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INSENSITIZING CONTROLS WITH TWO VANISHING COMPONENTS
FOR THE THREE-DIMENSIONAL BOUSSINESQ SYSTEM

N. Carreño1, S. Guerrero1 and M. Gueye1

Abstract. In this paper we prove the existence of insensitizing controls for a viscous newtonian fluid
wherein thermic effects are taken into acount, the so called Boussinesq system. The proof relies on a
standard approach introduced by Fursikov and Imanuvilov for the Navier−Stokes system which consists
in solving a constrained extremal problem, and then on an inverse mapping theorem to deal with the
nonlinear system. Furthermore, we use the coupling with the heat equation to get rid of two components
of the control in the fluid equations.
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1. Introduction

Let Ω be a nonempty bounded connected open subset of R
N (N = 2 or 3) of class C∞. Let T > 0 and let

ω ⊂ Ω be a (small) nonempty open subset which is the control set. We will use the notation Q = Ω × (0, T )
and Σ = ∂Ω × (0, T ). Let us also introduce another open set O ⊂ Ω which is called the observatory or
observation set.

Let us recall the definition of some usual spaces in the context of incompressible fluids:

V = {y ∈ C∞
0 (Ω)N : ∇ · y = 0 in Ω}.

We denote by H the closure of the space V in L2(Ω) and by V its closure in H1
0 (Ω).

We introduce the following Boussinesq control system with incomplete data:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
yt −Δy + (y · ∇)y + ∇p = f + v�ω + θ eN , ∇ · y = 0 in Q,

θt −Δθ + y · ∇θ = f0 + v0�ω in Q,

y = 0, θ = 0 on Σ,

y(0) = y0 + τ ŷ0, θ(0) = θ0 + τ θ̂0 in Ω.

(1.1)

Here,

eN =

{
(0, 1) if N = 2,

(0, 0, 1) if N = 3,
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stands for the gravity vector field, y = y(x, t) represents the velocity of the particules of the fluid, θ = θ(x, t)
their temperature, (v0, v) = (v0, v1, . . . , vN ) stands for the control which acts over the set ω, (f, f0) ∈ L2(Q)N+1

is a given externally applied force and the initial state (y(0), θ(0)) is partially unknown in the following sense:

• y0 ∈ H and θ0 ∈ L2(Ω) are known,
• ŷ0 ∈ H and θ̂0 ∈ L2(Ω) are unknown with ‖ŷ0‖L2(Ω)N =

∥∥∥θ̂0∥∥∥
L2(Ω)

= 1, and

• τ is a small unknown real number.

We observe the solution of system (1.1) via some functional Jτ (y, θ), which is called the sentinel. Here, the
sentinel is given by the square of the local L2-norm of the state variables:

Jτ (y, θ) :=
1
2

∫∫
O×(0,T )

(
|y|2 + |θ|2

)
dxdt. (1.2)

The insensitizing control problem is to find (v, v0) such that the uncertainty in the initial data does not affect
the measurement Jτ , at least at the first order, i.e.,

∂Jτ (y, θ)
∂τ

∣∣∣∣
τ=0

= 0 ∀ (ŷ0, θ̂0) ∈ L2(Ω)N+1 such that ‖ŷ0‖L2(Ω)N =
∥∥∥θ̂0∥∥∥

L2(Ω)
= 1. (1.3)

If (1.3) holds, we say that v insensitizes the functional Jτ . This kind of problem was first considered by Lions
in [19].

The first results of existence of insensitizing controls were obtained for the heat equation in [2, 26]. Both
papers are concerned with a sentinel of the kind (1.2).

A very close subject is controllability with controls having some vanishing components, which may be an
interesting field from the applications point of view. The first results were obtained in [9] for the local exact
controllability to the trajectories of the Navier−Stokes and Boussinesq system when the closure of the control set
ω intersects the boundary of Ω. Later, this geometric assumption was removed for the Stokes system in [6], for
the local null controllability of the Navier−Stokes system in [4] and in [3] for the Boussinesq system. Recently,
the local null controllability of the three dimensional Navier−Stokes system with a control having two vanishing
components has been obtained in [7].

As long as insensitivity results for fluids is concerned, the first result was obtained in [23], Section 2.3, where
the author establishes the existence of ε-insensitizing controls of the form (v1, v2, 0) for the 3D-Stokes system.
Then, the existence of insensitizing controls for the Stokes system is proved in [11] and for the Navier−Stokes
system in [12]. Finally, in [5], the existence of insensitizing controls for the Navier−Stokes system with one
vanishing component was established. The present paper can be considered as a continuation of this last work.
The main goal is to establish the existence of insensitizing controls for the Boussinesq system (1.1) having two
vanishing components, that is, vi0 ≡ 0 for any given 0 < i0 < N and vN ≡ 0. Notice that if N = 2, this
means v ≡ 0.

The particular form of the sentinel Jτ allows us to reformulate the insensitizing problem (1.1)−(1.3) as
a controllability problem for a cascade system (for more details, see [2] or [18], for instance). In particular,
condition (1.3) is equivalent to (z(0), q(0)) = 0 in Ω, where (z, q), together with (w, r), solves the following
coupled system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt −Δw + (w · ∇)w + ∇p0 = f + v�ω + r eN ,∇ · w = 0 in Q,

−zt −Δz + (z · ∇t)w − (w · ∇)z + q∇r + ∇p1 = w�O,∇ · z = 0 in Q,

rt −Δr + w · ∇r = f0 + v0�ω in Q,

−qt −Δq − w · ∇q = zN + r �O in Q,

w = z = 0, r = q = 0 on Σ,

w(0) = y0, z(T ) = 0, r(0) = θ0, q(T ) = 0 in Ω.

(1.4)
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Here, (w, p0, r) is the solution of system (1.1) for τ = 0, the equation of (z, p1, q) corresponds to a formal adjoint
of the equation satisfied by the derivative of (y, θ) with respect to τ at τ = 0 and we have denoted:

((z,∇t)w)i =
N∑
j=1

zj∂iwj i = 1, . . . , N.

Our main result is stated in the following theorem, which expresses local null-controllability of (1.4):

Theorem 1.1. Let 0 < i0 < N and m ≥ 10 be a real number. Assume that ω∩O 
= ∅, y0 ≡ 0 and θ0 ≡ 0. Then,
there exist δ > 0 and C > 0, depending on ω, Ω, O and T , such that for any f ∈ L2(Q)N and any f0 ∈ L2(Q)
satisfying ‖eC/tm(f, f0)‖L2(Q)N+1 < δ, there exists a control (v, v0) ∈ L2(Q)N+1 with vi0 ≡ vN ≡ 0 such that the
corresponding solution (w, z, r, q) to (1.4) satisfies z(0) = 0 and q(0) = 0 in Ω.

In particular, no control on the velocity equation is required when N = 2.

Remark 1.2. The condition ω∩O 
= ∅ has always been imposed as long as insensitizing controls are concerned.
However, in [15], it has been proved that this is not a necessary condition for ε-insensitizing controls for some
linear parabolic equations (see also [22]).

Remark 1.3. In [26], the author proved for the linear heat equation that we cannot expect insensitivity to
hold for all initial data, except when the control acts everywhere in Ω. Thus, we shall assume that y0 ≡ 0
and θ0 ≡ 0.

To prove Theorem 1.1 we follow a standard approach introduced in [10] (see also [3, 5, 13]). We first deduce
a null controllability result for the linear system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt −Δw + ∇p0 = fw + v �ω + reN , ∇ · w = 0 in Q,

−zt −Δz + ∇p1 = fz + w�O, ∇ · z = 0 in Q,

rt −Δr = f r + v0 �ω in Q,

−qt −Δq = f q + zN + r�O in Q,

w = z = 0, r = q = 0 on Σ,

w(0) = y0, z(T ) = 0, r(0) = θ0, q(T ) = 0 in Ω,

(1.5)

where fw, fz, f r and f q will be taken to decrease exponentially to zero at t = 0.
The main tool to prove this controllability result for system (1.5), and the second main result of this paper,

is a suitable Carleman estimate for the solutions of its adjoint system, namely,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ϕt −Δϕ+ ∇πϕ = gϕ + ψ �O, ∇ · ϕ = 0 in Q,

ψt −Δψ + ∇πψ = gψ + σeN , ∇ · ψ = 0 in Q,

−φt −Δφ = gφ + ϕN + σ �O in Q,

σt −Δσ = gσ in Q,

ϕ = ψ = 0, φ = σ = 0 on Σ,

ϕ(T ) = 0, ψ(0) = ψ0, φ(T ) = 0, σ(0) = σ0 in Ω.

(1.6)

Here, ψ0 ∈ H , σ0 ∈ L2(Ω) and gϕ, gψ, gφ and gσ will be taken with different regularity properties that will be
detailed later on. In fact, this Carleman inequality is of the form∫∫
Q

ρ̃1(t)
(|ϕ|2 + |ψ|2 + |φ|2 + |σ|2) dxdt ≤ C

∥∥ρ̃2(t)(gϕ, gψ, gφ, gσ)
∥∥2

X

+ (N − 2)C
∫∫

ω×(0,T )

ρ̃3(t)|ϕj0 |2 dxdt+ C

∫∫
ω×(0,T )

ρ̃4(t)|φ|2 dxdt, (1.7)
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where ρ̃k(t), k ∈ {1, 2, 3, 4} are positive weight functions, j0 ∈ {1, . . . , N − 1} \ {i0}, C > 0 only depends on Ω,
ω, O and T and X is a suitable Banach space. Observe that when N = 2 the local term in ϕj0 does not appear.
This estimate is stated in Proposition 3.1.

Since the proof of (1.7) is quite technical, let us first give some insight about it. In particular, we are going
to prove here the qualitative property corresponding to (1.7), that is to say

(N − 2)ϕj0 ≡ φ ≡ 0 in ω × (0, T ) ⇒ ψ(T ) ≡ σ(T ) ≡ 0 in Ω. (1.8)

for the solutions of (1.6) with (gϕ, gψ, gφ, gσ) = (0, 0, 0, 0).
Observe that, thanks to the backwards uniqueness for the heat and Stokes operator, ψ(T ) ≡ 0 and σ(T ) ≡

0 in Ω implies that ϕ ≡ ψ ≡ 0 and φ ≡ σ ≡ 0 in Q.
Remark that (1.8) is equivalent to the approximate controllability of system (1.5) with (fw, fz, f r, f q) =

(0, 0, 0, 0)

Proposition 1.4. Assume that ω ∩ O 
= ∅ and 0 < j0 < N . Then, the unique continuation property (1.8)
holds.

