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1. Introduction

In a recent paper Imbert and Silvestre [14] have proved that the solutions of

|∇u|αF (D2u) = f(x) in Ω ⊂ IRN (1.1)

have first derivative which are Hölder continuous in the interior of Ω when α ≥ 0, F is uniformly elliptic and f
is continuous.

Results concerning regularity of solutions have an intrinsic interest which doesn’t need to be explained. When
α = 0, it is known (see e.g. Evans [11], Cabré, Caffarelli [7–9]) that u is C1,β for some β ∈ (0, 1). But for solutions
of (1.1) with α > −1 the question of the continuity of the gradient was open and it was naturally raised, in [5].
In fact, the question raised concerned precisely regularity near the boundary. Let us recall that context. The
values

μ+ = sup
{
μ, ∃φ > 0 in Ω, |∇φ|αF (D2φ) + μφ1+α ≤ 0 in Ω

}
,

μ− = sup
{
μ, ∃ψ < 0 in Ω, |∇ψ|αF (D2ψ) + μ|ψ|αψ ≥ 0 in Ω

}
are generalised principal eigenvalues in the sense that there exists a non trivial solution to the Dirichlet problem

|∇φ|αF (D2φ) + μ±|φ|αφ = 0 in Ω, φ = 0 on ∂Ω,

with constant sign.
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The main scope in [5] was to prove the simplicity of these principal eigenvalues. The main difficulty comes
from the fact that the strong comparison principle holds only in open subsets of Ω where the gradient is away
from zero (in the viscosity sense). It is well known that the Hopf Lemma guarantees that this is true on ∂Ω. So
that the continuity of the gradient up to the boundary would imply that, in a neighbourhood of it, the strong
comparison principle holds, which is exactly what is needed to prove that the eigenvalues are simple.

In that same paper, we proved that if α ∈ (−1, 0) the solutions of the Dirichlet problem associated to (1.1)
are indeed C1,β and we raised the problem of whether that regularity would hold also for α ≥ 0 i.e. when the
operator is degenerate elliptic.

[14] was a first answer in that direction, very much inspired by that breakthrough, we wanted to complete
the work. We want to point out that a difficulty specific to this type of equation is due to the fact that the
difference of two solutions is not a sub- or super solution to another equation, which would provide regularity.

Recall that F is uniformly elliptic if there exists Λ ≥ λ > 0 such that for any symmetric matrices M and N

F (M) + M−
λ,Λ(N) ≤ F (M +N) ≤ F (M) + M+

λ,Λ(N) (1.2)

here we have denoted the Pucci operators M−
λ,Λ(N) = λtr(N+) + Λtr(N−) and M+

λ,Λ(M) = λtr(M−) +
Λtr(M+). In the rest of the paper we shall drop the indices λ and Λ of the Pucci operators.

We now state the main result of the paper in its generality.

Theorem 1.1. Suppose that Ω is a bounded C2 domain of IRN and α ≥ 0. Suppose that F is uniformly elliptic
and that h ∈ C(Ω). Let f ∈ C(Ω) and ϕ ∈ C1,βo(∂Ω). For any u, viscosity solution of

{ |∇u|α(F (D2u) + h(x) · ∇u) = f in Ω
u = ϕ on ∂Ω

there exist β = β(λ,Λ, ‖f‖∞, N,Ω, ‖h‖∞, βo) and C = C(β) such that

‖u‖C1,β(Ω) ≤ C

(
‖ϕ‖C1,βo(∂Ω) + ‖u‖∞ + ‖f‖

1
1+α∞

)
.

For radial solutions, and a more general class of operators, this was proved in [6], with the optimal Hölder’s
coefficient inf( 1

1+α , βo). In a recent paper the result of Imbert and Silvestre was improved by Araujo, Ricarte,
Teixeira in [1].

The novelty with respect to the paper of Imbert and Silvestre is two folded, on one hand we have added the
lower order term h(x) · ∇u|∇u|α, and on the other hand we go all the way to the boundary.

The proof follows the scheme of the one in [14], but requires new tools. In particular in Section 2, we give some
a priori Lipschitz and Hölder estimates in the presence of boundary conditions on one part of the boundary.
These are important because the proof of Theorem 1.1 requires that sequence of bounded solutions do converge
to a solution of a limit equation.

The main tool is an “improvement of flatness lemma”. In the proof of Lemma 3.3, we need to use regularity
estimates for a limit equation with boundary terms. The novelty is in guaranteeing that even in the presence of
the lower order terms and of the boundary term the limit equations are sufficiently “good” and the new terms
behave well, see in particular the Claim in the proof of Lemma 3.3.
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Let us make a final remark:
Following Caffarelli’s famous technique, the results here obtained could be generalised to an operator

depending on x i.e. of the form |∇u|αF (x,D2u); in particular by imposing conditions on

β(x) = sup
M∈S

F (x,M) − F (x, 0)
|M | ·

But we would further need to impose conditions that guarantee that u, a solution of

|∇u|αF (x,D2u) = 0 in Ω ⇒ F (x,D2u) = 0 in Ω.

For the sake of clarity we have chosen not to treat the case where there is a dependence on x.
After this paper was submitted for publication, Silvestre and Sirakov have posted an interesting related

paper [18].

2. Local Hölder and Lipschitz estimates up to the boundary.

Throughout the paper, the notation Br(x) indicates the euclidian ball of radius r and centre x, we will write
Br when no ambiguity arises.

It is a classical fact that in order to prove that u is C1,β at xo, it is enough to prove that there exists some
constant C such that, for all r < 1, there exists pr ∈ IRN , such that oscBr(xo)(u(x) − pr · x) ≤ Cr1+β .

As a consequence, u is C1,β in some bounded open set B if there exists a constant Cβ such that for all x ∈ B
and r < 1, there exists pr,x such that

osc
Br(x)

(u(y) − pr,x · y) ≤ Cβr
1+β .

