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INSENSITIZING CONTROLS WITH TWO VANISHING COMPONENTS
FOR THE THREE-DIMENSIONAL BOUSSINESQ SYSTEM

N. CARRENO!, S. GUERRERO! AND M. GUEYE!

Abstract. In this paper we prove the existence of insensitizing controls for a viscous newtonian fluid
wherein thermic effects are taken into acount, the so called Boussinesq system. The proof relies on a
standard approach introduced by Fursikov and Imanuvilov for the Navier—Stokes system which consists
in solving a constrained extremal problem, and then on an inverse mapping theorem to deal with the
nonlinear system. Furthermore, we use the coupling with the heat equation to get rid of two components
of the control in the fluid equations.
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1. INTRODUCTION

Let 2 be a nonempty bounded connected open subset of RY (N = 2 or 3) of class C*. Let T > 0 and let
w C £2 be a (small) nonempty open subset which is the control set. We will use the notation @ = 2 x (0,7)
and X = 062 x (0,T). Let us also introduce another open set @ C (2 which is called the observatory or
observation set.

Let us recall the definition of some usual spaces in the context of incompressible fluids:

V={yecC)N : V.-y=0in 2}.

We denote by H the closure of the space V in L?({2) and by V its closure in H}(£2).

We introduce the following Boussinesq control system with incomplete data:

ye— Ay +(y-V)y+Vp=f+ol, +0en,V-y=0 in  Q,

0 — A0 +y - VO = fo+ vl in  Q,
y=0,0=0 on ¥ (1.1)
y(0) = y° + 770, 0(0) = 6° + 70, in {2
Here,
(0,1) if N =2
eN:{(o,o,l) it N=3,
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stands for the gravity vector field, y = y(z,t) represents the velocity of the particules of the fluid, 8 = 0(z,t)
their temperature, (v, v) = (vg,v1,...,vx) stands for the control which acts over the set w, (f, fo) € L*(Q)N+!
is a given externally applied force and the initial state (y(0),0(0)) is partially unknown in the following sense:

e 40 € H and 0° € L*(£2) are known,
e o€ Hand 0 € L?(£2) are unknown with 190l 2(0yv = H%’

=1, and
L2(2)
e 7 is a small unknown real number.
We observe the solution of system (1.1) via some functional J,(y, ), which is called the sentinel. Here, the
sentinel is given by the square of the local L?-norm of the state variables:

- (y,0) ::% // (\y|2+\9\2>dazdt. (1.2)

Ox(0,T)

The insensitizing control problem is to find (v,v) such that the uncertainty in the initial data does not affect
the measurement J., at least at the first order, i.e.,

T ,9 ) Ui O
OIWO o () € L) such that [l = [

|, =1. (1.3)

L2(2)

If (1.3) holds, we say that v insensitizes the functional J;. This kind of problem was first considered by Lions
in [19].

The first results of existence of insensitizing controls were obtained for the heat equation in [2,26]. Both
papers are concerned with a sentinel of the kind (1.2).

A very close subject is controllability with controls having some vanishing components, which may be an
interesting field from the applications point of view. The first results were obtained in [9] for the local exact
controllability to the trajectories of the Navier—Stokes and Boussinesq system when the closure of the control set
w intersects the boundary of (2. Later, this geometric assumption was removed for the Stokes system in [6], for
the local null controllability of the Navier—Stokes system in [4] and in [3] for the Boussinesq system. Recently,
the local null controllability of the three dimensional Navier—Stokes system with a control having two vanishing
components has been obtained in [7].

As long as insensitivity results for fluids is concerned, the first result was obtained in [23], Section 2.3, where
the author establishes the existence of e-insensitizing controls of the form (v1,vs,0) for the 3D-Stokes system.
Then, the existence of insensitizing controls for the Stokes system is proved in [11] and for the Navier—Stokes
system in [12]. Finally, in [5], the existence of insensitizing controls for the Navier—Stokes system with one
vanishing component was established. The present paper can be considered as a continuation of this last work.
The main goal is to establish the existence of insensitizing controls for the Boussinesq system (1.1) having two
vanishing components, that is, v;, = 0 for any given 0 < ip < N and vy = 0. Notice that if N = 2, this
means v = 0.

The particular form of the sentinel J. allows us to reformulate the insensitizing problem (1.1)—(1.3) as
a controllability problem for a cascade system (for more details, see [2] or [18], for instance). In particular,
condition (1.3) is equivalent to (z(0),¢(0)) = 0 in 2, where (z,q), together with (w,r), solves the following
coupled system:

wy — Aw + (w - V)w + Vpy = f+vl, +rey, V- -w=0 in Q,
2z — Az 4+ (2-VHw — (w-V)z+¢Vr +Vp =wlp,V-2=0 in Q,
re — Ar+w-Vr = fo+ vl in Q, (1.4)
—qt—Aq—w-Vg=z2y+rlo in @,
w=z=0r=q=0 on X,
w(0) =4°, 2(T) =0, r(0) =60 q(T)=0 in 2
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Here, (w, pg, ) is the solution of system (1.1) for 7 = 0, the equation of (z, p1, ¢) corresponds to a formal adjoint
of the equation satisfied by the derivative of (y, ) with respect to 7 at 7 = 0 and we have denoted:

N
((z, VHw); = szaiwj i=1,...,N.
j=1

Our main result is stated in the following theorem, which expresses local null-controllability of (1.4):

Theorem 1.1. Let 0 < iy < N and m > 10 be a real number. Assume that wNO # 0, y° = 0 and 6° = 0. Then,
there exist § > 0 and C > 0, depending on w, 2, O and T, such that for any f € L*(Q)N and any fo € L*(Q)
satisfying ||e“/t" (f, JolllL2(qyn+1 < 8, there exists a control (v,vo) € L*(Q)N T with v, = vy = 0 such that the
corresponding solution (w, z,r,q) to (1.4) satisfies z(0) =0 and ¢(0) = 0 in (2.

In particular, no control on the velocity equation is required when N = 2.

Remark 1.2. The condition wN® # @ has always been imposed as long as insensitizing controls are concerned.
However, in [15], it has been proved that this is not a necessary condition for e-insensitizing controls for some
linear parabolic equations (see also [22]).

Remark 1.3. In [26], the author proved for the linear heat equation that we cannot expect insensitivity to
hold for all initial data, except when the control acts everywhere in 2. Thus, we shall assume that y° =
and 6% = 0.

To prove Theorem 1.1 we follow a standard approach introduced in [10] (see also [3,5,13]). We first deduce
a null controllability result for the linear system:

wy — Aw + Vpy = fY +ol, +rey, V-w=0 in @,
-2 —Az+Vp = fF+wlp, V-2=0 in  Q,
re — Ar = T+ v 1, ?n Q, (L5)
—q—Ag=f1+z2nv+rlo n @,
w=z=0r=q=0 on X,
w(0) =4°, 2(T) =0, r(0) =60°, ¢(T) =0 in £,

where f%, f# f" and f? will be taken to decrease exponentially to zero at ¢ = 0.
The main tool to prove this controllability result for system (1.5), and the second main result of this paper,
is a suitable Carleman estimate for the solutions of its adjoint system, namely,

—pr —Ap+Vr, =g +9Y1p, V- =0 in @,
Py — Ay + Vmy = g¥ +oeny, V-0 =0 in @,
~¢r —Ap=g°+pn+olo n - Q, (16)
o — Ao = g° in  Q,
p=9v=0,¢p=0=0 on X,
p(T)=0,9(0) =¢°, ¢(T) =0,0(0) =0 in £

Here, ¢° € H, 0° € L?(2) and g%, g¥, g% and g° will be taken with different regularity properties that will be
detailed later on. In fact, this Carleman inequality is of the form

/ / () (Il + [0l + 16 + |of2) dedt < C|[7(t)(9%, g%, 9%.6%) |
Q

+(N-2)C // Pa(Olps 2 dz dt + C // Slodedt, (1.7)
)

wx (0,T wx(0,T)
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where pi(t), k € {1,2,3,4} are positive weight functions, jo € {1,..., N —1}\ {io}, C' > 0 only depends on {2,
w, O and T and X is a suitable Banach space. Observe that when N = 2 the local term in ¢;, does not appear.
This estimate is stated in Proposition 3.1.

