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SECOND-ORDER SUFFICIENT OPTIMALITY CONDITIONS FOR OPTIMAL
CONTROL OF STATIC ELASTOPLASTICITY WITH HARDENING

Thomas Betz
1

and Christian Meyer
1

Abstract. The paper is concerned with the optimal control of static elastoplasticity with linear
kinematic hardening. This leads to an optimal control problem governed by an elliptic variational
inequality (VI) of first kind in mixed form. Based on Lp-regularity results for the state equation, it is
shown that the control-to-state operator is Bouligand differentiable. This enables to establish second-
order sufficient optimality conditions by means of a Taylor expansion of a particularly chosen Lagrange
function.
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1. Introduction

In this paper we establish second-order sufficient optimality conditions for an optimal control problem gov-
erned by an elliptic variational inequality (VI) of first kind in mixed form. This VI models the problem of static
elastoplasticity with linear kinematic hardening. The precise statements of the VI and of the optimal control
problem will be given at the end of the introduction. The static VI has only limited physical meaning, but can
be regarded as time discretization of a corresponding quasi-static counterpart. The latter one models elasto-
plastic deformation processes at small strain and thus appears in various industrial applications. Therefore, if
an instantaneous control strategy is applied to optimize or control such an application, then the static optimal
control problem considered in this paper will arise.

Optimal control problems subject to VIs represent mathematical programs with equilibrium constraints
(MPECs) in function space. Problems of this type are known to be difficult to handle, even in the finite
dimensional case, cf. e.g. [19,26] and the references therein. These difficulties are induced by the non-smoothness
of the control-to-state mapping, which prevents the derivation of necessary optimality conditions in terms
of the Karush-Kuhn-Tucker (KKT) conditions. Instead several alternative stationarity concepts such as e.g.
Clarke(C)-, Bouligand(B)-, and strong stationarity have been introduced as necessary optimality conditions.
MPECs in function space have been considered by many authors in various aspects, in particular concerning the
derivation of first-order necessary optimality conditions and regularization and relaxation methods, respectively.
We only refer to [1–3, 16–18, 23, 25]. In [14, 15] C- and B-stationarity conditions for optimal control of static
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elastoplasticity are derived. Moreover, the necessity of strong stationarity for local optimality is established
in [15] for an academic problem involving an additional, physically meaningless control function.

While second-order sufficient conditions for optimal control of PDEs are well investigated, see e.g. [4, 6, 7]
and the references therein, the literature on sufficient optimality conditions for optimal control of VIs is rather
rare. To the best of our knowledge the only contributions in this field are papers by Mignot [22] and by Kunisch
and Wachsmuth [20]. Mignot proved that the obstacle control problem is convex if the desired state is behind
the obstacle and thus not reachable. Kunisch and Wachsmuth presented sufficient conditions for the optimal
control of the obstacle problem in the general case. In a follow-up paper [21] these conditions are used to design
an efficient path-following algorithm based on a Moreau−Yosida regularization. Sufficient optimality conditions
for optimal control of VIs that are not of obstacle type, such as static elastoplasticity, have not been discussed
so far.

Furthermore, there are only few differentiability results concerning VIs which are not of obstacle type. For the
static elastoplasticity system under consideration Herzog et al. showed in [15] that the solution mapping associ-
ated to the VI is weakly directionally differentiable. This is however not sufficient for a substantial second-order
analysis. Therefore the main step towards second-order sufficient conditions is to improve these differentiabil-
ity results. To be more precise, we prove that the solution operator is Bouligand differentiable in appropriate
spaces under mild assumptions on the data. Once this result is proven, the derivation of second-order conditions
is then rather straight forward. In particular the analysis of [20] can be adapted to optimal control of static
elastoplasticity.

The outline of the paper is as follows: After fixing the notation and stating the precise problem and the
standing assumptions in the remaining part of this section, we will present some known and preliminary results
in Section 2. The Bouligand differentiability is shown in Section 3. Finally, Section 4 is devoted to the derivation
of the second-order sufficient conditions.

Notation

In all what follows Ω ⊂ Rd, d = 2, 3, is a bounded Lipschitz domain with boundary Γ . The boundary consists
of two disjoint parts ΓN and ΓD. Throughout the paper vectors and tensors are denoted by bold-face letters.
We denote by S := Rd×d

sym the space of symmetric d× d matrices endowed with the Frobenius norm. For σ, τ ∈ S

the associated scalar product is denoted by σ : τ =
∑

ij σijτij . The symbol X ′ is used for the dual space of a
normed space X . The space of linear and continuous operators from a normed space X into a normed space
Y is denoted by L(X, Y ). If X = Y , then we sometimes simply write L(X). Moreover, we define the following
abbreviations

W 1,p
D (Ω; Rd) := {u ∈ W 1,p(Ω; Rd) : u = 0 on ΓD},

V := W 1,2
D (Ω; Rd),

W−1,p
D (Ω; Rd) := (W 1,p′

D (Ω; Rd))′,

U := L2(ΓN ; Rd),
S := L2(Ω; S).

The dual pairing between V and V ′ is denoted by 〈·, ·〉 and the scalar product in L2-type spaces such as
L2(Ω), S, and S2 is always denoted by (·, ·). Furthermore, throughout the whole paper, c > 0 represents a
generic constant.

Statement of the optimal control problem

Let us state the VI of first kind associated to static elastoplasticity with linear kinematic hardening: Given
an inhomogeneity � ∈ V ′ find generalized stress Σ = (σ, χ) ∈ S2 and displacement u ∈ V so that Σ ∈ K and

(AΣ, T − Σ) + (B∗u, T − Σ) ≥ 0 for all T ∈ K
BΣ = � in V ′

}
(VI)
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is satisfied. The quantities in (VI) are defined as follows: For Σ = (σ, χ), T = (τ , μ) ∈ S2 and v ∈ V the linear
operators A : S2 → S2 and B : S2 → V ′ are defined by

(AΣ, T ) =
∫

Ω

τ : C
−1σ dx +

∫
Ω

μ : H
−1χ dx and 〈BΣ, v〉 = −

∫
Ω

σ : ε(v) dx.

Herein C−1(x) and H−1(x) are linear maps from S to S, which may depend on the spatial variable x, and
ε(v) = 1/2

(∇v + (∇v)T
)

is the linearized strain tensor. The closed and convex set K ⊂ S2 of admissible
stresses is determined by the von Mises yield condition, i.e.,

K := {Σ ∈ S2 : φ(Σ) ≤ 0 a.e. in Ω} with φ(Σ) =

∥∥σD + χD
∥∥2

S
− σ2

0

2
· (1.1)

Here σD = σ − 1/d(traceσ)I is the deviatoric part of σ. It will be convenient in the following to abbreviate
σD + χD by

DΣ = σD + χD.

Note that

D�DΣ =
(DΣ
DΣ

)
holds. For a detailed introduction into this and other common plasticity models we refer to [11].

With (VI) at hand the optimal control under consideration reads

Minimize J(u, g)
s.t. the plasticity problem (VI) with � ∈ V ′ defined by

〈�, v〉 = −
∫

ΓN

g · v ds, v ∈ V,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (P)

where J : V × U → R denotes a given objective functional.

Remark 1.1. Due to Sobolev’s embedding theorem the source term � as defined in (P) is not just an element
of V ′ but satisfies � ∈ W−1,4

D for d = 2 and � ∈ W−1,3
D for d = 3, (cf. also Sect. 4).

Standing assumption. The following assumption is supposed to hold throughout this paper:

Assumption 1.2.

(1) The domain Ω ⊂ Rd, d ∈ {2, 3}, is a bounded Lipschitz domain in the sense of Chapter 1.2 from [9]. The
boundary of Ω, denoted by Γ , consists of two disjoint measurable parts ΓN and ΓD such that Γ = ΓN ∪ΓD.
While ΓN is a relatively open subset, ΓD is a relatively closed subset of Γ with positive measure. Furthermore
we suppose that the set Ω ∪ ΓN is regular in the sense of Gröger (cf. [8], Def. 2).

(2) The yield stress σ0 is assumed to be a positive constant.
(3) C−1 and H−1 are elements of L∞(Ω;L(S, S)). Both C−1(x) and H−1(x) are assumed to be uniformly

coercive on S. Moreover, we assume that C
−1 and H

−1 are symmetric, i.e. τ : C
−1(x)σ = σ : C

−1(x)τ and
an analogous relation holds for H−1 for all σ, τ ∈ S.

Some words concerning this assumption are in order. If Ω ⊂ R2 is a bounded Lipschitz domain, then Ω ∪ΓN is
regular in the sense of Gröger, iff ∂Ω \ ΓD ∩ ΓD is finite and no connected component of ΓD consists of a single
point, cf. [10]. For d = 3 the set Ω ∪ ΓN is regular in the sense of Gröger, if the boundary ∂ΓD within ∂Ω is
locally bi-Lipschitz diffeomorphic to the unit interval (0, 1). Sufficient conditions for this are given in [10]. We
point out that a broad class of non-smooth domains is regular in the sense of Gröger.
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The conditions in Assumption 1.2, (3) are for instance fulfilled by isotropic and homogeneous materials, where
the compliance tensor is given by

C
−1σ =

1
2 μ

σ − λ

2 μ (2 μ + d λ)
trace(σ) I

with Lamé constants μ and λ. In this case C−1 is coercive provided that μ > 0 and d λ + 2 μ > 0. A common
example for the hardening modulus is given by H

−1χ = χ/k1 with the hardening constant k1 > 0 (see [11],
Sect. 3.4).

2. Known and preliminary results

In the following we recall two well-known results concerning (VI) which will be useful in the sequel. Further-
more we establish a new regularity result for the solution of (VI), see Theorem 2.4 below.

Proposition 2.1 ([12], Props. 3.1, 3.2 and Lem. 3.3). For every � ∈ V ′, problem (VI) possesses a unique
solution (Σ, u) ∈ S2 × V .

Based on this we can introduce the solution operator associated to (VI):

Definition 2.2. The control-to-state map V ′ � � → (Σ, u) ∈ S2 × V is denoted by G. We sometimes consider
G with different domains and ranges. For simplicity these operators are also denoted by G.

By introducing a slack variable the variational inequality in (VI) can equivalently be reformulated by means
of a complementarity system:

Theorem 2.3 ([14], Thm. 2.2). Let � ∈ V ′ be given. The pair (Σ, u) ∈ S2 × V is the unique solution of (VI)
if and only if there exists a plastic multiplier λ ∈ L2(Ω) such that

AΣ + B∗u + λD∗DΣ = 0 in S2, (2.1a)
BΣ = � in V ′, (2.1b)

0 ≤ λ(x) ⊥ φ(Σ(x)) ≤ 0 a.e. in Ω (2.1c)

holds. Moreover, λ is unique.

If the inhomogeneity � in (VI) is slightly more regular, then one can improve the integrability of the solution
of (VI), as shown in the following. This result is essential to prove the Bouligand differentiability of G in
Section 3.

Theorem 2.4. There exists p̂ > 2 such that for all p ∈ [2, p̂] and for any � ∈ W−1,p
D (Ω; Rd), the unique solution

(Σ, u) of (VI) belongs to Lp(Ω; S2) × W 1,p
D (Ω; Rd). There exists L > 0 such that

‖Σ1 − Σ2‖Lp(Ω;S2) + ‖u1 − u2‖W 1,p
D (Ω;Rd) ≤ L ‖�1 − �2‖W−1,p

D (Ω;Rd) ,

i.e., G is Lipschitz continuous from W−1,p
D (Ω; Rd) to Lp(Ω; S2) × W 1,p

D (Ω; Rd).

Proof. The arguments are similar to [27], Theorem 4.4.4 and Proposition 4.4.5. We aim to apply Theorem 1.1
of [13]. To this end, we will reformulate (VI) and (2.1), respectively, as a single nonlinear PDE in u, cf. (2.7)
below, and verify Assumption 1.5(2) of [13] for the underlying nonlinearity.

Let (Σ, u) be the solution of (2.1). Testing (2.1a) with (τ ,0), τ ∈ S, we find C−1σ − ε(u) + λDΣ = 0 a.e.
in Ω. If we test with (0, μ), μ ∈ S, we arrive at

H
−1χ + λDΣ = 0 a.e. in Ω. (2.2)
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Combining both equations yields

C
−1σ − ε(u) − H

−1χ = 0 a.e. in Ω. (2.3)

Next we derive a pointwise form of (VI). The arguments are standard. For convenience of the reader we shortly
recall them. Let x0 be an arbitrary Lebesgue point of C−1, σ, H−1, χ, ε(u) and their products arising in the
sequel. Moreover let (τ , μ) ∈ K be given, where K := {T ∈ S2 : φ(T ) ≤ 0}. With ρ > 0 such that B(x0, ρ) ⊂ Ω,
we define

(τ̃ , μ̃) :=

{
(τ , μ), x ∈ B(x0, ρ)
(σ, χ), x ∈ Ω \ B(x0, ρ).

Obviously, (τ̃ , μ̃) is an element of K. Testing (VI) with (τ̃ , μ̃) yields

0 ≤ 1
|B(x0, ρ)|

∫
B(x0,ρ)

C
−1σ : (τ − σ) + H

−1χ : (μ − χ) − ε(u) : (τ − σ) dx.

We take the limit ρ ↘ 0 and obtain

C
−1(x0)σ(x0) : (τ − σ(x0)) + H

−1(x0)χ(x0) : (μ − χ(x0))
−ε(u(x0)) : (τ − σ(x0)) ≥ 0.

