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ON THE RELATION OF DELAY EQUATIONS TO FIRST-ORDER
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS
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2

Abstract. This paper establishes the equivalence between systems described by a single first-order
hyperbolic partial differential equation and systems described by integral delay equations. System-
theoretic results are provided for both classes of systems (among them converse Lyapunov results). The
proposed framework can allow the study of discontinuous solutions for nonlinear systems described by
a single first-order hyperbolic partial differential equation under the effect of measurable inputs acting
on the boundary and/or on the differential equation. Illustrative examples show that the conversion of
a system described by a single first-order hyperbolic partial differential equation to an integral delay
system can simplify considerably the stability analysis and the solution of robust feedback stabilization
problems.
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1. Introduction

The relation of first-order hyperbolic Partial Differential Equations (PDEs) with delay equations is well
known. In many cases, a system of First-Order Hyperbolic PDEs (FOH-PDEs) can be transformed to a system
described by Retarded Functional Differential Equations (see [4,10,11,25,27,28]), On the other hand, the recent
works [14–16] have shown that systems of first-order hyperbolic PDEs can be utilized for the stabilization of
delay systems.

However, recent works on the control of systems described by FOH-PDEs (see [1–3,5–7,14, 21, 23, 24, 30, 31])
have led to the study of non-standard systems of FOH-PDEs with the following features: (i) the boundary
conditions are given by functionals of the whole state profile; and (ii) the differential equations involve functionals
of the whole state profile and not only point values of the states. It should be noted that for such systems there
is no available existence-uniqueness theory similar to the theory of standard FOH-PDEs (see [17, 26]): the
researchers have utilized transformation arguments which can guarantee important system-theoretic properties.
Moreover, the existence of functionals of the whole state profile in the mathematical description of such systems
do not allow the answer to the following question:
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“What class of delay systems can be used for the description of non-standard systems of FOH-PDEs?”
In this work, we answer the above question for a class of systems described by a single FOH-PDE. First, we

show that the appropriate class of delay systems is a class which has been rarely studied, i.e., systems of the
form:

η(t) = f(ηt, wt)

η(t) ∈ R
n , w(t) ∈ W ⊆ R

m
(1.1)

where W ⊆ R
m is a non-empty closed set with 0 ∈ W , r > 0, ηt ∈ L∞ ([−r, 0); Rn), wt ∈ L∞ ([−r, 0]; W ) are

defined by (ηt) (s) = η(t + s) for s ∈ [−r, 0), (wt) (s) = w(t + s) for s ∈ [−r, 0] and f : L∞ ([−r, 0); Rn) ×
L∞ ([−r, 0]; W ) → R

n is a mapping. We call the above class of delay systems a system described by Integral
Delay Equations (IDEs). Systems of the form (1.1) have been studied in [11, 18–20, 22]. It should be noted
at this point that systems described by IDEs have been utilized for a long time in the stabilization of finite-
dimensional control systems with input delays (see [13, 15, 16]): every predictor feedback is a system described
by an IDE, whose input is the state of the finite-dimensional control system. Indeed, a predictor feedback for
the finite-dimensional system

ẏ(t) = g(y(t), η(t − r) + v(t))

y(t) ∈ R
k , η(t) ∈ R

n , v(t) ∈ R
n

where we use x to denote the control input and v ∈ L∞
loc (R+; Rn) denotes the control actuator error, results in

a static feedback law of the form:
η(t) = f(ηt, y(t) + u(t))

where u ∈ L∞
loc (R+; Rn) denotes the measurement error. Clearly, the above closed-loop system is the feedback

interconnection of an time-invariant system described by ODEs and an integral delay system of the form (1.1).
Therefore, the study of systems described by IDEs is important on its own. Important system-theoretic properties
for the class of systems described by IDEs are provided in Section 2 of the present paper.

Secondly, we show that a class of systems described by a non-standard single FOH-PDE, namely systems of
the form:

∂ x

∂ t
(t, z) + c

∂ x

∂ z
(t, z) = a(p(t), z)x(t, z) + g(z)p(t), for t > 0, z ∈ (0, 1) (1.2)

pi(t) = Ki(w(t), xt), for t > 0, i = 1, . . . , N and p(t) = (p1(t), . . . , pN(t))′ ∈ R
N (1.3)

x(t, 0) = G(w(t), xt), for t ≥ 0 (1.4)

where N > 0 is an integer, x(t, z) ∈ R, w(t) ∈ W ⊆ R
m, W ⊆ R

m is a closed set, c > 0 is a constant,
g(z) = (g1(z), . . . , gN (z)), G : W × L∞ ((0, 1]; R) → R, Ki : W × L∞ ((0, 1]; R) → R (i = 1, . . . , N) are
functionals, a(p, z), gi(z) (i = 1, . . . , N) are sufficiently regular scalar functions and xt is the state profile (i.e.,
(xt) (z) = x(t, z) for all t ≥ 0 and z ∈ [0, 1]), are equivalent to systems described by IDEs. The equivalence
allows the development of important system-theoretic results for the class of systems described by (1.2), (1.3)
and (1.4) (Section 3 of the present paper). The obtained results can allow the study of measurable inputs
w(t) ∈ W ⊆ R

m, which is an important feature because in many cases boundary conditions of the form (1.4)
result from the implementation of stabilizing feedback laws (see [1–3,5,7,14,23,24]). However, the control action
comes together with control actuator errors and measurement errors, which are typically modeled by measurable
inputs.