Since the proof of (1.7) is quite technical, let us first give some insight about it. In particular, we are going
to prove here the qualitative property corresponding to (1.7), that is to say

(N=2)pjp=¢=0 inwx(0,T)=¢T)=c(T)=0 in 2. (1.8)

for the solutions of (1.6) with (9%, g%, g%, 9°) = (0,0,0,0).

Observe that, thanks to the backwards uniqueness for the heat and Stokes operator, ¥(T) = 0 and o(T) =
0in {2 implies that p =¥ =0 and ¢ =0 =0 in Q.

Remark that (1.8) is equivalent to the approximate controllability of system (1.5) with (f%, f*, f7, f9) =
(0,0,0,0)

Proposition 1.4. Assume that w N O # 0 and 0 < jo < N. Then, the unique continuation property (1.8)
holds.

Remark 1.5. The proof of this unique continuation result follows the steps of the proof of (1.7). This is why
we are going to divide its proof in several steps. In the lines below, we will make precise to which part of the
proof of (1.7) corresponds each step.

Proof of Proposition 1.4. Without loss of generality, we can assume that 1) € V. Moreover, we can assume that
0¥ € C>(92). Now let us introduce the differential operators

D:=07 + (N —2)92, P:=A%— A (1.9)
We divide the proof in several steps:

Step 1. First we prove that the solutions of (1.6) satisfy
$p=0 Inwx(0,T)=Do=0 inQ.

Straightforward computations, using in particular that Ar, = 0in O x (0,T) and Any, = Oyo in Q, show that
(for more details, see Sect. 3.3.1)

—Pér — APy =Do in O x (0,T).

Then, we deduce that Do = 0 in (wN O) x (0,T). Furthermore, since the equation of o is homogeneous, Do
solves the heat equation
(Do) — A(Do) =0 in Q.

Then, from the parabolic unique continuation (see [24]) we deduce that Do =0 in Q.
Step 1 corresponds to estimate (3.29) in the proof of (1.7).

Step 2. Here, we observe that
Do=0 m@Q=0=0 in Q.

This fact is trivial from ¢ = 0 on X.
Step 2 corresponds to estimate (3.15) in the proof of (1.7).

Step 3.
p=0inwx(0,7),0=0inQ = ¢y =01in Q.

From ¢ =0in w x (0,7) and 0 =0 in Q we get oy =0 in w x (0,7 (from the equation of ¢). Thus, from the
equation satisfied by ¢xn we have

APy = —(Apn )t — A(Apn) =0 in (wNO) x (0,T).
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Observe that Ay satisfies the heat equation
(AwN)t - A(A¢N) =0in Q

Making use of the parabolic unique continuation property we deduce that A¥n = 01in Q. Then, the homogeneous
Dirichlet boundary condition gives that ¥y =0 in Q.

In dimension 2, this implies that ¢ = 0 in @, since V-4 = 0 in @Q and ¢|x = 0. This concludes the proof of
Proposition 1.4 when N = 2. Observe that we did not use that ¢;, =0 in w x (0,T).

Step 4. The last step will be to prove that if ¢ =0 in Q, then
v, =¢=0inwx (0,T) =¢=0inQ,
for 0 < jo < N. Using the fact that Am, =0 in O x (0,T), we find as before
Atj, = —(Api)i — MAgy,) = 0in (N O) x (0,T).
From o = 0 in @, we have that Amy =0 in @ and so
(Adjy)e — A(Ahj,) =0 in Q. (1.10)

Thus, the parabolic unique continuation property applied to (1.10) gives Ay, = 0 in Q. Consequently, 1;, =0
in @, since ¢jo\z =0.
This, together with ¢x =0 in @ and combined with V-4 =0 in @ and 5 = 0 yield ¢ = 0 in Q. g

Remark 1.6. Notice that after the first 3 steps, we have that ¥3 = 0 in @ and ¢ = 0 in @ using only ¢ =
0 in w x (0,7). From previous results [8,21], we can deduce that ¢» = 0 in @ under some particular generic
geometric conditions, that is, we are able to obtain the approximate controllability of system (1.1) with just a
control in the heat equation.

The rest of the paper is organized as follows. In Section 2, we present some notation and the technical results
we need. In Section 3, we prove the observability inequality (1.7). In Section 4, we prove a null controllability
result for the linear system (1.5). Finally, by means of a inverse mapping theorem, we prove Theorem 1.1.

2. TECHNICAL RESULTS AND NOTATIONS

In this section we introduce some notation and all the technical results needed in this work.

2.1. Some notations

We denote by Xg := L*(Q) and Yy := L?(0,T; H). For n a positive integer we define the spaces X,, and Y,
as follows:

X, := L*(0,T; H*"(2) N Hy(£2)) N H™ (0,T; L*(12))
Y, = L*(0,T; H*" ()N nV)n H™(0,T; L* (2)V),
endowed with the norms
ull%, = HuH%%O,T;H?"(Q)) + ”u”%{”(O,T;LQ(Q))
and
Jully, = ||U||2L2(0,T;H2H(Q)N) + HUH%I"(O,T;L"’(Q)N)’

respectively.
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The following subspaces will be used only in Section 4. First, for every positive integer n, we set
Koo 1= {u€ X [£5] | = 0, [£5] (0) =0,k =0,...,n ~ 1},
endowed with the equivalent norm (by Lem. 2.7),

lull, , = 1€ ullZ2q)

where we have denoted by

L:=0—-A and L":=-0—A

the heat operator and its adjoint, respectively.
Next, let

Yio:={ueYr: u(0)=0}

and
Yoo :={u €Y1 nL*0,T; H{(2)N) N H?*(0,T; L*(2)N) : (Lyu) s =0, (Lyu)(0) = 0}

endowed with the equivalent norm (by Lem. 2.8 with ug = 0)
lull¥, o = L5 ull72pns n=1,2.
Here, Ly := 0 — Pr(4), where P, denotes the Leray projector over the space H.

This equivalence between norms is used later to obtain Lemma (4.1).

2.2. Carleman estimates

In this subsection we present some Carleman estimates needed to prove estimate (1.7). This inequalities have
been proved in previous papers and we give precise references about where to find each one of them. Before
we can establish these estimates, let us introduce some classical weight functions. Let wy be a nonempty open
subset of RV such that wy € w N O and n € C*°(£2) such that

IV >0 in 2\wy,n>0 in Nandn=0 on O

The existence of such a function 7 is given in [10]. Let also ¢ € C°°([0,T]) be a positive function in (0,7)
satisfying

()=t Vtel0,T/4),e(t)=T—t Vte[3T/4,T)
0t) < U(T/2), YVt e [0,T).

Then, for all A > 1 and m > 10 we consider the following weight functions:

el _ () An(x)
a(x,t) = Wa g(l’,t) = E(t)m’
o’ (t) = maxa(z, t), £ (t) = min&(w,1t),
e e
a(t) = min oz, t), £(t) = max &(, b). (2.1)

e e
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Notice that from (2.1), we obtain the following property:
|07 0,0] + |07 0,¢] < CgtHitn/m), (2.2)

where n is any nonnegative integer, [ is a N-multi-index and C' > 0 is a constant only depending on §2, A, n
and /. This property is also valid for the pairs (o*,£*) and (@, 5)

The first result is a Carleman inequality for the Stokes system with right-hand side in L?(Q)" proved in [4],
Proposition 2.1. This estimate has the interesting property that the local term does not contain one of the
components of the solution.