This will be used in the whole paper.
We begin by stating the following comparison theorem which will be needed later, proved in [3] under stronger

conditions on h, later improved to h continuous and bounded in [17].

Theorem 2.1. [3, 17] In the hypothesis of Theorem 1.1, let u and v be respectively C(Ω) solutions of

|∇u|α(F (D2u) + h(x) · ∇u) ≤ f in Ω

and
|∇v|α(F (D2v) + h(x) · ∇v) ≥ g in Ω

with f and g continuous and bounded such that f < g.
If u ≥ v on ∂Ω then u ≥ v in Ω.

In order to prove Hölder and Lipschitz estimates we fix a few notations concerning Ω and F . We suppose,
without loss of generality, that at 0 ∈ ∂Ω, the interior normal is eN . By the implicit function theorem, there
exist a ball B = BR(0) in IRN , and D′ ⊂ B′

R(0) ball of IRN−1 and a ∈ C2(D′), such that a(0) = 0, ∇a(0) = 0
and, for y = (y′, yN),

Ω ∩B ⊂ {yN > a(y′), y′ ∈ D′}, and ∂Ω ∩B = {yN = a(y′), y′ ∈ D′} .

We shall also act as if F be positively homogeneous of degree 1 i.e. such that for any t > 0, F (tM) = tF (M).
Observe though that, if this doesn’t hold, when necessary it is enough to replace F (M) by Gt(M) = t−1F (tM);
this operator satisfies (1.2) with the same constants as F and the results are unchanged.

In the lemma below we have supposed, for simplicity, that B is the unit ball centred at the origin.
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Lemma 2.2. Let ϕ ∈ C1,βo. Let a ∈ C2(D′) such that a(0) = 0 and ∇a(0) = 0. Let d be the distance to the
hyper surface {yN = a(y′)}.

Then, for all r < 1 and for all γ < 1, there exists δo depending on ‖f‖∞, λ, Λ, ‖h‖∞, Ω, r and Lipϕ, such
that for all δ < δo, if u is a solution of

{ |∇u|α(F (D2u) + h(y) · ∇u) = f in B ∩ {yN > a(y′)}
u = ϕ on B ∩ {yN = a(y′)} (2.1)

such that oscu ≤ 1 then it satisfies

|u(y′, yN ) − ϕ(y′)| ≤ 6
δ

d(y)
1 + d(y)γ

in Br(0) ∩ {yN > a(y′)}.

Proof. We write the details of the proof for ϕ = 0. Note that then ‖u‖∞ ≤ 1. The changes to bring in the case
ϕ �= 0 will be given at the end of the proof, the detailed calculation being left to the reader.

It is sufficient to consider the set where d(y) < δ since the assumption ‖u‖∞ ≤ 1 implies the result elsewhere.
We begin by choosing δ < δ1, such that on d(y) < δ1 the distance is C2 and satisfies |D2d| ≤ C1. We shall

also later choose δ smaller depending of (λ,Λ, ‖f‖∞, ‖h‖∞, N).
In order to use the comparison principle we want to construct w a super solution of

|∇w|α(M+
λ,Λ(D2w) + h(y) · ∇w) < −‖f‖∞, in B ∩ {yN > a(y′), d(y) < δ} (2.2)

such that w ≥ u on ∂(B ∩ {yN > a(y′), d(y) < δ}).
The candidate is

w(y) =

⎧⎪⎪⎨
⎪⎪⎩

2
δ

d(y)
1 + dγ(y)

for |y| < r

2
δ

d(y)
1 + dγ(y)

+
1

(1 − r)3
(|y| − r)3 for |y| ≥ r.

In order to prove the boundary condition, let us observe that,
on {d(y) = δ}, w ≥ 2

δ
δ

1+δγ ≥ 1 ≥ u,

on {|y| = 1} ∩ {d(y) < δ}, w ≥ 1
(1−r)3 (1 − r)3 ≥ u and finally

on B ∩ {yN = a(y′)}, w ≥ 0 = u.
We need to check that w is a super solution. For that aim, we compute

∇w =

⎧⎪⎪⎨
⎪⎪⎩

2
δ

1 + (1 − γ)dγ

(1 + dγ)2
∇d when |y| < r

2
δ

1 + (1 − γ)dγ

(1 + dγ)2
∇d+

y

|y|
3

(1 − r)3
(|y| − r)2 if |y| > r.

Note that |∇w| ≥ 1
4δ as soon as δ ≤ 1−r

12 . By construction w is C2 and

D2w = −
(

2γdγ−1

δ

)
(1 + γ) + (1 − γ)dγ

(1 + dγ)3
∇d⊗∇d+

2
δ

1 + (1 − γ)dγ

(1 + dγ)2
D2d+H(y)

where ‖H(y)‖ ≤ 6
(1−r)2 + 3(N−1)

r(1−r) .
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Standard computations that use (1.2) imply that w satisfies (2.2), when δ < min(δ1, 1−r
12 ) is small enough

that the two following inequalities hold

λ(γδγ−2)
(1 + γ)

(1 + δγ)3
> 2Λ

(
6

(1 − r)2
+

3(N − 1)
r(1 − r)

+
2C1

δ

)
+

4‖h‖∞
δ

,

λ

22+2α
(γδγ−(2+α))

(1 + γ)
(1 + δγ)3

> ‖f‖∞.
By the comparison principle, Theorem 2.1, u ≤ w in B ∩ {yN > a(y′)} ∩ {d(y) < δ}.

Furthermore the desired lower bound on u is easily deduced by considering −w in place of w in the previous
computations and restricting to Br ∩ {yN > a(y′)}. This ends the case ϕ ≡ 0.

When ϕ �≡ 0, let ψ be a solution of{
M+

λ,Λ(D2ψ) = 0 in B ∩ {yN > a(y′)}
ψ = ϕ on B ∩ {yN = a(y′)}.

