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ON THE FABER–KRAHN INEQUALITY FOR THE DIRICHLET p-LAPLACIAN ∗

Anisa M.H. Chorwadwala
1
, Rajesh Mahadevan

2
and Francisco Toledo

2

Abstract. A famous conjecture made by Lord Rayleigh is the following: “The first eigenvalue of
the Laplacian on an open domain of given measure with Dirichlet boundary conditions is minimum
when the domain is a ball and only when it is a ball”. This conjecture was proved simultaneously and
independently by Faber [G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche
und gleicher Spannung die kreisförfegige den leifsten Grundton gibt. Sitz. bayer Acad. Wiss. (1923) 169–
172] and Krahn [E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises. Math.
Ann. 94 (1924) 97–100.]. We shall deal with the p-Laplacian version of this theorem.
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1. Introduction

The p-Laplacian Δp is the non-linear operator defined as Δpf = div(|∇f |p−2∇f). We consider the following
domain optimization problem:

Given the eigenvalue problem
−Δpu = λ|u|p−2 u in Ω,

u = 0 on ∂Ω

}
(1.1)

whose principal eigenvalue is

λ1(Ω) := inf

{ ‖∇ϕ‖p
Lp(Ω)

‖φ‖p
Lp(Ω)

∣∣∣∣∣ ϕ ∈ W 1,p
0 (Ω) \ {0}

}
, (1.2)

we are interested in minimizing λ1(Ω) among all bounded open sets Ω having a given volume (Lebesgue
measure).

In the case p = 2, a famous conjecture made by Lord Rayleigh in 1894 and later proved by Faber [11] and
Krahn [14] says that the ball minimizes this eigenvalue functional among all bounded domains with the same
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volume and is the only minimizer. Later, it has been shown that this holds also for any p such that 1 < p < ∞.
It is quite standard to show using the Polya–Szego inequality for the Schwarz symmetrization that, given any
bounded domain Ω, the ball with the same volume has a smaller first Dirichlet eigenvalue than that of Ω.
However, proving that the ball is the only minimizer is non-trivial. Previously, this problem has been studied in
a few papers using different approaches. One of these approaches is based on a result of Brothers and Ziemer [6]
which establishes a criteria when equality holds in the Polya–Szego inequality and this can be found in Alvino,
Ferone and Trombetti [2] (see Thm. 3.1). Another proof due to Bhattacharya [5], which is quite technical, is
based on some estimates related to some inequalities of Talenti [21]. We follow a different, quite general approach
where the symmetry question is treated by studying symmetry in a suitable overdetermined elliptic problem.
Indeed, if a smooth domain with a connected boundary is a minimizing domain, then the normal derivative of
the first eigenfunction has to be constant on the boundary, thus making the problem overdetermined.

Symmetry results for overdetermined boundary value problems for both linear and non-linear elliptic pdes
has been studied by Serrin [20] using the moving plane method [4] whose idea goes back to Aleksandrov [1].
The strategy is to compare the solutions on either side of a moving plane, at some critical positions of the
moving plane, by means of some comparison principles and then to obtain a Hopf type lemma which gives a
contradiction to the overdetermined condition. We follow this strategy to give a proof of the uniqueness of the
minimizer of the Dirichlet eigenvalue for the p-Laplacian in the class of bounded connected domains having a
connected C2,γ boundary.

Overdetermined problems for non-linear elliptic operators have been treated in [9, 10, 12, 13] and some of
the references included therein. Most of these results are again based on the principle of Serrin’s paper. In
Damascelli and Pacella [10], they obtain a symmetry result for an overdetermined problem for the p-Laplacian
for p ∈ (1, 2) for a general class of non-linear functions f on the right-hand side. The symmetry results therein
are based on weak comparison principles and strong comparison principles which require the non-degeneracy
of the gradient of the solution, a condition which is not always satisfied for p ∈ (2,∞) for general f . Moreover,
the proofs of the comparison principles are quite technical. However, we would like to point out that for the
minimization of the first eigenvalue for the p-Laplacian this non-degeneracy condition is satisfied, in the light of
a recent result of Lou [16], since, therein, it is shown that the critical set of the first eigenfunction is of measure
zero. So, we may observe that the uniqueness of the minimizing domain for the eigenvalue problem also follows
from the result of [10] for all p ∈ (1,∞).

In this article, we treat only the eigenvalue problem for which f(s) = λ1s
p−1 where λ1 is the first eigenvalue

for the domain for given p ∈ (1,∞). For such f , we can prove the weak comparison principle and the strong
comparison principle needed for the Hopf lemma, in a much simpler way as compared to the approach of
Damascelli and Pacella. In fact, we follow the approach of Cuesta and Takác [8] and improve upon a weak
comparison principle, valid for any p ∈ (1,∞), proved therein for non-negative solutions of the p-Laplace
equation with monotone non-decreasing nonlinearities in domains with at least C1 boundary, for homogeneous
Dirichlet boundary conditions. Our improvement (see Thm. 2.1) consists in relaxing the zero Dirichlet boundary
condition as also the regularity assumption on the boundary. If we compare our paper with Serrin’s paper, in
Serrin’s paper, the necessary weak comparison principles are assumed for the class of non-linear pdes being
considered and the non-linear pde is assumed explicitly to be uniformly elliptic in the entire domain. The latter
assumption does not hold for the p-Laplacian equation. We show that it is enough to use the ellipticity in a
local way. The remaining ideas are as in Serrin’s paper.