Since almost every point in Ω is a common Lebesgue point of C−1, σ, H−1, χ, and ε(u), there holds f.a.a.
x ∈ Ω

C
−1(x)σ(x) : (τ − σ(x)) + H

−1(x)χ(x) : (μ − χ(x))

−ε(u(x)) : (τ − σ(x)) ≥ 0 ∀(τ , μ) ∈ K.
(2.4)

Now we insert (σ(x), μ) into (2.4), which results in

H
−1(x)χ(x) : (μ − χ(x)) ≥ 0 for all μ ∈ S such that (σ(x), μ) ∈ K.

This is the necessary and sufficient optimality condition for the convex problem

min
μ∈K̄−σ(x)

1
2
‖μ‖2

H−1(x)

with K̄ := {τ ∈ S : (τ , 0) ∈ K}. Herein the norm induced by H−1(x) is defined by ‖μ‖
H−1(x) = (H−1(x)μ :μ)

1
2 .

Note that μ ∈ K̄ − σ(x) is equivalent to (σ(x), μ) ∈ K. Therefore we have f.a.a. x ∈ Ω

χ(x) = ProjH
−1(x)

K̄−σ(x)
(0) = ProjH

−1(x)

K̄
(σ(x)) − σ(x), (2.5)

where, for a given closed and convex set E ⊂ S, ProjH
−1(x)

E denotes the orthogonal projection on E with respect
to the norm induced by H

−1(x). Inserting (2.5) in (2.3) yields

C
−1(x)σ(x) + H

−1(x)(σ(x) − ProjH
−1(x)

K̄
(σ(x))) = ε(u)(x) a.e. in Ω. (2.6)

We define Mx : S → S by σ → C−1(x)σ+H−1(x)(σ−ProjH
−1(x)

K̄
(σ)). In view of the monotonicity of H−1(x)(σ−

ProjH
−1(x)

K̄
(σ)) (see, e.g., [12], Lem. 4.1), we have for every σ, τ ∈ S

(Mx(σ) − Mx(τ ), σ − τ )
S
≥ (

C
−1(x)(σ − τ ), σ − τ

)
S
≥ m ‖σ − τ‖2

S
,
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where m is the coercivity constant of C−1. Thus Mx(·) is strongly monotone and coercive because of Mx(0) = 0.
Due to the boundedness of C−1 and H−1 and the non-expansiveness of ProjH

−1(x)

K̄
with respect to the norm

induced by H−1(x), there exists m > 0, independent of σ, τ and x, so that

‖Mx(σ) − Mx(τ )‖
S
≤ m ‖σ − τ‖

S
.

Thus, thanks to the Browder−Minty theorem the inverse M−1
x (·) w.r.t. σ exists f.a.a. x ∈ Ω. Let us define

M−1(x, σ) := M−1
x (σ) f.a.a. x ∈ Ω. Then (2.6) is equivalent to σ = M−1(·, ε(u)) and hence, due to (2.1b), u

is a solution of ∫
Ω

M−1(·, ε(u)) : ε(v) dx = −〈�, v〉 ∀v ∈ V, (2.7)

which is the desired nonlinear PDE in the displacement field only. In order to apply Theorem 1.1 of [13], we have
to verify that M−1 satisfies ([13], Assumption 1.5(2)), i.e., M−1(·,0) ∈ L∞(Ω; S), M−1(·, σ) is measurable, and
M−1 is Lipschitz continuous and strongly monotone w.r.t. σ f.a.a. x ∈ Ω.

The strong monotonicity of Mx(·) implies that M−1
x (·) is Lipschitz continuous with Lipschitz constant 1/m,

thus independent of x. Due to (
M−1

x (σ) − M−1
x (τ ), σ − τ

)
S
≥ m/m2 ‖σ − τ‖2

S
,

M−1
x is also strongly monotone. Moreover, M−1(·,0) = 0 ∈ L∞(Ω; S). Hence it remains to show that

M−1(x, σ) is measurable with respect to x. As C−1, H−1 are measurable, there exist simple functions
C−1

n , H−1
n ∈ L∞(Ω;L(S)), n ∈ N, with

∥∥C−1(x) − C−1
n (x)

∥∥
L(S)

→ 0 and
∥∥H−1(x) − H−1

n (x)
∥∥
L(S)

→ 0 f.a.a.

x ∈ Ω. Thus, there exists NC
x ∈ N, depending on x, such that τ : C

−1
n (x)τ ≥ m/2 ‖τ‖2

S
for all n ≥ NC

x . The
same holds true for H−1

n . We define

C̃
−1
n (x) :=

{
C−1

n (x), n ≥ NC
x

IS, else
and H̃

−1
n (x) :=

{
H−1

n (x), n ≥ NH
x

IS, else,

where IS : S → S denotes the identity. Obviously C̃−1
n : Ω → S, H̃−1

n : Ω → S are simple functions. Moreover
C̃

−1
n (x), H̃−1

n (x) ∈ S are coercive and C̃
−1
n (x) → C

−1(x) and H̃
−1
n (x) → H

−1(x) f.a.a. x ∈ Ω. Analogous

arguments as for Mx show that Mn
x : S → S, defined by σ → C̃−1

n (x)σ + H̃−1
n (x)(σ − ProjH̃

−1
n (x)

K̄
(σ)) ∈ S,

is invertible f.a.a. x ∈ Ω and the inverse (Mn
x )−1(·) is Lipschitz continuous with Lipschitz constant Ln

x =
max(1, 2/m), independent of n. By construction Mn(x, σ) := Mn

x (σ) and (Mn)−1(x, σ) := (Mn
x )−1(σ) are

simple functions with respect to x. For χ := ProjH
−1(x)

K̄
(σ) and χn := ProjH̃

−1
n (x)

K̄
(σ) we find

0 ≤ H
−1(x)(χ − σ) : (χn − χ) + H̃

−1
n (x)(χn − σ) : (χ − χn)

= (H−1(x) − H̃
−1
n (x))(χ − σ) : (χn − χ) − H̃

−1
n (x)(χn − χ) : (χn − χ).

The uniform coercivity of H̃−1
n (x) thus implies ‖H−1(x) − H̃−1

n (x)‖L(S) ‖χ − σ‖
S
≥ c ‖χn − χ‖

S
and therefore

‖χn − χ‖
S
→ 0. Hence {χn(x)}n∈N is bounded in S. Consequently it holds

‖Mn
x (σ) − Mx(σ)‖

S
=

∥∥∥( C̃
−1
n (x) − C

−1(x))σ + ( H̃
−1
n (x) − H

−1(x))σ + H
−1(x)χ − H̃

−1
n (x)χn

∥∥∥
S

≤
(∥∥̃C

−1
n (x) − C

−1(x)
∥∥
L(S)

+
∥∥∥ H̃

−1
n (x) − H

−1(x)
∥∥∥
L(S)

)
‖σ‖

S

+
∥∥H

−1(x)
∥∥
L(S)

‖χ − χn‖S
+

∥∥∥H
−1(x) − H̃

−1
n (x)

∥∥∥
L(S)

‖χn‖S

n→∞−−−−→ 0
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and thus f.a.a. x ∈ Ω∥∥(Mn)−1(x, σ) − M−1(x, σ)
∥∥

S
=

∥∥(Mn
x )−1(Mn

x ((Mn
x )−1(σ))) − (Mn

x )−1(Mn
x (M−1

x (σ)))
∥∥

S

≤Ln
x

∥∥Mn
x ((Mn

x )−1(σ)) − Mn
x (M−1

x (σ))
∥∥

S

=max(1, 2/m)
∥∥Mx(M−1

x (σ)) − Mn
x (M−1

x (σ))
∥∥

S

n→∞−−−−→ 0,

so that M−1(·, σ) is indeed measurable. Alltogether we have shown that
• M−1(·,0) ∈ L∞(Ω; S),
• M−1(·, σ) is measurable,
• (

M−1(x, σ) − M−1(x, τ ), σ − τ
)

S
≥ m

m2 ‖σ − τ‖2
S
,

• ∥∥M−1(x, σ) − M−1(x, τ )
∥∥

S
≤ 1

m ‖σ − τ‖
S

f.a.a. x ∈ Ω and all σ, τ ∈ S. Therefore M−1 satisfies Assumption 1.5(2) in [13], and Theorem 1.1 (cf. [13]),
implies the existence of p̂ > 2 such that, for all p ∈ [2, p̂] and every � ∈ W−1,p

D (Ω; Rd), (2.7) admits a unique
solution u ∈ W 1,p

D (Ω; Rd). Moreover, the associated solution map W−1,p
D (Ω; Rd) � � → u ∈ W 1,p

D (Ω; Rd) is
Lipschitz continuous for all p ∈ [2, p̂]. As M−1

x maps Lp(Ω; S) Lipschitz continuously into itself with Lipschitz
constant 1/m, we conclude that σ = M−1(·, ε(u)) ∈ Lp(Ω; S). Finally, since H−1 is uniformly coercive by
Assumption 1.2, (2.3) implies χ ∈ Lp(Ω; S), and both σ and χ depend Lipschitz continuously on u and thus
on �. �
Remark 2.5. We underline that the proof of Theorem 1.1 from [13], adapts a technique introduced by Gröger
in [8] for scalar second-order differential operators to the case of nonlinear elasticity. For this purpose Assump-
tion 1.2(1) is required.

Let us shortly comment on the existence of globally optimal controls for (P). Based on the Lipschitz continuity
of G : U → V the following existence result can be proven by standard arguments:

Proposition 2.6. Let J : V × U → R be weakly lower semicontinuous and let R > 0, ĝ ∈ U exist such that

J(G(g), g) ≥ J(G(ĝ), ĝ) ∀g ∈ U with ‖g − ĝ‖U > R,

then there exists a globally optimal solution of (P).

Note that we cannot expect the solution to be unique due to the nonlinearity of G.

3. Bouligand differentiability

In this section we establish the Bouligand differentiability of G : � → (Σ, u) from W−1,p
D (Ω; Rd) to S2 × V .

This result will be the essential tool to verify the sufficiency of our second-order conditions in Section 4. Before
we are in the position to prove the Bouligand differentiability, we have to recall a directional differentiability
result from [15] and derive some auxiliary results for the directional derivative.

Throughout this section let �̄ ∈ W−1,p
D (Ω; Rd) be fixed but arbitrary and denote the associated state by

(Σ̄, ū, λ̄), i.e., (Σ̄, ū, λ̄) ∈ S × V × L2(Ω) solves

AΣ̄ + B∗ū + λ̄D∗DΣ̄ = 0 in S2, (3.1a)
BΣ̄ = �̄ in V ′, (3.1b)

0 ≤ λ̄(x) ⊥ φ(Σ̄(x)) ≤ 0 a.e. in Ω. (3.1c)

Then we define the following subsets of Ω up to sets of zero measure:

Ās := {x ∈ Ω : λ̄(x) > 0}, (3.2a)
B̄ := {x ∈ Ω : φ(Σ̄(x)) = λ̄(x) = 0}, (3.2b)
Ī := {x ∈ Ω : φ(Σ̄(x)) < 0}. (3.2c)
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The following theorem covers the directional differentiability of G in a weak sense:

Theorem 3.1 ([15], Thm. 3.2). For every �̄ ∈ V ′ and every δ� ∈ V ′, the control-to-state map G : V ′ → S2 × V
is directionally differentiable at �̄ in direction δ� in a weak sense, i.e., there exists δwG(�̄; δ�) ∈ S2 ×V such that

G(�̄ + tδ�) − G(�̄)
t

⇀ δwG(�̄; δ�) as t ↘ 0.

The weak directional derivative δwG(�̄; δ�) is given by the unique solution (Σ′, u′) ∈ S� × V of the following
variational inequality: (

AΣ′, T − Σ′) +
(
B∗u′, T − Σ′)

+
(
λ̄, DΣ′ : D(T − Σ′)

) ≥ 0 for all T ∈ S�, (3.3a)
BΣ′ = δ�, (3.3b)

where the convex cone S� is defined by

S� := {T ∈ S2 :
√

λ̄DT ∈ S, DΣ̄(x) : DT (x) ≤ 0 a.e. in B̄,

DΣ̄(x) : DT (x) = 0 a.e. in Ās}.
Again the VI in (3.3a) can be reformulated by means of a slack variable:

Theorem 3.2 ([15], Prop. 3.13). Let �̄ ∈ V ′ and δ� ∈ V ′ be given and let (Σ̄, ū, λ̄) be the state and plastic
multiplier associated with �̄. A pair (Σ′, u′) ∈ S2 × V is the unique solution of (3.3) if and only if there exists
a multiplier λ′ ∈ L2(Ω) such that

AΣ′ + B∗u′ + λ̄D∗DΣ′ + λ′D∗DΣ̄ = 0 in S2, (3.4a)
BΣ′ = δ� in V ′, (3.4b)

R � λ′(x) ⊥ DΣ̄ : DΣ′(x) = 0 a.e. in Ās, (3.4c)

0 ≤ λ′(x) ⊥ DΣ̄ : DΣ′(x) ≤ 0 a.e. in B̄, (3.4d)
0 = λ′(x) ⊥ DΣ̄ : DΣ′(x) ∈ R a.e. in Ī (3.4e)

holds. Moreover, λ′ is unique.

Under more restrictive assumptions we will sharpen the assertion of Theorem 3.1. To be more precise we
require

Assumption 3.3.

(i) Let �̄, δ� ∈ W−1,p
D (Ω; Rd) with p ∈ (2, p̂] and p̂ given by Theorem 2.4.