It is well known that ψ is C1,βo(B ∩ {yN ≥ a(y′)}) ∩ C2(B ∩ {yN > a(y′)}). Furthermore, we can choose ψ such
that ‖ψ‖∞ ≤ ‖ϕ‖∞ ≤ 1, ‖∇ψ‖∞ ≤ c‖∇ϕ‖∞, for some constant c which depends on λ,Λ,N,Ω, see [9].

We now define

w(y) =

⎧⎪⎪⎨
⎪⎪⎩

8
δ

d(y)
1 + dγ(y)

+ ψ(y) for |y| < r

8
δ

d(y)
1 + dγ(y)

+
1

(1 − r)3
(|y| − r)3 + ψ(y) for |y| > r.

Computations similar to the case ϕ = 0 imply that

w ≥ u on ∂(B ∩ {yN > a(y′)} ∩ {d(y) < δ}).
Furthermore choosing δ small enough, we can ensure that

|∇w|α(M+
λ,Λ(D2w) + h(x) · ∇w) < −‖f‖∞.

For the lower bound, we replace w by 2ψ − w. This ends the proof of Lemma 2.2. �
Using this estimate together with an argument due to Ishii and Lions [16], one finally gets the Hölder regularity

of the solution, which can be stated as follows with the same hypothesis on a, and f as above:

Proposition 2.3. Let ϕ be a Lipschitz continuous function. Suppose that u satisfies (2.1).
For all r < 1, and for all γ < 1, u is γ Hölder continuous on Br ∩{yN > a(y′)}, with some Hölder’s constant

depending on (r, λ, Λ, a,N, |f‖∞, ‖h‖∞,Lipϕ).

Remark 2.4. In the absence of boundary conditions, the solutions are Hölder continuous inside Br for any r
such that Br ⊂⊂ B. We do not give the proof which follows the lines in the proof below, it is sufficient to cancel
in it the dependence on ϕ. This will be used in the proof of the interior improvement of flatness lemma with
additional lower terms.

In the following proof we shall use directly the definition of viscosity solutions, so, in particular, in order to
fix the notations we state the definition of semi-jets:

Definition 2.5. Let S2n denote the symmetric 2n× 2n matrices. For any continuous function g we define the
intrinsic semi-jets by:

J2,+g(x) =
{

(p,X) ∈ IRN × SN , g(x+ h) ≤ g(x) + p · h+
1
2
〈Xh, h〉 + o(h2) ∀h ∈ IRN

}
,

J2,−g(x) =
{

(p,X) ∈ IRN × SN , g(x+ h) ≥ g(x) + p · h+
1
2
〈Xh, h〉 + o(h2) ∀h ∈ IRN

}
.

and the definition of the closed semi jets
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Definition 2.6.

J2,+g(x) = {(p,X) ∈ IRN × SN , ∃ xn, ∃(pn, Xn) ∈ J2,+g(xn), g(xn) → g(x), and (pn, Xn) → (p,X)}

and analogous definition for J2,−g(x)

Proof of Proposition 2.3. The proof relies on arguments similar to those in [2, 3, 14]. Let 1 > r1 > r. Without
loss of generality we can suppose that oscu ≤ 1. Let xo ∈ Br ∩ {yN > a(y′)} and Φ be defined as

Φ(x, y) = u(x) − u(y) −M |x− y|γ − L|x− xo|2 − L|y − xo|2.
The scope is to prove that for L and M independent of xo, chosen large enough,

Φ(x, y) ≤ 0 on (Br1 ∩ {yN > a(y′)})2. (2.3)

This will imply that u is γ-Hölder continuous on Br ∩ {yN > a(y′)} by taking x = xo, and letting xo vary.
To prove (2.3), we begin by observing that the inequality holds on the boundary. First we treat the points

where yN = a(y′). According to Lemma 2.2 there exists Mo such that for x ∈ Br1 ∩ {yN > a(y′)},

|u(x) − ϕ(x′)| ≤Mod(x, ∂Ω).

Then, using |x′ − y′| ≤ |x− y|, one has

|u(x′, xN ) − u(y′, a(y′))| ≤ |u(x′, xN ) − u(x′, a(x′))| + |u(x′, a(x′)) − u(y′, a(y′))|
≤ Mod(x, ∂Ω) + Lipϕ|x′ − y′|
≤ Mo|x− (y′, a(y′))| + Lipϕ|x− (y′, a(y′))|.

So, if M is chosen greater than Mo + Lipϕ, then we have obtained that Φ(x, y) ≤ 0 on (Br1 ∩ {yN = a(y′)})2.
In order to satisfy the required estimate on the rest of the boundary, it is enough to choose L > 4

(r1−r)2 and
to recall that the oscillation of u is bounded by 1.

In the sequel we will choose L large and M > 4L2N
γ(1−γ) . Suppose by contradiction that Φ(x, y) > 0 for some

(x, y) ∈ Br1 ∩ {yN > a(y′)}. Then there exists (x̄, ȳ) such that

Φ(x̄, ȳ) = sup
Br1

(Φ(x, y)) > 0.

Clearly x̄ �= ȳ. Furthermore the hypothesis on L forces x̄ and ȳ to be in B r1+r

2
∩ {yN > a(y′)}. Then, as in [2],

for all small ε > 0 depending on the norm of Q := D2(M |x− y|γ), using Ishii’s Lemma [13], there exist X and
Y such that

(γM(x̄− ȳ)|x̄− ȳ|γ−2 + 2L(x̄− xo), X) ∈ J2,+u(x̄)

(γM(x̄− ȳ)|x̄− ȳ|γ−2 − 2L(y − xo),−Y ) ∈ J2,−u(ȳ)

with (
X 0
0 Y

)
≤

(
Q −Q
−Q Q

)
+ (2L+ ε)

(
I 0
0 I

)
.