The results in [12, 13] are based on quite different principles.

In Section 2, we recall some useful facts. In particular, we recall some properties related to the first eigenvalue
of the Dirichlet p-Laplacian and discuss the comparison principles. In Section 3, we prove Theorem 3.2, the
main result, where we show the uniqueness in the Faber–Krahn inequality for the p-Laplacian. In Section 4, we
provide the proof of the weak comparison principle being used. We also prove a proposition needed for verifying
a hypotheses required for the application of the comparison principle.
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2. Preliminaries

In this section we recall some useful facts which will be used later on.

Properties related to the first eigenvalue of the Dirichlet p-Laplacian

Given a bounded domain Ω in R
n with Lipschitz boundary, let λ1(Ω) denote the first eigenvalue of the Dirichlet

p-Laplacian defined through (1.2). Then, λ1(Ω) is invariant under orthogonal transformations of the domain.
For a bounded connected domain Ω, it is known that the first eigenvalue is simple. It is also known that
any eigenfunction for λ1 has a strict sign in Ω and is the only eigenfunction with this property. We refer
to Lindqvist [15] for these results. Hereafter, by first eigenfunction we shall refer to a positive eigenfunction
whose Lp norm is 1. In a domain Ω with C2,γ boundary, the normal derivative of the first eigenfunction is strictly
negative on ∂Ω (cf. Sakaguchi [19], Lem. A.3). Furthermore, if Ω has a connected C2,γ boundary, then the first
eigenfunction is known to belong to C1,α(Ω) ∩ C2,γ(Ωε) for some ε > 0, where Ωε = {x ∈ Ω : d(x, ∂Ω) < ε}
(see Barles [3], Thm. 1.3).

Weak Comparison Principle for the p-Laplacian

Let Ω ⊂ R
n be a bounded domain. Let β : Ω × R → R be continuous and assume that there exists κ ∈ [0, 1]

and M > 0 so that β satisfies the growth assumption

β(x, s) ≤ M
(
κ + |s|p−2

) |s| for all x ∈ Ω, for all s in R. (2.1)

Further, we shall consider β satisfying one of the two assumptions:
(b1) s 
−→ β(x, s) is locally Lipschitz on R\{0} uniformly for x ∈ Ω and ∂β

∂s ≤ 0 for almost all (x, s) ∈ Ω×R or,
(b2) β(x, s) is nondecreasing in s for (x, s) ∈ Ω × R and β(x, 0) ≥ 0 for all x ∈ Ω.

Let f, g ∈ W−1, p
p−1 (Ω), f ′, g′ ∈ W 1− 1

p ,p(∂Ω) with f ≥ g in Ω (in the sense of distributions), f ′ ≥ g′ on ∂Ω.
Let u, v ∈ W 1,p(Ω) solve (in the weak sense)

−Δpu = β(x, u) + f(x), −Δpv = β(x, v) + g(x) in Ω,

u = f ′, v = g′ on ∂Ω.
(2.2)

A question of interest is to know whether the following weak comparison result holds,

u ≥ v almost everywhere in Ω. (2.3)

For β satisfying (b1), this has been shown by Tolksdorff [22].
For β satisfying the hypothesis (b2), stronger conditions are needed for the comparison principle to hold. On

a bounded domain in R
n with a C1,γ boundary, if it is assumed that

(A − 1) β satisfies (b2), that is β(x, s) is nondecreasing in s for (x, s) ∈ Ω × R, and β(x, 0) ≥ 0 for all x ∈ Ω,
(A − 2) The problem

−Δpu = β(x, u) + f in Ω,

u = 0 on ∂Ω.

given f ∈ L∞(Ω), f ≥ 0 in Ω, admits a unique non-negative solution u ∈ W 1,p
0 (Ω), and

(A − 3) f, g ∈ L∞(Ω), 0 ≤ g ≤ f on Ω and 0 = g′ = f ′ on ∂Ω.

Then it has been shown by Cuesta and Takác (see [8], Prop. 2.3) that non-negative solutions of (2.2) satisfy the
weak comparison (2.3).

In our applications, we need to relax the zero Dirichlet boundary condition assumption as well as the C1,γ

regularity assumption on the domain Ω in order to apply it in a piecewise smooth domain. So, we need the
following variant of the result of Cuesta and Takác.
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Theorem 2.1. Let u, v in W 1,p(Ω) be non-negative solutions weak solutions of (2.2) where Ω is just a Lipschitz
domain and we assume that

(A − 1) β(x, s) is nondecreasing in s for (x, s) ∈ Ω × R, and β(x, 0) ≥ 0 for all x ∈ Ω,
(A − 2′) The problem

−Δpw = β(x, w) + f in Ω,

w = f ′ on ∂Ω.

given f ∈ W−1, p
p−1 (Ω), f ≥ 0 in Ω and f ′ ∈ W 1− 1

p ,p with f ′ ≥ 0 on ∂Ω, admits a unique non-negative
solution w ∈ W 1,p(Ω).