Finally, the obtained results can allow the development of a methodology for the solution of control problems
for systems described by a non-standard single FOH-PDE, namely systems of the form (1.2), (1.3), (1.4).
The methodology is presented in Section 4 of the present paper by means of three illustrative examples. The
examples show many important features of the proposed methodology and a comparison is made with other
existing methodologies.
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Notation. Throughout this paper, we adopt the following notation:

* R+ := [0, +∞).
* Let I ⊆ R be an interval and U ⊆ R

m be a set. By L∞ (I; U) we denote the space of measurable and essentially
bounded functions u( · ) defined on I and taking values in U ⊆ R

m. By Lμ (I; U), where μ ∈ [1, +∞),
we denote the space of measurable functions u( · ) defined on I and taking values in U ⊆ R

m for which∫
I |u(s)|μ ds < +∞. By L∞

loc (I; U) we denote the space of measurable and locally essentially bounded
functions u( · ) defined on I and taking values in U ⊆ R

m, i.e., for every compact interval J ⊆ I it holds
that u ∈ L∞ (J ; U). For every x ∈ L∞ (I; Rn), where I ⊆ R is an interval, we denote by ‖x‖ the essential
supremum of x, i.e., ‖x‖ = sup

s∈I
|x(s)|. For x ∈ L∞ (I; Rn), where I ⊆ R is an interval with [a, b) ⊆ I, a < b,

we define ‖x‖[a,b) = sup
a≤s<b

|x(s)|.
* For a vector x ∈ R

n, we denote by x′ its transpose and by |x| its Euclidean norm.

2. Systems described by integral delay equations

We consider system (1.1) under the following assumptions:

(H1) There exist non-decreasing functions a : R+ → R+, M : R+ → R+, N : R+ → R+ such that for every
R > 0 and for every η, y ∈ L∞ ([−r, 0); Rn), w ∈ L∞ ([−r, 0]; W ) with ‖η‖ ≤ R, ‖y‖ ≤ R, ‖w‖ ≤ R the
following inequalities hold:

|f(η, w) − f(y, w)| ≤ N(R)h sup
−h≤s<0

|η(s) − y(s)|+M(R) sup
−r≤s<−h

|η(s) − y(s)| , for all h ∈ (0, r) (2.1)

|f(η, w)| ≤ a(R) (2.2)

(H2) For every δ > 0, η ∈ L∞ ([−r, δ); Rn), w ∈ L∞ ([−r, δ]; W ), the function z : [−r, δ) → R
n defined by

z(t) = η(t) for t ∈ [−r, 0) a.e. and z(t) = f(ηt, wt) for t ∈ [0, δ) a.e. satisfies z ∈ L∞ ([−r, δ); Rn).
Systems of the form (1.1) can represent integral delay equations of the form:

η(t) =
N∑

i=1

pi (η(t − τi), w(t − τi)) +
∫ r

0

q (s, η(t − s), w(t − s)) ds

where r > 0, 0 < τ1 ≤ τ2 ≤ . . . ≤ τN ≤ r are constants, pi : R
n × W → R

n (i = 1, . . . , N) are locally Lipschitz
mappings, W ⊆ R

m is a non-empty closed set and q : R × R
n × W → R

n is a locally Lipschitz mapping. It can
be shown that assumptions (H1), (H2) hold for this class of systems. The fact that assumption (H2) holds for
this class of systems is a direct consequence of Lemma 1 on page 4 in [8].

The following result shows us that system (1.1) can be regarded as a time-invariant system with inputs,
whose state space is L∞ ([−r, 0); Rn) and whose input set is L∞ ([−r, 0]; W ). System (1.1) satisfies the classi-
cal semigroup property, the Boundedness-Implies-Continuation (BIC) property and the property of Lipschitz
dependence on the initial conditions (see [12]).

Theorem 2.1. Consider system (1.1) under assumptions (H1), (H2). Then for every η0 ∈ L∞ ([−r, 0); Rn), w ∈
L∞

loc ([−r, +∞); W ) there exists tmax = tmax(η0, w) ∈ (0, +∞] with tmax > r

1+2rN

(
5a

(
max

(
‖η0‖, sup

−r≤s≤r
|w(s)|

)))

and a unique mapping η ∈ L∞
loc ([−r, tmax); Rn) satisfying η(t) = f(ηt, wt) for t ∈ [0, tmax) a.e. and η(t) = η0(t)

for t ∈ [−r, 0) a.e.. Moreover, if tmax < +∞ then lim sup
t→t−max

‖ηt‖ = +∞. Finally, there exist non-decreasing
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functions P : R+ → R+, G : R+ → R+ such that for every η0 ∈ L∞ ([−r, 0); Rn), y0 ∈ L∞ ([−r, 0); Rn),
w ∈ L∞

loc ([−r, +∞); W ) it holds that:

‖ηt − yt‖ ≤ G(s(t)) exp(P (s(t)) t) ‖η0 − y0‖ , for all t ∈ [0, δ) (2.3)

where δ = min (tmax(η0, w), tmax(y0, w)), s(t) := max
(

sup
0≤τ≤t

‖ητ‖ , sup
0≤τ≤t

‖yτ‖ , sup
0≤τ≤t

‖wτ‖
)

and

η ∈ L∞
loc ([−r, tmax(η0, w)); Rn), y ∈ L∞

loc ([−r, tmax(y0, w)); Rn) are the unique mappings satisfying η(t) =
f(ηt, wt) for t ∈ [0, tmax(η0, w)) a.e., y(t) = f(yt, wt) for t ∈ [0, tmax(y0, u)) a.e. and η(t) = η0(t), y(t) = y0(t)
for t ∈ [−r, 0) a.e..