Lemma 2.1. There exists a constant 3\\0 > 0 such that for any X\ > :\\0 there exists C' > 0 depending only on A,
2, w, n and £ such that for any i € {1,...,N}, any g € L*(Q)" and any u® € H, the solution of

—Au+Vp=g,V-u=0 in Q,
u=20 on X, (2.3)
u(0) = u° in £,

satisfies

D) = [ et (€22 dxdt+s32// ~2sa=9%0" €3] Ay 2z

@ J#Z

4 Z // —2sa—9sa” g ‘VU” dxdt—i—s // 113a*(§*)4\u|2dxdt

Jj= 13;&2 Q
<C // ~9s0” || dxdt+s7z // ~2s-930" &1y, 247 df (2.4)
7 1w0>< 0,7)

for every s > C.

Remark 2.2. In [4], the weight functions « and ¢ are given for m = 8, but the proof also holds for any
m > 8. Additionally, the terms involving derivatives of u in the left-hand side of (2.4) do not appear explicitly
in Proposition 2.1 of [4]. However, it is easily seen from its proof that these terms can be added. Finally, one
should replace p = e~3/25* (defined in Sect. 2.1 right after (2.13) in reference [4]) by p = e=9/25*,

Now, we present an estimate proved in Proposition 3.2 of [5] (with f = 0 in that reference) similar to (2.4)
with local terms of the Laplacian.

Lemma 2.3. There exists a constant :\\1, such that for any \ > :\\1 there exists a constant C(X) > 0 such that
for anyi€{1,...,N}, any v’ € H and any

g € LX0,T; H*()N) n H*(0,T; H(2)"),
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the solution of (2.3) satisfies

// 9555 | Auy|? + $3E3 |V Aug|? + sE|VV Au,|? + 57T VYV Ay |2 da de

j:
J#i

+ s // —9sa’ \u| dedt < C 5/2// —9sa’ 3 2/m\g\zdwdt
+S3/2/H(e—9/23a (5*)1—3/(2m)g>
0
T

H dt
tell -1~

0
T
2
—-1/2 —9/2sa™ (¢x\—5/(2m) —-1/2 —9/2sa™ [ ¢x\—5/(2m)
w2 [ (e em) [ gt (e )
0

0

+ Z // e 95|V Ag, da:dt+// e BYVV(V - g)[Pdx dt +S5Z // e 95| AujPdadt |

1
J=1,j#i ;éz wox (0,T)

for every s > C.

The third Carleman inequality we present applies to parabolic equations with non-homogeneous boundary
conditions. It was proved in ([14], Thm. 2.1):

Lemma 2.4. Let fo, f1,..., fn € L*(Q). There exists a constant Xz > 0 such that for any \ > :\\2 there exists
C > 0 depending only on \, 2, wo, n and £ such that for every u € L*(0,T; H*(£2)) N HY(0,T; H=*(£2))
satisfying

N
up—Au=fo+ Y 0;f; inQ,

j=1

st //e_Smg_l\Vu\zdxdt—I—s// e %% uPdzdt < C // e 8s¢|u)?da dt
Q Q

(A)DX OT

we have

1s 1/2H —4sa* (€)" 1/4 H 1 1/2” —4sa* (€)"

Hi 3 (%)

// eS8 2| |2 d:cdt+Z// “8se| fi2dadt |

X)

for every s > C.
Here,
) ) 1/2
lull 3.3 5 = (||U||H1/4(0,T;L2(am> + H“HL%O,T;HU?(M))) :

Remark 2.5. Notice that the usual notation for this space is actually H2'3(X) (see, for instance, [20]). How-
ever, we choose to follow the notation used in [14].
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The last estimate that we need is a technical result that can be found, along with its proof, in ([6], Lem. 3).

Lemma 2.6. Let k € R. There exists C > 0 depending only on 2, wg, n and £ such that, for every T'> 0 and
every u € L?(0,T; H*(£2)),

s //6_83a£k+2\u|2dxdt <C //e_Ssa§k|Vu|2dxdt+s2 // e 85 eh 21y 2dz dt |,
Q Q

on(O,T)
for every s > C.
2.3. Regularity results

Here, we state some regularity results concerning the heat and Stokes equations, respectively. The first one
is (see for instance [17], Chapt. 4):

Lemma 2.7. For every T > 0 and every f € L*(Q), there erists a unique solution
u € L*0,T; H*(2)) N H*(0,T; L*(12))

to the heat equation
u — Au = f m  Q,
u=0 on X, (2.5)
u(0) =0 in  £2,

and there exists a constant C > 0 depending only on {2 such that
2 2 2
lullz20,75m2(2)) + 1ellE 0,22y < C A2 - (2.6)

Furthermore, if f € X,, (n any nonnegative integer), the unique solution to the heat equation (2.5) satisfies
u € X, 41 and there exists a constant C' > 0 depending only on {2 such that

lul.... < CII%, - (27)
The second one can be found in ([16], Thm. 6, pp. 100-101; see also [25]):
Lemma 2.8. For every T > 0, every u® € V and every f € L*(Q)", there exists a unique solution
ue L20,T; H*(2)N)n HY(0,T; H)N L>(0,T;V)

to the Stokes system
u— Au+Vp=f n  Q,

Vou=0 i Q,
u =0 on X,
u(0) = u® in 2,

for some p € L?(0,T; H*(§2)), and there exists a constant C > 0 depending only on §2 such that

220,52 2y + 1l 3 02202y w) + Nl Zoe 0,70y < € (Hf“iz(Q)N + HuOHfJ : (2.8)
Moreover, if f € L*(0,T; H*(2)N)NHY(0,T; L>(2)N) and u® € H?*(2)N NV satisfy the compatibility condition:
Vp=Au’+ f(0) on 09,
where p is any solution of the Neumann boundary-value problem

{Ap=V~f(0) in Q,

M o
a—n—Au~n—|—f(0)-n on X,
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then u € Yo and there exists a constant C' > 0 depending only on 2 such that
2 2 2
lall, <€ (U5, + 1l ) - (2.9)

3. CARLEMAN ESTIMATE FOR THE ADJOINT SYSTEM

In this section we prove a new Carleman estimate for the following coupled system:

—pr —Ap+Vr, =g +9Ylo, V-p=0 in @,
Yy — AYp+Vmy=gY+0oen, V-p =0 in Q,
—¢p — Ap = 9¢ +on +olo in @, (3.1)
o — Ao = g° in Q,
p=9v=0,¢=0=0 on X,
o(T) =0, 9(0) = ¢°, ¢(T) = 0, o(0) = o° in £,

where g% € Yy, g¥ € Ya, g® € X0, g° € X4, ¥° € H and ¢° € L?(£2). It is given by the following proposition:

Proposition 3.1. Assume that w N O # (. Then, there exists a constant Ao, such that for any X\ > X\o there
exists a constant C' > 0 depending only on \, 2, w and ¢ such that for any jo € {1,...,N—1}, any g¥ € L*(Q)",
any g¥ € Ya, any g® € L*(12), any g° € X4, any ° € H and any og € L?(12), the solution (p,, ¢, ) of (3.1)
satisfies

84 //e*uso‘*(g*)ﬂgo\zdxdtﬁ—55 //efgso‘*(g*)s\w\zdxdt
Q Q

+83 //e_l2sa*(§*)3|¢|2dl‘dt—1-85 //e—Ssa*(f*)5‘o_|2dxdt
Q Q

S C 815 He—83(1+4sa 599¢‘

2 .2
n He—7/2sa gw‘
Yo Y

. 2
AT H678sa+4sa 5119¢‘

2 7/2s0"
Xo

X4
-l—(N o 2)813 // efgsoc£13|(pjo |2d$ dt + 826 // 6718sa+115a*§30|¢|2dx de |, (32)
wx(0,T) wx(0,T)

for every s > C.