(A − 3′) f, g ∈ W−1, p
p−1 (Ω), 0 ≤ g ≤ f on Ω and f ′, g′ ∈ W 1− 1

p ,p(∂Ω) with 0 ≤ g′ ≤ f ′ on ∂Ω.

Then, we conclude that u ≥ v almost everywhere on Ω, that is the WCP holds.

Proof. The proof of this theorem is inspired directly by the proof of Proposition 2.3 in [8]. It is given in
Section 4. �

A positive definite matrix

Consider the strictly convex function Γ : R
n → R defined by Γ (ξ) = |ξ|p

p . Then Γ ∈ C∞(Rn\{0}). Let A = DΓ ,
the gradient of Γ . Then A = (A1, A2, . . . , AN ) : R

n → R
n is given by

A(ξ) = |ξ|p−2ξ. (2.4)

The Hessian matrix A(ξ) :=
[

∂Ai

∂ξj
(ξ)
]n

i,j=1
= [DijΓ ( ξ)]ni,j=1 can be calculated and is found to be equal to

|ξ|p−2Id+(p−2)|ξ|p−4ξ⊗ξ. It can be seen that (p−1)|ξ|p−2 and |ξ|p−2 are eigenvalues of A(ξ) with multiplicity
one and (n − 1), respectively. Therefore, for any η ∈ R

n, we have

〈A(ξ)η, η〉 ≥ min{1, p− 1}|ξ|p−2|η|2. (2.5)

Thus A(ξ) is a positive definite matrix but which becomes degenerate or singular near ξ = 0 depending on
whether p > 2 or 1 < p < 2.

3. Uniqueness in Faber–Krahn inequality

The Faber–Krahn inequality λ1(Ω) ≥ λ1(Ω∗), where Ω is a bounded domain and Ω∗ is a ball with the same
volume, can be proved by an application of the Polya–Szegö inequality for the Schwarz symmetrization. In this
section, we show that if Ω is any bounded connected open set with a connected C2,γ boundary then the above
inequality is strict unless Ω is a copy of Ω∗.

We begin with the following lemma whose proof is standard in shape optimization problems. It may be
deduced from the first order necessary condition for an optimal shape using the formula for the shape derivative
obtained in Garćıa Melián et al. [17]

Lemma 3.1. Let Ω ⊂ R
n be a bounded connected domain with a connected C2,γ boundary which minimizes λ1

among rectifiable domains of given volume. Then, there exists a negative constant c such that the first eigen-
function u (assumed to be positive), satisfies

∂u

∂n
= c on ∂Ω.
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So, we are led to consider the following overdetermined problem. Let us denote λ1(Ω) by λ1. Consider a
bounded connected domain Ω with a connected C2,γ boundary in R

n. Suppose there exists a positive function
u satisfying ⎧⎨

⎩
−Δpu = λ1u

p−1 in Ω
u = 0 in ∂Ω
∂u
∂n = c in ∂Ω

(3.1)

in the weak sense. Must Ω be a ball? In the affirmative case, we will have shown that the ball is the unique
minimizer of λ1 among bounded connected domains with a connected C2,γ boundary having the same volume.
Indeed, this result is proved in the next theorem.

Theorem 3.2. Let Ω be a bounded connected domain with a connected C2,γ boundary in R
n. Let us suppose

that there exists a positive function u satisfying (3.1) in the weak sense. Then Ω is a ball.

Proof. We recall, from the discussion in the first paragraph of Section 2, that u is necessarily an eigenfunction
for the eigenvalue λ1(Ω) belongs to C1,α(Ω) ∩ C2,γ(Ωε) for some ε > 0, where Ωε = {x ∈ Ω : d(x, ∂Ω) < ε}.

Let T0 be a hyperplane in R
n not intersecting the domain Ω. We suppose this plane to be moved continuously

parallel to T0 to new positions, until ultimately it begins to intersect Ω. From that moment onward, at each
stage the resulting plane T cuts off from Ω a cap Σ(T ) = Ω ∩ T−, where T− is the half plane formed by T
containing T0.

For any cap Σ(T ) thus formed, we let Σ′(T ) be its reflection in T . We note that Σ′(T ) is contained in Ω
until:
(i) Σ′(T ) becomes internally tangent to the boundary of Ω at some point P not on T , or
(ii) T reaches a position where it is orthogonal to the boundary of Ω.