Remark 1.5. The proof of this unique continuation result follows the steps of the proof of (1.7). This is why
we are going to divide its proof in several steps. In the lines below, we will make precise to which part of the
proof of (1.7) corresponds each step.

Proof of Proposition 1.4. Without loss of generality, we can assume that ψ0 ∈ V . Moreover, we can assume that
σ0 ∈ C∞(Ω). Now let us introduce the differential operators

D := ∂2
1 + (N − 2)∂2

2 , P := Δ3 −Δ∂2
t . (1.9)

We divide the proof in several steps:

Step 1. First we prove that the solutions of (1.6) satisfy

φ ≡ 0 in ω × (0, T ) ⇒ Dσ ≡ 0 in Q.

Straightforward computations, using in particular that Δπϕ = 0 in O× (0, T ) and Δπψ = ∂Nσ in Q, show that
(for more details, see Sect. 3.3.1)

−Pφt −ΔPφ = Dσ in O × (0, T ).

Then, we deduce that Dσ = 0 in (ω ∩ O) × (0, T ). Furthermore, since the equation of σ is homogeneous, Dσ
solves the heat equation

(Dσ)t −Δ(Dσ) = 0 in Q.

Then, from the parabolic unique continuation (see [24]) we deduce that Dσ = 0 in Q.
Step 1 corresponds to estimate (3.29) in the proof of (1.7).

Step 2. Here, we observe that
Dσ ≡ 0 in Q⇒ σ ≡ 0 in Q.

This fact is trivial from σ = 0 on Σ.
Step 2 corresponds to estimate (3.15) in the proof of (1.7).

Step 3.
φ ≡ 0 in ω × (0, T ), σ ≡ 0 in Q⇒ ψN ≡ 0 in Q.

From φ ≡ 0 in ω× (0, T ) and σ ≡ 0 in Q we get ϕN ≡ 0 in ω × (0, T ) (from the equation of φ). Thus, from the
equation satisfied by ϕN we have

ΔψN = −(ΔϕN )t −Δ(ΔϕN ) = 0 in (ω ∩ O) × (0, T ).
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Observe that ΔψN satisfies the heat equation

(ΔψN )t −Δ(ΔψN ) = 0 in Q.

Making use of the parabolic unique continuation property we deduce thatΔψN ≡ 0 in Q. Then, the homogeneous
Dirichlet boundary condition gives that ψN ≡ 0 in Q.

In dimension 2, this implies that ψ ≡ 0 in Q, since ∇ · ψ = 0 in Q and ψ|Σ = 0. This concludes the proof of
Proposition 1.4 when N = 2. Observe that we did not use that ϕj0 ≡ 0 in ω × (0, T ).

Step 4. The last step will be to prove that if σ ≡ 0 in Q, then

ϕj0 ≡ φ ≡ 0 in ω × (0, T ) ⇒ ψ ≡ 0 in Q,

for 0 < j0 < N . Using the fact that Δπϕ = 0 in O × (0, T ), we find as before

Δψj0 = −(Δϕj0)t −Δ(Δϕj0 ) = 0 in (ω ∩O) × (0, T ).

From σ ≡ 0 in Q, we have that Δπψ ≡ 0 in Q and so

(Δψj0 )t −Δ(Δψj0) = 0 in Q. (1.10)

Thus, the parabolic unique continuation property applied to (1.10) gives Δψj0 ≡ 0 in Q. Consequently, ψj0 ≡ 0
in Q, since ψj0 |Σ = 0.

This, together with ψN ≡ 0 in Q and combined with ∇ · ψ = 0 in Q and ψ|Σ = 0 yield ψ ≡ 0 in Q. �

Remark 1.6. Notice that after the first 3 steps, we have that ψ3 ≡ 0 in Q and σ ≡ 0 in Q using only φ ≡
0 in ω × (0, T ). From previous results [8, 21], we can deduce that ψ ≡ 0 in Q under some particular generic
geometric conditions, that is, we are able to obtain the approximate controllability of system (1.1) with just a
control in the heat equation.

The rest of the paper is organized as follows. In Section 2, we present some notation and the technical results
we need. In Section 3, we prove the observability inequality (1.7). In Section 4, we prove a null controllability
result for the linear system (1.5). Finally, by means of a inverse mapping theorem, we prove Theorem 1.1.

2. Technical results and notations

In this section we introduce some notation and all the technical results needed in this work.

2.1. Some notations

We denote by X0 := L2(Q) and Y0 := L2(0, T ;H). For n a positive integer we define the spaces Xn and Yn
as follows:

Xn := L2(0, T ;H2n(Ω) ∩H1
0 (Ω)) ∩Hn

(
0, T ;L2(Ω)

)
,

Yn := L2(0, T ;H2n(Ω)N ∩ V ) ∩Hn(0, T ;L2
(
Ω)N

)
,

endowed with the norms
‖u‖2

Xn
:= ‖u‖2

L2(0,T ;H2n(Ω)) + ‖u‖2
Hn(0,T ;L2(Ω))

and
‖u‖2

Yn
:= ‖u‖2

L2(0,T ;H2n(Ω)N ) + ‖u‖2
Hn(0,T ;L2(Ω)N ),

respectively.
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The following subspaces will be used only in Section 4. First, for every positive integer n, we set

Xn,0 :=
{
u ∈ Xn :

[Lku]|Σ = 0,
[Lku] (0) = 0, k = 0, . . . , n− 1

}
,

endowed with the equivalent norm (by Lem. 2.7),

‖u‖2
Xn,0

:= ‖Lnu‖2
L2(Q)

where we have denoted by
L := ∂t −Δ and L∗ := −∂t −Δ

the heat operator and its adjoint, respectively.
Next, let

Y1,0 := {u ∈ Y1 : u(0) = 0}
and

Y2,0 := {u ∈ Y1 ∩ L2(0, T ;H4(Ω)N ) ∩H2(0, T ;L2(Ω)N ) : (LHu)|Σ = 0, (LHu)(0) = 0}
endowed with the equivalent norm (by Lem. 2.8 with u0 ≡ 0)

‖u‖2
Yn,0

:= ‖LnHu‖2
L2(Q)N , n = 1, 2.

Here, LH := ∂t − PL(Δ), where PL denotes the Leray projector over the space H .
This equivalence between norms is used later to obtain Lemma (4.1).

2.2. Carleman estimates

In this subsection we present some Carleman estimates needed to prove estimate (1.7). This inequalities have
been proved in previous papers and we give precise references about where to find each one of them. Before
we can establish these estimates, let us introduce some classical weight functions. Let ω0 be a nonempty open
subset of R

N such that ω0 � ω ∩ O and η ∈ C∞(Ω) such that

|∇η| > 0 in Ω \ ω0, η > 0 in Ω and η ≡ 0 on ∂Ω.

The existence of such a function η is given in [10]. Let also � ∈ C∞([0, T ]) be a positive function in (0, T )
satisfying

�(t) = t ∀ t ∈ [0, T/4], �(t) = T − t ∀ t ∈ [3T/4, T ],
�(t) ≤ �(T/2), ∀ t ∈ [0, T ].

Then, for all λ ≥ 1 and m ≥ 10 we consider the following weight functions:

α(x, t) =
e2λ‖η‖∞ − eλη(x)

�(t)m
, ξ(x, t) =

eλη(x)

�(t)m
,

α∗(t) = max
x∈Ω

α(x, t), ξ∗(t) = min
x∈Ω

ξ(x, t),

α̂(t) = min
x∈Ω

α(x, t), ξ̂(t) = max
x∈Ω

ξ(x, t). (2.1)
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Notice that from (2.1), we obtain the following property:

|∂nt ∂lxα| + |∂nt ∂lxξ| ≤ Cξ(n+|l|+n/m), (2.2)

where n is any nonnegative integer, l is a N -multi-index and C > 0 is a constant only depending on Ω, λ, η
and �. This property is also valid for the pairs (α∗, ξ∗) and (α̂, ξ̂).

The first result is a Carleman inequality for the Stokes system with right-hand side in L2(Q)N proved in [4],
Proposition 2.1. This estimate has the interesting property that the local term does not contain one of the
components of the solution.

Lemma 2.1. There exists a constant λ̂0 > 0 such that for any λ ≥ λ̂0 there exists C > 0 depending only on λ,
Ω, ω, η and � such that for any i ∈ {1, . . . , N}, any g ∈ L2(Q)N and any u0 ∈ H, the solution of

⎧⎪⎨⎪⎩
ut −Δu+ ∇p = g, ∇ · u = 0 in Q,

u = 0 on Σ,

u(0) = u0 in Ω,

(2.3)

satisfies

I1(u) := s2
∫∫
Q

e−11sα∗
(ξ∗)2−2/m|ut|2dxdt+ s3

N∑
j=1
j �=i

∫∫
Q

e−2sα−9sα∗
ξ3|Δuj |2dxdt

+ s4
N∑

j=1,j �=i

∫∫
Q

e−2sα−9sα∗
ξ4|∇uj |2dxdt+ s4

∫∫
Q

e−11sα∗
(ξ∗)4|u|2dxdt

≤C

⎛⎜⎜⎝∫∫
Q

e−9sα∗ |g|2dxdt+ s7
N∑
j=1
j �=i

∫∫
ω0×(0,T )

e−2sα̂−9sα∗
ξ̂7|uj |2dxdt

⎞⎟⎟⎠ (2.4)

for every s ≥ C.

Remark 2.2. In [4], the weight functions α and ξ are given for m = 8, but the proof also holds for any
m ≥ 8. Additionally, the terms involving derivatives of u in the left-hand side of (2.4) do not appear explicitly
in Proposition 2.1 of [4]. However, it is easily seen from its proof that these terms can be added. Finally, one
should replace ρ = e−3/2sα∗ (defined in Sect. 2.1 right after (2.13) in reference [4]) by ρ = e−9/2sα∗.

Now, we present an estimate proved in Proposition 3.2 of [5] (with f = 0 in that reference) similar to (2.4)
with local terms of the Laplacian.