For the sake of completeness, we treat the more general case of N = 3 (with jo = 1, for instance). The general
idea is to combine suitable Carleman estimates for the heat and Stokes equations in (3.1). The proof is then
divided in several parts:

e First, we deduce from Lemma 2.3 a Carleman estimate for ¢ with local terms of Ay and Awgs. Using the
coupling with the equation of ¢, we estimate these terms by local terms of ¢; and 3.

e Using the equation of ¢, we estimate the local term of ¢3 by a local term of ¢.

e Finally, to add o to the left hand side of (3.2) and absorb all its global terms on the right- hand side, we
prove a Carleman estimate for a certain operator of o such that its global terms can be estimated by terms
of the right-hand side of (3.2).

The details of these steps are the target of the following subsections.
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3.1. Carleman estimate for (¢, )

The first step is to apply Lemma 2.3 to the equation satisfied by 1. However, before doing that, let us remark
some simple (but useful) properties of the weight functions. Note that for every a > 0, and every b, ¢ € R, the
function sbe=?5*¢¢ is bounded in Q. Furthermore, for any given ¢ > 0, we have

shemasage < ¢ (3.3)
for s> C, C a positive constant. Taking this and (2.2) into account, we have, for example,
‘(83/4679/2504*(g*)173/(2m)0_) _ ’(81/26745(1*(&-*)1/272/7710_ (81/4671/25(1*(é—*)l/2+1/(2m)>)

<e (’81/26—4sa*(f*)1/2—2/m0_’ I ‘(81/28—4sa*(§*)1/2—2/m0) D ’ (3.4)
t

t t

for every s > C, that is,

H83/4679/250¢*(g*)173/(2m)0_H <e H81/2ef4soc* (5*)1/272/mUH

H(L?) — HY(L2)

3.1.1. Carleman estimate for

Now, we apply Lemma 2.3 with i = 2, u = v, and g = g¥ + 0 e3. Using (3.3) and the idea developed in (3.4)
we obtain

L) < C e/ gv|

2 1/2 4sa* 1/2—2 2
+€Hs / e dsa (g*) /2— /mo_H
Yg X2

+Cs® // e 955 (| A |2 + | A [*)da dt, (3.5)
on(O,T)
for every s > C, ¢ > 0 to be chosen small enough.

8.1.2. Carleman estimate for ¢

Next, we apply Lemma 2.1 to the equation satisfied by ¢, with i = 2, u = ¢ and g = g¥ + ¢ 1. We obtain
I () §C// e % |g?2da dt + C // e 95 |y 2da dt
Q 0x(0,T)

+Cs” // e 25079507 €T(| 5112 + | pg|?)da d, (3.6)

wo % (0,T)

for every s > C. Noticing that the second integral in the right of this inequality is bounded by C's~° I5(v)), for
some C' > 0, we can combine inequalities (3.5) and (3.6) to get

)+ 1) <0 e

2 _’_CHe—7/2.€o¢* gw‘
Yo

2 1/2 4sa* 1/2—2 2
+€Hs / o dsa (g*) /2— /mo_H
Yg X2

vos [[ e o s s di
on(O,T)

+Cs° // e (| Ay |? + | Aeps|?)dz dt, (3.7)
on(O,T)

for every s > C. Now, using the coupling between ¢ and ¢ we will estimate the last two local terms. This is
the objective of the next subsection.
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3.1.8. Estimation of Ay and Ais
We look at the equations satisfied by 1 and ¢35 in the set O x (0,7T) to find

Ay = —Ap1y — A0 + 01V - g¥ — Ag?,

Apy = —Apsy — Ap3 + 03V - g¥ — Ag¥.

Here, we have used that Ar, =V - ¢¥ in O x (0,T") which follows directly from the free-divergence conditions
for ¢ and 1. Let now ¢ € C¢(w) be a nonnegative function with ( =1 in wg and wy € © € w N O.

For simplicity, we only treat the term concerning s in the last integral in (3.7), since the other term is quite
similar. Using this last equality, we have

// e 9595 | Aps |Pda dt < 85 //g e 9595 Agps|Pda dt

wox (0.7 wx(0,T)
_ P // C(l')eigsafSA'lps(—ASO&t _ A2§03 + 05V - g“’ _ Agép)dl' dt.
wx(0,T)

An integration by parts, in time and space, gives the following inequality:

// e 9595 | Anps |2 dar dt

wo % (0,T)
g / / Ca)e 90 E3 (M, — A%a) Aggdar dt
w>< O T
/ / 2)e %E5), Ay — A(C(x)e " E5) My — 2V(C(x)e P ED) - V As) padardt
w>< O T
/ Vs (C(z)e %€ Ayg) - g¥dxdt — s° / / z)e” P55 Anpy) gf da dt. (3.8)
w>< O T w>< O T

Now we estimate the three lines of terms in the right-hand side of (3.8), which we call respectively Lq, Lo
and L3. For the first one, we use the equation satisfied by Ats, namely

Atpgy — A%y = Agl — 93V - g¥ + (0% + 02)0. (3.9)

This equation, together with some integration by parts, yields

L= / / R)e O (Agy — 0V g + (0 + 3R)0)) esdrdt.
wx(0,T)
A careful analysis of these terms, taking into account (2.2), (3.3) and using Young’s inequality, gives

|Li| < Cs1? // e 0By 2zt 4 C [T/ g

wx(0,T)

2 1/2 —dsa* (g#\1/2—2 2
—|—€Hs [2g—4sa” (g¥)1/2= /ma‘ .
Y2 X2
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A similar argument for Ly and L3 gives the following estimates

1 . .
|L2\§@12(w)+cs“ / / e 950¢18 | g 2da dt,

wx(0,T)

|Ls] < —Clg Y) + Cs’ // —9sa g9 0012 dt.

wx(0,T)

Combining these estimates for L1, Lo and L3 with (3.8), together with the same computations for 11, provide

2
Yo

Li(p) 4+ L) < C <H89/269/25a€9/2

2 x
® + Hef7/2soc g
Yo

. 2
_|_€Hsl/2e—4sa (f*)1/2—2/m0_‘
Xo

+C813 // e—9sa£13(|901‘2 + \4,03\2)dxdt,

wx(0,T)

(3.10)
for every s > C.

Here, we have also used the properties of the weight functions to find a more compact expression. This ends
this part of the proof of Proposition 3.1.

The next step is to eliminate the local term of 3. This is done in the next subsection

3.2. Estimation of 3 and Carleman estimate for ¢

As in the previous section, we look at the equation satisfied by ¢ in the set O x (0,7):
¥3 :_¢t_A¢_g¢_

integration by parts to obtain

13 // C 798&513‘8@ ‘ dedt = 813 // C 79sa£13 ( ¢t Agi) . g¢ . O')dx di

w’x(0,T)

We consider again a nonnegative function ¢ € C3(w’) such that ( = 1in @ and @ € w’ € w N O, and perform

w’x(0,T)
=5 [[ 10— Al (e ) o e
W’ x(0,T)
13 C 795a£13 (g -I-O')dx dt.
w’ A/T)

Let us call Ly and Ls the two integrals at the end of the last expression. A careful analysis of L4, together with
property (2.2) and Young’s inequality, yield

1 . "
|L4‘ < %II(SO) + C826 // 6718so¢+1lsa 530|¢|2 dz dt + Cs24 // eflﬁsOH*QSoc 524‘¢‘2 dx dt,

w’x(0,T) w’x(0,T)

for every s > C.
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For the term concerning Ls, we apply again Young’s inequality and property (3.3):

ILs |< §13 // ’950‘513\4p3|2dxdt+C’Hsl3/ o

w’x(0,T)

. 2
L H81/26—4sa (6*)1/2—2/m0‘ .
Xo

From (2.1), we have e~ 16saF9sa”  g=I8satllsa™ i ) 50 we obtain

1 .
813 // C(x)e_gsa§13|g03|2dxdt S %II(SO) +Cs26 // e—lSsa+1lsa £30‘¢‘2 dz dt

w' % (0,17 w' % (0,17

+CH5

Y H81/2e—4sa*(§*)1/2—2/m0_’ 2
Xo

9

for every s > C, which plugged in (3.10) together with the fact that

13 // 795a§13‘(p ‘ dz dt < 813 // C 795a£13|¢3| dl‘dt

wx(0,T) w’x(0,T)

leads to

2 *
Ii(p) + L2 (2) SCHSQ/Qe’S’/ng’/? " y +CHe—7/25a p
0]

2
oo
Y2

+Cs™ / / e 9oy [Pz dt

wx(0,T)

0826 // 6718sa+115a*§30|¢|2 dx dt,

w'x(0,T)

T H31/2ef4so¢*(§*)1/272/m U‘ 2
X2

for every s > C.