Denote the plane T when it reaches this position by Tα and Σ(Tα) by Σ and its reflection across Tα by Σ′.
We shall use x′ to denote the reflection of any point x across Tα and S′ to denote the reflection of any set S
across Tα. Our aim is to prove that Ω is symmetric with respect to Tα, i.e., Σ′ = Ω ∩ T +

α , where T +
α is the

half plane formed by Tα not containing T0. If we succeed in proving this, then we may conclude that for any
given direction in R

n, we can find a plane Tα about which Ω is symmetric. But the only domains which have
this symmetry property are balls. Thus, our theorem would be proved.

For showing Σ′ = Ω ∩ T +
α , since (Ω ∩ T +

α ) is connected and Σ′ ⊂ Ω ∩ T +
α , it is enough to show that Σ′ is

both open and closed in Ω ∩ T +
α . Now, given that Σ′, Ω ∩ T +

α are open and Σ′ ⊂ Ω ∩ T +
α , it is clear that Σ′ is

open in Ω ∩ T +
α . Further, it can be deduced that ∂Ω∩T+

α
Σ′ (the boundary of Σ′ relative to Ω ∩ T +

α ) is equal to
∂Σ′ ∩ (Ω ∩ T +

α ). So, Σ′ shall be closed in Ω ∩ T +
α if we show that ∂Ω∩T+

α
Σ′ = ∅, which would follow by proving

∂Σ′ ⊆ ∂(Ω ∩ T +
α ). But, since ∂Σ′ = (∂Ω ∩ T−

α )′ ∪ (Ω ∩ Tα) and ∂(Ω ∩ T +
α ) = (∂Ω ∩ T +

α ) ∪ (Ω ∩ Tα), it is
sufficient to show that (

∂Ω ∩ T−
α

)′
⊆ ∂Ω ∩ T +

α . (3.2)
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We will assume that (3.2) does not hold and will reach a contradiction. This shall be obtained at the end of the
following steps.

Step 1
We introduce a new function v defined in Σ′ by v(x) = u(x′), where x′ is the reflection of x, given any x ∈ Σ′,
across Tα. We shall first show that u ≥ v in Σ′.
We note that u is such that:

−Δpu = λ1u
p−1 in Σ′,

u ≥ 0 in ∂Σ′ =
(
∂Ω ∩ T−

α

)′
∪ (Ω ∩ Tα

)
,

while v satisfies

−Δpv = λ1v
p−1 in Σ′,

v = 0 in
(
∂Ω ∩ T−

α

)′
,

v = u in Ω ∩ Tα,

in the weak sense. We note that u being the first eigenfunction in Ω it is non-negative and is in C1,α(Ω). So,
u and v are non-negative, bounded on Σ′, satisfy a Dirichlet problem of the form (2.2) in the domain Σ′ with
β(s) = λ1s

p−1 and with f = g = 0. The function β satisfies the hypothesis (A − 1) as well as the growth
hypothesis (2.1). The boundary values f ′ and g′ on ∂Σ′ are just the restrictions of u and v, respectively, to ∂Σ′.
Since u > 0 in Ω, from the above, we have clearly, u ≥ v ≥ 0 on the boundary ∂Σ′. By Proposition 4.1, which
is proved in Section 4, the remaining hypothesis (A− 2′) of Theorem 2.1 also holds. So, we are able to conclude
that u ≥ v in Σ′.

Step 2
In this step, we will show that w = u − v satisfies an elliptic variational inequality in Σ′.

From the fact that u ≥ v in Σ′, we conclude immediately that

−div(A(∇u) − A(∇v)) = −Δpu + Δpv = λ1

(
up−1 − vp−1

) ≥ 0 in Σ′ (3.3)

holds in the weak sense, where A(ξ) = |ξ|p−2 · ξ = DΓ (ξ) for ξ = (ξ1, . . . , ξn) ∈ R
n. Proceeding further, by the

mean value theorem, we obtain

A(∇u) − A(∇v) = A(t∇u + (1 − t)∇v)|10
=
∫ 1

0

d

dt
A(t∇u + (1 − t)∇v) dt

=
∫ 1

0

(〈(∇Ai) (t∇u(x) + (1 − t)∇v(x))dt,∇w〉)n
i=1 dt

=
(〈∫ 1

0

(∇Ai) (t∇u(x) + (1 − t)∇v(x))dt,∇w

〉)n

i=1

where w = u − v. Thus by (3.3)

−
n∑

i=1

∂

∂xi

⎛
⎝ n∑

j=1

(∫ 1

0

DijΓ (t∇u(x) + (1 − t)∇v(x))dt

)
∂w

∂xj

⎞
⎠ ≥ 0

holds in the weak sense, where [DijΓ ] is the Hessian matrix of the convex function Γ introduced in Section 2
and denoted by A.
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Let aij(x) =
∫ 1

0 DijΓ (t∇u(x)+ (1− t)∇v(x))dt. Since, A is a positive matrix (not necessarily strictly positive),

so is A(x) = ((aij(x))). We then introduce the linear operator L =
∑n

i,j=1
∂

∂xi

(
aij

∂
∂xj

)
. Then, the function

w = u − v satisfies the following variational inequality in the weak sense

L(−w) = −
n∑

i,j=1

∂

∂xi

(
aij

∂w

∂xj

)
≥ 0 in Σ′. (3.4)

Step 3
We shall now show that for any point x0 on (∂Ω ∩T−

α )′ we can choose a neighbourhood U of x0 in Ω such that
the matrix A(x) = ((aij(x))) is uniformly positive definite there.