Proof. Let arbitrary η0 ∈ L∞ ([−r, 0); Rn), w ∈ L∞
loc ([−r, +∞); W ). Define s := max

(
‖η0‖ , sup

−r≤t≤r
|u(t)|

)
and

select arbitrary p ∈ R
n with |p| ≤ s. Define η1(t) = η0(t) for t ∈ [−r, 0) a.e. and η1(t) = p for t ∈ [0, r). Clearly,

η1 ∈ L∞ ([−r, r); Rn) with sup
0≤τ<r

∥∥η1
τ

∥∥ ≤ s.

Without loss of generality we may assume that the non-decreasing function a : R+ → R+ involved in (2.2)
satisfies a(t) ≥ t for all t ≥ 0. Let δ ∈ (0, r) be such that:

2N(R)δ < 1, for R = 5a(s). (2.4)

Using induction and assumption (H2), we can guarantee that the sequence of functions η(k) : [−r, δ) → R
n for

k ≥ 1 defined by: η(k)(t) = η0(t) for t ∈ [−r, 0) a.e. and η(k)(t) = f(η(k−1)
t , wt) for t ∈ [0, δ) a.e. for k ≥ 2

satisfies η(k) ∈ L∞ ([−r, δ); Rn) for k ≥ 1.
Notice that (2.2) in conjunction with the facts that sup

0≤τ<r

∥∥η1
τ

∥∥ ≤ s and sup
0≤τ≤r

‖uτ‖ ≤ s implies that

sup
0≤τ<δ

∥∥η1
τ

∥∥ ≤ a(s) and sup
0≤τ<δ

∥∥η2
τ

∥∥ ≤ a(s). (2.5)

We next claim that

max
l=1,...,k

(
sup

0≤τ<δ

∥∥∥η(l)
τ

∥∥∥) ≤ 5a(s) for all k ≥ 1. (2.6)

The proof of the claim is made by induction. We first notice that by virtue of (2.5) the claim is true for k = 1
and k = 2. Next suppose that the claim is true for certain k ≥ 2. Notice that, by virtue of (2.1) and the fact
that R = 5a(s), the following inequality holds for all l = 2, . . . , k and for almost all t ∈ [0, δ):

∣∣∣η(l+1)(t) − η(l)(t)
∣∣∣ =

∣∣∣f(η(l)
t , wt) − f(η(l−1)

t , wt)
∣∣∣

≤ N(R)δ sup
−δ≤s<0

∣∣∣(η
(l)
t

)
(s) −

(
η
(l−1)
t

)
(s)
∣∣∣+ M(R) sup

−r≤s<−δ

∣∣∣(η
(l)
t

)
(s) −

(
η
(l−1)
t

)
(s)
∣∣∣

= N(R)δ sup
−δ≤s<0

∣∣∣η(l)(t + s) − η(l−1)(t + s)
∣∣∣+ M(R) sup

−r≤s<−δ

∣∣∣η(l)(t + s) − η(l−1)(t + s)
∣∣∣

= N(R)δ
∥∥∥η(l) − η(l−1)

∥∥∥
[−r,δ)

. (2.7)

Since (2.7) holds for almost all t ∈ [0, δ) and since η(l+1)(t) = η(l)(t) = η0(t) for almost all t ∈ [−r, 0) and for
all l ≥ 1, we get: ∥∥∥η(l+1) − η(l)

∥∥∥
[−r,δ)

≤ N(R)δ
∥∥∥η(l) − η(l−1)

∥∥∥
[−r,δ)

, for all l = 2, . . . , k. (2.8)
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Inequality (2.8) implies that:∥∥∥η(2+m) − η(1+m)
∥∥∥

[−r,δ)
≤ (N(R)δ)m ∥∥η2 − η1

∥∥
[−r,δ)

, for all m = 0, . . . , k − 1. (2.9)

Using the triangle inequality repeatedly and the fact that N(R)δ ≤ 1/2 (a consequence of (2.4)), we get for all
l = 2, . . . , k:

∥∥η(l+1) − η(1)
∥∥

[−r,δ)
≤∑l−1

m=0

∥∥η(m+2) − η(m+1)
∥∥

[−r,δ)

≤ ∥∥η(2) − η(1)
∥∥

[−r,δ)

∑l−1
m=0 (N(R)δ)m =

∥∥η(2) − η(1)
∥∥

[−r,δ)

1−(N(R)δ)l

1−N(R)δ

≤ 2
∥∥η(2) − η(1)

∥∥
[−r,δ)

.