(3.11)

To end this section of the proof, we will combine (3.11) with a Carleman inequality for ¢. This will allow us

to add the term with ¢ in the left hand side of (3.2). Namely, ¢ satisfies

) = / / e 1250 (SE3 02 4 s¢[VOP + 57 (gl + | AG2)) durdt

<c// 25016812 4| pg]2 + |02 Lo) dz dt + O3 // e 12083 g du dt,

wx(0,T)

(3.12)

for every s > C. This is the classical Carleman estimate for the solutions of the heat equation with homogeneous
Dirichlet boundary conditions (see, for instance, [10]). Notice that, taking (3.3) into account, the right-hand

side of (3.12) is bounded by

C Hsm/Qe*

2 1 . 2
Y oD(g) e Hs1/2ef4sa (g*)1/272/mUH
Xo 2

X2
0826 // e—lSsa+1lsa*§30‘¢‘2 dz dt,

wx(0,T)
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for every s > C. Thus, combining this bound with (3.11) and (3.12) we obtain

2 . 2
Il(%@) _1_12(,(/]) +I3(¢) SC( H89/2e—9/2sa£9/2g¢‘ . + He—7/2sa gw‘ .
0 2

2 . 2
n H813/2e—9/2sa§13/2g¢‘ ) te Hsl/ze—zxm (f*)1/2—2/m a‘
Xo X2
+ 0813 // efgsa§13|(p1|2d1, dt + Cs26 // 6718sa+115a*§30|¢|2 dx dt, (313)
wx(0,T) wx(0,T)

for every s > C.

At this point, there are a few tasks left to do. First, we need to eliminate the global term of ¢ in the right-hand
side of (3.13). This will be done combining this estimate with a suitable Carleman estimate for o, provided that
we choose the weight functions conveniently. This will add o to the left-hand side and a local term of o to the
right-hand side that also needs to be eliminated. Normally, we would try to use again the coupling of o with the
other equations. However, this will make appear the pressure term of the equation of v, or again a local term
of 3 in the equation of ¢, which we would not be able to eliminate again. Therefore, a more careful analysis
needs to be done to avoid these issues. Details are given in the next subsection.

3.3. Carleman estimate for o and final computations

This final part of the proof of Proposition 3.1 is divided in three steps. In the first one, we look for an equation
of o which does not contain neither 7, nor ¢3. Then, we show a suitable Carleman inequality for o based on
this expression. Finally, we eliminate the local terms of ¢ and conclude.

3.3.1. Operator for o

Let us look at system (3.1) in the set O x (0,7). All the following computations will be seen in this set.
Since Amy, =V - g%, we find

—(Aps); — Apy = Agf — 05V - g% + Aty
In the previous section, we found the equation satisfied by Aws (see (3.9))
(Apz); — A% = Agy — 35V - g% + Do.

Here, we recall the notation used in (1.9), D := §? + 95. Combining these expressions, we can easily find the
following relation between @3 and o:

Pos = (Agf)r — A28 — (85V - g9y + A(B3V - g¥) + Agl — 33V - g% + Do,

where we have denoted P = —Ad? + A3 (recall again (1.9)).
Finally, we apply this operator to the equation satisfied by ¢ and, combined with the last expression, we
obtain

—(Py+ AP)¢ = (Agf), — A% — 35V - gf + A(0sV - g9) + Ag¥ — 05V - g¥
+ Pg? — Ag? — A%¢% + Do, (3.14)

where we have used the equation satisfied by o to find Po = —Ag? — A%g°.
The idea now is to prove a Carleman estimate for o with a local term of Do and use (3.14) to eliminate it.
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3.8.2. Carleman estimate for Do

Here, we follow the ideas developed for the Stokes system in [6] (see also [4,5]), thus for simplicity we omit
some detail of the computations. We start by applying VVD to the equation satisfied by o. We have

(VVDo); — A(VVDo) = VVDg?, in Q.

We apply sequentially to this equation:

e Lemma 2.4 with u = VVDo,
e Lemma 2.6 with £ =1 and v = VDo,
e Lemma 2.6 with £ = 3 and u = Do,

and

/ o2 dz < c/ Do? da, (3.15)
o) 0
for some C' depending on §2 (this last inequality holds since {2 is bounded and og¢, = 0). Therefore, we obtain
I(o) := // e 35 (s VA Do ? + s¢|V2Do|? + 523V Do |? 4 s°¢°| Do|?)da dt
Q

+ s° //efssa*(f*)‘r’\aﬁdxdt < Cs? //efsmffﬂvzi)g”\zdxdt
Q Q

—1/2 || ;—4sa”™ [¢x\1/4v72 2 2
+Cs e &)V Do

+ OS—1/2 He—4sa* (5*)_1/4+1/mV2D0‘
H1/4,1/2(2)

L2(x)
+C // e 5 (s¢|V?Do|? + s*¢3|VDo|? + s°€°|Do|?) da dt. (3.16)

wo x (0,T)

Tt is not hard to prove that, considering a cut-off function supported in w’ (recall that wy € W' € w N O);
integration by parts and Young’s inequality, we can estimate the local terms in the last inequality by

1~ = =4
STilo) + 05’ // o805 o2 dz dt. (3.17)
W x(0,T)

To estimate the boundary terms, we use regularity results for the heat equation. We start by defining
5= 83/2674506* (5*)3/271/7710_.
It is not difficult to check that o satisfies the heat equation

G — A = 83/2674504* (g*)3/271/mg(r + (83/2674504* (5*)3/271/m)t0 in Q’
c=0 on X

g(0)=0 on {2

2
Xo/)

From regularity result (2.6) and (2.2), we obtain

515, < (s (eyetimge

2 5/2 —4sa’* 5/2
e
0
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Applying successively regularity result (2.7), taking into account (2.2), we can prove the general formula

n—1 2
<C Z Hss/szelesa (é—*)S/ka:f(k:Jrl)/mga
k=0

2
Xn Xk

85/27nef4sa* (5*)5/2771771/7710_‘

2

[

LC ‘ §5/2—4sa” (g*)a/Qo_‘

d
- (318)

forn=1,...,5. Let us call in what follows

n—1
. . 2
Ro(g?) = Z HS?)/ka:efélsoc (5*)3/27k7(k+1)/mga .
k=0 k

Using a trace inequality (see, for instance, [20]) we have

2 2

He—4sa*(§*)1/4v2DUH < C«He—élsa*(g*)l/élo_’

H1/41/2(5) L2(0,T5H5(2))NH (0,T;H3(2))

Now, by an interpolation argument between the spaces Xs and X3, and since m > 10, we can combine this
estimate with (3.18) and write

2

[

" 2 . “
s—1/2 Hefzxsa (5*)1/4VQDOH < 0871/2723(90) L Oos 12 ‘ §5/2o—4sa (f*)a/Qo_‘

H1/4,1/2(2) - (319)

Xo

For the other boundary term, taking into account that o* and &* do not depend on x, and (£*)~1/4F1/m ig
bounded since m > 10, we can easily obtain

2 2

8_1/2 He—4sa* (f*)—1/4+1/mv2zDo_‘

< CS_1/2 He—4sa*v2Do_‘

L2(X) L2(X)
* 2 N 2
<Cs V2 (Hsl/ze—zxm (5*)1/2V2DJ‘ Hs—1/2e—4sa ({*)_1/2V3D0‘
- L2(Q) L*(Q)
. 2 -
+ He*‘*w VQDa’ > < Cs~ V2] (0). (3.20)
L2(Q)

Finally, notice that from (3.18), we have

J(o) = 25: ’
k=1

Combining estimates (3.17), (3.19)—(3.21) in (3.16), we obtain the following Carleman estimate for o:

* = 2 T
§5/2—kg—dsa (g*)&’/z*k*k/mJHX < CRs5(9%) + Cly(o). (3.21)

L4(0) == Ta(0) + J(0) < Cs~2 / / =830 ¢=2|Y2Dg7 2dz dt + CRs(g7)

Q
+Cs° // e 85¢% Dy |? da dt,

w’x(0,T)

for every s > C. Furthermore, by (2.2), (3.3) and (3.4), we find the more compact form:

Lio) < C |77/ g

2
. +Cs° // e 8595 Do |? dz dt, (3.22)

w'x(0,T)
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for every s > C. Finally, we are going to estimate the local term in (3.22) in terms of g%, g%, g%, ¢° and a local
term of ¢.