In the sequel, since we assumed that L
M ≤ C

L one also has L+ε
M ≤ C

L and then we drop ε for simplicity.
Let us denote qx = γM(x̄ − ȳ)|x̄ − ȳ|γ−2 + 2L(x̄− xo), and qy = γM(x̄ − ȳ)|x̄ − ȳ|γ−2 − 2L(ȳ − xo). Since

γ < 1, as soon as 2L(r + r1) ≤ γ
2Mrγ−1

1 , we get that 2L|x̄− xo| ≤ γM
2 |x̄− ȳ|γ−1 i.e.

2γM |x̄− ȳ|γ−1 ≥ (|qx|, |qy|) ≥ 1
2
γM |x̄− ȳ|γ−1.
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Since |qx − qy| ≤ 4L, by the mean value theorem and using a constant κ < α if α < 1 and κ = 1 if α ≥ 1:

||qx|α − |qy |α| ≤ α|qx − qy|κ2|α−1||γM |x̄− ȳ|γ−1|1−κ|γM |x̄− ȳ|γ−1|α−1

≤ C(Mγ|x̄− ȳ|γ−1)α−κLκ = o
((
M |x̄− ȳ|(γ−1)

)α)
.

We now treat the terms concerning the second order derivative. The previous inequalities can also be written
as (

X − 2LI 0
0 Y − 2LI

)
≤

(
Q −Q
−Q Q

)
.

We prove, in what follows, that L = o(|tr(X + Y )|), that there exist constants c and C such that |X |, |Y | ≤
C|tr(X + Y )| and that

cM |x̄− ȳ|γ−2 ≤ |tr(X + Y )| ≤ CM |x̄− ȳ|γ−2.

Indeed, let

P :=
(x̄− ȳ ⊗ x̄− ȳ)

|x̄− ȳ|2 ≤ I.

Using 4L− (X + Y ) ≥ 0, (I − P ) ≥ 0 and the properties of the symmetric matrices, one has

tr(X + Y − 4L) ≤ tr(P (X + Y − 4L)).

Remarking in addition that X + Y − 4L ≤ 4Q, one sees that tr(X + Y − 4L) ≤ 4tr(PQ). But tr(PQ) =
γM(γ − 1)|x̄− ȳ|γ−2 < 0, hence

|tr(X + Y − 4L)| ≥ 4γM(1 − γ)|x̄− ȳ|γ−2. (2.4)

Furthermore, by Lemma III.1 of [16], there exists a universal constant C such that

|X |, |Y |, |X − 2L|, |Y − 2L| ≤ C(|tr(X + Y − 4L)| + |Q| 12 |tr(X + Y − 4L)| 12 )
≤ C|tr(X + Y − 4L)|
≤ C|tr(X + Y )|,

since |Q| and |tr(X + Y − 4L)| are of the same order, and L
M = o(1). This will yield the required estimates.

For some positive constants c2, c3, since u is both a sub- and a super- solution of (2.1), using the uniform
ellipticity of F and the assumptions on h:

f(x̄) ≤ |qx|α(F (X) + h(x̄) · qx)
≤ |qy|α(F (X) + h(x̄) · qx)

+ o(Mγ|x̄− ȳ|γ−1)α(Λ|X | + ‖h‖∞
(
γM |x̄− ȳ|γ−1 + 2L)

)
≤ |qy|α(F (−Y ) + h(ȳ) · qx + 4‖h‖∞L) +

+ |qy|αtr(X + Y )Λ + o
(
M1+α|x̄− ȳ|(γ−1)α+γ−2

)
≤ Mαc2|x̄− ȳ|(γ−1)αtr(X + Y ) + o

(
M1+α|x̄− ȳ|(γ−1)α+γ−2

)
+ f(ȳ)

≤ −c3M1+α|x̄− ȳ|(γ−1)α+γ−2 + f(ȳ).

This is clearly false as soon as L (and then M) is large enough and it ends the proof. �
Compactness near the boundary is a natural consequence of Proposition 2.3.
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Corollary 2.7. Suppose that (un) is a bounded sequence of continuous functions which satisfy{ |∇un|α(F (D2un) + h(y) · ∇un) = fn in B ∩ {yN > a(y′)}
un = ϕ on B ∩ {yN = a(y′)}

and suppose that (fn) converges simply to some continuous function f . Then for all r < 1, one can extract from
(un) a subsequence which converges uniformly, on Br ∩ {yN > a(y′)}, to a solution of{ |∇u|α(F (D2u) + h(y) · ∇u) = f in B ∩ {yN > a(y′)}

u = ϕ on B ∩ {yN = a(y′)}.
Remark 2.8. In the absence of boundary conditions, the analogous result holds, in the sense that one can
extract from (un)n a subsequence which converges uniformly on every Br ⊂⊂ B to u a solution of

|∇u|α(F (D2u) + h(y) · ∇u) = f in B.

When we shall treat, in the improvement of flatness lemma up to the boundary, the case where the boundary
is locally straight, we shall need the following Lipschitz estimate’s near the boundary for some different but
related equation.

Proposition 2.9. (Lipschitz estimates for large p′s) Let ϕ be a Lipschitz continuous function. Suppose that
hN ≡ 0. Assume that u solves{ |peN + ∇u|α(F (D2u) + h(y) · ∇u) = f in B1(x) ∩ {yN > 0}

u = ϕ on B1(x) ∩ {yN = 0}
with oscB1(x)∩{yN>0} u ≤ 1 and ‖f‖L∞(B1(x)∩{yN >0}) ≤ εo < 1. Then, for all r < 1, there exists bo depending on
(λ,Λ,N, α, r, εo,Lipϕ), such that if |p| > 1

bo
, u is Lipschitz continuous in Br(x)∩{yN > 0} with some Lipschitz

constant depending on (λ,Λ,N, α, r, εo,Lipϕ).

Remark 2.10. In the absence of boundary conditions, the solutions in some ball B are Lipschitz in Br, for
any r such that Br ⊂⊂ B with Lipschitz constant independent of p.

This will be used in the proof of the interior improvement of flatness lemma with lower order terms.