By (2.5), taking K = min{1, p− 1}, we have

〈A(x)η, η〉 ≥ K

(∫ 1

0

|t∇u(x) + (1 − t)∇v(x)|p−2 dt

)
|η|2. (3.5)

At x0, we can write

∇v (x0) =
∂v

∂n
(x0) n + ∇(

∂Ω∩T−
α

) ′v (x0)

where ∇
(∂Ω∩T−

α )′
v(x0) is the tangential component of the gradient ∇v at x0. Since v = 0 on (∂Ω ∩ T−

α )′, we
have ∇

(∂Ω∩T−
α )′

v(x0) = 0, thus

∇v (x0) =
∂v

∂n
(x0)n.

Let us define
g(t, x) = |t∇u(x) + (1 − t)∇v(x)|p−2. (3.6)

As the normal derivative of v at x0 is such that ∂v
∂n (x0) = c < 0, we have g(0, x0) = |c|p−2 > 0. Since g(t, x) is

continuous with respect to t and x, we can find a neighbourhood [0, t0] × U where U is a neighbourhood of x0

in Ω and 0 < t0 ≤ 1, such that
g(t, x) ≥ δ, ∀(t, x) ∈ [0, t0] × U

for some positive δ. Therefore, ∫ 1

0

g(t, x) dt ≥ δt0. (3.7)

From (3.5) and (3.7) we have our assertion.

Step 4
Let x0 be a point common to (∂Ω ∩ T−

α )′ and ∂Ω ∩ T +
α where (∂Ω ∩ T−

α )′ is internally tangent to ∂Ω ∩ T +
α . We

show that there is a neighbourhood of x0 in Σ where the variational inequality (3.4) holds in a strong sense.
At such an x0, since we have ∂u

∂n = c < 0 on ∂Ω, we have both ∂u
∂n (x0) = c < 0 and ∂v

∂n (x0) = c < 0.
So, for any t ∈ [0, 1], the convex combination t ∂u

∂n (x0) + (1 − t) ∂v
∂n (x0) = c < 0. Resolving the vectors ∇u(x0)

and ∇v(x0) in the common normal direction n(x0) (taking it as the nth component) and in the tangential
component, we see that they belong to the convex open set {ξ ∈ R

n : ξn < c/2}. Moreover, by the regularity
results in Barles [3], u is C2,γ in a neighbourhood of Σ. Thus, u and v are C2,γ in a neighbourhood of x0 in Σ.
So, it follows, by the continuity of ∇u and ∇v, that there is a neighbourhood V of x0 in Σ such that ∇u(x)
and ∇v(x) belong to {ξ ∈ R

n : ξn < c/2} for all x in V . By the convexity of {ξ ∈ R
n : ξn < c/2}, it follows that

t∇u(x)+(1− t)∇v(x) �= 0 for all t ∈ [0, 1] and for all x in V . This permits us to conclude that Γ is continuously
differentiable at all points ξ = t∇u(x) + (1 − t)∇v(x) for all t ∈ [0, 1] and for all x in V and for this reason,
the matrix function A is differentiable. Since, w = u − v is C2,γ in the same neighbourhood, it follows that the
variational inequality (3.4) holds in a strong sense in V .
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Step 5
Since we assume (3.2) to be false, in either of the two cases (i) or (ii), there exists a point (∂Ω ∩ T−

α )′ which
belongs to ∂Ω ∩ T +

α where (∂Ω ∩ T−
α )′ is internally tangent to ∂Ω ∩ T +

α and such that every neighbourhood
of x0 in Ω contains points of (∂Ω ∩ T−

α )′ which are inside Ω.

Using the result of Step 3, choose a neighbourhood U of x0 in Ω so that L is uniformly elliptic in U and a
neighbourhood V of x0 in Σ as in Step 4. Take N to be the open subset U ∩V ∩Σ′. By Step 1, we have −w ≤ 0
in N and we observe from Step 4 that −w satisfies the elliptic variational inequality L(−w) ≥ 0 in N in the
strong sense. So, by Theorem 5 (Sect. 3, Chap. 2) in [18], the maximum value 0 (which is attained at x0) of
the non-positive function −w cannot be attained at an interior point of N unless w is constant and equal to 0.
However, w cannot be identically equal to 0 in N for the following reason. By the assertion at the beginning of
this step and the choice of N , there exists points of ∂N near to x0 which are inside Ω. At such points u > 0 by
the strict positivity of the first eigenfunction and v = 0 by the boundary condition on ∂Σ′ ∩ ∂Ω, which gives
w > 0 there. By the continuity of w, we shall also have w > 0 at some interior points of N . So, w is non-constant
in N and, by the above mentioned theorem from [18], we conclude that

−w < 0 in N.