We recall the expression (3.14) for Do valid in O x (0,T) and consider a cut-off function ¢ € C§(w N O) such
that ¢ =1 in w’. Recall that wy € w’ @ wN O. We have the following for the last term in (3.22):

// e 8¢ Do |2 drdt < s° // C(x)e 8¢5 Do|? da dt
W' % (0,T) (wWNO)X(0,T)
== [ @D (A9 - A5 - Y - gF + M@V - g7)) dodt
(wNO)x (0,T)

[

—s° // ((x)e 8¢ Do (Agg’ — 03V - gw) dedt — s° // C(z)e 85D Pg? da dt

(wNO)x(0,T) (wNO)x(0,T)
/ / ((z)e 3D (Ag] + A%g7) dzdt — s° / / ((v)e Do [Py + APlpdzdt. (3.23)
(wNO)%(0,T) (wNO)x(0,T)

Similarly as in Subsections 3.1.3 and 3.2, we need to integrate by parts in both time and space, keeping in mind
the definition of the operator P (see (3.14)). Let us call the five integrals in (3.23) Ay,..., As, respectively. A
careful analysis of each of these terms (after integration by parts), taking into account properties (2.2), (3.3), (3.4)
and Young’s inequality, we can prove the following estimates for every s > C"

A < = 80 J(0) +Cs® // e 10sat8sa” ¢18) 0012 (4 (3.24)
| Ay < %s // 83“§5|Do\2dxdt+CH /250" (3.25)
|As| < @ J(o) 4+ Cs'® //e*165a+85a*§22|g¢\2dxdt, (3.26)
|Ag] < - J(o)+C He”/?“‘*g“ i (3.27)
- 8C X0 '
|As] < — 80 J(o) +Cs* // e 105k 8sa” ¢261 42 g ¢, (3.28)
wx(0,T)
From (3.22)—(3.28) we obtain
15/2 ,—8sa+4sa™ ¢9 ¢ 2 —7/2sa™ 2 19/2 —
Ii(o) <C| ||s/“e &g Y+e gy—i—s e
0 1
* 2 .
+ Hef7/2soc go* . ) +C$23 // efl6sa+85a 526|¢|2 dl‘dt, (329)
) wx(0,T)

for every s > C.



INSENSITIZING CONTROLS FOR THE BOUSSINESQ SYSTEM

3.8.8. Conclusion of the proof of (3.2)

91

To conclude the proof of Proposition 3.1, we go back to (3.13), which combined with (3.29), taking into

account that
_ 5 — *
896 950459 < Cfslae 16sa+8sa 518’

813e—gsa£13 S 6«8198—163a+83a 5227

8238—163a+83a 526 S 08268—183a+1lsa 5307

for every s > C' and choosing ¢ small enough we finally obtain

1(¢) + B(Y) + (6) + Li(0) <C (Hsmem%m"ﬁ ¢7|

n H819/2e—8sa+4sa fng¢"

e /23a go
H
Xo

2 7/2sa* 1)
o]
Yo g

2
Y2

2
X4

+ 0813 // 679sa§13‘4p1|2dx dt + 0826 // 6718sa+115a*£30‘¢‘2 dx dt,

wx (0,T) wx(0,T)

for every s > C, from which we readily deduce (3.2).
This concludes the proof of Proposition 3.1.

4. NULL CONTROLLABILITY OF THE LINEAR SYSTEM

In this section we deal with the null controllability of system

Lw+Vpo=f*+vl,+rey, V-w=0 in
L2+ Vpr=fF+wlp, V-2=0 in
Lr=f"+vy1, in
Lrq=fl42ny +rlo in
w=z=0,r=q=0 on
w(0) =0, 2(T) =0, 7(0) =0, ¢(T) = 0 in

Q,
Q,
Q,

Q,
2,
0

Here, we will assume that f*, f*, f” and f? are in appropriate weighted functional spaces. We look for controls
(v,v0), such that v, = vy =0, for some given 0 < ig < N, such that the associated solution of (4.1) satisfies

z(0) =0 and ¢(0) = 0 in £2.

To do this, let us first state a Carleman inequality with weight functions not vanishing in ¢ = 7. We introduce

the following weight functions:

o2l _ oAn(z) ()
x,t = — ~ 5 .’L',t = = )
B(x,1) o v(z,t) o
B (t) = maxa(z,t), () = min~y(z,t),
TEN zes?
B(t) = min B(z,t), A(t) = maxy(z,t),
TEN zes?

where

_ {Z(t) 0<t<T/2,
ot) =
1€)loe T/2 <t < T.
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Lemma 4.1. Let 0 < jo < N and let g%, g%, s and X be like in Proposition 3.1. Furthermore, assume that g% €
Yoo and g° € Xao. Then, there exists a constant C' > 0 (depending on s and \) such that every solution
(01, 6,0) of (3.1) satisfies

// (o 4 P+ 0P+ o) deds < O | [Jento/0 g
0
N 2
+H —13/4s3* w’ H +Hefl3/4sﬁ g°
Y20 0 X4,0
No2) [[ e pasars [ et opasa . (4.2)
wx(0,T) wx(0,T)

To prove estimate (4.2) it suffices to combine (3.2) and classical energy estimates for the Stokes system and
the heat equation satisfied by ¢, ¥, ¢ and o. For simplicity, we omit the proof. For more details on how to
obtain (4.2), see [3,4] or [12]. Notice that, in order to obtain this more compact form, we have strongly used
the property (3.3) and the assumptions g% € Y2 and g% € Xy (see Sect. 2.1).

Remark 4.2. Observe that the additional assumptions on g% and g° are not needed to obtain the energy
estimates, but the fact that ¢(7) =0 and ¢(T) = 0 is essential.

Now we are ready to prove the null controllability of system (4.1). The idea is to look for a solution in an
appropriate weighted functional space. To this end, we introduce, for 0 < ig < N, the spaces

Eio,s,)\ = {(w’pOa Z,p1,T, q,vaO) : 613/4Sﬁ*w S L2(Q)N7 613/4Sﬁ*’r S Lz(Q)a
134 y1, € LHQ)N, vy = vy =0, ¥4 01, € LA(Q),
613/435* (’Y*)_l_l/mw S }/17 613/435* (7*)—6—6/7)12, S }/17 Z(T) = 07
613/435* (7*)—1—1/m,’“ c )(17 el3/4sﬁ* (7*)—15—15/mq c Xl, q(T) =0,
2B (Lw + Vpg — vl — ren, L2+ Vpr —wlo) € LA(Q)?N,
P8 (Lr — w1y, L¥q — 2y —rlo) € L2(Q)?}).
It is clear that I , » is a Banach space endowed with its natural norm.