(ii) The solution of (3.1) satisfies χ̄ ∈ Ls(Ω; S) with

s >
2p

p − 2
· (3.5)

Moreover we set
q =

sp

s + p
· (3.6)

Note that q > 2 and p′ < q < p due to (3.5), where p′ is the integrability exponent conjugated to p, i.e.,
1/p + 1/p′ = 1.

Remark 3.4.

(i) If the right hand sides � and δ� in (3.1) and (3.4) are elements of U = L2(ΓN ; Rd), and thus feasible controls
for (P), assumption (3.3) (i) is automatically fulfilled (cf. Rem. 1.1).
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(ii) Note that we assume the higher integrability (3.5) only for the particular solution χ̄ of (3.1), where the
control-to-state map is differentiated. Later on, in Section 4, this will be a fixed stationary point of (P).
Let us point out that we do not assume the control-to-state operator G to map from W−1,p

D (Ω; Rd) into
Lp(Ω; S)×Ls(Ω; S)×W 1,p

D (Ω; Rd) (cf. Thm. 2.4). Nevertheless such higher integrability of the solution could
probably be proven, provided that the data of the problem are sufficiently smooth. This is for instance the
case, if volume loads are applied without mixed boundary conditions, i.e., ΓD = ∂Ω, and ∂Ω, C, and H are
sufficiently smooth (cf. e.g. [24], Thm. 5.2).

For the rest of this section we suppose Assumption 3.3 to hold.
Next let us consider the following perturbed problem:

AΣ + B∗u + λD∗DΣ = 0 in S2, (3.7a)
BΣ = �̄ + δ� in V ′, (3.7b)

0 ≤ λ(x) ⊥ φ(Σ(x)) ≤ 0 a.e. in Ω. (3.7c)

Clearly, (3.7) admits a unique solution. For the difference to the solution of (3.1) we find:

Lemma 3.5. Let (Σ̄, λ̄) and (Σ, λ) be given by the solution of (3.1) and (3.7), respectively. Then it holds

(i)
∥∥Σ − Σ̄

∥∥
Lp(Ω;S2)

≤ L ‖δ�‖W−1,p(Ω;Rd),

(ii) DΣ −DΣ̄ → 0 in Lm(Ω; S) for all 1 ≤ m < ∞, if δ� → 0 in W−1,p
D (Ω; Rd),

(iii)
∥∥λ − λ̄

∥∥
Lq(Ω)

≤ c ‖δ�‖W−1,p
D (Ω;Rd).

Proof. Let (δ�n)n∈N ⊂ W−1,p
D (Ω; Rd) be an arbitrary sequence with δ�n → 0 for n → 0 and let (Σn, λn) be

given by the solution of (3.7) with right hand side �̄ + δ�n. Assertion (i) follows directly from Theorem 2.4.
To prove (ii), observe that

∥∥DΣn(x) −DΣ̄(x)
∥∥

S
≤ 2σ0 a.e. in Ω, i.e., DΣn − DΣ̄ is bounded in Lm(Ω; S).

In addition we know DΣn(x) − DΣ̄(x) → 0 a.e. on Ω because of (i). Consequently Lebesgue’s theorem of
dominated convergence implies (ii). From (2.2) and (3.1c) one deduces the following characterization of λ̄

σ2
0 λ̄ = λ̄DΣ̄ : DΣ̄ = −H

−1χ̄ : DΣ̄ a.e. in Ω. (3.8)

Completely analogously one shows σ2
0λn = λnDΣn : DΣn = −H−1χn : DΣn a.e. in Ω. Hence it holds

λn − λ̄ =
1
σ2

0

(−H
−1χ̄ : (DΣn −DΣ̄) − H

−1(χn − χ̄) : DΣn

)
. (3.9)

Thus, due to (3.6) and (i) we obtain∥∥λn − λ̄
∥∥

Lq(Ω)
≤ c

(
‖χ̄‖Ls(Ω;S)

∥∥DΣn −DΣ̄
∥∥

Lp(Ω;S)
+ σ0 ‖χn − χ̄‖Lq(Ω;S)

)
≤ c ‖δ�n‖W−1,p

D (Ω;Rd) ,

which establishes (iii). �

To establish a regularity result for the directional derivative (Σ′, u′, λ′) let us now consider another perturbed
problem:

AΣt + B∗ut + λtD∗DΣt = 0 in S2, (3.10a)
BΣt = �̄ + tδ� in V ′, (3.10b)

0 ≤ λt(x) ⊥ φ(Σt(x)) ≤ 0 a.e. in Ω (3.10c)

with t > 0 given.
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Lemma 3.6. Let (Σ̄, λ̄) be given by the solution of (3.1), (Σt, λt) by the solution of (3.10) and (Σ′, λ′) by the
solution of (3.4). Then it holds

(i) Σt−Σ̄
t ⇀ Σ′ in Lp(Ω; S2) as t ↘ 0,

(ii) λt−λ̄
t ⇀ λ′ in Lq(Ω) as t ↘ 0,

(iii) ‖λ′‖Lq(Ω) ≤ c ‖δ�‖W−1,p
D (Ω;Rd) and

∥∥Σ′∥∥
Lp(Ω;S2)

≤ L ‖δ�‖W−1,p
D (Ω;Rd).

Proof. Let (tn)n∈N ⊂ R+ be an arbitrary sequence of positive real numbers converging to zero and let (Σtn , λtn)
be given by the solution of (3.10) with right hand side �̄ + tnδ�.

(i): According to Theorem 3.1 we know (Σtn − Σ̄)/tn ⇀ Σ′ in S2. Moreover it holds∥∥∥∥Σtn − Σ̄

tn

∥∥∥∥
Lp(Ω;S2)

≤ L ‖δ�‖W−1,p
D (Ω;Rd) (3.11)

because of Theorem 2.4. Thus there exists a subsequence converging weakly in Lp(Ω, S2). The uniqueness
of the weak limit therefore implies (i).

(ii): Analogously to (3.9), one shows that

λtn − λ̄

tn
=

1
σ2

0

(
−H

−1χ̄ :
DΣtn −DΣ̄

tn
− H

−1 χtn
− χ̄

tn
: DΣtn

)
. (3.12)

Due to (i) and (3.6) it holds H
−1χ̄ : (DΣtn − DΣ̄)/tn ⇀ H

−1χ̄ : DΣ′ in Lq(Ω). If we choose m = s,
Lemma 3.5 (ii) implies H−1(χtn

− χ̄)/tn : DΣtn ⇀ H−1χ′ : DΣ̄ in Lq(Ω). Consequently, (λtn − λ̄)/tn ⇀
1/σ2

0

(−H−1χ̄DΣ′ − H−1χ′ : DΣ̄
)

in Lq(Ω). Since DΣ′ : DΣ̄ = 0 a.e. in Ās, λ̄ = 0 a.e. in B̄ and Ī, cf.
(3.4c), (3.2), and (3.1c), we have λ̄DΣ′ : DΣ̄ = 0 a.e. in Ω. In view of (2.2) we thus know

H
−1χ̄ : DΣ′ = −λ̄DΣ′ : DΣ̄ = 0 a.e. in Ω. (3.13)

Hence
λtn − λ̄

tn
⇀ − 1

σ2
0

H
−1χ′ : DΣ̄ in Lq(Ω). (3.14)

Testing (3.4a) with (0, μ), μ ∈ S, yields

H
−1χ′ + λ̄DΣ′ + λ′DΣ̄ = 0 a.e. in Ω. (3.15)

Because of (3.2), (3.1c), and (3.4c)–(3.4e) one deduces σ2
0λ

′ = λ′DΣ̄ : DΣ̄ a.e. in Ω and therefore

σ2
0λ′ = −H

−1χ′ : DΣ̄ − λ̄DΣ′ : DΣ̄. (3.16)

Thus, (3.13) yields λ′ = −1/σ2
0H−1χ′ : DΣ̄, which together with (3.14) implies (ii).

(iii): In view of (i) and (3.11) it holds
∥∥Σ′∥∥

Lp(Ω;S2)
≤ L ‖δ�‖W−1,p

D (Ω;Rd). From (3.6) and (3.12) we furthermore
deduce ∥∥∥∥λtn − λ̄

tn

∥∥∥∥
Lq(Ω)

≤ c

(
‖χ̄‖Ls(Ω;S)

∥∥∥∥DΣtn −DΣ̄

tn

∥∥∥∥
Lp(Ω;S)

+ σ0

∥∥∥∥χtn
− χ̄

tn

∥∥∥∥
Lq(Ω;S)

)
≤ c ‖δ�‖W−1,p

D (Ω;Rd)

and hence (ii) gives ‖λ′‖Lq(Ω) ≤ c ‖δ�‖W−1,p
D (Ω;Rd). �
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Corollary 3.7. For u′ given by the solution of (3.3) there exists a constant c > 0 such that

‖u′‖W 1,p
D (Ω;Rd) ≤ c ‖δ�‖W−1,p

D (Ω;Rd) .

Proof. Let τ ∈ S be arbitrary and define T̂ ∈ S2 by T̂ := (τ ,−τ ). Due to DT̂ = 0 it then follows T̂ + Σ′ ∈ S�.
Thus we are allowed to test (3.3a) with T̂ + Σ′, which together with Lemma 3.6 (iii) yields∫

Ω

ε(u′) : τ dx ≤ (AΣ′, T̂ ) ≤ c
∥∥Σ′∥∥

Lp(Ω;S2)
‖τ‖Lp′(Ω;S)

≤ c ‖δ�‖W−1,p
D (Ω;Rd) ‖τ‖Lp′(Ω;S) ∀ τ ∈ S.

By the Hahn−Banach theorem ε(u′) can thus be extended to a functional on Lp′
(Ω; S) and Korn’s inequality

gives the claim. �

Now we are ready to prove the main result of this section.

Theorem 3.8. Let (Σ̄, ū, λ̄) be the solution of (3.1), (Σ, u, λ) the solution of (3.7) and (Σ′, u′, λ′) the solution
of (3.4). Then it holds ∥∥Σ − Σ̄ − Σ′∥∥

S2 + ‖u − ū − u′‖V = o
(
‖δ�‖W−1,p

D (Ω;Rd)

)
, (3.17)

i.e., G is Bouligand-differentiable from W−1,p
D (Ω; Rd) to S2 × V .

Remark 3.9. We point out that a norm gap is needed for the proof of Theorem 3.8, i.e., we were not able
to show Bouligand-differentiability from V ′ to S2 × V , but we need �̄, δ� ∈ W−1,p

D (Ω; Rd). However this is not
surprising since such norm gaps are commonly needed for the differentiability of nonlinear operators and also
appear in the proof of Fréchet-differentiability for quasi-linear equations (see e.g. [28]).

Proof of Theorem 3.8. Let (δ�n)n∈N ⊂ W−1,p
D (Ω; Rd) be an arbitrary sequence with δ�n → 0 for n → 0. Fur-

thermore by (Σn, un, λn) we denote the solution of (3.7) with right hand side �̄ + δ�n and by (Σ′
n, u′

n, λ′
n)

the solution of (3.4) with right hand side δ�n. By subtracting (3.1a) and (3.4a) from (3.7a) and testing with
Σn − Σ̄ − Σ′

n we arrive at(
A(Σn − Σ̄ − Σ′

n), Σn − Σ̄ − Σ′
n

)
+

(
B∗(un − ū − u′

n), Σn − Σ̄ − Σ′
n

)︸ ︷︷ ︸
=:I1

+
(
λnDΣn − λ̄DΣ̄ − λ̄DΣ′

n − λ′
nDΣ̄, DΣn − DΣ̄ −DΣ′

n

)
= 0.

(3.18)

Thanks to (3.1b), (3.7b) and (3.4b) we know B(Σn − Σ̄ − Σ′
n) = 0 such that I1 = 0. Since C−1 and H−1 are

uniformely coercive, the linear operator A induces an equivalent norm on S2 so that (3.18) implies

c
∥∥Σn − Σ̄ − Σ′

n

∥∥2

S2 ≤ (
A(Σn − Σ̄ − Σ′

n), Σn − Σ̄ − Σ′
n

)
= −

∫
Ω

λ̄︸︷︷︸
≥0

∥∥DΣn −DΣ̄ −DΣ′
n

∥∥2

S︸ ︷︷ ︸
≥0

dx

−
∫

Ω

(λn − λ̄ − λ′
n)DΣn : (DΣn −DΣ̄ −DΣ′

n) dx

−
∫

Ω

λ′
n(DΣn −DΣ̄) : (DΣn −DΣ̄ −DΣ′

n) dx ≤ Is + Ib + Ii + IΩ,

(3.19)

where
IΩ := −

∫
Ω

λ′
n(DΣn −DΣ̄) : (DΣn −DΣ̄ −DΣ′

n) dx.
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Moreover, Is is given by

Is := −
∫
Ās

(λn − λ̄ − λ′
n)DΣn : (DΣn −DΣ̄ −DΣ′

n) dx,

and Ib and Ii are defined by the analogous integrals on B̄ and Ī, respectively, where Ās, B̄ and Ī are as defined
in (3.2). Note that Ās ∪ B̄ ∪ Ī = Ω. By Lemma 3.5 there exist subsequences λnk

and Σnk
with λnk

(x) → λ̄(x)
and Σnk

(x) → Σ̄(x) a.e. on Ω. For the sake of convenience we denote these subsequences again by λn and Σn.
Next we will estimate Is, Ib, Ii and IΩ separately.