This Proposition is a consequence of the following

Lemma 2.11. Suppose that ϕ is Lipschitz continuous and that hN ≡ 0. For all γ < 1, for all r < 1, there
exists δ = δ(‖f‖∞, λ, Λ, r,Lipϕ), such that for b < δ

4 , any solution u of{ |eN + b∇u|α(F (D2u) + h(y) · ∇u) = f in B1(x) ∩ {yN > 0}
u = ϕ on B1(x) ∩ {yN = 0}.

such that osc(u) ≤ 1, satisfies |u(y′, yN ) − ϕ(y′)| ≤ 2
δ

yN

1+yγ
N

in Br(x) ∩ {yN > 0}.
Proof of Lemma 2.11. Suppose for simplicity that ϕ = 0. If b = 0 the result is known by properties of solutions
of F (D2u) + h(x) · ∇u = f which are zero on the boundary. So we assume in what follows that b �= 0.

We proceed as in Lemma 2.2, replacing the distance of y to the boundary by yN ; so we consider

w(y) =

⎧⎪⎪⎨
⎪⎪⎩

2
δ

yN

1 + yγ
N

for yN < δ, |y′| < r

2
δ

yN

1 + yγ
N

+
1

(1 − r)3
(|y′| − r)3 for yN < δ, |y′| > r.
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Similarly to the proof of Lemma 2.2, it is sufficient to consider the set where yN < δ, since the assumption
oscu ≤ 1 implies ‖u‖∞ ≤ 1, so the result holds elsewhere. Furthermore we only prove that u ≤ w, the desired
lower bound can be obtained by considering −w in place of w.

In order for w to satisfy

|eN + b∇w|α(M+
λ,Λ(D2w) + h(y) · ∇w) ≤ −‖f‖∞, in B,

it is sufficient to choose δ such that(
1
2

)α

λγδγ−2(1 − γ)
1

(1 + δγ)3
> ‖f‖∞ + 2Λ

(
6

(1 − r)2
+

3(N − 1)
r(1 − r)

+
4‖h‖∞
δ

)
,

b < δ
4 , and recall that |∇w| ≤ 2

δ . Furthermore w ≥ u on ∂(B ∩ {0 < yN < δ}).
Hence we can use the comparison principle in Theorem 2.1, for w̃(x) = xN + bw(x) and ũ(x) = xN + bu(x),

with b �= 0, (recall that hN ≡ 0 )which implies that u ≤ w in B ∩ {yN > 0}. Finally the desired estimate is
obtained in {|y′| < r, yN > 0}.

In the case ϕ �≡ 0, we take the function w as in the proof of Lemma 2.2, with d replaced by yN . Requiring
sufficient restriction on the smallness of δ give the result. �

We are now ready to give the

Proof of Proposition 2.9. The proof proceeds as in [14] so we just detail the differences. Recall that u is a
solution of

|eN + bDu|α(F (D2u) + h(y) · ∇u) = f̃

with b = 1
p and f̃ = |p|−αf .

Let r < r1 < 1 and let xo ∈ Br1(x) ∩ {yN > 0}, L2 = 4
(r1−r)2 ,

ψ(z, y) = u(z) − u(y) − L1ω(|z − y|) − L2|z − xo|2 − L2|y − xo|2

where ω(s) = s− ωos
3
2 if s ≤ so =

(
2

3ωo

)2

and ω(s) = ω(so) if s ≥ so. We also require L1 > 3(2
δ + Lipϕ).

If we prove that ψ(z, y) ≤ 0 in Br1(x), since L1 is independent of xo, by choosing z = xo one gets

u(xo) − u(y) ≤ L1|xo − y| + L2|xo − y|2;

next choosing y = xo for all z ∈ Br1 ,

u(z) − u(xo) ≤ L1|xo − z|+ L2|xo − z|2.

Finally, for (x, y) ∈ Br(x), |u(x) − u(y)| ≤ L1|x− y| + L2|x− y|2, which implies the desired result.
We begin to observe that if the supremum is achieved in (x̄, ȳ) ∈ Br(x) then, with our choice of L1, neither

x̄ nor ȳ can belong to the part {zN = 0} according to Lemma 2.11.
The rest of the proof is as in [2] and [14], (see also the Proof of Prop. 2.3) as long as we choose δ small enough

in order that

(
1
2

)α

λ(γδγ−2)
(1 + γ)

2(1 + δγ)3
> ‖f‖∞ + 2Λ

(
6

(1 − r)2
+

3(N − 1)
r(1 − r)

+
4‖h‖∞
δ

)

and such that b < δ
4 . Let us note that this implies that b is small enough depending on

(λ,Λ,N, α, r, εo, ‖h‖∞,Lipϕ). �
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As a corollary of this Lemma one has the following compactness result
Corollary 2.12. Let ϕ be a Lipschitz continuous function. Suppose that (un) is a sequence of uniformly bounded
continuous viscosity solutions of{ |eN + bn∇un|α

(
F (D2un) + h · ∇un

)
= fn in B ∩ {yN > a(y′)},

un = ϕ on B ∩ {yN = a(y′)}.
where bn ≤ bo, bo is given above in Proposition 2.9. Suppose that fn converges simply to some function
f in Ω. Then for all r < 1, one can extract from (un, bn) a subsequence which converges uniformly on
Br ∩ {yN > a(y′)} × IR, and the limit (u, b̄) satisfies{ |eN + b̄∇u|α (

F (D2u) + h · ∇u) = f in B ∩ {yN > a(y′)},
u = ϕ on B ∩ {yN = a(y′)}.

Remark 2.13. In the absence of boundary conditions, the conclusion is that the sequence (un) contains a
subsequence which converges locally uniformly and up to a constant toward a solution of

|eN + b̄∇u|α (
F (D2u) + h · ∇u) = f in B.