Step 6
We now complete the proof by showing that if (3.2) does not hold this leads to a contradiction. Depending on
whether the case (i) occurs or case (ii) occurs, the arguments will be different. The case (i) can be handled with
the help of a standard Hopf lemma but the second case, case (ii), is slightly more involved.
We first consider the case (i). In this case, at such an x0, the boundary ∂Σ′ is regular and so there is a sphere
at x0 which is interiorly tangent to ∂Σ′. Since w is C2 in N due to the result of Barles [3], satisfies the elliptic
variational inequality (3.4) in N , w(x0) = 0 and, from the last step, we have w > 0 in N , we conclude by the
Hopf lemma, Theorem 7 on page 65 in [18] that

∂w

∂n
(x0) < 0.

This implies that
∂u

∂n
(x0) <

∂v

∂n
(x0) .

It is a contradiction, since ∂u
∂n (x0) = ∂v

∂n (x0) = c.
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Now, we consider the case (ii) and x0 belonging to the plane Tα. In this situation, although at x0 the interior
sphere condition is satisfied with respect to Ω this is not satisfied with respect to Σ′, since x0 is a corner to
this domain. A different argument has to be given so as to produce the contradiction. The strategy of Serrin
for nonlinear uniformly elliptic equations is to show first that there is vanishing of second order of w at x0 and
then show that for any direction ξ which leaves Ω at x0, non-tangentially, one has

∂w

∂ξ
(x0) < 0 or

∂2w

∂2ξ
(x0) < 0. (3.8)

This will be in contradiction to the vanishing of second order of the function w at x0.
Since this is a local argument at x0, it is enough to work in a neighbourhood of x0. By the C2,γ regularity of

the first eigenfunction u in a neighbourhood of ∂Ω the eigenvalue problem may be written in the form

−a(u, |∇u|)Δu − h(u, |∇u|)uiujuij = f(u, |∇u|) (3.9)

with
a(s, ξ) = |ξ|p−2 h(s, ξ) = (p − 2)|ξ|p−4 and f(s, ξ) = β(s) = λ1s

p−1. (3.10)

Further, the equation is uniformly elliptic in a neighbourhood of x0 since |∇u(x0)| > 0 and ∇u is continuous.
Now, by the comments of Serrin [20] in the beginning of Section 3 (p. 310), the equation is invariant under
the reflection across the plane Tα and the second order partial derivatives unn in any rectangular coordinate
frame can be determined in terms of the remaining second order partial derivatives. This is used in showing
that u and v coincide upto to the second order in their Taylor expansion at a point like x0 in case (ii). Also, the
elliptic variational inequality (3.4) for w = u−v in Σ′ may seen to match that obtained following the steps used
in Section 4 (p. 315) of Serrin [20] starting from the eigenvalue equation written above as a uniformly elliptic
equation in a neighbourhood of x0. So, the hypothesis of Lemma 2, Serrin [20] are verified by the matrix A. So,
by this lemma, one of the alternatives (3.8) holds. This contradicts the fact that w must vanish to the second
order at such a point. So, the proof is complete. �

Remark 3.3. As a corollary we may deduce in a straightforward way that the ball is the unique minimizer
for λ1 among domains with the same surface area. Historically, this result was proved by Courant [7] for the
Laplacian before the proof of the Faber–Krahn inequality.

4. Auxiliary results

Proof of Theorem 2.1. In view of the weakened hypotheses on the regularity of the domain and the data, the
solutions are not necessarily bounded as in the proof of Proposition 2.3 [8]. So, we use a function space setting
which is more natural. Indeed, let us denote Lp

+(Ω) = {ϕ ∈ Lp(Ω) |ϕ ≥ 0 a.e. in Ω}. Given f ∈ W−1, p
p−1 (Ω)

and f ′ ∈ W 1− 1
p ,p(∂Ω) with f ′ ≥ 0 on ∂Ω and ϕ ∈ Lp

+(Ω), by the growth condition (2.1), β(ϕ) ∈ L
p

p−1 (Ω). We
may then define the nonlinear operator Tf,f ′ by letting Tf,f ′(ϕ) = ζ, where ζ is the unique weak solution of

−Δpζ = β(ϕ) + f in Ω,

ζ = f ′ on ∂Ω.
(4.1)

By the continuity of β in the s variable, the nonlinear operator ϕ 
→ β(ϕ) + f is continuous from Lp(Ω) →
L

p
p−1 (Ω). The non-linear, solution operator S : W−1, p

p−1 (Ω) → W 1,p(Ω) which maps ξ ∈ W−1, p
p−1 (Ω) to the

unique solution η
−Δpη = ξ in Ω,

η = f ′ on ∂Ω,
(4.2)

given f ′ ∈ W 1− 1
p ,p(∂Ω), is continuous. Also the inclusion of W 1,p(Ω) into Lp(Ω) is continuous. So, the opera-

tor Tf,f ′ which is the composition of these three continuous operators is continuous. Since, by the assumption
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(A− 1), β(ϕ(x)) ≥ 0 for almost all x ∈ Ω, by appealing to the WCP in Tolksdorff [22] we conclude that indeed
Tf,f ′(ϕ) = ζ ≥ 0. So, we conclude that Tf,f ′ maps Lp

+(Ω) into itself.