Estimation of IΩ:
According to (3.6) there exists m > 1 with 1

q + 1
m + 1

2 = 1 such that Lemma 3.6(iii) implies

IΩ ≤ ‖λ′
n‖Lq(Ω)

∥∥DΣn −DΣ̄
∥∥

Lm(Ω;S)

∥∥DΣn −DΣ̄ −DΣ′
n

∥∥
S

≤ c ‖δ�n‖W−1,p
D (Ω;Rd)

∥∥DΣn −DΣ̄
∥∥

Lm(Ω;S)

∥∥Σn − Σ̄ − Σ′
n

∥∥
S2 .

(3.20)

Estimation of Is:
If x ∈ Ās, then it holds λ̄(x) > 0 and (3.1c) gives φ(Σ̄(x)) = 0. Due to pointwise convergence and the
complementarity (3.7c) there exists Nx ∈ N, depending on x, such that λn(x) > 0 and φ(Σn(x)) = 0, i.e.,
‖DΣn(x)‖

S
= σ0, for all n ≥ Nx and f.a.a. x ∈ Ās. From Lemma A.1 we conclude

zn(x) :=
DΣ̄(x) : (DΣ̄(x) −DΣn(x))∥∥DΣ̄(x)

∥∥
S

∥∥DΣ̄(x) −DΣn(x)
∥∥

S

→ 0 a.e. on Ās.

Obviously it holds |zn(x)| ≤ 1 and hence Lebesgue’s dominated convergence theorem yields

zn → 0 in Lξ(Ās) for all 1 ≤ ξ < ∞. (3.21)

Since DΣ̄ : DΣ′
n = 0 a.e. in Ās, cf. (3.4c), one obtains

Is = −
∫
Ās

(λn − λ̄ − λ′
n)(DΣn −DΣ̄) : (DΣn −DΣ̄ − DΣ′

n) dx

+
∫
Ās

(λn − λ̄ − λ′
n)zn

∥∥DΣ̄
∥∥

S

∥∥DΣn −DΣ̄
∥∥

S
dx.

Again, by (3.6) there exist m > 1 and ξ > 1 with 1
q + 1

m + 1
2 = 1 and 1

q + 1
ξ + 1

p = 1. Thanks to Lemmas 3.5
and 3.6(iii) we thus arrive at

Is ≤ ∥∥λn − λ̄ − λ′
n

∥∥
Lq(Ω)

∥∥DΣn −DΣ̄
∥∥

Lm(Ω;S)

∥∥DΣn −DΣ̄ −DΣ′
n

∥∥
S2

+ σ0

∥∥λn − λ̄ − λ′
n

∥∥
Lq(Ω)

‖zn‖Lξ(Ās)

∥∥Σn − Σ̄
∥∥

Lp(Ω;S2)

≤ c ‖δ�n‖W−1,p
D (Ω;Rd)

∥∥DΣn −DΣ̄
∥∥

Lm(Ω;S)

∥∥Σn − Σ̄ − Σ′
n

∥∥
S2

+ c ‖δ�n‖2
W−1,p

D (Ω;Rd) ‖zn‖Lξ(Ās) .

(3.22)

Estimation of Ib:
For x ∈ B̄, one finds φ(Σ̄(x)) = λ̄(x) = 0. Hence we have either λn(x) = 0 and consequently λn(x) − λ̄(x) = 0
or λn(x) > 0 and thus φ(Σn(x)) = 0, i.e., ‖DΣn(x)‖

S
= σ0. Then Lemma A.1 yields that

(λn − λ̄)DΣ̄ : (DΣ̄ −DΣn) = (λn − λ̄)
1
2

∥∥DΣ̄ −DΣn

∥∥2

S
(3.23)
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in both cases. Moreover we know that λ̄DΣ̄ :DΣ′
n = λ′

nDΣ̄ :DΣ′
n = 0 a.e. in Ω and DΣ̄ :DΣ′

n ≤ 0 and 0 ≤ λ′
n

a.e. in B̄, cf. (3.2) and (3.4c)–(3.4e). Therefore we obtain

Ib = −
∫
B̄
(λn − λ̄ − λ′

n)DΣn : (DΣn −DΣ̄ −DΣ′
n) dx

= −
∫
B̄
(λn − λ̄ − λ′

n)(DΣn −DΣ̄) : (DΣn −DΣ̄ −DΣ′
n) dx

+
∫
B̄
[(λn − λ̄)DΣ̄ : (DΣ̄ −DΣn) + λn︸︷︷︸

≥0

DΣ̄ : DΣ′
n︸ ︷︷ ︸

≤0

− λ̄DΣ̄ : Σ′
n︸ ︷︷ ︸

=0

] dx

+
∫
B̄
[λ′

n(DΣ̄ : DΣn − ∥∥DΣ̄
∥∥2

S︸ ︷︷ ︸
=σ2

0

) − λ′
nDΣ̄ : DΣ′

n︸ ︷︷ ︸
=0

] dx

≤ −
∫
B̄
(λn − λ̄ − λ′

n)(DΣn −DΣ̄) : (DΣn −DΣ̄ −DΣ′
n) dx

+
∫
B̄
(λn − λ̄)DΣ̄ : (DΣ̄ −DΣn) dx +

∫
B̄

λ′
n︸︷︷︸

≥0

(σ0 ‖DΣn‖S︸ ︷︷ ︸
≤σ0

−σ2
0) dx

≤ −
∫
B̄
(λn − λ̄ − λ′

n)(DΣn −DΣ̄) : (DΣn −DΣ̄ −DΣ′
n) dx

+
∫
B̄
(λn − λ̄)

1
2

∥∥DΣ̄ −DΣn

∥∥2

S
dx,

where we used (3.23) for the last estimate. Thus, as in (3.22) there exist m and ξ with 1
q + 1

m + 1
2 = 1 and

1
q + 1

ξ + 1
p = 1, so that

Ib ≤ ∥∥λn − λ̄ − λ′
n

∥∥
Lq(Ω)

∥∥DΣn −DΣ̄
∥∥

Lm(Ω;S)

∥∥DΣn −DΣ̄ −DΣ′
n

∥∥
S2

+
1
2

∥∥λn − λ̄
∥∥

Lq(Ω)

∥∥DΣn −DΣ̄
∥∥

Lξ(Ω;S)

∥∥Σn − Σ̄
∥∥

Lp(Ω;S2)

≤ c ‖δ�n‖W−1,p
D (Ω;Rd)

∥∥DΣn −DΣ̄
∥∥

Lm(Ω;S)

∥∥Σn − Σ̄ − Σ′
n

∥∥
S2

+ c ‖δ�n‖2
W−1,p

D (Ω;Rd)

∥∥DΣn −DΣ̄
∥∥

Lξ(Ω;S)
.

(3.24)

Estimation of Ii:
For x ∈ Ī there holds φ(Σ̄(x)) < 0 and λ̄(x) = 0 in view of (3.1c). Due to the continuity of φ, the pointwise
convergence and the complementarity (3.7c) there exists Ñx ∈ N such that φ(Σn(x)) < 0 and λn(x) = 0 for all
n ≥ Ñx and for a.a. x ∈ Ī. In particular this implies (λn − λ̄)/ ‖δ�n‖W−1,p(Ω;Rd) → 0 a.e. in Ī. Furthermore we
know

∥∥λn − λ̄
∥∥

Lq(I(�))
/ ‖δ�n‖W−1,p(Ω;Rd) ≤ c ∀n ∈ N with 2 < q, cf. Lemma 3.5(iii) and (3.6). Thus, Lemma A.2

implies

ωn :=
λn − λ̄

‖δ�n‖W−1,p
D (Ω;Rd)

→ 0 in L2(Ī). (3.25)

Due to (3.4e), it follows

Ii = −
∫
Ī
(λn − λ̄ − λ′

n)DΣn : (DΣn −DΣ̄ −DΣ′
n) dx

=
∫
Ī

ωn ‖δ�n‖W−1,p(Ω;Rd) DΣn : (DΣn −DΣ̄ −DΣ′
n) dx

≤ σ0 ‖ωn‖L2(Ī) ‖δ�n‖W−1,p
D (Ω;Rd)

∥∥Σn − Σ̄ − Σ′
n

∥∥
S2 .

(3.26)
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In summary, (3.20), (3.22), (3.24), and (3.26) together with (3.19), Lemma 3.6(iii), and Young’s inequality
yield ∥∥Σn − Σ̄ − Σ′

n

∥∥2

S2

‖δ�n‖2
W−1,p

D (Ω;Rd)

≤ c
(∥∥DΣn −DΣ̄

∥∥
Lm(Ω;S)

+ ‖ωn‖L2(Ī)

)2

+ c
(
‖zn‖Lξ(Ās) +

∥∥DΣn −DΣ̄
∥∥

Lξ(Ω;S)

)
n→∞−−−−→ 0,

(3.27)

where we used Lemma 3.5(ii), (3.21) and (3.25) to pass to the limit.
To prove the remainder term property for u, we subtract (3.1a) and (3.4a) from (3.7a) and test the arising

equation with
T̃ := (ε(un) − ε(ū) − ε(u′

n),−ε(un) + ε(ū) + ε(u′
n)) ∈ S2

so that
(A(Σn − Σ̄ − Σ′

n), T̃ ) + (B∗(un − ū − u′
n), T̃ )

+ (λnDΣn − λ̄DΣ̄ − λ̄DΣ′
n − λ′

nDΣ̄, DT̃ )︸ ︷︷ ︸
=:I2

= 0. (3.28)

is obtained. As DT̃ = 0, it holds I2 = 0, and Korn’s inequality implies

‖un − ū − u′
n‖2

V ≤ c (B∗(un − ū − u′
n), T̃ ) ≤ c (A(Σn − Σ̄ − Σ′

n), T̃ )
≤ c ‖un − ū − u′

n‖V

∥∥Σn − Σ̄ − Σ′
n

∥∥
S2 .

(3.29)

Hence (3.27) gives ‖un − ū − u′
n‖V / ‖δ�n‖W−1,p

D (Ω;Rd) → 0.
Since the above arguments hold for every subsequence of (Σn, un, λn), a standard argument implies (3.17)

for the whole sequence. �

In view of Lemma A.2 we can enhance the result of Theorem 3.8.

Corollary 3.10. Let (Σ̄, ū, λ̄) be the solution of (3.1), (Σ, u, λ) the solution of (3.7) and (Σ′, u′, λ′) the
solution of (3.4). Then it holds∥∥Σ − Σ̄ − Σ′∥∥

Lβ(Ω;S2)
+ ‖u − ū − u′‖W 1,β

D (Ω;Rd) = o
(
‖δ�‖W−1,p

D (Ω;Rd)

)
(3.30)

for all 1 ≤ β < p.

Proof. As in the proof of Theorem 3.8 let (δ�n)n∈N ⊂ W−1,p
D (Ω; Rd) be an arbitrary sequence with δ�n → 0

for n → 0. Furthermore by (Σn, un, λn) we denote the solution of (3.7) with right hand side �̄ + δ�n and by
(Σ′

n, u′
n, λ′

n) the solution of (3.4) with right hand side δ�n. Thanks to Theorem 3.8 there exist subsequences,
denoted in the same way, such that

Σn − Σ̄ − Σ′
n

‖δ�‖W−1,p
D (Ω;Rd)

→ 0 a.e. in Ω,
un − ū − u′

n

‖δ�‖W−1,p
D (Ω;Rd)

→ 0 a.e. in Ω.

Moreover these subsequences are bounded in Lp(Ω; S2) and W 1,p
D (Ω; Rd), respectively, cf. Theorem 2.4,

Lemma 3.6 and Corollary 3.7. By Lemma A.2 we get (3.30) for the subsequences and a standard argument
gives (3.30) for the whole sequence. �

Theorem 3.8 entails two consequences stated in the following corollaries:

Corollary 3.11. Let the multipliers λ, λ̄ and λ′ be given by the solutions of (3.7), (3.1) and (3.4), respectively.
Then it holds ∥∥λ − λ̄ − λ′∥∥

Lγ(Ω)
= o

(
‖δ�‖W−1,p

D (Ω;Rd)

)
(3.31)

for all 1 ≤ γ < q.
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Proof. In view of (3.8), (3.16) and (3.13) it holds

σ2
0(λ − λ̄ − λ′) = − H

−1χ : DΣ + H
−1χ̄ : DΣ̄ + H

−1χ′ : DΣ̄

= − H
−1(χ − χ̄) : (DΣ −DΣ̄) − H

−1(χ − χ̄ − χ′) : DΣ̄

− H
−1χ̄ : (DΣ −DΣ̄ −DΣ′).

Since q = 1/(1
s + 1

p ), cf. (3.6), every γ < q can be written as γ = 1/(1
s + 1

β ) for some β < p. The boundedness∥∥DΣ̄(x)
∥∥

S
≤ σ0 a.e. in Ω implies∥∥λ − λ̄ − λ′∥∥

Lγ(Ω)
≤ c ‖χ − χ̄‖Lβ(Ω;S)

∥∥DΣ −DΣ̄
∥∥

Ls(Ω;S)

+ c ‖χ − χ̄ − χ′‖Lβ(Ω;S2)

+ c ‖χ̄‖Ls(Ω;S)

∥∥Σ − Σ̄ − Σ′∥∥
Lβ(Ω;S2)

.

Thus Corollary 3.10 and Lemma 3.5 yield the claim. �

Corollary 3.12. For all 1 ≤ β < p the control-to-state map G : W−1,p
D (Ω; Rd) → Lβ(Ω; S2) × W 1,β

D (Ω; Rd) is
directionally differentiable at �̄ in direction δ�.

Furthermore the mapping W−1,p
D (Ω; Rd) � � → λ ∈ Lγ(Ω) is directionally differentiable at �̄ in direction δ�

for all 1 ≤ γ < q.