(2.10)

It follows from (2.5) and (2.10) that

sup
0≤τ<δ

∥∥∥η(k+1)
τ

∥∥∥ =
∥∥∥η(k+1)

∥∥∥
[−r,δ)

≤ 5a(s) (2.11)

and therefore we have proved (2.6).
The existence of η ∈ L∞ ([−r, δ); Rn) satisfying η(t) = f(ηt, wt) for t ∈ [0, δ) a.e. and η(t) = η0(t) for

t ∈ [−r, 0) a.e. follows closely the proof of Banach’s fixed point theorem on the closed set L∞ ([−r, δ); B),
where B ⊆ R

n denotes the closed ball of radius 5a(s). Since (2.9) holds for all m ≥ 0, the sequence η(k) ∈
L∞ ([−r, δ); B) is a Cauchy sequence. Therefore, there exists a unique limit η ∈ L∞ ([−r, δ); B). Assumption
(H1) (inequality (2.1)) implies that the right hand side of the inequality

|η(t) − f(ηt, wt)| ≤
∣∣∣η(t) − η(k)(t)

∣∣∣+ ∣∣∣f(ηt, wt) − f(η(k−1)
t , wt)

∣∣∣
can be made arbitrarily small for sufficiently large k ≥ 1 and for almost all t ∈ [0, δ) and consequently, we obtain
η(t) = f(ηt, wt) for t ∈ [0, δ) a.e.

In order to prove uniqueness, we use a contradiction argument. Suppose that there exists y ∈ L∞ ([−r, δ); Rn)
satisfying y(t) = f(yt, wt) for t ∈ [0, δ) a.e. and y(t) = η0(t) for t ∈ [−r, 0) a.e. with sup

−r≤s<δ
|y(s) − η(s)| > 0. Let

p ≥ 0 be the least upper bound of all t ∈ [0, δ) with sup
−r≤s<t

|y(s) − η(s)| = 0. A contradiction argument shows

that p < δ. Since p ∈ [0, δ) is the least upper bound of all t ∈ [0, δ) with sup
−r≤s<t

|y(s) − η(s)| = 0, it follows

that sup
−r≤s<t

|y(s) − η(s)| > 0 for all t ∈ (p, δ). A contradiction argument shows that sup
−r≤s<p

|y(s) − η(s)| = 0.

Define R = max( sup
−r≤s<δ

|y(s)| , sup
−r≤s<δ

|η(s)| , sup
−r≤s≤δ

|w(s)|). It follows from (2.1) for almost all t ∈ (p, δ) and

h = t − p:
|η(t) − y(t)| = |f(ηt, wt) − f(yt, wt)| ≤ N(R)(t − p) sup

p≤s<t
|η(s) − y(s)| . (2.12)

Inequality (2.12) implies sup
p<s<t

|η(s) − y(s)| ≤ N(R)(t − p) sup
p≤s<t

|η(s) − y(s)| for all t ∈ (p, δ) and since

sup
p<s<t

|η(s) − y(s)| = sup
p≤s<t

|η(s) − y(s)|, we obtain sup
p≤s<t

|η(s) − y(s)| = 0 for all t < min
(
δ, p + 1

N(R)+1

)
, i.e.,

sup
−r≤s<t

|y(s) − η(s)| = 0 for all t < min
(
δ, p + 1

N(R)+1

)
, a contradiction.

Since the unique function η ∈ L∞ ([−r, δ); Rn) satisfying η(t) = f(ηt, wt) for t ∈ [0, δ) a.e. and η(t) = η0(t) for
t ∈ [−r, 0) a.e. is bounded, it follows (by repeating the arguments above) that there exists δ′ > δ and a unique
function η ∈ L∞ ([−r, δ′); Rn) satisfying η(t) = f(ηt, wt) for t ∈ [0, δ′) a.e. and η(t) = η0(t) for t ∈ [−r, 0) a.e..
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More specifically, by virtue of (2.4), δ′ > δ satisfies

δ + r ≥ δ′ ≥ δ +
r

1 + 2rN

(
5a

(
max

(
sup

−r≤s<δ
|η(s)| , sup

−r≤s≤δ+r
|w(s)|

)))
.

(2.13)

Let tmax = tmax(η0, w) ∈ (0, +∞] be the least upper bound of all δ > 0 for which there exists function
η ∈ L∞ ([−r, δ); Rn) satisfying η(t) = f(ηt, wt) for t ∈ [0, δ) a.e. and η(t) = η0(t) for t ∈ [−r, 0) a.e.. If
tmax < +∞ (i.e., is finite) then for every ε > 0 there exists δ > tmax − ε and a function η ∈ L∞ ([−r, δ); Rn)
satisfying η(t) = f(ηt, wt) for t ∈ [0, δ) a.e. and η(t) = η0(t) for t ∈ [−r, 0) a.e.. It follows in any case (tmax < +∞
or tmax = +∞) that there exists a function η ∈ L∞

loc ([−r, tmax); Rn) satisfying η(t) = f(ηt, wt) for t ∈ [0, tmax)
a.e. and η(t) = η0(t) for t ∈ [−r, 0) a.e..

For the case tmax < +∞ we notice that (2.13) implies the inequality

tmax ≥ δ +
r

1 + 2rN

(
5a

(
max

(
sup

−r≤s<δ
|η(s)| , sup

−r≤s≤δ+r
|w(s)|

)))
or

N

(
5a

(
max

(
sup

−r≤s<δ
|η(s)| , sup

−r≤s≤δ+r
|w(s)|

)))
≥ r − ε

2rε

for all ε > 0 and δ > tmax − ε. The above inequality cannot hold for all ε > 0 if sup
−r≤s<tmax

|η(s)| < +∞.