Claim. Let f1, f2 ∈ W−1, p
p−1 (Ω) and ϕ1, ϕ2 ∈ Lp

+(Ω). If f1 ≤ f2, ϕ1 ≤ ϕ2 and f ′
1 ≤ f ′

2 in their respective
spaces, then Tf1,f ′

1
(ϕ1) ≤ Tf2,f ′

2
(ϕ2) holds almost everywhere in Ω.

Indeed, using the condition (b2), we conclude that f∗
1 ≤ f∗

2 where f∗
i := β(ϕi) + fi, i = 1, 2. If ζi = Tf1,f ′

1
(ϕi),

i = 1, 2, then
−Δpζ1 = f∗

1 , −Δpζ2 = f∗
2 in Ω,

ζ1 = f ′
1, ζ2 = f ′

2 on ∂Ω.

So, again by the weak comparison result proved in [22] we obtain ζ1 ≤ ζ2 almost everywhere in Ω. This proves
the claim.
Now, let u, v be non-negative solutions of the non-linear pdes in (2.2). To begin with, by the uniquness assump-
tion (A − 2′) we have, Tf,f ′(u)=u and Tg,g′(v)=v. Now, using the claim we obtain that the inequalities,

0 ≤ Tf,f ′(0) ≤ Tf,f ′(u) = u, 0 ≤ Tg,g′(0) ≤ Tg,g′(v) = v

hold almost everywhere in Ω. We can then show, by an inductive application of the claim, that there exists a
set of measure zero Z in Ω outside of which the following chains of inequalities hold

0 ≤ Tf,f ′(0) ≤ T 2
f,f ′(0) ≤ · · · ≤ T n

f,f ′(0) ≤ · · · ≤ u = Tf,f ′(u) (4.3)

0 ≤ Tg,g′(0) ≤ T 2
g,g′(0) ≤ · · · ≤ T n

g,g′(0) ≤ · · · ≤ v = Tg,g′(v) (4.4)

It follows from the above inequalities that, for all n, T n
f,f ′(0) and T n

g,g′(0) are non-negative and bounded pointwise,
respectively, by the functions u and v in Ω \ Z. Thus, the pointwise limits u∗(x) = lim

n−→∞
[
T n

f,f ′(0)
]
(x) and

v∗(x) = lim
n−→∞

[
T n

g,g′(0)
]
(x) exist almost everywhere in Ω. Since, u and v bound, respectively, the sequence of

functions T n
f,f ′(0) and T n

g,g′(0), using the dominated convergence theorem, we conclude that the convergence of
T n

f,f ′(0) to u∗ and the convergence of T n
g,g′(0) to v∗ are also in Lp. So, by the continuity of the operators Tf,f ′

and Tg,g′ on Lp we conclude that the relations Tf,f ′(u∗) = u∗ and Tg,g′(v∗) = v∗ hold. So, by the uniqueness
assumption in (A − 2′), it follows that u∗ = u and v∗ = v.
Again, by applying the claim above, inductively, for any n ≥ 1, we obtain T n

g,g′(0) ≤ T n
f,f ′(0) almost everywhere

in Ω. Therefore, upon taking the limit as n goes to infinity we obtain v ≤ u almost everywhere in Ω. This
proves the theorem. �
Now, we prove a proposition which establishes the hypotheses (A − 2′) needed for the application of the weak
comparison principle in Step 1 of Theorem 3.2. Let λ1 be the first eigenvalue of the Dirichlet p-Laplacian as
in (1.2) on a bounded domain Ω. Let O be an open proper subset of Ω.

Proposition 4.1. Given f ′ ∈ W 1− 1
p ,p(∂O) and f ′ ≥ 0 on ∂O, the problem

−Δpw = λ1 |w|p−2 w in O,

w = f ′ on ∂O.

}
(4.5)

admits a unique non-negative solution.

Proof. Let us first prove that if a solution exists then it is non-negative. Let u be a solution of the above problem.
As u ≥ 0 on ∂O, we obtain that u− ∈ W 1,p

0 (O). Therefore, taking u− as a test function, we have∫
O
|∇u|p−2 〈∇u,∇u−〉dx = λ1

∫
O
|u|p−2 uu− dx.

From this we obtain ∫
O
|∇u−|p dx = λ1

∫
O
|u−|p dx.
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We cannot have u− �= 0, for otherwise, from the variational characterization of the first eigenvalue we would
obtain that λ1(O) ≤ λ1 = λ1(Ω). However, since O is a proper open subset of Ω we always have λ1(Ω) < λ1(O).
So, we conclude that u− = 0 showing that u ≥ 0 on O.