Remark 4.3. In particular, an element (w,po,z,p1,7,q,v,0) € FEj s satisfies w(0) = 0, z(0) =
0, 7(0) = 0, ¢(0) =0, v;, = vy = 0. Moreover, since

e~ %" (4*)¢ is bounded (4.3)
for any a > 0 and ¢ € R, we have that
e20/4s8” ((w NV)w, (w-V)z, (z-VYw, ¢Vr, w-Vr, w- Vq) € L2(Q)4N+2.
All the details are given in Section 5.
Proposition 4.4. Assume the hypothesis of Lemma 4.1 and
BT LTI € LP(Q)PNHE (4.4)

Let also ig € {1,...,N — 1}. Then, we can find controls (v,vy) € L*(Q)N*1 such that the associated solution
(w, po, 2,01, 7,4, v,00) to (4.1) belongs to E;, s x. In particular, v;, = vy =0 and (2(0),¢(0)) = (0,0) in 2.
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Proof. Following the arguments in [10, 13], we introduce the space Py of functions (p,m,, 9,7y, 0,0) €
C>®(Q)?N*4 such that
V-op=V-4=0,
e px=Yx=0,9x=05x=0,
@(T) =(0) =0, ¢(T) = (0) =0,
Todr = | mydr =0,
0 Q
V- (LY +Vry —oen) =0,
(ﬁk [ —13/4s6” (ﬁw + Vmy — 0'61\/)])‘2 =0,k=0,1,
(Lh [e=13/45" (Lo + Vrry — oen)])(0) = 0, k =0, 1,
LF[e13/45" Lo]| 5 =0,k =0,...,3,
LF[e13/455" £5](0) =0, k =0,...,3.
We define the bilinear form

a’((@/v%wv&v%wvgva)v(@v 77@71/)77‘1#7(1570))
:// e 132587 (L5 + V7, — Jllo) (Lo + V7, —¢lp)drdt

+ / Loyfle™ 40 (L + VR, —Fen)] - Lyle™ B4 (L + Yy — o en)] dudt
+ / / e (L°G — Gy — 5 L0) (L' — on — o o) drdt

+ / / LA™ 1348 £5) L4 e 13/48” Lo] dar dt

+ (N —-2) // “13/258° 5. o dadt + // —13/255" § ¢ dx dt,

wx(0,T") wx (0,7

where jo € {1,...,N — 1} \ {io} and a linear form

(G, (@, T, ), Ty, &, 0)) :://f“’~<pdxdt—|—//fz-wdxdt—k//fT(ﬁdxdt—i—/ f9odxdt.
Q Q Q Q

Thanks to (4.2), we have that a(-,-) : Py X Py — R is a symmetric, definite positive bilinear form on Fp.
We denote by P the completion of Py for the norm induced by a(,-). Then, a(-,-) is well-defined, continuous
and definite positive on P. Furthermore, in view of the Carleman estimate (4.2) and the assumptions (4.4),
the linear form (@, 7y, %, Ty, ¢,0) — (G, (@, Ty, ¥, Ty, ¢, 0)) is well-defined and continuous on P. Hence, from
Lax-Milgram’s lemma, we deduce that the variational problem:

{Find ($,%p, 1, Ty, $,5) € P such that (4.5)
a((f, o, ¥, Ty, §,0), (0, T, ¥, Ty, §,0)) = (G, (@, T, ¥, Ty, §,0)) V(0,7 Y0, Ty, §,0) € P,
possesses exactly one solution (@, 7, 12, Taps ;ﬁ\, o).
Let v and 7y be given by
{@0 = —(N —2)e”13/258° 5, 1,,9; =0, j #jo, in Q, 48
Vo = _6713/25,6*25]10” in Q. .
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It is straightforward from (4.5) and (4.6) that we have
/ (|@)* + 21> + |7* + |g]?) da dt + // 18/258° (N = 2)[0, |2 + [0]?) dz dt < +o0, (4.7)
wx(0,T)
where w, z, 7 and ¢ are given by

W= e~ 13/4s6” (ﬁ*(ﬁ—l— V7, — 12]1@) ,
Tim £ [0 (L6 4+ Vi —Fen) ],
Fim e WA (L6 - gy ~ 5o,
q = L 13/487 £35].

In particular, o € L2(Q)"N, 1y € L*(Q).
Let us call (w, z, 7, q), together with some pressures (pg, p1), the (weak) solution of (4.1) with v = v and
Vg = g, that is, they solve

(4.8)

LW+ Vpy = fY+01,+7eny, V-w=0 in  Q,

LZ4+Vp=ff4+wlp, V-Z2=0 in @,
Lr=f"+7v1, in ,
A moe (4.9)
LG=f1+2Zn +71o in @,
w=z=0,7=¢=0 on X,
w(0)=0,2(T)=0,70)=0,9(T)=0 in £2.
The rest of the proof is devoted to prove the following exponential decay properties
613/4sﬁ* (7*)7171/m,&}\ c Yl, e13/45,@" ('Y ) 6— 6/mz €Y,
e13/43[3" (7 ) 1— 1/m7“ € X1, e13/436" (7 ) 15— 15/m/\e X1, (4_10)

which will solve the null controllability problem for system (4.1) (see Rem. 4.3).
First, we will prove that (w,z,7,q) given by (4.8) is actually the solution (in the sense of transposition) of

e 13/48° 5 = @ in Q,
e 13/407(£x )25 =2, V-Z2=0 in ,
(~ i) @ (4.11)
e 13/4sBTE = 7 in Q,
e—13/4sﬁ* (E*)Ala: a\ in Q7
such that
L)z =0 on X, (=01,
L3V Z(T) =0 in 2, ¢=0,1,
(€30)'=(T) o
(LG =0 on XY, k=0,...,3,
(L)kq(T) =0 in 2, k=0,...,3.
Now, from (4.5), (4.6), (4.8) and (4.9), we obtain for every (¢, Ty, w, Taps ¢, o) € By

//@ e 1ASBT (L% 4 Yy, — Ylo)dedt + //Z L2 [e” BB (Ly + Vg — o en)]da dt

+//Fe_13/4sﬂ*(£*¢— on —olp) dwdt—i—//i]ﬁ‘l[e_l?’/‘lsﬁ*ﬁa] dzdt
Q
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_ //a;w(£@+Vﬁo—?eN)da:dt+//w~(E*E—I—Vﬁl—qﬁllo)da:dt

Q Q
+//¢£?dwdt+//a(£*qA—2N—Allo)dwdt
Q Q

://@~([,*cp—i-Vm,—wllo)d:rdt+//fz\~(£¢+V7rw—UeN)dxdt

Q Q
+//?(£*¢—@N—ano)dxdt+//acadxdt.
Q Q

From this last equality, we obtain for all (h, h*, k", h4) € L*(Q)*N*2

//w-hwdxdt+//z-thxdtJr//?hrdxdur//ahqaxdt

Q Q Q Q

://@-qSdedH//2.¢dedt+//?q5’“dxdt+//adstxdt, (4.13)
Q Q Q Q

where (¥, 9%, d", P7) is the solution of

e~ 13/4sp" pw — pw in Q,
L2 [e—13/4s8" =] — h*, V- -d* =0 in s
ke ] Q (4.14)
o—13/4s8" gr — pr in  Q,
54[6—13/4%*@(1} — ha in Q,
such that .
L5 (em13/46" %) = on X, (=01,
Lo/ (0)=0  in 2, £=0,1, (4.15)
Lh(e13/48" ga) = on XY, k=0,...,3, .
LF(e=13/455" pa)(0) = 0 in 2, k=0,...,3.

It is classical to show that (4.13)—(4.15) is equivalent to (4.11) and (4.12).
Next, we define the following functions:

(2 00pw) = 13/ () I ),y oA () (i),
Observe that, from (4.4), (4.7) and (4.11), we have fZ, € L*(Q)". Then, by (4.9) z, o satisfies

L2004 Vpeo = ff,o _ (e13/455* (7*)7373/”’)::3, V- zi0=0 in Q,
Ze,0 =10 on X,
Z*,O(T) =0 n .Q,

where the last term in the right-hand side can be written as

(el3/4sﬁ* (7*)73*3/m>t Z = Co (t) (»CF_])zgv
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where ¢ (t) denotes a generic function such that (see (2.2))
W) <C <00, VE=0,... k. (4.16)

On the other hand, for any h € Y7o we have

//z*yo-hdxdt://f,f’()-@dasdt—//cz(t)(ﬁ*)fq?@dxdt,
Q Q Q

where @ solves, together with some pressure 7g,

L+ Nrg=h, V- &=0 in @,
®=0 on X,
®(0)=0 in f.

