1, N ) �→ 1
2

∫ 2π

0

|c′(θ)|2 dθ

under the constraint that c is not homotopically trivial, and hence, by the compact inclusion H1(S1, N ) ↪→
C0(S1, N ), it admits a subsequence uniformly converging to a minimizer, which is a geodesic. The continuous
inclusion H1(S1, N ) ↪→ C1/2(S1, N ) and interpolation in Hölder spaces provide also the convergence in Cα,
for α ∈ (0, 1/2).

We are not able to say whether the convergence holds for the whole family {cρ}ρ>0, because we are not able
to identify the limit geodesic cρ. However, we state here some additional properties we have been able to prove
about the functions S and R, in the hope that they might be of interest for future work.

Lemma 5.3. It holds that
R(ρ) =

1
ρ

(S(ρ) − κ∗) .

Proof. We claim that
d
dρ

(ρR(ρ) − S(ρ)) = 0. (5.2)

This equality is essentially a consequence of the Pohozaev identity for the harmonic maps, but here we will
present its proof in a slightly different form. Since u0 is harmonic away from 0, its Laplacian Δu0 is, at every
point, a normal vector to N . Thus, for each point x ∈ Ω \ {0} we have(

Δu0 · ∂u0

∂ν

)
(x) = 0,

where ν = x/ |x|. We multiply the previous identity by |x|2, pass to polar coordinates, and integrate with respect
to θ ∈ [0, 2π], for a fixed ρ ∈ [0, r]. This yields

ρ2

∫ 2π

0

∂2u0

∂ρ2
· ∂u0

∂ρ
dθ + ρ

∫ 2π

0

∣∣∣∣∂u0

∂ρ

∣∣∣∣2 dθ +
∫ 2π

0

∂2u0

∂θ2
· ∂u0

∂ρ
dθ = 0

and, after an integration by parts in the third term,

ρ2

2
d
dρ

∫ 2π

0

∣∣∣∣∂u0

∂ρ

∣∣∣∣2 dθ + ρ

∫ 2π

0

∣∣∣∣∂u0

∂ρ

∣∣∣∣2 dθ − 1
2

d
dρ

∫ 2π

0

∣∣∣∣∂u0

∂θ

∣∣∣∣2 dθ = 0.
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This equality can be rewritten as

ρ2 d
dρ

(
R(ρ)

ρ

)
+ 2R(ρ) − d

dρ
S(ρ) = 0,

from which we deduce (5.2). Our claim is proved.
As a consequence of (5.2), there exists a constant k such that

R(ρ) =
1
ρ

(S(ρ) + k) ,

and the lemma will be proved once we have identified the value of k. To do so, fix 0 < ρ0 < min{r, 1} and
notice that (5.1) implies

κ∗ |log ρ0| + C ≥
∫ r

ρ0

1
ρ

(2S(ρ) + k) dρ =
∫ r

ρ0

2
ρ

(S(ρ) − κ∗) dρ +
∫ r

ρ0

1
ρ
(2κ∗ + k) dρ

The first integral at the right-hand side is non negative, since S ≥ κ∗. Therefore, for small values of ρ0,

κ∗ |log ρ0| + C ≥ (2κ∗ + k) |log ρ0| − C

and, comparing the coefficients of the leading terms, we have κ∗ ≥ 2κ∗ + k, that is, k ≤ −κ∗. On the other
hand,

0 ≤ ρR(ρ) = S(ρ) + k

and, taking the inferior limit as ρ ↘ 0, by Lemma 5.2 we infer 0 ≤ κ∗+k, which provides the opposite inequality
k ≥ −κ∗. �

Lemmas 5.2 and 5.3 combined imply that R ∈ L1(0, r).

Remark 5.4. If we knew that R has better integrability properties, for instance R ∈ Lp for some p > 1 (or
even R1/2 ∈ L(2, 1)), then we could conclude the convergence of the whole family {cρ}ρ>0, at least in L1(S1, N ).
Indeed, applying the fundamental theorem of calculus, the Fubini−Tonelli theorem, and the Hölder inequality,
we would obtain

‖cρ1 − cρ2‖L1(S1) ≤
∫ 2π

0

dθ

∫ ρ2

ρ1

dρ

∣∣∣∣∂u0

∂ρ

∣∣∣∣ ≤ ∫ ρ2

ρ1

dρ(2πρ)1/2

{∫ 2π

0

dθ

∣∣∣∣∂u0

∂ρ

∣∣∣∣2
}1/2

and hence

‖cρ1 − cρ2‖L1(S1) ≤
∫ ρ2

ρ1

(
4πR(ρ)

ρ

)1/2

dρ,

where the right-hand side converges to zero as ρ1, ρ2 → 0, again by the Hölder inequality. Thus, {cρ}ρ>0 would
be a Cauchy sequence in L1(S1, N ).
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