Existence. We denote by f ′ again a W 1,p(O) function whose trace on ∂O is f ′. We can then obtain a weak
solution of (4.5) by minimizing the functional J(w) =

∫
O |∇w|p dx − λ1(Ω)

∫
O |w|p dx on the affine space

A := W 1,p
0 (O) + f ′. Indeed, if w in A is a minimizer of J then we shall have

0 =
d

dt

⏐⏐⏐⏐
t=0

J(w + t ϕ) =
∫
O
|∇w|p−2〈∇w,∇ϕ〉dx − λ1

∫
O
|w|p−2w ϕdx ∀ ϕ ∈ C1

0(O). (4.6)

which is just the weak formulation of (4.5). As A is a closed convex subset of the reflexive Banach space
W 1,p(O), for showing the existence of a minimizer of J on A, it is enough to prove that J is coercive and
weakly sequentially lower semi-continuous on A.

J is weakly sequentially lower semi-continuous on A: this is true since
∫

Ω |∇w|pdx is lower semicontinuous
for the weak topology on W 1,p(O) and

∫
Ω |w|pdx is continuous for the weak topology on W 1,p(O) due to the

compact inclusion of W 1,p(O) in Lp(O).
J is coercive on A: Let wn := f ′+ϕn ∈ A be a sequence such that ‖wn‖W 1,p(O) −→ ∞ as n → ∞. If

∫
O |wn|p dx

is a bounded sequence, then the coercivity is immediate.
So, let us assume that

∫
O |wn|p dx → ∞ as n → ∞. We may write wn := f ′ + ϕn with ϕn ∈ W 1,p

0 (O). Let

Bn :=
∫
O |wn|p dx∫
O |ϕn|p dx

. It can be argued, using the triangle inequality, that
∫
O |ϕn|p dx → ∞ and Bn → 1 as n → ∞.

From the Poincaré inequality on O, we conclude that
∫
O |∇ϕn|p dx → ∞ as n → ∞. Setting An :=

∫
O |∇wn|p dx∫
O |∇ϕn|p dx

,

we obtain using the triangle inequality, that
∫
O |∇wn|p dx → ∞ and An → 1 as n → ∞. Now,

J (wn) = An

(∫
O
|∇ϕn|p dx − λ1(Ω)

Bn

An

∫
O
|ϕn|p dx

)

≥ An

(
1 − Bn

An

λ1(Ω)
λ1(O)

)∫
O
|∇ϕn|p dx (4.7)

where the last inequality has been obtained by applying Poincaré inequality in the domain O. Since we have
0 < λ1(Ω) < λ1(O), since An and Bn converge to 1 as n → ∞, it follows that An

(
1 − Bn

An

λ1(Ω)
λ1(O)

)
is bounded

below by a positive constant C > 0. Once again, we have the coercivity of J .

Uniqueness. Suppose u, v are two different solutions of (4.6) in A. Let w1 := ∇ log u and w2 := ∇ log v. As
f(x) = |x|p is a strictly convex function we have

|w1|p ≥ |w2|p + p |w2|p−2 〈w2, w2 − w1〉 (4.8)

and equality holds if and only if w1 = w2. If we prove that w1 = w2 then we are done because in that case
we will have 0 = ∇ log u − ∇ log v = ∇ log

(
u
v

)
. That is, log

(
u
v

)
= k for some constant k. As a result we get

u = ek v. But as u ≡ v = f ′ �≡ 0 on ∂O we get u ≡ v in O. Therefore, it suffices to prove that

|w1|p = |w2|p + p |w2|p−2 〈w2, w2 − w1〉. (4.9)

The proof of (4.9) is the same as the proof of Lemma 3.1 in Lindqvist [15]. We include the proof here for
completeness. The function u solves (4.5). If we could use u − vp u1−p as a test function in the equation for u
and, use v− up v1−p as a test function in (4.5) with v as a solution, after integrating by parts and summing the
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two identities, the resulting new identity can be reduced to

0 =
∫
O

[
up
{|w1|p − |w2|p − p |w2|p−2〈w2, w2 − w1〉

}
+ vp

{|w2|p − |w1|p − p |w1|p−2〈w1, w1 − w2〉
}]

dx.

(4.10)

by using the following:

∇(u − vp u1−p) =
{
1 + (p − 1)

(v

u

)p}
∇u − p

( v

u

)p−1

∇v,

and,

∇ (
v − up v1−p

)
=
{

1 + (p − 1)
(u

v

)p}
∇v − p

(u

v

)p−1

∇u.

But by (4.8) the integrand in (4.10) is non-negative (being the sum of two non-negative terms) and so, it follows
from (4.10) that this integrand is equal to zero almost everywhere in O. Therefore, each of the terms in the
integrand must be zero. This would prove (4.9).

In general, in the above argument, instead of the test functions u− vp u1−p and (v − up v1−p) one has to use
the test functions uε − vp

ε u1−p
ε and (vε − up

ε v1−p
ε ), respectively, where uε = u + ε and vε = v + ε. Then, by a

similar calculation and after passing to the limit as ε → 0 one obtains (4.9). �
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