Lemma 2.3. There exists a constant λ̂1, such that for any λ ≥ λ̂1 there exists a constant C(λ) > 0 such that
for any i ∈ {1, . . . , N}, any u0 ∈ H and any

g ∈ L2(0, T ;H3(Ω)N ) ∩H2(0, T ;H−1(Ω)N ),
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the solution of (2.3) satisfies

I2(u) :=
N∑
j=1
j �=i

⎡⎣∫∫
Q

e−9sα(s5ξ5|Δuj |2 + s3ξ3|∇Δuj |2 + sξ|∇∇Δuj |2 + s−1ξ−1|∇∇∇Δuj |2)dxdt

⎤⎦

+ s5
∫∫
Q

e−9sα∗
(ξ∗)5|u|2dxdt ≤ C

⎛⎝s5/2 ∫∫
Q

e−9sα∗
(ξ∗)3−2/m|g|2 dxdt

+ s3/2
T∫

0

∥∥∥(e−9/2sα∗
(ξ∗)1−3/(2m)g

)
t

∥∥∥2

H−1(Ω)N
dt+ s−1/2

T∫
0

e−9sα∗
(ξ∗)−5/m ‖g‖2

H3(Ω)N dt

+ s−1/2

T∫
0

∥∥∥(e−9/2sα∗
(ξ∗)−5/(2m)g

)
t

∥∥∥2

H1(Ω)N
dt+ s−1/2

T∫
0

∥∥∥(e−9/2sα∗
(ξ∗)−5/(2m)g

)
tt

∥∥∥2

H−1(Ω)N
dt

+
N∑

j=1,j �=i

∫∫
Q

e−9sα|∇Δgj |2dxdt+
∫∫
Q

e−9sα|∇∇(∇ · g)|2dxdt +s5
N∑
j=1
j �=i

∫∫
ω0×(0,T )

e−9sαξ5|Δuj|2dxdt

⎞⎟⎟⎠ ,

for every s ≥ C.

The third Carleman inequality we present applies to parabolic equations with non-homogeneous boundary
conditions. It was proved in ([14], Thm. 2.1):

Lemma 2.4. Let f0, f1, . . . , fN ∈ L2(Q). There exists a constant λ̂2 > 0 such that for any λ ≥ λ̂2 there exists
C > 0 depending only on λ, Ω, ω0, η and � such that for every u ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;H−1(Ω))
satisfying

ut −Δu = f0 +
N∑
j=1

∂jfj in Q,

we have

s−1

∫∫
Q

e−8sαξ−1|∇u|2dxdt+ s

∫∫
Q

e−8sαξ|u|2dxdt ≤ C

⎛⎜⎝s ∫∫
ω0×(0,T )

e−8sαξ|u|2dxdt

+ s−1/2
∥∥∥e−4sα∗

(ξ∗)−1/4u
∥∥∥2

H
1
4 , 1

2 (Σ)
+ s−1/2

∥∥∥e−4sα∗
(ξ∗)−1/4+1/mu

∥∥∥2

L2(Σ)

+s−2

∫∫
Q

e−8sαξ−2|f0|2dxdt+
N∑
j=1

∫∫
Q

e−8sα|fj |2dxdt

⎞⎠ ,

for every s ≥ C.

Here,

‖u‖
H

1
4 , 1

2 (Σ)
=
(
‖u‖2

H1/4(0,T ;L2(∂Ω)) + ‖u‖2
L2(0,T ;H1/2(∂Ω))

)1/2

.

Remark 2.5. Notice that the usual notation for this space is actually H
1
2 ,

1
4 (Σ) (see, for instance, [20]). How-

ever, we choose to follow the notation used in [14].
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The last estimate that we need is a technical result that can be found, along with its proof, in ([6], Lem. 3).

Lemma 2.6. Let k ∈ R. There exists C > 0 depending only on Ω, ω0, η and � such that, for every T > 0 and
every u ∈ L2(0, T ;H1(Ω)),

s2
∫∫
Q

e−8sαξk+2|u|2dxdt ≤ C

⎛⎜⎝∫∫
Q

e−8sαξk|∇u|2dxdt+ s2
∫∫

ω0×(0,T )

e−8sαξk+2|u|2dxdt

⎞⎟⎠ ,

for every s ≥ C.

2.3. Regularity results

Here, we state some regularity results concerning the heat and Stokes equations, respectively. The first one
is (see for instance [17], Chapt. 4):

Lemma 2.7. For every T > 0 and every f ∈ L2(Q), there exists a unique solution

u ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω))

to the heat equation ⎧⎨⎩ut −Δu = f in Q,
u = 0 on Σ,
u(0) = 0 in Ω,

(2.5)

and there exists a constant C > 0 depending only on Ω such that

‖u‖2
L2(0,T ;H2(Ω)) + ‖u‖2

H1(0,T ;L2(Ω)) ≤ C ‖f‖2
L2(Q) . (2.6)

Furthermore, if f ∈ Xn (n any nonnegative integer), the unique solution to the heat equation (2.5) satisfies
u ∈ Xn+1 and there exists a constant C > 0 depending only on Ω such that

‖u‖2
Xn+1

≤ C ‖f‖2
Xn

. (2.7)

The second one can be found in ([16], Thm. 6, pp. 100–101; see also [25]):

Lemma 2.8. For every T > 0, every u0 ∈ V and every f ∈ L2(Q)N , there exists a unique solution

u ∈ L2(0, T ;H2(Ω)N ) ∩H1(0, T ;H) ∩ L∞(0, T ;V )

to the Stokes system ⎧⎪⎨⎪⎩
ut −Δu+ ∇p = f in Q,
∇ · u = 0 in Q,
u = 0 on Σ,
u(0) = u0 in Ω,

for some p ∈ L2(0, T ;H1(Ω)), and there exists a constant C > 0 depending only on Ω such that

‖u‖2
L2(0,T ;H2(Ω)N ) + ‖u‖2

H1(0,T ;L2(Ω)N ) + ‖u‖2
L∞(0,T ;V ) ≤ C

(
‖f‖2

L2(Q)N +
∥∥u0

∥∥2

V

)
. (2.8)

Moreover, if f ∈ L2(0, T ;H2(Ω)N )∩H1(0, T ;L2(Ω)N ) and u0 ∈ H3(Ω)N ∩V satisfy the compatibility condition:

∇p̄ = Δu0 + f(0) on ∂Ω,

where p̄ is any solution of the Neumann boundary-value problem{
Δp̄ = ∇ · f(0) in Q,
∂p̄

∂n
= Δu0 · n+ f(0) · n on Σ,



82 N. CARREÑO ET AL.

then u ∈ Y2 and there exists a constant C > 0 depending only on Ω such that

‖u‖2
Y2

≤ C
(
‖f‖2

Y1
+
∥∥u0

∥∥2

H3(Ω)

)
. (2.9)

3. Carleman estimate for the adjoint system

In this section we prove a new Carleman estimate for the following coupled system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ϕt −Δϕ+ ∇πϕ = gϕ + ψ�O, ∇ · ϕ = 0 in Q,

ψt −Δψ + ∇πψ = gψ + σ eN , ∇ · ψ = 0 in Q,

−φt −Δφ = gφ + ϕN + σ�O in Q,

σt −Δσ = gσ in Q,
ϕ = ψ = 0, φ = σ = 0 on Σ,

ϕ(T ) = 0, ψ(0) = ψ0, φ(T ) = 0, σ(0) = σ0 in Ω,

(3.1)

where gϕ ∈ Y0, gψ ∈ Y2, gφ ∈ X0, gσ ∈ X4, ψ0 ∈ H and σ0 ∈ L2(Ω). It is given by the following proposition:

Proposition 3.1. Assume that ω ∩ O 
= ∅. Then, there exists a constant λ0, such that for any λ ≥ λ0 there
exists a constant C > 0 depending only on λ, Ω, ω and � such that for any j0 ∈ {1, . . . , N−1}, any gϕ ∈ L2(Q)N ,
any gψ ∈ Y2, any gφ ∈ L2(Ω), any gσ ∈ X4, any ψ0 ∈ H and any σ0 ∈ L2(Ω), the solution (ϕ, ψ, φ, σ) of (3.1)
satisfies

s4
∫∫
Q

e−11sα∗
(ξ∗)4|ϕ|2dxdt+ s5

∫∫
Q

e−9sα∗
(ξ∗)5|ψ|2dxdt

+ s3
∫∫
Q

e−12sα∗
(ξ∗)3|φ|2dxdt+ s5

∫∫
Q

e−8sα∗
(ξ∗)5|σ|2dxdt

≤C

⎛⎜⎝s15 ∥∥∥e−8sα+4sα∗
ξ9gϕ

∥∥∥2

Y0

+
∥∥∥e−7/2sα∗

gψ
∥∥∥2

Y2

+ s19
∥∥∥e−8sα+4sα∗

ξ11gφ
∥∥∥2

X0

+
∥∥∥e−7/2sα∗

gσ
∥∥∥2

X4

+(N − 2)s13
∫∫

ω×(0,T )

e−9sαξ13|ϕj0 |2dxdt+ s26
∫∫

ω×(0,T )

e−18sα+11sα∗
ξ30|φ|2dxdt

⎞⎟⎠ , (3.2)

for every s ≥ C.

For the sake of completeness, we treat the more general case of N = 3 (with j0 = 1, for instance). The general
idea is to combine suitable Carleman estimates for the heat and Stokes equations in (3.1). The proof is then
divided in several parts:

• First, we deduce from Lemma 2.3 a Carleman estimate for ψ with local terms of Δψ1 and Δψ3. Using the
coupling with the equation of ϕ, we estimate these terms by local terms of ϕ1 and ϕ3.

• Using the equation of φ, we estimate the local term of ϕ3 by a local term of φ.
• Finally, to add σ to the left hand side of (3.2) and absorb all its global terms on the right- hand side, we

prove a Carleman estimate for a certain operator of σ such that its global terms can be estimated by terms
of the right-hand side of (3.2).

The details of these steps are the target of the following subsections.
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3.1. Carleman estimate for (ϕ,ψ)

The first step is to apply Lemma 2.3 to the equation satisfied by ψ. However, before doing that, let us remark
some simple (but useful) properties of the weight functions. Note that for every a > 0, and every b, c ∈ R, the
function sbe−asαξc is bounded in Q. Furthermore, for any given ε > 0, we have

sbe−asαξc < ε, (3.3)

for s ≥ C, C a positive constant. Taking this and (2.2) into account, we have, for example,∣∣∣(s3/4e−9/2sα∗
(ξ∗)1−3/(2m)σ

)
t

∣∣∣ =
∣∣∣(s1/2e−4sα∗

(ξ∗)1/2−2/mσ
(
s1/4e−1/2sα∗

(ξ∗)1/2+1/(2m)
))

t

∣∣∣
≤ ε

(∣∣∣s1/2e−4sα∗
(ξ∗)1/2−2/mσ

∣∣∣+ ∣∣∣(s1/2e−4sα∗
(ξ∗)1/2−2/mσ

)
t

∣∣∣) , (3.4)

for every s ≥ C, that is,∥∥∥s3/4e−9/2sα∗
(ξ∗)1−3/(2m)σ

∥∥∥
H1(L2)

≤ ε
∥∥∥s1/2e−4sα∗

(ξ∗)1/2−2/mσ
∥∥∥
H1(L2)

.