Therefore, if tmax < +∞ then lim sup
t→t−max

‖ηt‖ = +∞.

Finally, we proceed to the constructive proof of estimate (2.3). Let η0 ∈ L∞ ([−r, 0); Rn), y0 ∈
L∞ ([−r, 0); Rn), w ∈ L∞

loc ([−r, +∞); W ) and let η ∈ L∞
loc ([−r, tmax(η0, w)); Rn), y ∈ L∞

loc ([−r, tmax(y0, w)); Rn)
be the unique mappings satisfying η(t) = f(ηt, wt) for t ∈ [0, tmax(η0, w)) a.e., y(t) = f(yt, wt) for t ∈
[0, tmax(y0, w)) a.e. and η(t) = η0(t), y(t) = y0(t) for t ∈ [−r, 0) a.e.. Define δ = min (tmax(η0, w), tmax(y0, w)).

For all t ∈ (0, δ) we define s(t) := max
(

sup
0≤τ≤t

‖ητ‖ , sup
0≤τ≤t

‖yτ‖ , sup
0≤τ≤t

‖wτ‖
)

and h = t
N , where N =

1+
[

t(1+2rN(s(t)))
min(r,t)

]
and

[
t(1+2rN(s(t)))

min(r,t)

]
denotes the integer part of the real t(1+2rN(s(t)))

min(r,t) . Inequality (2.1) implies
for almost all v ∈ [0, h):

|η(v) − y(v)| = |f(ηv, wv) − f(yv, wv)| ≤ (2.14)
N(s(t))h sup

−h≤q<0
|η(v + q) − y(v + q)| + M(s(t)) ‖η0 − y0‖

Notice that since N(s(t))h ≤ 1/2 we get from (2.14):

sup
−r≤q<h

|η(q) − y(q)| ≤ (1 + 2M(s(t))) ‖η0 − y0‖ . (2.15)

Using induction and similar arguments we can prove that the following inequality holds for i = 1, . . . , N

sup
−r≤q<ih

|η(q) − y(q)| ≤ (1 + 2M(s(t)))i ‖η0 − y0‖ . (2.16)

Since N = 1 +
[

t(1+2rN(s(t)))
min(r,t)

]
≤ 1 + t(1+2rN(s(t)))

min(r,t) ≤ 2 + 2rN(s(t)) + t(1+2rN(s(t)))
r , we obtain from (2.16) for

i = N :

sup
−r≤q<t

|η(q) − y(q)| ≤ (1 + 2M(s(t)))2+2rN(s(t)) exp
((

2N(s(t)) + r−1
)
ln(1+2M(s(t))) t

) ‖η0 − y0‖ . (2.17)
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Inequality (2.17) implies (2.3) with G(s) := (1 + 2M(s))2+2rN(s) and P (s) :=
(
2N(s) + r−1

)
ln(1 + 2M(s)).

The proof is complete. �

Having proved Theorem 2.1, we are justified for arbitrary η0 ∈ L∞ ([−r, 0); Rn), w ∈ L∞
loc ([−r, +∞); W ) to

name the unique mapping η ∈ L∞
loc ([−r, tmax); Rn) satisfying η(t) = f(ηt, wt) for t ∈ [0, tmax) a.e., η(t) = η0(t)

for t ∈ [−r, 0) a.e. for certain tmax = tmax(η0, w) ∈ (0, +∞] as “the solution η(t) of (1.1) with initial condition
η(t) = η0(t) for t ∈ [−r, 0) a.e., corresponding to input w ∈ L∞

loc ([−r, +∞); W )”, without explicit reference to
the maximal existence time of the solution tmax = tmax(η0, w) ∈ (0, +∞].

A number of system-theoretic properties can be proved by using the results of Theorem 2.1. More specifically,
we study system (1.1) under assumptions (H1), (H2) and the following assumption:

(H3) w = (d, u), where d ∈ D ⊆ R
m1 is a compact set, u ∈ U ⊆ R

m2 is a closed set with 0 ∈ Uand m = m1+m2.
Moreover, there exists b ∈ K∞ such that for every η ∈ L∞ ([−r, 0); Rn), d ∈ L∞ ([−r, 0]; D), u ∈ L∞ ([−r, 0]; U),
the following inequality holds:

|f(η, d, u)| ≤ b

(
max

(
‖η‖ , sup

−r≤s≤0
|u(s)|

))
. (2.18)

Assumption (H3) means that the system’s right-hand side is uniformly bounded with respect to the distur-
bance d and the right-hand side is zero when the state η and input u are zero, irrespective of the disturbance d.
This means, in particular, that the origin is an equilibrium when the input u is zero, irrespective of the value
of the disturbance d, which excludes, for example, systems that have an additive disturbance in the model’s
right-hand side. In Example 2.7 we provide a simple system that captures some of the essence of assumption
(H3) and the system’s dependence on d.

We are ready to give a list of properties for system (1.1) that are derived from the results of Theorem 2.1.