Proof. Since S� is a cone, the mapping δ� → δG(�̄, δ�) is positively homogeneous so that
(tΣ′, tu′, tλ′) is the solution of (3.4) with right hand side tδ�. Consequently, (3.30) yields(∥∥Σt − Σ̄ − tΣ′∥∥

Lβ(Ω;S2)
+ ‖ut − ū − tu′‖W 1,β

D (Ω;Rd)

)
/t

t↘0−−−→ 0. The second assertion follows analogously
from (3.31). �

Remark 3.13. If the solution of (3.1) satisfies the weaker condition χ̄ ∈ Ls(Ω; S) with s > p
p−2 , cf. (3.5),

then it can be shown by similar arguments as in the proof of Theorem 3.8 that the control-to-state map is only
directionally differentiable without the remainder term property (3.17).

4. Second-order sufficient optimality conditions

With the differentiability results of the previous section at hand we can now establish second-order suffi-
cient condtions which guarantee local optimality for (P). We will present two different second-order sufficient
conditions:

1. The first set of conditions given in Theorem 4.6 allows for a general (smooth) objective. It involves a
particularly chosen Lagrange functional, see (4.2) below. However, the coercivity of the Hessian of this
Lagrangian is required on a cone which is larger than the classical cone of critical directions.
The proof is based on a Taylor expansion of the Lagrangian and employs the remainder term properties of
the directional derivative in Theorem 3.8.

2. Theorem 4.12 states another set of second-order sufficient conditions. These apply if the objective provides a
particular structure, namely J(u, g) = i(u) + j(g), where i and j are smooth and j is in addition uniformly
convex. In this case it is sufficient to assume the coercivity of the Hessian of the Lagrangian only on the
cone of critical directions.
The proof follows the lines of [20] and argues by contradiction.

Both proofs require the objective to be sufficiently smooth. To be more precise, we need the following

Assumption 4.1. Let J : V × U � (u, g) → J(u, g) ∈ R be twice continuously Fréchet-differentiable.
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In preparation of our second-order analysis, we will next provide some auxiliary results. First observe that,
in view of Theorem 2.3, Problem (P) is equivalent to

Minimize J(u, g)

s.t.

⎧⎪⎨⎪⎩
AΣ + B∗u + λD∗DΣ = 0 in S2,

BΣ = −τ∗
N (g) in V ′,

0 ≤ λ(x) ⊥ φ(Σ(x)) ≤ 0 a.e. in Ω.

Here the operator τ∗
N denotes the adjoint of the trace τN : V → U on ΓN , i.e.,

τ∗
N : U → V ′, 〈τ∗

N (g), v〉 :=
∫

ΓN

g · τN (v) ds, v ∈ V.

In all what follows we set
p = min(p̂, 3), (4.1)

where p̂ is as defined in Theorem 2.4. Then τ∗
N continuously maps U into W−1,p

D (Ω; Rd) according to Sobolev’s
embedding theorem. For simplicity we denote τ∗

N with range in W−1,p
D (Ω; Rd) by the same symbol.

Remark 4.2. In dimension d = 2 we can choose p = min(p̂, 4) by Soboloev’s embedding theorem. In order to
keep the discussion concise we set p = min(p̂, 3) for both d = 3 and d = 2.

Remark 4.3. Due to the continuity of τ∗
N the results of Section 3 imply

(i)
∥∥Σ − Σ̄

∥∥
Lp(Ω;S2)

≤ L ‖τ∗
N‖ ‖g − ḡ‖U

(ii)
∥∥λ − λ̄

∥∥
Lq(Ω)

≤ c ‖τ∗
N‖ ‖g − ḡ‖U ,

(iii)
∥∥Σ′∥∥

Lp(Ω;S2)
≤ L ‖τ∗

N‖ ‖g − ḡ‖U ,

(iv)
∥∥Σ − Σ̄ − Σ′∥∥

Lβ(Ω;S2)
+ ‖u − ū − u′‖W 1,β

D (Ω;Rd) = o (‖g − ḡ‖U ) ∀β ∈ [1, p),

(v)
∥∥λ − λ̄ − λ′∥∥

Lγ(Ω)
= o (‖g − ḡ‖U ) ∀γ ∈ [1, q),

(vi) ‖u′‖W 1,p
D (Ω;Rd) ≤ c ‖τ∗

N‖ ‖g − ḡ‖U

with ‖τ∗
N‖ := ‖τ∗

N‖L(U,W−1,p
D (Ω;Rd)).

The next lemma covers the Lipschitz continuity of the function φ in the yield condition (1.1) on the admissible
set K:

Lemma 4.4. Let ν ≥ 1 and Σ1, Σ2 ∈ K. Then

‖φ(Σ1) − φ(Σ2)‖Lν(Ω) ≤ σ0 ‖Σ1 − Σ2‖Lν(Ω;S2) .

holds true.

Proof. By definition of K we find

‖φ(Σ1) − φ(Σ2)‖ν
Lν(Ω) =

∫
Ω

∣∣∣∣12(DΣ2 + DΣ1) : (DΣ1 − DΣ2)
∣∣∣∣ν dx

≤ σν
0 ‖Σ1 − Σ2‖ν

Lν(Ω;S2) . �
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As indicated above, we define a Lagrange functional which is especially suited for the discussion of (P). For
this purpose let us introduce the space

S2
∞ := {T ∈ S2 : DT ∈ L∞(Ω; S)}.

Endowed with the norm ‖T ‖S2+‖DT ‖L∞(Ω;S), S2
∞ is a Banach space. Obviously every solution of (3.1) and (3.7),

respectively, belongs to S2∞. With this space at hand the Lagrangian is defined by

L : V × S2
∞ × L2(Ω) × U × S2 × V × L2(Ω) × L∞(Ω)′ → R,

L(u, Σ, λ, g, Υ , w, μ, θ) := J(u, g) + (AΣ + B∗u + λD∗DΣ, Υ )
+ 〈BΣ + τ∗

N (g), w〉 − (λ, μ) + 〈φ(Σ), θ〉L∞(Ω),L∞(Ω)′ .

(4.2)

Obviously, L is twice continuously Fréchet-differentiable by Assumption 4.1. Note that we do not introduce a
Lagrange multiplier associated with the complementarity relation λφ(Σ) = 0 a.e. in Ω, which is typical for
MPECs, cf. for instance the Lagrangian defined in [26].

Before we are in the position to establish our first set of second-order conditions, we need to prove a last
auxiliary result:

Lemma 4.5. Let (Σ, u, λ) be the state and multiplier associated to g ∈ U and let (Σ̄, ū, λ̄) be the state and
multiplier associated to ḡ ∈ U . Furthermore let μ̄ ∈ Lζ(Ω) and θ̄ ∈ Lr(Ω) with ζ, r > sp

sp−p−2s , where s >

2p/(p − 2) and p is as defined in (4.1). If μ̄ ≥ 0 on A1 := {x ∈ Ω : −τ1 ≤ φ(Σ̄) ≤ 0} for some τ1 > 0 and
θ̄ ≥ 0 on A2 := {x ∈ Ω : 0 ≤ λ̄ ≤ τ2} for some τ2 > 0, then there are ν1, ν2 > 2 so that

−
∫

Ω

λμ̄ dx ≤ c ‖g − ḡ‖ν1
U ,

∫
Ω

φ(Σ)θ̄ dx ≤ c ‖g − ḡ‖ν2
U .

Proof. Defining Ω1 := {x ∈ Ω : λ(x) > 0} and E1 := Ω1 ∩ A1, we see

−
∫

Ω

λμ̄ dx = −
∫

E1

λ︸︷︷︸
>0

μ̄︸︷︷︸
≥0

dx −
∫

Ω1\E1

λμ̄ dx

≤ −
∫

Ω1\E1

(λ − λ̄)μ̄ dx

≤ ∥∥λ − λ̄
∥∥

Lq(Ω)
‖μ̄‖Lζ(Ω) |Ω1 \ E1|

1
β .

(4.3)

Here we used that λ̄ = 0 a.e. in Ω1 \ E1 due to (3.1c) and that there exists β < p with 1
q + 1

ζ + 1
β = 1 in

consequence of ζ > sp
sp−p−2s , where q is as defined in (3.6). Furthermore (3.7c) and the definition of Ω1 and A1

imply

|Ω1 \ E1| =
1
τp
1

∫
Ω1\E1

τp
1 dx

<
1
τp
1

∫
Ω1\E1

∣∣φ(Σ̄)
∣∣p dx =

1
τp
1

∫
Ω1\E1

∣∣φ(Σ) − φ(Σ̄)
∣∣p dx.

(4.4)

Thus, thanks to Lemma 4.4 and Remark 4.3, we arrive at

−
∫

Ω

λμ̄ dx < c
∥∥λ − λ̄

∥∥
Lq(Ω)

‖μ̄‖Lζ(Ω)

∥∥φ(Σ) − φ(Σ̄)
∥∥ p

β

Lp(Ω)

≤ c
∥∥λ − λ̄

∥∥
Lq(Ω)

‖μ̄‖Lζ(Ω)

∥∥Σ − Σ̄
∥∥ p

β

Lp(Ω;S2) ≤ c ‖g − ḡ‖1+ p
β

U

(4.5)
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with ν1 := 1 + p/β > 2. Similarly we define Ω2 := {x ∈ Ω : φ(Σ(x)) < 0} and E2 := Ω2 ∩ A2. Analogously
to (4.3), one finds ∫

Ω

φ(Σ)θ̄ dx ≤ ∥∥φ(Σ) − φ(Σ̄)
∥∥

Lp(Ω)

∥∥θ̄
∥∥

Lr(Ω)
|Ω2 \ E2|

1
γ ,

where we used that r > sp
sp−p−2s implies the existence of γ < q with q as defined in (3.6) so that 1

p + 1
r + 1

γ = 1.
As in (4.4) we deduce from (3.7c) and the definition of Ω2 and A2 that

|Ω2 \ E2| <
1
τq
2

∫
Ω2\E2

∣∣λ − λ̄
∣∣q dx. (4.6)

Because of Lemma 4.4 and Remark 4.3 we thus obtain similarly to (4.5)∫
Ω

φ(Σ)θ̄ dx ≤ c ‖g − ḡ‖1+ q
γ̂

U

with ν2 := 1 + q/γ > 2. �

Our first result on sufficient second-order conditions reads as follows:

Theorem 4.6. Let Assumption 4.1 hold. Suppose further that ḡ ∈ U together with its state (Σ̄, ū, λ̄) ∈ S2 ×
V × L2(Ω), adjoint state (Ῡ , w̄) ∈ S2 × V , and multipliers (μ̄, θ̄) ∈ L2(Ω) × L2(Ω) satisfy

(1) the following regularity conditions:

χ̄ ∈ Ls(Ω; S), Ῡ ∈ Lη(Ω; S2), μ̄ ∈ Lζ(Ω), θ̄ ∈ Lr(Ω)

with
s >

2p

p − 2
, η, ζ, r >

sp

sp − p − 2s
, (4.7)

where p is as defined in (4.1),
(2) the following optimality system:

AῩ + B∗w̄ + λ̄D∗DῩ + θ̄D∗DΣ̄ = 0 (4.8a)
BῩ + ∂uJ(ū, ḡ) = 0 (4.8b)
τN w̄ + ∂gJ(ū, ḡ) = 0 (4.8c)

DΣ̄ : DῩ = μ̄ (4.8d)
μ̄λ̄ = 0 a.e. in Ω (4.8e)

θ̄φ(Σ̄) = 0 a.e. in Ω (4.8f)
μ̄ ≥ 0 a.e. in A1 (4.8g)
θ̄ ≥ 0 a.e. in A2 (4.8h)

with

A1 := {x ∈ Ω : −τ1 ≤ φ(Σ̄) ≤ 0}, A2 := {x ∈ Ω : 0 ≤ λ̄ ≤ τ2}
for some τ1, τ2 > 0,

(3) the second-order condition:
there exists α > 0 such that

∂2
(u,Σ,λ,g)L(ū, Σ̄, λ̄, ḡ, Ῡ , w̄, μ̄, θ̄)(u′, Σ′, λ′, h)2 ≥ α ‖h‖2

U (SSC)

for all h ∈ U and (Σ′, u′, λ′) solving (3.4) with δ� = −τ∗
N (h).
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Then there exists an ε > 0 such that the following quadratic growth condition

J(u, g) ≥ J(ū, ḡ) +
α

4
‖g − ḡ‖2

U (4.9)

is satisfied for all g ∈ U with ‖g − ḡ‖U ≤ ε. Thus ḡ is a strict local optimum of (P).

Remark 4.7. The Lagrangian L is twice continuously differentiable in its space of definition in (4.2). If the
dual variables (Ῡ , θ̄) satisfy the integrability conditions in (4.7), its second derivative with respect to the primal
variables (u, Σ, λ, g) is given by

∂2
(u,Σ,λ,g)L(ū, Σ̄, λ̄, ḡ, Ῡ , w̄, μ̄, θ̄)(δu, δΣ, δλ, δg)2

= ∇2
(u,g)J(ū, ḡ)(δu, δg)2 + 2

∫
Ω

δλDδΣ : DῩ dx +
∫

Ω

‖DδΣ‖2
S
θ̄ dx

(4.10)

and defines a continuous bilinear form on the space V ×Lp(Ω; S2)×Lq(Ω)×U . In the following we denote the
integrals in (4.10) as L2-scalarproducts by (., .).