3. Proof of Theorem 1.1.

In fact Theorem 1.1 is an immediate consequence of the following local result up to the boundary, together
with some argument of finite covering:

Theorem 3.1. Suppose that F , h and f are as in Theorem 1.1 and ϕ is a function in C1,βo. Let B be a ball in
IRN and let a be a C2 function defined on IRN−1 with a(0) = 0, ∇a(0) = 0. There exists β such that for any u
solution of { |∇u|α(F (D2u) + h(x) · ∇u) = f in B ∩ {xN > a(x′)}

u = ϕ on B ∩ {xN = a(x′)},
u is C1,β(B̃ ∩ {xN > a(x′)}) for any B̃ ⊂⊂ B.

Theorem 3.1 is proved via the following two “improvement of flatness” lemma and their consequences.

Lemma 3.2. There exist εo ∈]0, 1[ and ρ ∈]0, 1[ depending on (α, ‖h‖∞, λ, Λ,N) such that for any p ∈ IRN and
for any viscosity solution u of

|p+ ∇u|α (
F (D2u) + h(y) · (∇u + p)

)
= f in B1

such that oscB1 u ≤ 1 and ‖f‖L∞(B1) ≤ εo, there exists p′ ∈ IRN such that

osc
Bρ

(u− p′ · x) ≤ 1
2
ρ.

and

Lemma 3.3. For any a ∈ C2, such that a(0) = 0 and ∇a(0) = 0, there exist εo > 0 and ρ which depend on
(α, λ, Λ,N, ‖D2a‖∞, ‖h‖∞, ‖ϕ‖C1,βo ) such that for any p ∈ IRN and u a viscosity solution of{ |p+ ∇u|α(F (D2u) + h(y) · (∇u + p)) = f in B ∩ {yN > a(y′)}

u+ p · y = ϕ on B ∩ {yN = a(y′)},
the following holds: for all x ∈ B such that B1(x) ⊂ B, if oscB1(x)∩{yN>a(y′)} u ≤ 1, and
‖f‖L∞(B1(x)∩{yN>a(y′)}) ≤ εo then there exists qx,ρ ∈ IRN such that

osc
Bρ(x)∩{yN >a(y′)}

(u(y) − qx,ρ · y) ≤ ρ

2
·

Suppose that these Lemmata have been proved and let us derive the following one.
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Lemma 3.4. Suppose that ρ and εo ∈ [0, 1] and B are as in Lemma 3.3 and suppose that u is a viscosity
solution of { |∇u|α(F (D2u) + h(y) · ∇u) = f in B ∩ {yN > a(y′)}

u = ϕ on B ∩ {yN = a(y′)} (3.1)

with oscu ≤ 1 and ‖f‖∞ ≤ εo, then, there exists β ∈]0, 1[, such that for all k and for all x ∈ B such that
B1(x) ⊂ B, there exists pk ∈ IRN for which

osc
Brk

(x)∩{yN>a(y′)}
(u(y) − pk · y) ≤ r1+β

k

where rk = ρk.

Remark 3.5. Of course, in the absence of boundary condition we obtain the interior regularity: Suppose that
ρ and εo ∈ [0, 1] are as in Lemma 3.2 and suppose that u is a viscosity solution of

|∇u|α(F (D2u) + h(·) · ∇u) = f in B1

with oscu ≤ 1 and ‖f‖∞ ≤ εo, then there exists β ∈]0, 1[ such that for all k there exists pk ∈ IRN such that

osc
B

rk

(u(x) − pk · x) ≤ r1+β
k .

Proof of Lemma 3.4. As in [14] we use a recursive argument.
We first remark that one can assume that ϕ(x′) = ∂iϕ(x′) = 0 for i = 1, . . . , N − 1.
Indeed, let u be a solution of (3.1). Then v(y) := u(y) − u(x) −∇ϕ(x′) · (y′ − x′) satisfies{ |∇v + q|α(F (D2v) + h(y) · (∇v + q)) = f in B1(x) ∩ {yN > a(y′)}

v(y′, a(y′)) = φ(y′) on B1(x) ∩ {yN = a(y′)}
where q = (∇ϕ(x′), 0) and φ(y′) = ϕ(y′) − ϕ(x′) − ∇ϕ(x′) · (y′ − x′) which satisfies φ(x′) = ∂iφ(x′) = 0 for
i = 1, . . . , N − 1.

So the result obtained for v would easily transfer to u.
Choose β small enough in order that ρβ > 1

2 , and define rk = ρk.
We can start the recursive argument. For k = 0, taking po = 0 yields the desired inequality. Suppose that pk

exists we now construct pk+1.
Let ϕk(y′) = r−1−β

k ϕ(x′ + rk(y′ − x′)), which satisfies, for β < βo, with the above choice of ϕ,

‖ϕk‖C1,β(B1(x′)) ≤ ‖ϕ‖C1,β .

We consider
uk(y) = r−1−β

k (u(rk(y − x) + x) − pk · (rk(y − x) + x)) .

uk is well defined on B1(x) ∩ {yN > ak(y′)}, where ak(y′) = xN (1 − 1
rk

) + a(rk(y′−x′)+x′)
rk

.
It is immediate to see that uk is a solution of{ |pkr

−β
k + ∇uk|α(F (D2uk) + hk · (pkr

−β
k + ∇uk)) = fk in B1(x) ∩ {yN > ak(y′)}

uk + r−β
k pk · y = r−β

k (rk − 1)pk · x+ ϕk(y′) on B1(x) ∩ {yN = ak(y′)}

with fk(y) = r
1−β(1+α)
k f(rk(y − x) + x) and hk(y) = rkh(rk(y − x) + x).

Observe that if y ∈ B1(x) ∩ {yN = ak(y′)}, then∣∣∣∣a(rk(y′ − x′) + x′) − xN

rk

∣∣∣∣ ≤ 1
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but this implies, using the mean value’s theorem and |y′ − x′| < 1, that

|xN − a(x′)| ≤ rk(1 + |∇a|).
So if x is not on the boundary i.e. {xN > a(x′)} then, for k sufficiently large, B1(x) ⊂ {yN > ak(y′)}, and in
that case we don’t have to worry about the boundary terms.