3.1.1. Carleman estimate for ψ

Now, we apply Lemma 2.3 with i = 2, u = ψ, and g = gψ + σ e3. Using (3.3) and the idea developed in (3.4)
we obtain

I2(ψ) ≤ C
∥∥∥e−7/2sα∗

gψ
∥∥∥2

Y2

+ ε
∥∥∥s1/2e−4sα∗

(ξ∗)1/2−2/m σ
∥∥∥2

X2

+ Cs5
∫∫

ω0×(0,T )

e−9sαξ5(|Δψ1|2 + |Δψ3|2)dxdt, (3.5)

for every s ≥ C, ε > 0 to be chosen small enough.

3.1.2. Carleman estimate for ϕ

Next, we apply Lemma 2.1 to the equation satisfied by ϕ, with i = 2, u = ϕ and g = gϕ + ψ �O. We obtain

I1(ϕ) ≤C

∫∫
Q

e−9sα∗ |gϕ|2dxdt+ C

∫∫
O×(0,T )

e−9sα∗ |ψ|2dxdt

+ Cs7
∫∫

ω0×(0,T )

e−2sα−9sα∗
ξ7(|ϕ1|2 + |ϕ3|2)dxdt, (3.6)

for every s ≥ C. Noticing that the second integral in the right of this inequality is bounded by C s−5 I2(ψ), for
some C > 0, we can combine inequalities (3.5) and (3.6) to get

I1(ϕ) + I2(ψ) ≤C
∥∥∥e−9/2sα∗

gϕ
∥∥∥2

Y0

+ C
∥∥∥e−7/2sα∗

gψ
∥∥∥2

Y2

+ ε
∥∥∥s1/2e−4sα∗

(ξ∗)1/2−2/m σ
∥∥∥2

X2

+ Cs7
∫∫

ω0×(0,T )

e−2sα−9sα∗
ξ7(|ϕ1|2 + |ϕ3|2)dxdt

+ Cs5
∫∫

ω0×(0,T )

e−9sαξ5(|Δψ1|2 + |Δψ3|2)dxdt, (3.7)

for every s ≥ C. Now, using the coupling between ϕ and ψ we will estimate the last two local terms. This is
the objective of the next subsection.
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3.1.3. Estimation of Δψ1 and Δψ3

We look at the equations satisfied by ϕ1 and ϕ3 in the set O × (0, T ) to find

Δψ1 = −Δϕ1,t −Δ2ϕ1 + ∂1∇ · gϕ −Δgϕ1 ,

Δψ3 = −Δϕ3,t −Δ2ϕ3 + ∂3∇ · gϕ −Δgϕ3 .

Here, we have used that Δπϕ = ∇ · gϕ in O × (0, T ) which follows directly from the free-divergence conditions
for ϕ and ψ. Let now ζ ∈ C4

0(ω̃) be a nonnegative function with ζ ≡ 1 in ω0 and ω0 � ω̃ � ω ∩ O.
For simplicity, we only treat the term concerning ϕ3 in the last integral in (3.7), since the other term is quite

similar. Using this last equality, we have

s5
∫∫

ω0×(0,T )

e−9sαξ5|Δψ3|2dxdt ≤ s5
∫∫

ω̃×(0,T )

ζ(x)e−9sαξ5|Δψ3|2dxdt

= s5
∫∫

ω̃×(0,T )

ζ(x)e−9sαξ5Δψ3(−Δϕ3,t −Δ2ϕ3 + ∂3∇ · gϕ −Δgϕ3 )dxdt.

An integration by parts, in time and space, gives the following inequality:

s5
∫∫

ω0×(0,T )

e−9sαξ5|Δψ3|2dxdt

≤ s5
∫∫

ω̃×(0,T )

ζ(x)e−9sαξ5(Δψ3,t −Δ2ψ3)Δϕ3dxdt

+ s5
∫∫

ω̃×(0,T )

Δ
(
(ζ(x)e−9sαξ5)tΔψ3 −Δ(ζ(x)e−9sαξ5)Δψ3 − 2∇(ζ(x)e−9sαξ5) · ∇Δψ3

)
ϕ3dxdt

+ s5
∫∫

ω̃×(0,T )

∇∂3

(
ζ(x)e−9sαξ5Δψ3

) · gϕdxdt− s5
∫∫

ω̃×(0,T )

Δ
(
ζ(x)e−9sαξ5Δψ3

)
gϕ3 dxdt. (3.8)

Now we estimate the three lines of terms in the right-hand side of (3.8), which we call respectively L1, L2

and L3. For the first one, we use the equation satisfied by Δψ3, namely

Δψ3,t −Δ2ψ3 = Δgψ3 − ∂3∇ · gψ + (∂2
1 + ∂2

2)σ. (3.9)

This equation, together with some integration by parts, yields

L1 = s5
∫∫

ω̃×(0,T )

Δ
(
ζ(x)e−9sαξ5(Δgψ3 − ∂3∇ · gψ + (∂2

1 + ∂2
2)σ)

)
ϕ3dxdt.

A careful analysis of these terms, taking into account (2.2), (3.3) and using Young’s inequality, gives

|L1| ≤ Cs13
∫∫

ω̃×(0,T )

e−9sαξ13|ϕ3|2dxdt+ C
∥∥∥e−7/2sα∗

gψ
∥∥∥2

Y2

+ ε
∥∥∥s1/2e−4sα∗

(ξ∗)1/2−2/m σ
∥∥∥2

X2

.
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A similar argument for L2 and L3 gives the following estimates

|L2| ≤ 1
4C

I2(ψ) + Cs13
∫∫

ω̃×(0,T )

e−9sαξ13|ϕ3|2dxdt,

|L3| ≤ 1
4C

I2(ψ) + Cs9
∫∫

ω̃×(0,T )

e−9sαξ9|gϕ|2dxdt.

Combining these estimates for L1, L2 and L3 with (3.8), together with the same computations for ψ1, provide

I1(ϕ) + I2(ψ) ≤ C

(∥∥∥s9/2e−9/2sαξ9/2 gϕ
∥∥∥2

Y0

+
∥∥∥e−7/2sα∗

gψ
∥∥∥2

Y2

)
+ ε

∥∥∥s1/2e−4sα∗
(ξ∗)1/2−2/m σ

∥∥∥2

X2

+ Cs13
∫∫

ω̃×(0,T )

e−9sαξ13(|ϕ1|2 + |ϕ3|2)dxdt, (3.10)

for every s ≥ C.
Here, we have also used the properties of the weight functions to find a more compact expression. This ends

this part of the proof of Proposition 3.1.
The next step is to eliminate the local term of ϕ3. This is done in the next subsection.

3.2. Estimation of ϕ3 and Carleman estimate for φ

As in the previous section, we look at the equation satisfied by φ in the set O × (0, T ):

ϕ3 = −φt −Δφ− gφ − σ.

We consider again a nonnegative function ζ ∈ C2
0(ω′) such that ζ ≡ 1 in ω̃ and ω̃ � ω′ � ω ∩ O, and perform

integration by parts to obtain

s13
∫∫

ω′×(0,T )

ζ(x)e−9sαξ13|ϕ3|2dxdt = s13
∫∫

ω′×(0,T )

ζ(x)e−9sαξ13ϕ3(−φt −Δφ− gφ − σ)dxdt

= s13
∫∫

ω′×(0,T )

[∂t −Δ]
(
ζ(x)e−9sαξ13ϕ3

)
φdxdt

− s13
∫∫

ω′×(0,T )

ζ(x)e−9sαξ13ϕ3(gφ + σ)dxdt.

Let us call L4 and L5 the two integrals at the end of the last expression. A careful analysis of L4, together with
property (2.2) and Young’s inequality, yield

|L4| ≤ 1
2C

I1(ϕ) + Cs26
∫∫

ω′×(0,T )

e−18sα+11sα∗
ξ30|φ|2 dxdt+ Cs24

∫∫
ω′×(0,T )

e−16sα+9sα∗
ξ24|φ|2 dxdt,

for every s ≥ C.
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For the term concerning L5, we apply again Young’s inequality and property (3.3):

|L5| ≤ 1
2C

s13
∫∫

ω′×(0,T )

ζ(x)e−9sαξ13|ϕ3|2dxdt+ C
∥∥∥s13/2e−9/2sαξ13/2gφ

∥∥∥2

X0

+ ε
∥∥∥s1/2e−4sα∗

(ξ∗)1/2−2/m σ
∥∥∥2

X0

.

From (2.1), we have e−16sα+9sα∗
< e−18sα+11sα∗

in Q, so we obtain

s13
∫∫

ω′×(0,T )

ζ(x)e−9sαξ13|ϕ3|2dxdt ≤ 1
2C

I1(ϕ) + Cs26
∫∫

ω′×(0,T )

e−18sα+11sα∗
ξ30|φ|2 dxdt

+ C
∥∥∥s13/2e−9/2sαξ13/2gφ

∥∥∥2

X0

+ ε
∥∥∥s1/2e−4sα∗

(ξ∗)1/2−2/m σ
∥∥∥2

X0

,

for every s ≥ C, which plugged in (3.10) together with the fact that

s13
∫∫

ω̃×(0,T )

e−9sαξ13|ϕ3|2dxdt ≤ s13
∫∫

ω′×(0,T )

ζ(x)e−9sαξ13|ϕ3|2dxdt,

leads to

I1(ϕ) + I2(ψ) ≤C
∥∥∥s9/2e−9/2sαξ9/2 gϕ

∥∥∥2

Y0

+ C
∥∥∥e−7/2sα∗

gψ
∥∥∥2

Y2

+ C
∥∥∥s13/2e−9/2sαξ13/2gφ

∥∥∥2

X0

+ ε
∥∥∥s1/2e−4sα∗

(ξ∗)1/2−2/m σ
∥∥∥2

X2

+ Cs13
∫∫

ω̃×(0,T )

e−9sαξ13|ϕ1|2dxdt

+ Cs26
∫∫

ω′×(0,T )

e−18sα+11sα∗
ξ30|φ|2 dxdt, (3.11)

for every s ≥ C.
To end this section of the proof, we will combine (3.11) with a Carleman inequality for φ. This will allow us

to add the term with φ in the left hand side of (3.2). Namely, φ satisfies

I3(φ) :=
∫∫
Q

e−12sα(s3ξ3|φ|2 + sξ|∇φ|2 + s−1ξ−1(|φt|2 + |Δφ|2)) dxdt

≤ C

∫∫
Q

e−12sα(|gφ|2 + |ϕ3|2 + |σ|2�O) dxdt+ Cs3
∫∫

ω×(0,T )

e−12sαξ3|φ|2 dxdt, (3.12)

for every s ≥ C. This is the classical Carleman estimate for the solutions of the heat equation with homogeneous
Dirichlet boundary conditions (see, for instance, [10]). Notice that, taking (3.3) into account, the right-hand
side of (3.12) is bounded by