Using (4.12), we can integrate by parts to obtain

//z*,o.hdxdt://f;O@dxdt—/ £33 - (Llea(t)B) + V(ea(t)m)) da dt
Q

Q Q
:é/ff,o.qﬁdxdt—é/z-ﬁ[cg(t)qwr@(t)h} dz dt.

Notice that here we have relied on the fact that £},z, @ and h belong to the space H. Since
[@lly, < CllAlly: o,
(see regularity result (2.9)), we obtain from the last equality, together with (4.16),

// Zeo-hdzdt < C {Hff’OHLQ(Q)N + ||:5\|L2(Q)N] hllyyo, VhE Yigp. (4.17)
Q

Now, let
(s o) = 17 () IIME ), i e ()5 D).
Similarly as before, (z.,1,p«,1) satisfies

L¥z1 + Vpen = fi1 — (613/435* (y*)=5=%/m),2, V- 2e1 =0 in  Q,
Ze1 =0 on X,
z.1(T) =0 in (2.

Thus, for any h € Yy we get

//z*,1-hdxdt://fjl-@dxdt—//(613/455*(7*)’5’5/m)t2~@dxdt.
Q Q Q

Moreover, since

//(el?’/‘lsﬂ* (v) 727%™,z pdadt = // ()P - 2o o da dt,

Q Q
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using (4.17) with ¢1(¢)® instead of h (notice that ¢;(t)® € Y7 o), we get the estimate

[[ a1t zadeat < 1720l gy + iz lea®o
Q

Turning back to z, 1, we get
/ / 2o hdzdt < C [ F2oll ooy + 172y | 1200
Q

where we have used (4.16) and the property (y*)~°~%/"™ < C(y*)~373/™. Taking into account that
12llv,0 < CllAllvo,

(see (2.8)) we obtain

//z*’l-hdxdth’“
Q

Thus, we deduce that z.; € L2(Q)V. Following the same iterative argument we can show that
e13/4sﬁ* (,y*)714714/mae Lz(Q)N.
Finally, to complete the proof of (4.10), let

(2 p1a) 1= @3/ ()07 (Z ), fE = AT () OO (2 L),

Zoll oy + Il | IRllve, V€ Yo,

Then, (2, p1.) satisfies

L7z + Vpre = f7 4 (/47 (y)7676/m) 2 V2. =0 in Q,
ze =0 on X
z(T) =0 in (.
From (4.4), (4.7), (4.11), (2.2) and 2,1 € L?(Q)", we have that the right-hand side of this equation belongs

to L2(Q)". Using the regularity result (2.8), we deduce that z, € Y;. Similarly, we are able to obtain the rest
of the regularity properties in (4.10). This concludes the proof of Proposition 4.4. O

5. PROOF OF THEOREM 1.1

Recall that we deal with the following null controllability problem: to find controls (v,vg) verifying v;, =
vy = 0 such that the solution of the system

Lw+ (w-V)w+Vpy=f+vl,+rey,V-w=0 in  Q,
L2+ (z2-VYw— (w-V)z+qVr +Vp =wlo,V-z2=0 in  Q,
Lr+w-Vr= fy+uvl, in @,
Lq—w-Vg=zy+7rle in  Q, (5.1)
w=z=0,r=qg=0 on X,
w(0) =0, 2(T)=0,r(0) =0, ¢(T)=0 in £,

satisfies (z(0),¢(0)) = (0,0).
We proceed using similar arguments to those in [13] (see also [4,5,9,12]). The null controllability result for
the linear system given by Proposition 4.4 will allow us to apply the following inverse mapping theorem (see [1]):



98 N. CARRENO ET AL.

Theorem 5.1. Let Gy and Go be two Banach spaces and let F : Gy — Gy satisfy F € cl(gl; Ga). Assume that
g1 € G1, F(g1) = g2 and that F'(g1) : G1 — Ga is surjective. Then, there exists 6 > 0 such that, for every
g € Gy satisfying ||lg' — g2||lg, < 0, there exists a solution of the equation

Flg)=9¢'s g€Gu.
Let us set the framework to apply Theorem 5.1 to the problem at hand. Let
G1 = Eig s,
Gy = L2(c25/495° (0, T); L2(02)2N+2)
and the operator

F(w,po,z,p1,7,¢,0,00) :=(Lw + (w - V)w + Vpy — vl, — ey,
L%+ (z-VYw — (w-V)z +qVr + Vp —wloe,
Lr+w-Vr—uvl,, Lq—w-Vqg—zy —r1p)

for (w, po, 2, p1,7,q,v,v0) € Gi. Here, u € L?(e**/477 (0, T); L?(£2)) means e*/4% y € L2(Q).

It only remains to check that the operator F is of class C!(G1;Gz). To do this, we notice that all the terms
in F are linear, except for (w-V)w, (z-VH)w — (w-V)z, ¢Vr, w-Vr and w- Vq. So it will suffice to prove that
the bilinear operator

((w',pg, 24 p1,rt gt vh 0h), (w23, 22,08, 77, ¢, v, 0g)) — (w' - V)w?
is continuous from Gy x G to L2(e?*/4387(0,T); L?(£2)N). Since Y3 € L>(0,T; V), we have that
el 34507 (=) =1y € L2(0,T; HA(2)N) N L(0,T; V)
for any (w, po, z,p1,7,q,v,v0) € G1. Consequently
Q13/458” () =1=1/my, e 12(0,T; L(2)V)

and
V(el3/4sﬁ*(,y*)—1—l/mw) c LOO(O,T;L2(.Q)NXN).

Thus, we obtain

HGIS/Qsﬁ* (7*)7272/m(w1 ) V)wz‘

L2(Q)N
<C H(613/4sﬁ* (7)1 /gt V)el3/4sﬁ*(7*)—1—1/mw2

L@~

<C H613/4sﬁ* (7*)7171/mw1’ He13/4s,@* (7*)7171/771“)2 H

L2(0,T:L>(2)N) Lo(0,T;V)

and the continuity follows since 25/4 < 13/2 and thanks to (4.3). The terms (z - V¥ )w, (w - V)z are treated
analogously.
Finally, we can prove in the same way that the bilinear operator

((wh,pg, 2" o1t gt vt vg) s (WP, 05, 2%, 01 r%, 20, 08)) — (w' - Ve w' - Vg?)
is continuous from Gy x G to L2(e?/4587(0,T); L?(£2)?) just by taking into account that

o13/456" ((7*)—171/m 7, (y*) 197 18/m q) € L*>(0,T; Hy(2)?),
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for any (wap()vzvpla’raq,vaO) S g1~

It is readily seen that F'(0) : G — Ga is given by

f/(o)(va(bZaplvrv(JavavO) = (,C'U) + Vpo - Ullw —Tren, L*Z +VP1 - U)Il@,
»CT—UO]lwa*q_ZN_TILO)a

for all (w,po,z,p1,7,8,0,09) € Gy. It follows that this functional is surjective in view of the null controllability
result for the linear system given by Proposition 4.4.

Now, we are in condition to apply Theorem 5.1. By taking g1 = 0 and g = 0, it gives the existence of § > 0
such that, if |e“/*" (£, fo)llr2()v+1 < 6, for some C > 0, then we can find (w,po, 2, p1,7,¢,v,v9) € G1 solution
of (5.1). In particular, v;, = vy = 0 and (2(0), ¢(0)) = (0,0) (see Rem. 4.3). Therefore, the proof of Theorem 1.1
is complete.
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