A direct computation gives that, |∇ak(y′)| = |∇a(rk(y′−x′)+x′)|, while, D2ak(y′) = rkD
2a(rk(y′−x′)+x′),

and hence ‖D2ak‖∞ = rk‖D2a‖∞ ≤ ‖D2a‖∞.
Furthermore, as long as β < 1

1+α ,

osc
B1(x)∩{yN>ak(y′)}

uk ≤ 1, ‖fk‖L∞(B1(x)∩{yN>ak(y′)}) ≤ εo and ‖hk‖∞ ≤ ‖h‖∞.

Hence, using Lemma 3.3 with obvious changes, there exists qk+1 ∈ IRN such that

osc
Bρ(x)∩{yN >ak(y′)}

(uk(y) − qk+1 · y) ≤ ρ

2
.

Defining pk+1 = pk + qk+1r
β
k , with the assumptions on β and ρ, one gets:

osc
Brk+1(x)∩{yN>a(y′)}

(u(y) − pk+1 · y) ≤ ρ

2
r1+β
k ≤ r1+β

k+1 ,

since the oscillation is invariant by translation. This is the desired conclusion. �
There remains to prove the improvement of flatness lemmata. We start by the interior case with lower order

terms.

Proof of Lemma 3.2. Suppose by contradiction that there exist a sequence of functions (fn)n whose norm goes
to zero, a sequence of (pn)n ∈ IRN and a sequence of functions (un)n with oscun ≤ 1, solutions of

|pn + ∇un|α
(
F (D2un) + h(y) · (∇un + pn)

)
= fn, (3.2)

such that, for all q ∈ IRN , and any ρ ∈ (0, 1),

osc
Bρ

(un(y) − q · y) > ρ

2
· (3.3)

Let us suppose first that (pn)n is bounded then, up to subsequences, it converges to p∞. Considering vn(y) =
un(y) + pn · y and using the compactness Remark 2.8, we can extract form (vn)n a subsequence converging to
a limit v∞, which satisfies

|∇v∞|α(F (D2v∞) + h(x) · ∇v∞) = 0.

Remark next that the solutions of such an equation are solutions of

F (D2v∞) + h(x) · ∇v∞ = 0 (3.4)

as it is the case for h = 0 (see [14]). But, passing to the limit in (3.3) gives that oscBρ(v∞ − (q − p∞) · x) > ρ
2 .

This contradicts the regularity results known for solutions of equation (3.4), (see [20]) and it ends the case where
the sequence (pn)n is bounded.

In the case where (pn)n is unbounded, take a subsequence such that pn

|pn| converges to some p∞.

Claim. There exist q∞ ∈ IRN and a subsequence σ(n) such that for any r < 1,

lim
n→∞h(y) · pσ(n) = h(y) · q∞

uniformly in Br.
We postpone the proof of that claim and we end the Proof of Lemma 3.2.
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We now divide the equation (3.2) by |pn|α and get, with en = pn

|pn| and an = 1
|pn| ,

|an∇un + en|α
(
F (D2un) + h(y) · (∇un + pn)

)
=

fn

|pn|α ·

Using Remark 2.13 and the claim, a subsequence of uσ(n) converges to u∞ a solution of the limit equation

F (D2u∞) + h(y) · (∇u∞ + q∞) = 0.

On the other hand, osc(u∞ − q′ · x) > 1
2ρ, which contradicts the regularity of solutions of such equations.

Proof of the Claim. Let V ⊂ IRN be the space generated by h(Br). Let qn = ΠV pn be the projection of pn

on V , hence h(x) · pn = h(x) · qn.
Let p̄ be such that for a subsequence pn

|pn| → p̄, and let

vn :=
un + pn · x

|pn| ·

Clearly vn converges to v∞ = p̄ · x and it is a solution of

|∇vn|α(F (D2vn) + h(x) · ∇vn) =
fn

|pn|1+α

Using compactness of bounded sequences one obtain by passing to the limit in the equation that v∞ must be a
solution of

|∇v∞|α(F (D2v∞) + h(x) · ∇v∞) = 0,

hence we have obtained
h(x) · p̄ = 0

Let us note that this implies that |qn|
|pn| → 0. Indeed suppose that h(xi)1≤i≤k generate V , let Ej be an

orthonormal basis such that
[E1, . . . Ek] = [h(x1), . . . h(xk)]

then there exist Ai
j such that Ej =

∑
i A

i
jh(xi) and qn =

∑
(qn · Ei)Ei =

∑
ij(qn · h(xi))Ai

j and then

|qn|
|pn| ≤ C

∑
1≤i≤k |(qn · h(xi))|

|pn| = C
∑

1≤i≤k

∣∣∣∣ pn

|pn| · h(xi))
∣∣∣∣ → 0.

Suppose by contradiction that the sequence (qn)n goes to infinity in norm.
Define wn = un+qn·x

|qn| . Divide the equation by |pn − qn|α|qn|, then wn is a solution of

∣∣∣∣ pn − qn
|pn − qn| +

|qn|
|pn − qn|∇wn

∣∣∣∣
α (
F (D2wn) + h(y) · ∇wn

)
=

fn

|pn − qn|α|qn| ·

Now, the sequence wn which is bounded converges to w∞(x) = q̄ · x for some q̄ of norm 1.
Using the compactness of (wσ(n))n, proceeding as above, since |pn − qn|α|qn| diverges and since qn

|pn−qn| → 0,
we get that it converges to a solution of the limit equation

F (D2w∞) + h(y) · ∇w∞ = 0

which implies
h(y) · q̄ = 0 for all y ∈ Br.
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This means that q̄ is both in V and V ⊥, hence q̄ = 0, which is a contradiction and the sequence (qn)n is
bounded. This gives the claim, indeed, up to a subsequence, qn converges to q∞ and

lim
n→∞h(y) · pσ(n) = lim

n→∞ h(y) · qσ(n) = h(y) · q∞.
This ends the proof. �

We now want to prove Lemma 3.3. In the case of a non straight boundary it requires the following technical
proposition, which is probably known, but for which we give a proof at the end of the section since we could
not locate one in the literature.