Remark 4.8. Let us compare the sufficient optimality conditions in Theorem 4.6 with the necessary ones.
In Section 3.3 from [14], so-called C-stationarity conditions are proven to be satisfied by every local optimum.
These conditions coincide with (4.8), except that they only provide a sign condition for the product of the
multipliers μ̄ and θ̄, whereas (4.8g) and (4.8h) contain sign conditions for each multiplier individually. More
restrictive optimality conditions for MPECs are given by strong stationarity. To the best of our knowledge, it
has not been proven so far that these conditions are necessary for local optimality for problems of type (P).
Only in the rather academic case of an additional control appearing as inhomogeneity in (2.1a) Herzog et al.
proved strong stationarity conditions to be necessary in [15]. These conditions also contain sign conditions for
each multiplier individually, but only on the strongly active set Ās and the inactive set Ī, respectively. Hence
the sign conditions in (4.8g) and (4.8h) are even more restrictive than strong stationarity. Moreover, higher
regularity of the optimal hardening variable χ̄ and the multipliers Ῡ , μ̄, and θ̄ is required in (4.7) in contrast to
C-stationarity, where these variables are only element of L2-type spaces. Notice however that we do not impose
any differentiability properties on neither χ̄ nor Ῡ , μ̄, or θ̄. Nevertheless, in summary, there is thus a significant
gap between the necessary and sufficient optimality conditions for (P).

Proof of Theorem 4.6. At first we note that Assumption 3.3 is satisfied because of s > 2p
p−2 and (4.1). Let g ∈ U

be arbitrary and (u, Σ, λ) ∈ V × S2∞ × L2(Ω) be the state and multiplier associated with g.
We aim to deduce the quadratic growth condition (4.9) from a Taylor expansion of the Lagrangian. To this

end we introduce the abbreviations z := (u, Σ, λ, g), z̄ := (ū, Σ̄, λ̄, ḡ), and ω̄ := (Ῡ , w̄, μ̄, θ̄). Since L is twice
continuously differentiable in its space of definition, there is a t ∈ [0, 1] such that

L(z, ω̄) = L(z̄, ω̄) + ∇zL(z̄, ω̄)(z − z̄) +
1
2
∇2

zL(z̄ + t(z − z̄), ω̄)(z − z̄)2. (4.11)

In the following we discuss each expression of (4.11) separately.

The zero-order terms:
Due to (3.1a), (3.1b), (4.8e) and (4.8f) it holds

L(z̄, ω̄) = J(ū, ḡ), L(z, ω̄) = J(u, g) − (λ, μ̄) +
(
φ(Σ), θ̄

)
(4.12)

and Lemma 4.5 shows
L(z, ω̄) ≤ J(u, g) + o

(
‖g − ḡ‖2

U

)
. (4.13)
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The first-order term:
From (4.8a)–(4.8d) it follows

∇zL(z̄, ω̄)(z − z̄) =
(
AῩ + B∗w̄ + λ̄D∗DῩ + θ̄D∗DΣ̄, Σ − Σ̄

)︸ ︷︷ ︸
=0

+
〈
BῩ + ∂uJ(ū, ḡ), u − ū

〉︸ ︷︷ ︸
=0

+ (∂gJ(ū, ḡ) + τN w̄, g − ḡ)︸ ︷︷ ︸
=0

− (
λ − λ̄, μ̄

)
+

(
λ − λ̄, DΣ̄ : DῩ

)︸ ︷︷ ︸
=(λ−λ̄, μ̄)

= 0.
(4.14)

The second-order term:
The second derivative of L at zt := z̄ + t(z − z̄) in direction (z − z̄)2 is given by

∇2
zL(zt, ω̄)(z − z̄)2 =∇2

(u,g)J(ut, gt)(u − ū, g − ḡ)2 + 2
(
(λ − λ̄)D∗D(Σ − Σ̄), Ῡ

)
+

(∥∥DΣ −DΣ̄
∥∥2

S
, θ̄

)
= ∇2

(u,g)J(ū, ḡ)(u′, g − ḡ)2︸ ︷︷ ︸
=:D1

+
(
∇2

(u,g)J(ut, gt) −∇2
(u,g)J(ū, ḡ)

)
(u − ū, g − ḡ)2

+ 2∂g∂uJ(ū, ḡ)[u − ū − u′, g − ḡ] + ∂2
uJ(ū, ḡ)(u − ū − u′)2

+ 2∂2
uJ(ū, ḡ)[u − ū − u′, u′] + 2

(
(λ − λ̄)D∗D(Σ − Σ̄), Ῡ

)
+

(∥∥DΣ −DΣ̄
∥∥2

S
, θ̄

)
.

The regularity condition (4.7) implies the existence of β < p and γ < q such that 1
q + 1

β + 1
η = 1

γ + 1
p + 1

η = 1,
cf. the proof of Lemma 4.5. Hence due to Remark 4.3 (i)–(iii) it holds

(
(λ − λ̄)(DΣ −DΣ̄), DῩ

)
=

(
λ′DΣ′, DῩ

)︸ ︷︷ ︸
=:D2

+
(
(λ − λ̄)(DΣ −DΣ̄ −DΣ′), DῩ

)
+

(
(λ − λ̄ − λ′)DΣ′, DῩ

)
≥ (

λ′DΣ′, DῩ
)− c

∥∥λ − λ̄
∥∥

Lq(Ω)

∥∥Σ − Σ̄ − Σ′∥∥
Lβ(Ω;S2)

∥∥Ῡ
∥∥

Lη(Ω;S2)

− c
∥∥λ − λ̄ − λ′∥∥

Lγ(Ω)

∥∥Σ′∥∥
Lp(Ω;S2)

∥∥Ῡ
∥∥

Lη(Ω;S2)

≥ (
λ′DΣ′, DῩ

)− c ‖g − ḡ‖U

(∥∥Σ − Σ̄ − Σ′∥∥
Lβ(Ω;S2)

+
∥∥λ − λ̄ − λ′∥∥

Lγ(Ω)

)
.

Furthermore, (4.7) yields 1
p + 1

β + 1
r < 1 and consequently

(∥∥DΣ −DΣ̄
∥∥2

S
, θ̄

)
=

(∥∥DΣ′∥∥2

S
, θ̄

)
︸ ︷︷ ︸

=:D3

+
(∥∥DΣ −DΣ̄ −DΣ′∥∥2

S
, θ̄

)
+ 2

(
(DΣ −DΣ̄ −DΣ′) : DΣ′, θ̄

)
≥

(∥∥DΣ′∥∥2

S
, θ̄

)
− c

∥∥Σ − Σ̄ − Σ′∥∥
Lp(Ω;S)

∥∥Σ − Σ̄ − Σ′∥∥
Lβ(Ω;S2)

∥∥θ̄
∥∥

Lr(Ω)

− c
∥∥Σ′∥∥

Lp(Ω;S)

∥∥Σ − Σ̄ − Σ′∥∥
Lβ(Ω;S2)

∥∥θ̄
∥∥

Lr(Ω)

≥
(∥∥DΣ′∥∥2

S
, θ̄

)
− c ‖g − ḡ‖U

∥∥Σ − Σ̄ − Σ′∥∥
Lβ(Ω;S2)

.
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Recall that D1 + 2D2 + D3 = ∇2
zL(z̄, ω̄)(Σ′, u′, λ′, g− ḡ)2. Thus, because of (SSC), Remark 4.3, Theorems 2.4

and 3.8, one obtains

∇2
zL(zt, ω̄)(z − z̄)2 ≥∇2

zL(z̄, ω̄)(Σ′, u′, λ′, g − ḡ)2

− c ‖g − ḡ‖U

(∥∥Σ − Σ̄ − Σ′∥∥
Lβ(Ω;S2)

+
∥∥λ − λ̄ − λ′∥∥

Lγ(Ω)

)
− c

∥∥∥∇2
(u,g)J(ut, gt) −∇2

(u,g)J(ū, ḡ)
∥∥∥
L(V ×U,(V ×U)′)

‖g − ḡ‖2
U

− c ‖∂g∂uJ(ū, ḡ)‖L(U,V ′) ‖u − ū − u′‖V ‖g − ḡ‖U

− c
∥∥∂2

uJ(ū, ḡ)
∥∥
L(V,V ′) ‖u − ū − u′‖2

V

− c
∥∥∂2

uJ(ū, ḡ)
∥∥
L(V,V ′) ‖u − ū − u′‖V ‖u′‖V

≥α ‖g − ḡ‖2
U − o

(
‖g − ḡ‖2

U

)
,

(4.15)

where we used that J is twice continuously differentiable by assumption. Altogether (4.11), (4.12) and (4.13)–
(4.15) yield the existence of an ε > 0 so that J(u, g) ≥ J(ū, ḡ) + α

4 ‖g − ḡ‖2
U for all g ∈ U with ‖g − ḡ‖U ≤ ε,

i.e., the desired quadratic growth condition. �
Remark 4.9. It is easily seen that, for every p > 2, there are numbers s, η, ζ, r ∈ [2,∞[ satisfying the conditions
in (4.7). However, if p tends to 2, then the bounds for s, η, ζ, and r tend to ∞. If p̂ as defined in (4.1) satisfies
p̂ > 4, then the assumption on s in (4.7) is automatically fulfilled. In view of Sobolev’s embedding theorem such
high integrability can not be expected for controls in U = L2(ΓN ; Rd) but for controls in Lν(ΓN ; Rd) with ν
suffictently high.

Remark 4.10. By using the technique introduced in [7], it should be possible to include box constraints on the
control into the above analysis and establish second-order sufficient conditions accounting for strongly active
sets. However, in this case, a two-norm discrepancy will arise. As we wish to keep the discussion concise and
thus focus on the difficulties induced by the VI, we omitted additional control constraints here.

We now come to the second version of sufficient optimality conditions. If the objective functional satisfies
additional properties, then we are able to tighten condition (SSC). To be more precise, we can restrict (SSC) to
the cone of critical directions so that (SSC) becomes a classical condition (cf. [26], Thm. 7). Moreover we can
weaken the integrability condition for the hardening variable in (4.7). In the following, as before, (ū, Σ̄, λ̄, ḡ) ∈
V × S2 × L2(Ω) × U again denotes a stationary point. The precise assumptions on the objective then look as
follows:

Assumption 4.11. The objective functional J : V × U → R is given by J(u, g) = i(u) + j(g), where the
functions i,j satisfy:

i) i : V → R is twice continuously Fréchet-differentiable,
ii) j : U → R is twice continuously Fréchet-differentiable and there is ν > 0 such that

∂2j(ḡ)z2 ≥ ν ‖z‖2
U ∀h ∈ U.

Theorem 4.12. Let Assumption 4.11 hold. Suppose further that ḡ ∈ U together with its state (Σ̄, ū, λ̄) ∈
S2 × V × L2(Ω), adjoint state (Ῡ , w̄) ∈ S2 × V , and multipliers (μ̄, θ̄) ∈ L2(Ω) × L2(Ω) satisfy

(1) the following regularity conditions:

χ̄ ∈ Ls(Ω; S), Ῡ ∈ Lη(Ω; S2), μ̄ ∈ Lζ(Ω), θ̄ ∈ Lr(Ω)

with
s >

p

p − 2
, η, ζ, r >

sp

sp − p − 2s
, (4.16)

where p is as defined in (4.1),
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(2) the optimality system (4.8) with

A1 := {x ∈ Ω : −τ1 ≤ φ(Σ̄) ≤ 0}, A2 := {x ∈ Ω : 0 ≤ λ̄ ≤ τ2}

for some τ1, τ2 > 0,
(3) the second-order condition:

there exists α > 0 such that

∂2
(u,Σ,λ,g)L(ū, Σ̄, λ̄, ḡ, Ῡ , w̄, μ̄, θ̄)(u′, Σ′, λ′, h)2 ≥ α ‖h‖2

U (S̃SC)

for all h ∈ U and (Σ′, u′, λ′) solving (3.4) with i′(ū)u′ + j′(ḡ)h = 0.

Then there exists ε > 0 such that the following quadratic growth condition

J(u, g) ≥ J(ū, ḡ) + α ‖g − ḡ‖2
U (4.17)

is satisfied for all g ∈ U with ‖g − ḡ‖U ≤ ε. Thus ḡ is a strict local optimum of (P).

Remark 4.13. A comparison to the second-order sufficient conditions for finite dimensional MPECs in [26]
shows that the assertion of Theorem 4.6 can be seen as a natural generalization of the finite dimensional result
in the following sense:

The second-order sufficient conditions in Theorem 7 from [26], Scheel and Scholtes involve the strong sta-
tionarity conditions in combination with the coercivity of the Hessian of the Lagrangian on the cone of
critical directions. In our case this cone consists of all directions (u′, Σ′, λ′, h) which solve (3.4) and satisfy
J ′(ū, ḡ)(u′, h) = 0. Thus the second-order sufficient conditions from [26] exactly coincide with these of Theo-
rem 4.12 except that we had to slightly tighten the sign conditions of strong stationarity. As already mentioned
in Remark 4.8, strong stationarity conditions are equivalent to (4.8) except that they require the sign conditions
in (4.8g) and (4.8h) only on the smaller sets Ās and Ī. However, when turning from component-wise inequality
constraints in finite dimensions to pointwise constraints in a function space setting, one needs an additional
’safety distance’, induced by the larger sets A1 and A1. In this way the sufficient conditions in Theorem 4.12
can be regarded as a natural extension of their finite dimensional counterpart.