Property 1: Robustness of the equilibrium point.
Assumption (H3) guarantees that 0 ∈ L∞ ([−r, 0); Rn) is an equilibrium point for system (1.1), when u is zero
and for any d. However, in order to study the robust stability properties of the equilibrium point of (1.1) we
need a stronger assertion, namely that 0 ∈ L∞ ([−r, 0); Rn) is a robust equilibrium point for the system (1.1)
with input u ∈ U ⊆ R

m2 (see [12]).

Theorem 2.2. Consider system (1.1) under assumptions (H1), (H2), (H3). The function 0 ∈ L∞ ([−r, 0); Rn)
is a robust equilibrium point for the system (1.1) with input u ∈ U ⊆ R

m2 , i.e., for all ε > 0 and T ≥ 0 there exists
δ := δ(ε, T ) > 0 such that for every η0 ∈ L∞ ([−r, 0); Rn), d ∈ L∞ ([−r, +∞); D), u ∈ L∞

loc ([−r, +∞); U) with
‖η0‖+ sup

t≥0
‖ut‖ < δ there exists tmax = tmax(η0, d, u) ∈ (T, +∞] and a unique mapping η ∈ L∞

loc ([−r, tmax); Rn)

satisfying η(t) = f(ηt, dt, ut) for t ∈ [0, tmax) a.e., η(t) = η0(t) for t ∈ [−r, 0) a.e. and ‖ηt‖ < ε for all t ∈ [0, T ].

Proof. Since D ⊆ R
m1 is compact, we are in the position to define Q := max

d∈D
|d|. Without loss of generality, we

may assume that the function b ∈ K∞ involved in (2.18) satisfies b(s) ≥ s for all s ≥ 0. Let arbitrary ε > 0,
T ≥ 0 be given and define:

δ(ε, T ) := κ−1(ε/2), κ := g(l) = g ◦ . . . ◦ g︸ ︷︷ ︸
l times

, l =
[
T

ρ

]
+ 1 and ρ =

r

1 + 2rN (5b (Q + ε))
(2.19)

where g(s) := 5b(s) for all s ≥ 0,
[

T
ρ

]
is the integer part of T

ρ and N : R+ → R+ is the function involved in (2.1).
Let arbitrary η0 ∈ L∞ ([−r, 0); Rn), d ∈ L∞ ([−r, +∞); D), u ∈ L∞

loc ([−r, +∞); U) with ‖η0‖ + sup
t≥0

‖ut‖ < δ

and consider the unique mapping η ∈ L∞
loc ([−r, tmax); Rn) satisfying η(t) = f(ηt, dt, ut) for t ∈ [0, tmax) a.e.,
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η(t) = η0(t) for t ∈ [−r, 0) a.e. for certain tmax = tmax(η0, d, u) ∈ (0, +∞]. Using (2.18), the fact that sup
t≥0

‖ut‖ <

δ, the fact that δ ≤ ε (a direct consequence of definition (2.19)), the fact that Q := max
d∈D

|d| and proceeding

exactly as in the proof of Theorem 2.1, we can show that:

“For all t0 ∈ [0, tmax) with ‖ηt0‖ ≤ ε it holds that ‖ηt‖ ≤ g (max ( ‖ηt0‖ , δ)) , for all t ∈ [t0, t0 + ρ]” (2.20)

We next claim that ‖ηiρ‖ ≤ g(i) (δ), for all i = 1, . . . , l (‖ηiρ‖ is the norm ‖ηt‖ for t = iρ). The claim is a direct
consequence of property (2.20) and definition (2.19). Therefore, we get ‖ηt‖ ≤ κ (δ) for all t ∈ [0, lρ]. Since
lρ ≥ T (a direct consequence of the fact that l =

[
T
ρ

]
+ 1; recall (2.19)) and δ = κ−1(ε/2) (recall (2.19)), we

obtain ‖ηt‖ < ε for all t ∈ [0, T ]. The proof is complete. �

Property 2: Robust global asymptotic stability and input-to-state stability
Using the results contained in [12], we are in a position to define the notion of (Uniform) Robust Global
Asymptotic Stability and Input-to-State Stability (ISS) for system (1.1) under assumptions (H1), (H2), (H3).
The notion of ISS for systems described by IDEs is completely analogous to the corresponding notion introduced
by E. D. Sontag for finite-dimensional systems in [29].

Definition 2.3. Consider system (1.1) under assumptions (H1), (H2), (H3) and assume that for every η0 ∈
L∞ ([−r, 0); Rn), d ∈ L∞ ([−r, +∞); D), u ∈ L∞

loc ([−r, +∞); U), there exists η ∈ L∞
loc ([−r, +∞); Rn) satisfying

η(t) = f(ηt, dt, ut) for t ∈ [0, +∞) a.e., η(t) = η0(t) for t ∈ [−r, 0) a.e.. We say that system (1.1) is Input-
to-State Stable (ISS) from the input u ∈ U ⊆ R

m2 uniformly in d ∈ D ⊆ R
m1 , if there exists a continuous,

non-decreasing function γ : R+ → R+ (called the gain function of the input u ∈ L∞
loc ([−r, +∞); U)) such that

the following properties hold:

Robust Lagrange Stability: For every ε > 0 it holds that

sup
{
‖ηt‖ − sup

0≤s≤t
γ (‖us‖) : t ≥ 0 , ‖η0‖ ≤ ε , d ∈ L∞ ([−r, +∞); D) , u ∈ L∞

loc ([−r, +∞); U)
}

< +∞.