Proposition 3.6. Suppose that a is not identically zero in B′
δ(0) and a(0) = ∇a(0) = 0. Suppose that (pn)n is

a sequence in IRN such that, for all n and for all x ∈ B′
δ(0),

|pn · (x′, a(x′))| ≤ C

for some constant C. Then (pn)n is a bounded sequence.

Proof of Lemma 3.3. We assume first that h = 0.
Note that if B1(x) ∩ {yN = a(y′)} = ∅ then it is sufficient to use the result of [14]. So we now assume that

B1(x) ∩ {yN = a(y′)} �= ∅.
We argue by contradiction and suppose that for all n, there exist xn ∈ B and pn ∈ IRN , |fn|L∞(Ω) ≤ 1

n and
un with osc(un) ≤ 1 a solution of{ |pn + ∇un|αF (D2un) = fn in B ∩ {yN > a(y′)}

un(y) + pn · y = ϕ(y′) on B ∩ {yN = a(y′)} (3.5)

such that for any q ∈ IRN

osc
Bρ(xn)

(un(y) − q · y) > ρ

2
· (3.6)

Extract from (xn)n a subsequence which converges to x∞ ∈ B ∩ {yN ≥ a(y′)}.
We denote in the sequel B∞ = ∩n≥N1B1(xn), which contains Bρ(x∞) as soon as N1 is large enough.

The case where T is not straight. Observe that un − un(xn) satisfies the same equation as un, it has
oscillation 1 and it is bounded, we can then suppose that the sequence (un) is bounded. This, together with the
boundary condition implies that

|pn · (y′, a(y′))| ≤ C

and Proposition 3.6, gives that (pn) is bounded.
So, up to subsequences, un converges to some u∞, uniformly on Br ∩ {yN ≥ a(y′)} for every Br ⊂⊂ B∞,

(due to Cor. 2.7), and pn converges to p∞. Furthermore, (u∞, p∞) solves{ |p∞ + ∇u∞|αF (D2u∞) = 0 in B∞ ∩ {yN > a(y′)}
u∞ + p∞ · y = ϕ(y) on B∞ ∩ {yN = a(y′)}.

Using Lemma 6 in [14] one gets that{
F (D2u∞) = 0 in B∞ ∩ {yN > a(y′)}
u∞ + p∞ · y = ϕ(y) on B∞ ∩ {yN = a(y′)}. (3.7)

On the other hand, by passing to the limit in (3.6), one obtains

osc
Bρ(x∞)∩{yN >0}

(u∞(y) − q · y) ≥ ρ

2
·
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This contradicts the fact that, by known regularity results on uniformly elliptic operators, there exists ρ1 and
q1 = qx,ρ1 so that any u, solution of (3.7) satisfies

osc
Bρ1 (x∞)

(u(y) − q1 · y) ≤ ρ1

2
·

The case where T = {yN = 0}. Let pn = p′n + pN
n eN . The boundedness of un and the boundary condition

imply that (p′n)n is bounded. If (pN
n )n is bounded just proceed as above. So we suppose that pN

n is unbounded.
Dividing (3.5) by |pN

n |α it becomes{
| pn

pN
n

+ 1
pN

n
∇un|αF (D2un) = fn

|pN
n |α in B∞ ∩ {yN > 0}

un + p′n · y′ = ϕ(y′) on B∞ ∩ {yN = 0}

Denoting by p′ the limit of a subsequence of p′n, and u∞ the limit of a subsequence of (un), one gets by passing
to the limit and using Corollary 2.12 that{

F (D2u∞) = 0 in B∞ ∩ {yN > 0}
u∞ + p′ · y = ϕ(y′) on B∞ ∩ {yN = 0}.

Passing to the limit in (3.6) one gets that oscBρ(x∞)(u∞ − q · y) > ρ
2 , a contradiction. This ends the proof for

h = 0.
We briefly point out the differences in the case h �= 0. It is sufficient to treat the case of a straight boundary,

the other cases being as before. Indeed, we already know that if the boundary is not locally straight, (pn)n is
bounded.

In the case where the boundary is locally straight, say T = {yN = 0}, the only possibly unbounded component
is pn · eN .

The Claim in the interior flatness Lemma 3.2 implies that for any open setD ⊂ Br(x)∩{yN > 0}, h(y)·eN = 0
for any y ∈ D. By the arbitrariness of D, this implies that h(y) · eN = 0 in Br(x)∩{yN > 0}. We can now apply
Proposition 2.9 and end the proof as in the case h = 0.
We end the paper with the proof of Proposition 3.6.

Its thesis is proved if there exists N independent vectors, V1, . . . , VN such that |pn ·Vj | ≤ C for j = 1, . . . , N .
Since a is not identically 0 on [−δ, δ] and a(0) = 0, ∇a(0) = 0, then there exists i such that a(tei) is not

constant for t ∈ [−δ, δ]. Hence, there exist 0 < |t1| < δ and |t2| < δ such that the vectors

Vi := t1ei + a(t1ei)eN and VN := t2ei + a(t2ei)eN

are linearly independent. Indeed, since a is not constant there exists t1 and ei such that a(t1ei) �= 0. Suppose
now that for any t2, Vi and VN are linearly dependent, this implies that

a(t1ei)
t1

=
a(t2ei)
t2

= ∂ia(0) = 0

a contradiction
Now, for j �= i and j �= N choose Vj = t1ej + a(t1ej)eN . By constructions the Vj for j = 1, . . . , N are linearly

independent and by hypothesis |pn · Vj | ≤ C this ends the proof. �
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