Proof of Theorem 4.12. The proof is similar to Theorem 2.12 from [20]. Nevertheless, for convenience of the
reader, we recall the arguments. We argue by contradiction and assume that the quadratic growth con-
dition (4.17) is violated. Then there exist a sequence (gn)n∈N ⊂ U and a sequence of associated states
(Σn, un, λn)n∈N with (Σn, un, λn, gn) → (Σ̄, ū, λ̄, ḡ) in Lp(Ω; S2)×W 1,p

D (Ω; Rd)×Lq(Ω)×U , cf. Lemma 3.5,
such that

J(ū, ḡ) +
1
n
‖gn − ḡ‖2

U > J(un, gn). (4.18)

For the sake of convenience we introduce the abbreviations

ρn := ‖gn − ḡ‖U , hn :=
gn − ḡ

ρn
, Zn :=

Σn − Σ̄

ρn
, vn :=

un − ū

ρn
, ιn :=

λn − λ̄

ρn
·

Due to the boundedness of hn and the compactness of the trace operator there exists a subsequence, denoted
in the same way, with

hn ⇀ h in U, τ∗
N (hn) → τ∗

N (h) in W−1,β
D (Ω; Rd) ∀ 1 ≤ β < p. (4.19)
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Let (Σρn , uρn , λρn) denote the state associated to ḡ + ρnh and let (Σ′
h, u′

h, λ′
h) denote the solution of (3.4)

with right-hand side −τ∗
N (h). Theorem 2.4, Corollary 3.12, Remark 3.13 and (4.19) yield

∥∥Zn − Σ′
h

∥∥
Lβ(Ω;S2)

≤
∥∥∥∥Σρn − Σ̄

ρn
− Σ′

h

∥∥∥∥
Lβ(Ω;S2)

+
∥∥∥∥Σn − Σρn

ρn

∥∥∥∥
Lβ(Ω;S2)

≤
∥∥∥∥Σρn − Σ̄

ρn
− Σ′

h

∥∥∥∥
Lβ(Ω;S2)

+ L

∥∥∥∥τ∗
N (gn − ḡ − ρnh)

ρn

∥∥∥∥
W−1,β

D (Ω;Rd)

≤
∥∥∥∥Σρn − Σ̄

ρn
− Σ′

h

∥∥∥∥
Lβ(Ω;S2)

+ L ‖τ∗
N (hn) − τ∗

N (h)‖W−1,β
D (Ω;Rd)

n→∞−−−−→ 0.

Similar arguments hold true for vn and ιn so that we get

Zn → Σ′
h in Lβ(Ω; S2) ∀ 1 ≤ β < p, (4.20a)

vn → u′
h in W 1,β

D (Ω; Rd) ∀ 1 ≤ β < p, (4.20b)
ιn → λ′

h in Lγ(Ω) ∀ 1 ≤ γ < q. (4.20c)

with q as defined in (3.6). Thanks to (3.1a), (3.1b) and (4.8a)–(4.8c) we obtain

J(un, gn) − J(ū, ḡ) = i′(ū)(un − ū) + j′(ḡ)(gn − ḡ) +
1
2
i′′(ũn)(un − ū)2 +

1
2
j′′(g̃n)(gn − ḡ)2

+
(
A(Σn − Σ̄) + B∗(un − ū) + λnD∗DΣn − λ̄D∗DΣ̄, Ῡ

)︸ ︷︷ ︸
=0

+
〈
B(Σn − Σ̄) + τ∗

N (gn) − τ∗
N (ḡ), w̄

〉︸ ︷︷ ︸
=0

+
(
λ̄D∗DΣn, Ῡ

)− (
λ̄D∗DΣn, Ῡ

)
= i′(ū)(un − ū) + j′(ḡ)(gn − ḡ) +

1
2
i′′(ũn)(un − ū)2 +

1
2
j′′(g̃n)(gn − ḡ)2

+
(
AῩ + B∗w̄ + λ̄D∗DῩ , Σn − Σ̄

)
+

〈
BῩ , un − ū

〉
+ (τN w̄, gn − ḡ)

+
(
(λn − λ̄)D∗DῩ , Σn

)
=

1
2
i′′(ũn)(un − ū)2 +

1
2
j′′(g̃n)(gn − ḡ)2 − (

θ̄D∗DΣ̄, Σn − Σ̄
)

+
(
(λn − λ̄)D∗DῩ , Σn

)
,

where (ũn, g̃n) denotes an element between (ū, ḡ) and (un, gn). In view of (4.18) it holds(
(λn − λ̄)D∗DῩ , Σn

)− (
θ̄D∗DΣ̄, Σn − Σ̄

)
<

ρ2
n

n
− 1

2
(
i′′(ũn)(un − ū)2 + j′′(g̃n)(gn − ḡ)2

)
,

which is equivalent to(
ιnD∗DῩ , Σn

)− (
θ̄D∗DΣ̄, Zn

)
<

ρn

n
− 1

2
(i′′(ũn)[un − ū, vn] + j′′(g̃n)[gn − ḡ, hn]) .

(4.21)

The integrability conditions give 1/γ + 1/η + 1/p < 1 and 1/r + 1/β < 1 for some 1 ≤ γ < q and 1 ≤ β < p so
that Lemma 3.5, (4.20a) and (4.20c) imply(

ιnD∗DῩ , Σn

) → (
λ′

hD∗DῩ , Σ̄
)
,

(
θ̄D∗DΣ̄, Zn

) → (
θ̄D∗DΣ̄, Σ′

h

)
, (4.22)
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where we used
∥∥DΣ̄

∥∥
S
≤ σ0 for the last convergence. Since the second derivatives of i and j are continuous

bilinear forms by Assumption 4.11 we infer

|i′′(ũn)[un − ū, vn]| ≤ ‖i′′(ũn)‖L(V,V ′) ‖un − ū‖V ‖vn‖V ≤ c ‖un − ū‖V ,

since (ũn)n∈N and (vn)n∈N are bounded due to (weak) convergence. Together with an analogous estimate for
j′′(g̃n)[gn − ḡ, hn], (4.19) and (4.20b) consequently imply

i′′(ũn)[un − ū, vn] → 0, j′′(g̃n)[gn − ḡ, hn] → 0. (4.23)

Note that vn and hn are bounded due to (weak) convergence. From (4.21)–(4.23) we deduce(
λ′

h, DῩ : DΣ̄
)− (

θ̄, DΣ̄ : DΣ′
h

) ≤ 0. (4.24)

Moreover (3.4c)–(3.4e) and (4.8d)–(4.8h) yield

λ′
h = θ̄ = 0 in Ī, DῩ : DΣ̄ = DΣ̄ : DΣ′

h = 0 in Ās,

λ′
h ≥ 0 in B̄, DῩ : DΣ̄ ≥ 0 in B̄,

θ̄ ≥ 0 in B̄, DΣ̄ : DΣ′
h ≤ 0 in B̄,

so that (
λ′

h, DῩ : DΣ̄
)− (

θ̄, DΣ̄ : DΣ′
h

) ≥ 0.

Together with (4.24) this gives (
λ′

h, DῩ : DΣ̄
)− (

θ̄, DΣ̄ : DΣ′
h

)
= 0. (4.25)

Because of (4.8a)–(4.8c), (3.4a) and (3.4b) we get the identity(
λ′

h, DῩ : DΣ̄
)− (

θ̄, DΣ̄ : DΣ′
h

)
=

(
λ′

hD∗DΣ̄, Ῡ
)− (

θ̄D∗DΣ̄, Σ′
h

)
= − (

AΣ′
h + B∗u′

h + λ̄D∗DΣ′
h, Ῡ

)
+

(
AῩ + B∗w̄ + λ̄D∗DῩ , Σ′

h

)
=

〈
BΣ′

h, w̄
〉− 〈

BῩ , u′
h

〉
= − (τN w̄, h) − 〈

BῩ , u′
h

〉
= i′(ū)u′

h + j′(ḡ)h

and in view of (4.25) we thus arrive at
i′(ū)u′

h + j′(ḡ)h = 0. (4.26)

As in the proof of Theorem 4.6 we introduce the abbreviations zn := (un, Σn, λn, gn), z̄ := (ū, Σ̄, λ̄, ḡ), and
ω̄ := (Ῡ , w̄, μ̄, θ̄). Analogously to (4.12) and (4.14) we obtain L(z̄, ω̄) = J(ū, ḡ), L(zn, ω̄) = J(un, gn) −
(λn, μ̄) +

(
φ(Σn), θ̄

)
, and ∇zL(z̄, ω̄)(zn − z̄) = 0. Hence we have

J(un, gn) − J(ū, ḡ) = L(zn, ω̄) + (λn, μ̄) − (
φ(Σn), θ̄

)− L(z̄, ω̄)

=
1
2
∇2

zL(z̃n, ω̄)(zn − z̄)2 + (λn, μ̄) − (
φ(Σn), θ̄

)
,

(4.27)

where z̃n denotes an element between z̄ and zn, so that (4.18) and (4.27) give

1
2
∇2

zL(z̃n, ω̄)(zn − z̄)2 <
ρ2

n

n
− (λn, μ̄) +

(
φ(Σn), θ̄

)
. (4.28)

From Lemma 4.5 we infer
1
2
∇2

zL(z̃n, ω̄)
(

zn − z̄

ρn

)2

<
1
n

+
o(ρ2

n)
ρ2

n
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or equivalently

1
2
∇2

zL(z̄, ω̄)
(

zn − z̄

ρn

)2

<
1
n

+
o(ρ2

n)
ρ2

n

− 1
2

(
∇2

zL(z̃n, ω̄)
(

zn − z̄

ρn

)2

−∇2
zL(z̄, ω̄)

(
zn − z̄

ρn

)2
)
· (4.29)

Recalling (4.10), we notice

∇2
zL(z̃n, ω̄)

(
zn − z̄

ρn

)2

−∇2
zL(z̄, ω̄)

(
zn − z̄

ρn

)2

=
[∇2

(u,g)J(ũn, g̃n) −∇2
(u,g)J(ū, ḡ)

] (un − ū

ρn
,
gn − ḡ

ρn

)2

·
(4.30)

Since ∇2
(u,g)J is continuous by assumption and the sequence (zn − z̄)/ρn is bounded because of (weak) conver-

gence, cf. (4.19) and (4.20), the right-hand side of (4.29) converges to zero. For the discussion of the left-hand
side we use

∇2
zL(z̄, ω̄)

(
zn − z̄

ρn

)2

= i′′(ū)(vn)2 + j′′(ḡ)(hn)2 + 2
(
ιnD∗DZn, Ῡ

)
+

(
‖Zn‖2

S
, θ̄

)
, (4.31)

cf. (4.10). By Assumption 4.11 we know

j′′(ḡ)(h)2 ≤ lim inf
k→∞

j′′(ḡ)(hn)2. (4.32)

Moreover we can chose 1 ≤ β < p and 1 ≤ γ < q such that 1/β + 1/γ + 1/η ≤ 1, 2/β + 1/r ≤ 1 due to (4.16)
and get (

ιnD∗DZn, Ῡ
) → (

λ′
hD∗DΣ′

h, Ῡ
)
,(

‖Zn‖2
S
, θ̄

)
→

(∥∥Σ′
h

∥∥2

S
, θ̄

)
.

(4.33)

From (4.20b) and (4.29)–(4.33) we deduce

∇2
zL(z̄, ω̄)

(
Σ′

h, u′
h, λ′

h, h
)2 = lim

n→∞∇2
zL(z̄, ω̄)

(
zn − z̄

ρn

)2

≤ 0,

so that (S̃SC) and (4.26) imply h = 0. As (3.4) is uniquely solvable we conclude that Σ′
h = 0, u′

h = 0 and
λ′

h = 0. By definition it holds ‖hn‖U = 1. Therefore (4.29), (4.31) and Assumption 4.11 yield

0 <
ν

2
≤ 1

2
j′′(ḡ)(hn)2

< −1
2
[∇2

(u,g)J(ũn, g̃n) −∇2
(u,g)J(ū, ḡ)

] (un − ū

ρn
,
gn − ḡ

ρn

)2

+
1
n

+
o(ρ2

n)
ρ2

n

− 1
2
i′′(ū)(vn)2 − (

ιnD∗DZn, Ῡ
)− 1

2

(
‖Zn‖2

S
, θ̄

)
.

In consequence of the continuity of ∇2
(u,g)J and (4.20) the right-hand side converges to zero, which is a contra-

diction. �

We end the paper with an equivalent formulation of (S̃SC) in Theorem 4.17 below. For this purpose we first
state some auxiliary results:

Lemma 4.14. Let h, hn ∈ U be given and let (Σ′
n, u′

n, λ′
n) be the solution of (3.4) with right-hand side

−τ∗
N (hn). If (Σ′

n, u′
n, λ′

n, hn) ⇀ (Σ′, u′, λ′, h) in S2 × V × L2(Ω) × U , then (Σ′, u′, λ′, h) solves (3.4).
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Proof. Since (Σ′
n, u′

n, hn) solves (3.3), it holds(
AΣ′

n, T
)− (

AΣ′
n, Σ′

n

)
+ (B∗u′

n, T ) − (
B∗u′

n, Σ′
n

)
+

(
λ̄, DΣ′

n : DT
)− (

λ̄,
∥∥DΣ′

n

∥∥2

S

)
≥ 0 ∀ T ∈ S�, (4.34a)

BΣ′
n = −τ∗

N (hn). (4.34b)

For T ∈ S� fixed but arbitrary the weak continuity of A and B implies(
AΣ′

n, T
) → (

AΣ′, T
)
, (B∗u′

n, T ) → (B∗u′, T ) . (4.35)

Due to (4.34b) and the compactness of the trace operator we infer(
B∗u′

n, Σ′
n

)
= 〈u′

n, −τ∗
N (hn)〉 → 〈u′, −τN (h)〉 =

(
B∗u′, Σ′) . (4.36)

As in the proof of Lemma 3.6, cf. (3.15), we derive

λ̄DΣ′
n = −H

−1χ′
n − λ′

nDΣ̄.