Robust Lyapunov Stability: For every ε > 0 there exists δ := δ(ε) > 0 such that

sup
{
‖ηt‖ − sup

0≤s≤t
γ (‖us‖) : t ≥ 0 , ‖η0‖ ≤ δ, d ∈ L∞ ([−r, +∞); D) , u ∈ L∞

loc ([−r, +∞); U)
}

< ε.

Uniform Robust Attractivity: For every ε > 0 and R ≥ 0 there exists τ := τ(ε, R) > 0 such that

sup
{
‖ηt‖ − sup

0≤s≤t
γ (‖us‖) : t ≥ τ , ‖η0‖ ≤ R , d ∈ L∞ ([−r, +∞); D) , u ∈ L∞

loc ([−r, +∞); U)
}

< ε.

If U = {0} then we say that 0 ∈ L∞ ([−r, 0); Rn) is (Uniformly) Robustly Globally Asymptotically Stable (RGAS)
for (1.1).

Lemma 2.1, Lemma 4.2 in [12] and Theorem 2.2 in [12] give us the following result.

Theorem 2.4. Consider system (1.1) under assumptions (H1), (H2), (H3). Then the following statements are
equivalent:

(a) System (1.1) is ISS from the input u ∈ U ⊆ R
m2 uniformly in d ∈ D ⊆ R

m1 .
(b) There exists σ ∈ KL and a continuous, non-decreasing function γ : R+ → R+ such that for every

η0 ∈ L∞ ([−r, 0); Rn), d ∈ L∞ ([−r, +∞); D), u ∈ L∞
loc ([−r, +∞); U), there exists η ∈ L∞

loc ([−r, +∞); Rn)
satisfying η(t) = f(ηt, dt, ut) for t ∈ [0, +∞) a.e., η(t) = η0(t) for t ∈ [−r, 0) a.e. and ‖ηt‖ ≤
σ (‖η0‖ , t) + sup

0≤s≤t
γ (‖us‖) for all t ≥ 0.
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Furthermore, if U = {0} then the following statement is equivalent to statements (a), (b):
(c) System (1.1) is Robustly Forward Complete, i.e., for every T ≥ 0 and R ≥ 0 it holds that

sup { ‖ηt‖ : t ∈ [0, T ] , ‖η0‖ ≤ R , d ∈ L∞ ([−r, +∞); D) } < +∞

where η(t) denotes the solution of (1.1) with η(t) = η0(t) for t ∈ [−r, 0) a.e., corresponding to input d ∈
L∞ ([−r, +∞); D), and the property of Uniform Robust Attractivity of Definition 2.3 holds.

Property 3: Lyapunov characterization of RGAS.
Theorem 3.4 in [12] and the results of Theorems 2.1, 2.2 allow us to obtain a complete Lyapunov characterization
for the RGAS property for system (1.1).

Theorem 2.5. Consider system (1.1) under assumptions (H1), (H2), (H3) and assume that U = {0}.
The equilibrium point 0 ∈ L∞ ([−r, 0); Rn) is RGAS for (1.1) if and only if there exists a functional
V : L∞ ([−r, 0); Rn) → R+, a non-decreasing function Q : R+ → R+ and functions a1, a2 ∈ K∞ such that
the following inequalities hold:

a1 (‖η‖) ≤ V (η) ≤ a2 (‖η‖) , for all η ∈ L∞ ([−r, 0); Rn) (2.21)

|V (η) − V (y)| ≤ Q (max (‖η‖ , ‖y‖)) ‖η − y‖ , for all η, y ∈ L∞ ([−r, 0); Rn) . (2.22)

V (ηt) ≤ exp (−t)V (η0), for all t ≥ 0, η0 ∈ L∞ ([−r, 0); Rn) , d ∈ L∞ ([−r, +∞); D) (2.23)

where ηt denotes of (1.1) with initial condition η(t) = η0(t) for t ∈ [−r, 0) a.e., corresponding to input d ∈
L∞ ([−r, +∞); D).

Inequality (2.22) guarantees that the functional V : L∞ ([−r, 0); Rn) → R+ is Lipschitz on bounded sets of
the state space L∞ ([−r, 0); Rn). However, inequality (2.22) does not guarantee Frechet differentiability of the
functional V : L∞ ([−r, 0); Rn) → R+ nor that the limit lim

t→0+
t−1 (V (ηt) − V (η0)) exists for the solution η(t)

of (1.1) with initial condition η(t) = η0(t) for t ∈ [−r, 0) a.e., corresponding to input d ∈ L∞ ([−r, +∞); D).
Notice that inequality (2.23) guarantees that for every η0 ∈ L∞ ([−r, 0); Rn), d ∈ L∞ ([−r, +∞); D), the solution
η(t) of (1.1) with initial condition η(t) = η0(t) for t ∈ [−r, 0) a.e., corresponding to input d ∈ L∞ ([−r, +∞); D)
satisfies lim sup

t→0+
t−1 (V (ηt) − V (η0)) ≤ −V (η0).