C
∥∥∥s13/2e−9/2sαξ13/2gφ

∥∥∥2

X0

+
1
2
I1(ϕ) + ε

∥∥∥s1/2e−4sα∗
(ξ∗)1/2−2/m σ

∥∥∥2

X2

+ Cs26
∫∫

ω×(0,T )

e−18sα+11sα∗
ξ30|φ|2 dxdt,
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for every s ≥ C. Thus, combining this bound with (3.11) and (3.12) we obtain

I1(ϕ) + I2(ψ) + I3(φ) ≤C

( ∥∥∥s9/2e−9/2sαξ9/2 gϕ
∥∥∥2

Y0

+
∥∥∥e−7/2sα∗

gψ
∥∥∥2

Y2

+
∥∥∥s13/2e−9/2sαξ13/2gφ

∥∥∥2

X0

)
+ ε

∥∥∥s1/2e−4sα∗
(ξ∗)1/2−2/m σ

∥∥∥2

X2

+ Cs13
∫∫

ω×(0,T )

e−9sαξ13|ϕ1|2dxdt+ Cs26
∫∫

ω×(0,T )

e−18sα+11sα∗
ξ30|φ|2 dxdt, (3.13)

for every s ≥ C.
At this point, there are a few tasks left to do. First, we need to eliminate the global term of σ in the right-hand

side of (3.13). This will be done combining this estimate with a suitable Carleman estimate for σ, provided that
we choose the weight functions conveniently. This will add σ to the left-hand side and a local term of σ to the
right-hand side that also needs to be eliminated. Normally, we would try to use again the coupling of σ with the
other equations. However, this will make appear the pressure term of the equation of ψ, or again a local term
of ϕ3 in the equation of φ, which we would not be able to eliminate again. Therefore, a more careful analysis
needs to be done to avoid these issues. Details are given in the next subsection.

3.3. Carleman estimate for σ and final computations

This final part of the proof of Proposition 3.1 is divided in three steps. In the first one, we look for an equation
of σ which does not contain neither πψ nor ϕ3. Then, we show a suitable Carleman inequality for σ based on
this expression. Finally, we eliminate the local terms of σ and conclude.

3.3.1. Operator for σ

Let us look at system (3.1) in the set O × (0, T ). All the following computations will be seen in this set.
Since Δπϕ = ∇ · gϕ, we find

−(Δϕ3)t −Δ2ϕ3 = Δgϕ3 − ∂3∇ · gϕ +Δψ3.

In the previous section, we found the equation satisfied by Δψ3 (see (3.9))

(Δψ3)t −Δ2ψ3 = Δgψ3 − ∂3∇ · gψ + Dσ.

Here, we recall the notation used in (1.9), D := ∂2
1 + ∂2

2 . Combining these expressions, we can easily find the
following relation between ϕ3 and σ:

Pϕ3 = (Δgϕ3 )t −Δ2gϕ3 − (∂3∇ · gϕ)t +Δ(∂3∇ · gϕ) +Δgψ3 − ∂3∇ · gψ + Dσ,

where we have denoted P = −Δ∂2
t +Δ3 (recall again (1.9)).

Finally, we apply this operator to the equation satisfied by φ and, combined with the last expression, we
obtain

−(Pt +ΔP)φ =(Δgϕ3 )t −Δ2gϕ3 − ∂3∇ · gϕt +Δ(∂3∇ · gϕ) +Δgψ3 − ∂3∇ · gψ
+ Pgφ −Δgσt −Δ2gσ + Dσ, (3.14)

where we have used the equation satisfied by σ to find Pσ = −Δgσt −Δ2gσ.
The idea now is to prove a Carleman estimate for σ with a local term of Dσ and use (3.14) to eliminate it.
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3.3.2. Carleman estimate for Dσ
Here, we follow the ideas developed for the Stokes system in [6] (see also [4, 5]), thus for simplicity we omit

some detail of the computations. We start by applying ∇∇D to the equation satisfied by σ. We have

(∇∇Dσ)t −Δ(∇∇Dσ) = ∇∇Dgσ, in Q.

We apply sequentially to this equation:

• Lemma 2.4 with u = ∇∇Dσ,
• Lemma 2.6 with k = 1 and u = ∇Dσ,
• Lemma 2.6 with k = 3 and u = Dσ,

and ∫
Ω

|σ|2 dx ≤ C

∫
Ω

|Dσ|2 dx, (3.15)

for some C depending on Ω (this last inequality holds since Ω is bounded and σ|∂Ω = 0). Therefore, we obtain

Ĩ4(σ) :=
∫∫
Q

e−8sα(s−1ξ−1|∇3Dσ|2 + sξ|∇2Dσ|2 + s3ξ3|∇Dσ|2 + s5ξ5|Dσ|2)dxdt

+ s5
∫∫
Q

e−8sα∗
(ξ∗)5|σ|2dxdt ≤ Cs−2

∫∫
Q

e−8sαξ−2|∇2Dgσ|2dxdt

+ Cs−1/2
∥∥∥e−4sα∗

(ξ∗)1/4∇2Dσ
∥∥∥2

H1/4,1/2(Σ)
+ Cs−1/2

∥∥∥e−4sα∗
(ξ∗)−1/4+1/m∇2Dσ

∥∥∥2

L2(Σ)

+ C

∫∫
ω0×(0,T )

e−8sα
(
sξ|∇2Dσ|2 + s3ξ3|∇Dσ|2 + s5ξ5|Dσ|2) dxdt. (3.16)

It is not hard to prove that, considering a cut-off function supported in ω′ (recall that ω0 � ω′ � ω ∩ O);
integration by parts and Young’s inequality, we can estimate the local terms in the last inequality by

1
2
Ĩ4(σ) + Cs5

∫∫
ω′×(0,T )

e−8sαξ5|Dσ|2 dxdt. (3.17)

To estimate the boundary terms, we use regularity results for the heat equation. We start by defining

σ̃ := s3/2e−4sα∗
(ξ∗)3/2−1/mσ.

It is not difficult to check that σ̃ satisfies the heat equation⎧⎪⎨⎪⎩
σ̃t −Δσ̃ = s3/2e−4sα∗

(ξ∗)3/2−1/mgσ + (s3/2e−4sα∗
(ξ∗)3/2−1/m)tσ in Q,

σ̃ = 0 on Σ,

σ̃(0) = 0 on Ω.

From regularity result (2.6) and (2.2), we obtain

‖σ̃‖2
X1

≤ C

(∥∥∥s3/2e−4sα∗
(ξ∗)3/2−1/mgσ

∥∥∥2

X0

+
∥∥∥s5/2e−4sα∗

(ξ∗)5/2σ
∥∥∥2

X0

)
.
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Applying successively regularity result (2.7), taking into account (2.2), we can prove the general formula

∥∥∥s5/2−ne−4sα∗
(ξ∗)5/2−n−n/mσ

∥∥∥2

Xn

≤ C
n−1∑
k=0

∥∥∥s3/2−ke−4sα∗
(ξ∗)3/2−k−(k+1)/mgσ

∥∥∥2

Xk

+ C
∥∥∥s5/2e−4sα∗

(ξ∗)5/2σ
∥∥∥2

X0

, (3.18)

for n = 1, . . . , 5. Let us call in what follows

Rn(gσ) :=
n−1∑
k=0

∥∥∥s3/2−ke−4sα∗
(ξ∗)3/2−k−(k+1)/mgσ

∥∥∥2

Xk

.

Using a trace inequality (see, for instance, [20]) we have∥∥∥e−4sα∗
(ξ∗)1/4∇2Dσ

∥∥∥2

H1/4,1/2(Σ)
≤ C

∥∥∥e−4sα∗
(ξ∗)1/4σ

∥∥∥2

L2(0,T ;H5(Ω))∩H1(0,T ;H3(Ω))
.

Now, by an interpolation argument between the spaces X2 and X3, and since m ≥ 10, we can combine this
estimate with (3.18) and write

s−1/2
∥∥∥e−4sα∗

(ξ∗)1/4∇2Dσ
∥∥∥2

H1/4,1/2(Σ)
≤ Cs−1/2R3(gσ) + Cs−1/2

∥∥∥s5/2e−4sα∗
(ξ∗)5/2σ

∥∥∥2

X0

. (3.19)

For the other boundary term, taking into account that α∗ and ξ∗ do not depend on x, and (ξ∗)−1/4+1/m is
bounded since m ≥ 10, we can easily obtain

s−1/2
∥∥∥e−4sα∗

(ξ∗)−1/4+1/m∇2Dσ
∥∥∥2

L2(Σ)
≤ Cs−1/2

∥∥∥e−4sα∗∇2Dσ
∥∥∥2

L2(Σ)

≤Cs−1/2

(∥∥∥s1/2e−4sα∗
(ξ∗)1/2∇2Dσ

∥∥∥2

L2(Q)

∥∥∥s−1/2e−4sα∗
(ξ∗)−1/2∇3Dσ

∥∥∥2

L2(Q)

+
∥∥∥e−4sα∗∇2Dσ

∥∥∥2

L2(Q)

)
≤ Cs−1/2Ĩ4(σ). (3.20)

Finally, notice that from (3.18), we have

J(σ) :=
5∑

k=1

∥∥∥s5/2−ke−4sα∗
(ξ∗)5/2−k−k/mσ

∥∥∥2

Xk

≤ CR5(gσ) + CĨ4(σ). (3.21)

Combining estimates (3.17), (3.19)−(3.21) in (3.16), we obtain the following Carleman estimate for σ:

I4(σ) := Ĩ4(σ) + J(σ) ≤ Cs−2

∫∫
Q

e−8sαξ−2|∇2Dgσ|2dxdt+ CR5(gσ)

+ Cs5
∫∫

ω′×(0,T )

e−8sαξ5|Dσ|2 dxdt,

for every s ≥ C. Furthermore, by (2.2), (3.3) and (3.4), we find the more compact form:

I4(σ) ≤ C
∥∥∥e−7/2sα∗

gσ
∥∥∥2

X4

+ Cs5
∫∫

ω′×(0,T )

e−8sαξ5|Dσ|2 dxdt, (3.22)
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for every s ≥ C. Finally, we are going to estimate the local term in (3.22) in terms of gϕ, gψ, gφ, gσ and a local
term of φ.