The right-hand side converges weakly in S because of the boundedness of DΣ̄ and accordingly

λ̄DΣ′
n ⇀ λ̄DΣ′ = −H

−1χ′ − λ′DΣ̄ in S. (4.37)

Therefore we deduce (
λ̄, DΣ′

n : DT
) → (

λ̄, DΣ′ : DT
)
. (4.38)

The operator A is continuous and coercive. Therefore S2 � T → − (AT , T ) ∈ R is continuous and concave so
that

lim sup
n→∞

(− (
AΣ′

n, Σ′
n

) ) ≤ − (
AΣ′, Σ′) . (4.39)

Next, we introduce the space
S2

λ :=
{

T ∈ S2 :
√

λ̄DT ∈ S
}

endowed with the scalarproduct

(Σ, T )S2
λ

= (Σ, T ) +
(
λ̄, DΣ : DT

)
.

In the following we show that S2
λ is a Hilbert space. Let (T n)n∈N be a Cauchy sequence in S2

λ. Then (T n)n∈N

and (
√

λ̄DT n)n∈N are Cauchy sequences in the Hilbert spaces S2 and S. Consequently, there exist T̃ ∈ S2 and
μ̃ ∈ S such that T n → T̃ in S2 and

√
λ̄DT n → μ̃ in S. Moreover there are subsequences converging pointwisely

a.e. in Ω so that μ̃ =
√

λ̄DT̃ a.e. in Ω. Thus, S2
λ is complete and therefore a Hilbert space. Finally, we define

the continuous function
f : S2

λ → R, T → (
λ̄, DT : DT

)
.

Thanks to (3.1c) −f is concave and hence weakly upper semicontinuous. Since S2
λ is a Hilbert space, all linear

functionals on S2
λ can be represented by scalarproducts. From (4.37) we thus infer Σ′

n ⇀ Σ′ in S2
λ so that

lim sup
n→∞

(− f(Σ′
n)

) ≤ −
(
λ̄,

∥∥DΣ′∥∥2

S

)
. (4.40)

Altogether (4.34)–(4.36), (4.38)–(4.40) yield that (Σ′, u′) satisfies (3.3a). The weak continuity of B and the
compactness of the trace operator give (3.3b). It remains to show that Σ′ ∈ S�. Testing with DΣ′ in (4.37) we
get

√
λ̄DΣ′ ∈ S because of the boundedness of DΣ̄. Since equality and inequality conditions remain valid for

the weak limit, we have Σ′ ∈ S�. Thus (Σ′, u′) solves (3.3), i.e. the VI associated to the directional derivative.
Furthermore, since λ′ fulfills (4.37), the same argument that led from (3.15) to (3.16) shows that λ′ coincides
with the multiplier in (3.4). Hence (Σ′, u′, λ′) indeed solves (3.4). �
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Corollary 4.15. Let h, hn ∈ U be given and let (Σ′
n, u′

n, λ′
n) be the solution of (3.4) with right-hand side

−τ∗
N (hn). If (Σ′

n, u′
n, λ′

n, hn) ⇀ (Σ′, u′, λ′, h) in S2 × V × L2(Ω) × U , then (Σ′
n, u′

n) → (Σ′, u′) in S2 × V .

Proof. By Lemma 4.14 we know that (Σ′, u′, λ′, h) solves (3.4). Subtracting (3.4a) from the corresponding
equation for (Σ′

n, u′
n, λ′

n) and testing with Σ′ − Σ′
n yields(

A(Σ′ − Σ′
n), Σ′ − Σ′

n

)
+

(
B∗(u′ − u′

n), Σ′ − Σ′
n

)
+

(
λ̄D(Σ′ − Σ′

n), D(Σ′ − Σ′
n)

)
+

(
(λ′ − λ′

n)DΣ̄, D(Σ′ − Σ′
n)

)
= 0.

In view of the coercivity of A it follows

c
∥∥Σ′ − Σ′

n

∥∥2

S2 ≤ (
B∗(u′ − u′

n), Σ′ − Σ′
n

)︸ ︷︷ ︸
=:In

−
(
λ̄,

∥∥D(Σ′ − Σ′
n)

∥∥2

F

)
︸ ︷︷ ︸

=:IIn

− (
(λ′ − λ′

n)DΣ̄, D(Σ′ − Σ′
n)

)︸ ︷︷ ︸
=:IIIn

.
(4.41)

By the same arguments as in the proof of Lemma 4.14, cf. (4.36) and (4.40), we obtain

In → 0 and lim sup
n→∞

(−IIn) ≤ 0. (4.42)

Due to (3.4c)–(3.4e) and the boundedness of DΣ̄, the assumed weak convergence yields

IIIn =
(
λ′DΣ̄, DΣ′)︸ ︷︷ ︸

=0

− (
λ′

nDΣ̄, DΣ′)− (
λ′DΣ̄, DΣ′

n

)
+

(
λ′

nDΣ̄, DΣ′
n

)︸ ︷︷ ︸
=0

= − (
λ′

nDΣ̄, DΣ′)− (
λ′DΣ̄, DΣ′

n

) n→∞−−−−→ 0.

(4.43)

Altogether (4.41)–(4.43) imply Σ′
n → Σ′ in S2. To prove the strong convergence of u′

n we subtract (3.4a)
from the corresponding equation for (Σ′

n, u′
n, λ′

n) and test with Ť := (ε(u′) − ε(u′
n),−ε(u′) + ε(u′

n)) ∈ S2.
Similaryly to (3.28)–(3.29) we conclude u′

n → u′ in V . �

Again, from Lemma A.2 we infer

Corollary 4.16. Let h, hn ∈ U be given and let (Σ′
n, u′

n, λ′
n) be the solution of (3.4) with right-hand side

−τ∗
N (hn). If (Σ′

n, u′
n, λ′

n, hn) ⇀ (Σ′, u′, λ′, h) in Lp(Ω; S2) × V × L2(Ω) × U with p ≥ 2, then Σ′
n → Σ′ in

Lβ(Ω; S2) for all 1 ≤ β < p.

Proof. Thanks to Lemma 4.15 there exists a subsequence, denoted in the same way, with Σ′
n → Σ′ a.e. in Ω.

Moreover the subsequence is bounded in Lp(Ω; S2) because of the weak convergence so that Lemma A.2 implies
the claim for the subsequence. By a standard argument we obtain the result for the whole sequence. �

We are now in the position to state the equivalent reformulation of (S̃SC). In case of optimal control of PDEs
such a result is well known, see for instance [5] and, based on the above findings, especially Corollaries 4.15
and 4.16, the same arguments also apply in our case.

Theorem 4.17. Let Assumption 4.11 hold. Furthermore let (Σ̄, ū, λ̄) ∈ S2 ×V ×L2(Ω) be the state associated
to ḡ ∈ U . If χ̄ ∈ Ls(Ω; S), (Ῡ , w̄) ∈ Lη(Ω; S2) × L2(Ω) and (μ̄, θ̄) ∈ Lζ(Ω) × Lr(Ω) satisfy (4.16), then the
following two statements are equivalent:

a) There exists α > 0 such that

∂2
(u,Σ,λ,g)L(ū, Σ̄, λ̄, ḡ, Ῡ , w̄, μ̄, θ̄)(u′, Σ′, λ′, h)2 ≥ α ‖h‖2

U

for all h ∈ U and (Σ′, u′, λ′) solving (3.4) with i′(ū)u′ + j′(ḡ)h = 0.
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b) For all h ∈ U \ {0} and (Σ′, u′, λ′) solving (3.4) with i′(ū)u′ + j′(ḡ)h = 0 it holds

∂2
(u,Σ,λ,g)L(ū, Σ̄, λ̄, ḡ, Ῡ , w̄, μ̄, θ̄)(u′, Σ′, λ′, h)2 > 0.

Proof. The arguments are similar to Theorem 4.4 from [5], It suffices to show b) =⇒ a): We argue by contradic-
tion and suppose that a) is not satisfied. Then for every α > 0 there exist hα ∈ U and (Σ′

α, u′
α, λ′

α) solving (3.4)
with i′(ū)u′

α + j′(ḡ)hα = 0 such that

∂2
(u,Σ,λ,g)L(ū, Σ̄, λ̄, ḡ, Ῡ , w̄, μ̄, θ̄)(Σ′

α, u′
α, λ′

α, hα)2 < α ‖hα‖2
U . (4.44)

Since S� is a cone, the solution map of (3.4) is positively homogeneous and we can assume ‖hα‖U = 1. Thanks
to Lemma 3.6 and Corollary 3.7 (Σ′

α, u′
α, λ′

α) is bounded in Lp(Ω; S2) × W 1,p
D (Ω; R) × Lq(Ω). Consequently,

there exist subsequences, denoted in the same way, such that (Σ′
α, u′

α, λ′
α, hα) ⇀ (Σ′, u′, λ′, h) in Lp(Ω; S2) ×

W 1,p
D (Ω; Rd) × Lq(Ω) × U and i′(ū)u′ + j′(ḡ)h = 0. In view of (4.44) and (4.10) we get

0 ≥ lim sup
α→0

∂2
(u,Σ,λ,g)L(ū, Σ̄, λ̄, ḡ, Ῡ , w̄, μ̄, θ̄)(Σ′

α, u′
α, λ′

α, hα)2

≥ lim inf
α→0

∂2
(u,Σ,λ,g)L(ū, Σ̄, λ̄, ḡ, Ῡ , w̄, μ̄, θ̄)(Σ′

α, u′
α, λ′

α, hα)2

= lim inf
α→0

{
∂2i(ū)(u′

α)2 + ∂2j(ḡ)h2
α + 2

(
λ′

αDΣ′
α, DῩ

)
+

(∥∥DΣ′
α

∥∥2

S
, θ̄

)}
.

(4.45)

The integrability conditions imply the existence of 1 ≤ β < p with 1/q + 1/β + 1/η ≤ 1 and 2/β + 1/ϑ ≤ 1. By
Corollary 4.15 and Corollary 4.16 there are subsubsequences, denoted in the same way, with u′

α → u′ in V and
Σ′

α → Σ′ in Lβ(Ω; S2). Due to Assumption 4.11 U � h → ∂2j(ḡ)h2 ∈ R is weakly lower semicontinuous and
we infer from (4.45) that

0 ≥ ∂2i(ū)(u′)2 + ∂2j(ḡ)h2 + 2
(
λ′DΣ′, DῩ

)
+

(∥∥DΣ′∥∥2

S
, θ̄

)
= ∂2

(u,Σ,λ,g)L(ū, Σ̄, λ̄, ḡ, Ῡ , w̄, μ̄, θ̄)(Σ′, u′, λ′, h)2.
(4.46)

Since (Σ′, u′, λ′, h) solves (3.4) by Lemma 4.14, we deduce from b) that h = 0 and thus (Σ′, u′, λ′, h) = 0.
Using Assumption 4.11, (4.45), and the strong convergence u′

α → 0, Σ′
α → 0, we conclude

ν = ν lim sup
α→0

‖hα‖2
U ≤ lim sup

α→0
∂2j(ḡ)h2

α

≤ lim sup
α→0

{
∂2
(u,Σ,λ,g)L(ū, Σ̄, λ̄, ḡ, Ῡ , w̄, μ̄, θ̄)(Σ′

α, u′
α, λ′

α, hα)2 − ∂2i(ū)(u′
α)2

− 2
(
λ′

αDΣ′
α, DῩ

)− (∥∥DΣ′
α

∥∥2

S
, θ̄

)}
≤ lim sup

α→0
∂2
(u,Σ,λ,g)L(ū, Σ̄, λ̄, ḡ, Ῡ , w̄, μ̄, θ̄)(Σ′

α, u′
α, λ′

α, hα)2

− lim
α→0

{
∂2i(ū)(u′

α)2 + 2
(
λ′

αDΣ′
α, DῩ

)
+

(∥∥DΣ′
α

∥∥2

S
, θ̄

)}
≤ 0.

This is the desired contradiction. �
Remark 4.18. The proof above can analogously be applied to (SSC) provided that the objective J contains a
Tikhonov type term like j.

Appendix A. Auxiliary results

Lemma A.1. Let X be a Hilbert space and x1, x2 ∈ X. If ‖x1‖X = ‖x2‖X , then it holds

(x1, x1 − x2)X =
1
2
‖x1 − x2‖2

X .
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Proof. The assertion directly follows from straight forward computation:

(x1, x1 − x2)X = ‖x1‖2
X − 1

2

(
‖x1‖2

X + ‖x2‖2
X − ‖x1 − x2‖2

X

)
=

1
2
‖x1 − x2‖2

X ,

where we used ‖x1‖X = ‖x2‖X for the last equation. �

Lemma A.2. Let E ⊂ Rd be measurable and bounded, ν ∈ (1,∞) and f, fn ∈ Lν(E), n ∈ N. If
supn∈N ‖fn‖Lν(E) ≤ c and fn → f a.e. in E, then fn → f in Lκ(E) for 1 ≤ κ < ν.

Proof. We define gn := |fn − f |κ. Obviously, gn converges pointwise to zero a.e. in E and gn ∈ L
ν
κ (E). Moreover

gn is bounded and thus there exists a subsequence converging weakly in L
ν
κ (E). Due to Egorov’s Theorem the

weak limit equals the pointwise limit. Thus the weak limit is independent of the chosen subsequence, which
implies weak convergence of the whole sequence gn to zero. Consequently,

∫
E

gn dx → 0, which implies the
assertion. �
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