We recall the expression (3.14) for Dσ valid in O× (0, T ) and consider a cut-off function ζ ∈ C8
0(ω ∩O) such

that ζ ≡ 1 in ω′. Recall that ω0 � ω′ � ω ∩O. We have the following for the last term in (3.22):

s5
∫∫

ω′×(0,T )

e−8sαξ5|Dσ|2 dxdt ≤ s5
∫∫

(ω∩O)×(0,T )

ζ(x)e−8sαξ5|Dσ|2 dxdt

= − s5
∫∫

(ω∩O)×(0,T )

ζ(x)e−8sαξ5Dσ ((Δgϕ3 )t −Δ2gϕ3 − ∂3∇ · gϕt +Δ(∂3∇ · gϕ)
)

dxdt

− s5
∫∫

(ω∩O)×(0,T )

ζ(x)e−8sαξ5Dσ
(
Δgψ3 − ∂3∇ · gψ

)
dxdt− s5

∫∫
(ω∩O)×(0,T )

ζ(x)e−8sαξ5DσPgφ dxdt

+ s5
∫∫

(ω∩O)×(0,T )

ζ(x)e−8sαξ5Dσ (Δgσt +Δ2gσ
)

dxdt− s5
∫∫

(ω∩O)×(0,T )

ζ(x)e−8sαξ5Dσ[Pt +ΔP ]φdxdt. (3.23)

Similarly as in Subsections 3.1.3 and 3.2, we need to integrate by parts in both time and space, keeping in mind
the definition of the operator P (see (3.14)). Let us call the five integrals in (3.23) A1, . . . , A5, respectively. A
careful analysis of each of these terms (after integration by parts), taking into account properties (2.2), (3.3), (3.4)
and Young’s inequality, we can prove the following estimates for every s ≥ C:

|A1| ≤ 1
8C

J(σ) + Cs15
∫∫
Q

e−16sα+8sα∗
ξ18|gϕ|2 dxdt, (3.24)

|A2| ≤ 1
2C

s5
∫∫
Q

e8sαξ5|Dσ|2 dxdt+ C
∥∥∥e−7/2sα∗

gψ
∥∥∥2

Y1

, (3.25)

|A3| ≤ 1
8C

J(σ) + Cs19
∫∫
Q

e−16sα+8sα∗
ξ22|gφ|2 dxdt, (3.26)

|A4| ≤ 1
8C

J(σ) + C
∥∥∥e−7/2sα∗

gσ
∥∥∥2

X0

, (3.27)

|A5| ≤ 1
8C

J(σ) + Cs23
∫∫

ω×(0,T )

e−16sα+8sα∗
ξ26|φ|2 dxdt. (3.28)

From (3.22)−(3.28) we obtain

I4(σ) ≤C
( ∥∥∥s15/2e−8sα+4sα∗

ξ9gϕ
∥∥∥2

Y0

+
∥∥∥e−7/2sα∗

gψ
∥∥∥2

Y1

+
∥∥∥s19/2e−8sα+4sα∗

ξ11gφ
∥∥∥2

X0

+
∥∥∥e−7/2sα∗

gσ
∥∥∥2

X4

)
+ Cs23

∫∫
ω×(0,T )

e−16sα+8sα∗
ξ26|φ|2 dxdt, (3.29)

for every s ≥ C.
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3.3.3. Conclusion of the proof of (3.2)

To conclude the proof of Proposition 3.1, we go back to (3.13), which combined with (3.29), taking into
account that

s9e−9sαξ9 ≤ Cs15e−16sα+8sα∗
ξ18,

s13e−9sαξ13 ≤ Cs19e−16sα+8sα∗
ξ22,

s23e−16sα+8sα∗
ξ26 ≤ Cs26e−18sα+11sα∗

ξ30,

for every s ≥ C and choosing ε small enough we finally obtain

I1(ϕ) + I2(ψ) + I3(φ) + I4(σ) ≤C

(∥∥∥s15/2e−8sα+4sα∗
ξ9 gϕ

∥∥∥2

Y0

+
∥∥∥e−7/2sα∗

gψ
∥∥∥2

Y2

+
∥∥∥s19/2e−8sα+4sα∗

ξ11gφ
∥∥∥2

X0

+
∥∥∥e−7/2sα∗

gσ
∥∥∥2

X4

)
+ Cs13

∫∫
ω×(0,T )

e−9sαξ13|ϕ1|2dxdt+ Cs26
∫∫

ω×(0,T )

e−18sα+11sα∗
ξ30|φ|2 dxdt,

for every s ≥ C, from which we readily deduce (3.2).
This concludes the proof of Proposition 3.1.

4. Null controllability of the linear system

In this section we deal with the null controllability of system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lw + ∇p0 = fw + v �ω + reN , ∇ · w = 0 in Q,

L∗z + ∇p1 = fz + w�O, ∇ · z = 0 in Q,

Lr = f r + v0 �ω in Q,

L∗q = f q + zN + r�O in Q,

w = z = 0, r = q = 0 on Σ,
w(0) = 0, z(T ) = 0, r(0) = 0, q(T ) = 0 in Ω.

(4.1)

Here, we will assume that fw, fz, f r and f q are in appropriate weighted functional spaces. We look for controls
(v, v0), such that vi0 ≡ vN ≡ 0, for some given 0 < i0 < N , such that the associated solution of (4.1) satisfies
z(0) = 0 and q(0) = 0 in Ω.

To do this, let us first state a Carleman inequality with weight functions not vanishing in t = T . We introduce
the following weight functions:

β(x, t) =
e2λ‖η‖∞ − eλη(x)

�̃(t)m
, γ(x, t) =

eλη(x)

�̃(t)m
,

β∗(t) = max
x∈Ω

α(x, t), γ∗(t) = min
x∈Ω

γ(x, t),

β̂(t) = min
x∈Ω

β(x, t), γ̂(t) = max
x∈Ω

γ(x, t),

where

�̃(t) =

{
�(t) 0 ≤ t ≤ T/2,

‖�‖∞ T/2 < t ≤ T.
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Lemma 4.1. Let 0 < j0 < N and let gϕ, gφ, s and λ be like in Proposition 3.1. Furthermore, assume that gψ ∈
Y2,0 and gσ ∈ X4,0. Then, there exists a constant C > 0 (depending on s and λ) such that every solution
(ϕ, ψ, φ, σ) of (3.1) satisfies

∫∫
Q

e−25/2sβ∗ (|ϕ|2 + |ψ|2 + |φ|2 + |σ|2) dxdt ≤ C

⎛⎜⎝ ∥∥∥e−13/4sβ∗
gϕ
∥∥∥2

Y0

+
∥∥∥e−13/4sβ∗

gψ
∥∥∥2

Y2,0

+
∥∥∥e−13/4sβ∗

gφ
∥∥∥2

X0

+
∥∥∥e−13/4sβ∗

gσ
∥∥∥2

X4,0

+(N − 2)
∫∫

ω×(0,T )

e−13/2sβ∗ |ϕj0 |2dxdt+
∫∫

ω×(0,T )

e−13/2sβ∗ |φ|2dxdt

⎞⎟⎠ . (4.2)

To prove estimate (4.2) it suffices to combine (3.2) and classical energy estimates for the Stokes system and
the heat equation satisfied by ϕ, ψ, φ and σ. For simplicity, we omit the proof. For more details on how to
obtain (4.2), see [3, 4] or [12]. Notice that, in order to obtain this more compact form, we have strongly used
the property (3.3) and the assumptions gψ ∈ Y2,0 and gσ ∈ X4,0 (see Sect. 2.1).

Remark 4.2. Observe that the additional assumptions on gψ and gσ are not needed to obtain the energy
estimates, but the fact that ϕ(T ) ≡ 0 and φ(T ) ≡ 0 is essential.

Now we are ready to prove the null controllability of system (4.1). The idea is to look for a solution in an
appropriate weighted functional space. To this end, we introduce, for 0 < i0 < N , the spaces

Ei0,s,λ = {(w, p0, z, p1, r, q, v, v0) : e13/4sβ∗
w ∈ L2(Q)N , e13/4sβ∗

r ∈ L2(Q),

e13/4sβ∗
v�ω ∈ L2(Q)N , vi0 ≡ vN ≡ 0, e13/4sβ∗

v0�ω ∈ L2(Q),

e13/4sβ∗
(γ∗)−1−1/mw ∈ Y1, e13/4sβ∗

(γ∗)−6−6/mz ∈ Y1, z(T ) = 0,

e13/4sβ∗
(γ∗)−1−1/mr ∈ X1, e13/4sβ∗

(γ∗)−15−15/mq ∈ X1, q(T ) = 0,

e25/4sβ∗
(Lw + ∇p0 − v�ω − r eN , L∗z + ∇p1 − w�O) ∈ L2(Q)2N ,

e25/4sβ∗
(Lr − v0 �ω, L∗q − zN − r�O) ∈ L2(Q)2}.

It is clear that Ei0,s,λ is a Banach space endowed with its natural norm.

Remark 4.3. In particular, an element (w, p0, z, p1, r, q, v, v0) ∈ Ei0,s,λ satisfies w(0) = 0, z(0) =
0, r(0) = 0, q(0) = 0, vi0 ≡ vN ≡ 0. Moreover, since

e−asβ
∗
(γ∗)c is bounded (4.3)

for any a > 0 and c ∈ R, we have that

e25/4sβ∗ (
(w · ∇)w, (w · ∇)z, (z · ∇t)w, q∇r, w · ∇r, w · ∇q) ∈ L2(Q)4N+2.

All the details are given in Section 5.

Proposition 4.4. Assume the hypothesis of Lemma 4.1 and

e25/4sβ∗
(fw, fz, f r, f q) ∈ L2(Q)2N+2. (4.4)

Let also i0 ∈ {1, . . . , N − 1}. Then, we can find controls (v, v0) ∈ L2(Q)N+1 such that the associated solution
(w, p0, z, p1, r, q, v, v0) to (4.1) belongs to Ei0,s,λ. In particular, vi0 ≡ vN ≡ 0 and (z(0), q(0)) = (0, 0) in Ω.
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Proof. Following the arguments in [10, 13], we introduce the space P0 of functions (ϕ, πϕ, ψ, πψ , φ, σ) ∈
C∞(Q)2N+4 such that

• ∇ · ϕ = ∇ · ψ = 0,
• ϕ|Σ = ψ|Σ = 0, φ|Σ = σ|Σ = 0,
• ϕ(T ) = ψ(0) = 0, φ(T ) = σ(0) = 0,

•
∫
Ω

πϕ dx =
∫
Ω

πψ dx = 0,

• ∇ · (Lψ + ∇πψ − σ eN) = 0,
• (LkH [e−13/4sβ∗

(Lψ + ∇πψ − σ eN )])|Σ = 0, k = 0, 1,
• (LkH [e−13/4sβ∗

(Lψ + ∇πψ − σ eN)])(0) = 0, k = 0, 1,
• Lk[e−13/4sβ∗Lσ]|Σ = 0, k = 0, . . . , 3,
• Lk[e−13/4sβ∗Lσ](0) = 0, k = 0, . . . , 3.

We define the bilinear form

a((ϕ̃, π̃ϕ, ψ̃, π̃ψ, φ̃, σ̃), (ϕ, πϕ, ψ, πψ, φ, σ))

:=
∫∫
Q

e−13/2sβ∗
(L∗ϕ̃+ ∇π̃ϕ − ψ̃�O) · (L∗ϕ+ ∇πϕ − ψ�O) dxdt

+
∫∫
Q

L2
H [e−13/4sβ∗

(Lψ̃ + ∇π̃ψ − σ̃ eN )] · L2
H [e−13/4sβ∗

(Lψ + ∇πψ − σ eN )] dxdt

+
∫∫
Q

e−13/2sβ∗
(L∗φ̃− ϕ̃N − σ̃ �O)(L∗φ− ϕN − σ �O) dxdt

+
∫∫
Q

L4[e−13/4sβ∗Lσ̃]L4[e−13/4sβ∗Lσ] dxdt

+ (N − 2)
∫∫

ω×(0,T )

e−13/2sβ∗
ϕ̃j0 ϕj0 dxdt+

∫∫
ω×(0,T )

e−13/2sβ∗
φ̃ φdxdt,

where j0 ∈ {1, . . . , N − 1} \ {i0} and a linear form

〈G, (ϕ, πϕ, ψ, πψ, φ, σ)〉 :=
∫∫
Q

fw · ϕdxdt+
∫∫
Q

fz · ψ dxdt+
∫∫
Q

f r φdxdt+
∫∫
Q

f q σ dxdt.

Thanks to (4.2), we have that a(·, ·) : P0 × P0 �→ R is a symmetric, definite positive bilinear form on P0.
We denote by P the completion of P0 for the norm induced by a(·, ·). Then, a(·, ·) is well-defined, continuous
and definite positive on P . Furthermore, in view of the Carleman estimate (4.2) and the assumptions (4.4),
the linear form (ϕ, πϕ, ψ, πψ, φ, σ) �→ 〈G, (ϕ, πϕ, ψ, πψ, φ, σ)〉 is well-defined and continuous on P . Hence, from
Lax-Milgram’s lemma, we deduce that the variational problem:{

Find (ϕ̃, π̃ϕ, ψ̃, π̃ψ , φ̃, σ̃) ∈ P such that

a((ϕ̃, π̃ϕ, ψ̃, π̃ψ , φ̃, σ̃), (ϕ, πϕ, ψ, πψ , φ, σ)) = 〈G, (ϕ, πϕ, ψ, πψ, φ, σ)〉 ∀ (ϕ, πϕ, ψ, πψ, φ, σ) ∈ P,
(4.5)

possesses exactly one solution (ϕ̂, π̂ϕ, ψ̂, π̂ψ , φ̂, σ̂).
Let v̂ and v̂0 be given by{

v̂j0 := −(N − 2)e−13/2sβ∗
ϕ̂j0�ω, v̂j ≡ 0, j 
= j0, in Q,

v̂0 := −e−13/2sβ∗
φ̂�ω, in Q.

(4.6)
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It is straightforward from (4.5) and (4.6) that we have∫∫
Q

(|w̃|2 + |z̃|2 + |r̃|2 + |q̃|2) dxdt+
∫∫

ω×(0,T )

e13/2sβ∗ (
(N − 2)|v̂j0 |2 + |v̂0|2

)
dxdt < +∞, (4.7)

where w̃, z̃, r̃ and q̃ are given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w̃ := e−13/4sβ∗
(
L∗ϕ̂+ ∇π̂ϕ − ψ̂�O

)
,

z̃ := L2
H

[
e−13/4sβ∗

(
Lψ̂ + ∇π̂ψ − σ̂ eN

)]
,

r̃ := e−13/4sβ∗
(
L∗φ̂− ϕ̂N − σ̂ �O

)
,

q̃ := L4[e−13/4sβ∗Lσ̂].

(4.8)

In particular, v̂ ∈ L2(Q)N , v̂0 ∈ L2(Q).
Let us call (ŵ, ẑ, r̂, q̂), together with some pressures (p̂0, p̂1), the (weak) solution of (4.1) with v = v̂ and

v0 = v̂0, that is, they solve⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lŵ + ∇p̂0 = fw + v̂ �ω + r̂eN , ∇ · ŵ = 0 in Q,

L∗ẑ + ∇p̂1 = fz + ŵ�O, ∇ · ẑ = 0 in Q,

Lr̂ = f r + v̂0 �ω in Q,

L∗q̂ = f q + ẑN + r̂�O in Q,

ŵ = ẑ = 0, r̂ = q̂ = 0 on Σ,

ŵ(0) = 0, ẑ(T ) = 0, r̂(0) = 0, q̂(T ) = 0 in Ω.

(4.9)

The rest of the proof is devoted to prove the following exponential decay properties

e13/4sβ∗
(γ∗)−1−1/mŵ ∈ Y1, e13/4sβ∗

(γ∗)−6−6/mẑ ∈ Y1

e13/4sβ∗
(γ∗)−1−1/mr̂ ∈ X1, e13/4sβ∗

(γ∗)−15−15/mq̂ ∈ X1, (4.10)

which will solve the null controllability problem for system (4.1) (see Rem. 4.3).
First, we will prove that (w̃, z̃, r̃, q̃) given by (4.8) is actually the solution (in the sense of transposition) of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e−13/4sβ∗
w̃ = ŵ in Q,

e−13/4sβ∗
(L∗

H)2z̃ = ẑ, ∇ · z̃ = 0 in Q,

e−13/4sβ∗
r̃ = r̂ in Q,

e−13/4sβ∗
(L∗)4q̃ = q̂ in Q,

(4.11)

such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(L∗

H)�z̃ = 0 on Σ, � = 0, 1,

(L∗
H)�z̃(T ) = 0 in Ω, � = 0, 1,

(L∗)k q̃ = 0 on Σ, k = 0, . . . , 3,

(L∗)k q̃(T ) = 0 in Ω, k = 0, . . . , 3.

(4.12)

Now, from (4.5), (4.6), (4.8) and (4.9), we obtain for every (ϕ, πϕ, ψ, πψ, φ, σ) ∈ P0∫∫
Q

w̃ · e−13/4sβ∗
(L∗ϕ+ ∇πϕ − ψ�O)dxdt+

∫∫
Q

z̃ · L2
H [e−13/4sβ∗

(Lψ + ∇πψ − σ eN )]dxdt

+
∫∫
Q

r̃ e−13/4sβ∗
(L∗φ− ϕN − σ �O) dxdt+

∫∫
Q

q̃L4[e−13/4sβ∗Lσ] dxdt
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=
∫∫
Q

ϕ · (Lŵ + ∇p̂0 − r̂ eN ) dxdt+
∫∫
Q

ψ · (L∗ẑ + ∇p̂1 − ŵ�O ) dxdt

+
∫∫
Q

φLr̂ dxdt+
∫∫
Q

σ (L∗q̂ − ẑN − r̂�O ) dxdt

=
∫∫
Q

ŵ · (L∗ϕ+ ∇πϕ − ψ�O) dxdt+
∫∫
Q

ẑ · (Lψ + ∇πψ − σ eN) dxdt

+
∫∫
Q

r̂ (L∗φ− ϕN − σ �O) dxdt+
∫∫
Q

q̂Lσ dxdt.

From this last equality, we obtain for all (hw, hz, hr, hq) ∈ L2(Q)2N+2∫∫
Q

w̃ · hw dxdt+
∫∫
Q

z̃ · hz dxdt+
∫∫
Q

r̃ hr dxdt+
∫∫
Q

q̃ hq dxdt

=
∫∫
Q

ŵ · Φw dxdt+
∫∫
Q

ẑ · Φz dxdt+
∫∫
Q

r̂ Φr dxdt+
∫∫
Q

q̂ Φq dxdt, (4.13)

where (Φw, Φz, Φr, Φq) is the solution of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e−13/4sβ∗

Φw = hw in Q,

L2
H [e−13/4sβ∗

Φz ] = hz, ∇ · Φz = 0 in Q,

e−13/4sβ∗
Φr = hr in Q,

L4[e−13/4sβ∗
Φq] = hq in Q,

(4.14)

such that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L�H(e−13/4sβ∗

Φz) = 0 on Σ, � = 0, 1,

L�H(e−13/4sβ∗
Φz)(0) = 0 in Ω, � = 0, 1,

Lk(e−13/4sβ∗
Φq) = 0 on Σ, k = 0, . . . , 3,

Lk(e−13/4sβ∗
Φq)(0) = 0 in Ω, k = 0, . . . , 3.

(4.15)

It is classical to show that (4.13)−(4.15) is equivalent to (4.11) and (4.12).
Next, we define the following functions:

(z∗,0, p∗,0) := e13/4sβ∗
(γ∗)−3−3/m(ẑ, p̂1), fz∗,0 := e13/4sβ∗

(γ∗)−3−3/m(fz + ŵ�O).

Observe that, from (4.4), (4.7) and (4.11), we have fz∗,0 ∈ L2(Q)N . Then, by (4.9) z∗,0 satisfies⎧⎪⎨⎪⎩
L∗z∗,0 + ∇p∗,0 = fz∗,0 − (e13/4sβ∗

(γ∗)−3−3/m)tẑ, ∇ · z∗,0 = 0 in Q,

z∗,0 = 0 on Σ,

z∗,0(T ) = 0 in Ω,

where the last term in the right-hand side can be written as(
e13/4sβ∗

(γ∗)−3−3/m
)
t
ẑ = c2(t)(L∗

H)2z̃,
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where ck(t) denotes a generic function such that (see (2.2))

|c(�)k (t)| ≤ C <∞, ∀ � = 0, . . . , k. (4.16)

On the other hand, for any h ∈ Y1,0 we have∫∫
Q

z∗,0 · h dxdt =
∫∫
Q

fz∗,0 · Φdxdt−
∫∫
Q

c2(t)(L∗)2H z̃ · Φdxdt,

where Φ solves, together with some pressure πΦ,⎧⎪⎨⎪⎩
LΦ+ ∇πΦ = h, ∇ · Φ = 0 in Q,

Φ = 0 on Σ,

Φ(0) = 0 in Ω.

Using (4.12), we can integrate by parts to obtain∫∫
Q

z∗,0 · h dxdt =
∫∫
Q

fz∗,0 · Φdxdt−
∫∫
Q

L∗
H z̃ · (L[c2(t)Φ] + ∇(c2(t)πΦ)) dxdt

=
∫∫
Q

fz∗,0 · Φdxdt−
∫∫
Q

z̃ · L[c′2(t)Φ+ c2(t)h] dxdt.

Notice that here we have relied on the fact that L∗
H z̃, Φ and h belong to the space H . Since

‖Φ‖Y2 ≤ C‖h‖Y1,0 ,

(see regularity result (2.9)), we obtain from the last equality, together with (4.16),∫∫
Q

z∗,0 · h dxdt ≤ C
[∥∥fz∗,0∥∥L2(Q)N + ‖z̃‖L2(Q)N

]
‖h‖Y1,0, ∀h ∈ Y1,0. (4.17)

Now, let

(z∗,1, p∗,1) := e13/4sβ∗
(γ∗)−5−5/m(ẑ, p̂1), fz∗,1 := e13/4sβ∗

(γ∗)−5−5/m(fz + ŵ�O).

Similarly as before, (z∗,1, p∗,1) satisfies⎧⎪⎨⎪⎩
L∗z∗,1 + ∇p∗,1 = fz∗,1 − (e13/4sβ∗

(γ∗)−5−5/m)tẑ, ∇ · z∗,1 = 0 in Q,

z∗,1 = 0 on Σ,

z∗,1(T ) = 0 in Ω.

Thus, for any h ∈ Y0 we get∫∫
Q

z∗,1 · h dxdt =
∫∫
Q

fz∗,1 · Φdxdt−
∫∫
Q

(e13/4sβ∗
(γ∗)−5−5/m)tẑ · Φdxdt.

Moreover, since ∫∫
Q

(e13/4sβ∗
(γ∗)−5−5/m)tẑ · Φdxdt =

∫∫
Q

c1(t)Φ · z∗,0 dxdt,
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using (4.17) with c1(t)Φ instead of h (notice that c1(t)Φ ∈ Y1,0), we get the estimate∫∫
Q

c1(t)Φ · z∗,0 dxdt ≤ C
[∥∥fz∗,0∥∥L2(Q)N + ‖z̃‖L2(Q)N

]
‖c1(t)Φ‖Y1,0 .

Turning back to z∗,1, we get∫∫
Q

z∗,1 · h dxdt ≤ C
[∥∥fz∗,0∥∥L2(Q)N + ‖z̃‖L2(Q)N

]
‖Φ‖Y1,0 ,

where we have used (4.16) and the property (γ∗)−5−5/m ≤ C(γ∗)−3−3/m. Taking into account that

‖Φ‖Y1,0 ≤ C‖h‖Y0 ,

(see (2.8)) we obtain ∫∫
Q

z∗,1 · h dxdt ≤ C
[∥∥fz∗,0∥∥L2(Q)N + ‖z̃‖L2(Q)N

]
‖h‖Y0, ∀h ∈ Y0.

Thus, we deduce that z∗,1 ∈ L2(Q)N . Following the same iterative argument we can show that
e13/4sβ∗

(γ∗)−14−14/mq̂ ∈ L2(Q)N .
Finally, to complete the proof of (4.10), let

(z∗, p1∗) := e13/4sβ∗
(γ∗)−6−6/m(ẑ, p̂1), fz∗ := e13/4sβ∗

(γ∗)−6−6/m(fz + ŵ�O).

Then, (z∗, p1∗) satisfies⎧⎪⎨⎪⎩
L∗z∗ + ∇p1∗ = fz∗ + (e13/4sβ∗

(γ∗)−6−6/m)tẑ, ∇ · z∗ = 0 in Q,

z∗ = 0 on Σ,

z∗(T ) = 0 in Ω.

From (4.4), (4.7), (4.11), (2.2) and z∗,1 ∈ L2(Q)N , we have that the right-hand side of this equation belongs
to L2(Q)N . Using the regularity result (2.8), we deduce that z∗ ∈ Y1. Similarly, we are able to obtain the rest
of the regularity properties in (4.10). This concludes the proof of Proposition 4.4. �

5. Proof of Theorem 1.1

Recall that we deal with the following null controllability problem: to find controls (v, v0) verifying vi0 ≡
vN ≡ 0 such that the solution of the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lw + (w · ∇)w + ∇p0 = f + v�ω + r eN ,∇ · w = 0 in Q,
L∗z + (z · ∇t)w − (w · ∇)z + q∇r + ∇p1 = w�O,∇ · z = 0 in Q,

Lr + w · ∇r = f0 + v0�ω in Q,

L∗q − w · ∇q = zN + r �O in Q,

w = z = 0, r = q = 0 on Σ,

w(0) = 0, z(T ) = 0, r(0) = 0, q(T ) = 0 in Ω,

(5.1)

satisfies (z(0), q(0)) = (0, 0).
We proceed using similar arguments to those in [13] (see also [4, 5, 9, 12]). The null controllability result for

the linear system given by Proposition 4.4 will allow us to apply the following inverse mapping theorem (see [1]):
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Theorem 5.1. Let G1 and G2 be two Banach spaces and let F : G1 → G2 satisfy F ∈ C1(G1;G2). Assume that
g1 ∈ G1, F(g1) = g2 and that F ′(g1) : G1 → G2 is surjective. Then, there exists δ > 0 such that, for every
g′ ∈ G2 satisfying ‖g′ − g2‖G2 < δ, there exists a solution of the equation

F(g) = g′, g ∈ G1.

Let us set the framework to apply Theorem 5.1 to the problem at hand. Let

G1 := Ei0,s,λ,

G2 := L2(e25/4sβ∗
(0, T );L2(Ω)2N+2)

and the operator

F(w, p0, z, p1, r, q, v, v0) := (Lw + (w · ∇)w + ∇p0 − v�ω − r eN ,

L∗z + (z · ∇t)w − (w · ∇)z + q∇r + ∇p1 − w�O,

Lr + w · ∇r − v0�ω,L∗q − w · ∇q − zN − r �O)

for (w, p0, z, p1, r, q, v, v0) ∈ G1. Here, u ∈ L2(e25/4sβ∗
(0, T );L2(Ω)) means e25/4sβ∗

u ∈ L2(Q).
It only remains to check that the operator F is of class C1(G1;G2). To do this, we notice that all the terms

in F are linear, except for (w · ∇)w, (z · ∇t)w− (w · ∇)z, q∇r, w · ∇r and w · ∇q. So it will suffice to prove that
the bilinear operator((

w1, p1
0, z

1, p1
1, r

1, q1, v1, v1
0

)
,
(
w2, p2

0, z
2, p2

1, r
2, q2, v2, v2

0

))→ (w1 · ∇)w2

is continuous from G1 × G1 to L2(e25/4sβ∗
(0, T );L2(Ω)N ). Since Y1 ⊂ L∞(0, T ;V ), we have that

e13/4sβ∗
(γ∗)−1−1/mw ∈ L2(0, T ;H2(Ω)N ) ∩ L∞(0, T ;V )

for any (w, p0, z, p1, r, q, v, v0) ∈ G1. Consequently

e13/4sβ∗
(γ∗)−1−1/mw ∈ L2(0, T ;L∞(Ω)N )

and
∇(e13/4sβ∗

(γ∗)−1−1/mw) ∈ L∞(0, T ;L2(Ω)N×N ).

Thus, we obtain∥∥∥e13/2sβ∗
(γ∗)−2−2/m(w1 · ∇)w2

∥∥∥
L2(Q)N

≤ C
∥∥∥(e13/4sβ∗

(γ∗)−1−1/mw1 · ∇)e13/4sβ∗
(γ∗)−1−1/mw2

∥∥∥
L2(Q)N

≤ C
∥∥∥e13/4sβ∗

(γ∗)−1−1/mw1
∥∥∥
L2(0,T ;L∞(Ω)N )

∥∥∥e13/4sβ∗
(γ∗)−1−1/mw2

∥∥∥
L∞(0,T ;V )

,

and the continuity follows since 25/4 < 13/2 and thanks to (4.3). The terms (z · ∇t)w, (w · ∇)z are treated
analogously.

Finally, we can prove in the same way that the bilinear operator((
w1, p1

0, z
1, p1

1, r
1, q1, v1, v1

0

)
,
(
w2, p2

0, z
2, p2

1, r
2, q2, v2, v2

0

))→ (w1 · ∇r2, w1 · ∇q2)

is continuous from G1 × G1 to L2(e25/4sβ∗
(0, T );L2(Ω)2) just by taking into account that

e13/4sβ∗ (
(γ∗)−1−1/m r, (γ∗)−15−15/m q

)
∈ L∞(0, T ;H1

0(Ω)2),
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for any (w, p0, z, p1, r, q, v, v0) ∈ G1.

It is readily seen that F ′(0) : G1 → G2 is given by

F ′(0)(w, p0, z, p1, r, q, v, v0) = (Lw + ∇p0 − v�ω − r eN , L∗z + ∇p1 − w�O,

Lr − v0�ω,L∗q − zN − r �O) ,

for all (w, p0, z, p1, r, s, v, v0) ∈ G1. It follows that this functional is surjective in view of the null controllability
result for the linear system given by Proposition 4.4.

Now, we are in condition to apply Theorem 5.1. By taking g1 = 0 and g2 = 0, it gives the existence of δ > 0
such that, if ‖eC/tm(f, f0)‖L2(Q)N+1 ≤ δ, for some C > 0, then we can find (w, p0, z, p1, r, q, v, v0) ∈ G1 solution
of (5.1). In particular, vi0 ≡ vN ≡ 0 and (z(0), q(0)) = (0, 0) (see Rem. 4.3). Therefore, the proof of Theorem 1.1
is complete.
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