Property 4: Sufficient conditions for stability properties.
Theorem 2.5 is not the most convenient way of proving RGAS or ISS for (1.1). For practical purposes we can
use the following result, which is an extension of the classical Razumikhin theorem for time delay systems
(see [10, 12]).

Theorem 2.6. Consider system (1.1) under assumptions (H1), (H2), (H3). Assume that there exists a contin-
uous, positive definite and radially unbounded function W : R

n → R+, a continuous, non-decreasing function
γ̃ : R+ → R+ and a constant λ ∈ (0, 1) such that the following inequality holds for all η ∈ L∞ ([−r, 0); Rn),
d ∈ L∞ ([−r, 0]; D), u ∈ L∞ ([−r, 0]; U):

W (f(η, d, u)) ≤ λ sup
−r≤s<0

W (η(s)) + γ̃ (‖u‖) . (2.24)

Then system (1.1) is ISS from the input u ∈ U ⊆ R
m2 uniformly in d ∈ D ⊆ R

m1 with gain function
γ(s) := a−1

1

(
8

(1−λ)2(1+λ) γ̃ (s)
)

for all s ≥ 0, where a1 ∈ K∞ satisfies a1 (|η|) ≤ W (η), for all η ∈ R
n.
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Proof. Define the functional:

V (η) := sup
−r≤s<0

exp (σ s)W (η(s)), for all η ∈ L∞ ([−r, 0); Rn) (2.25)

where σ ∈ (
0, 1

r ln
(

1
λ

))
is a constant. Since W : R

n → R+ is a continuous, positive definite and radially
unbounded function, there exist functions a1, a2 ∈ K∞ such that:

a1 (|η|) ≤ W (η) ≤ a2 (|η|) , for all η ∈ R
n (2.26)

Using (2.25) and (2.26) we conclude that the following inequality holds:

ã1 (‖η‖) ≤ V (η) ≤ a2 (‖η‖) , for all η ∈ L∞ ([−r, 0); Rn) (2.27)

where ã1 (s) := exp (−σ r) a1 (s), for all s ≥ 0.
Let arbitrary η0 ∈ L∞ ([−r, 0); Rn), d ∈ L∞ ([−r, +∞); D), u ∈ L∞ ([−r, +∞); U) and consider the unique

solution η(t) of (1.1) with initial condition η(t) = η0(t) for t ∈ [−r, 0) a.e., corresponding to inputs d ∈
L∞ ([−r, +∞); D), u ∈ L∞

loc ([−r, +∞); U). Let arbitrary t ∈ (0, tmax(η0, d, u)), where tmax(η0, d, u) > 0 is the
maximal existence time of the solution and let h ∈ (0, tmax(η0, d, u) − t). Using definition (2.25) we get:

V (ηt+h) := sup
−r≤s<0

exp (σ s)W (η(t + h + s))

= max
(

sup
−r≤s<−h

exp (σ s)W (η(t + h + s)) , sup
−h≤s<0

exp (σ s)W (η(t + h + s))
)

= max
(

exp (−σ h) sup
−r+h≤s<0

exp (σ s)W (η(t + s)) , sup
−h≤s<0

exp (σ s)W (η(t + h + s))
)

≤ max
(

exp (−σ h)V (ηt) , sup
0≤s<h

W (η(t + s))
)

.

(2.28)

Using (2.24) we get for almost all q ∈ [0, h):

W (η(t + q)) = W (f(ηt+q, dt+q, ut+q)) ≤ λmax
(

sup
−r+q≤s<0

W (η(t + s)) , sup
0≤s<q

W (η(t + s))
)

+ γ̃ (‖u‖) (2.29)

where ‖u‖ = sup
t≥0

‖ut‖. Definition (2.25) and inequality (2.29) gives:

sup
0≤q<h

W (η(t + q)) ≤ λmax
(

exp (σr) V (ηt) , sup
0≤s<h

W (η(t + s))
)

+ γ̃ (‖u‖)

which directly implies:

sup
0≤q<h

W (η(t + q)) ≤ λ exp (σr) V (ηt) +
1

1 − λ
γ̃ (‖u‖) . (2.30)

Since λ exp (σr) ≤ exp (−σh) for all h ≤ 1
σ ln

(
1
λ

)−r (notice that σ ∈ (0, 1
r ln

(
1
λ

))
), we get from (2.28), (2.30)

for all h ∈ (0, tmax(η0, d, u) − t) with h ≤ 1
σ ln

(
1
λ

)− r:

V (ηt+h) ≤ exp (−σ h)V (ηt) +
1

1 − λ
γ̃ (‖u‖) . (2.31)

Using the Boundedness-Implies-Continuation property, inequalities (2.27), (2.31) and a standard contradic-
tion argument, we conclude that tmax(η0, d, u) = +∞. Therefore, we conclude that (2.31) holds for all t ≥ 0 and
h ≥ 0 with h ≤ 1

σ ln
(

1
λ

)− r.
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Using induction and (2.31) we show that V (ηih) ≤ exp (−iσ h)V (η0) + 1
1−λ γ̃ (‖u‖)∑i−1

j=0 exp (−jσ h), for all
integers i ≥ 1 and h = 1

σ ln
(

1
λ

)− r. Consequently, the previous inequality in conjunction with (2.31) shows that
V (ηih+q) ≤ exp (−σ (q + ih))V (η0) + 1

1−λ γ̃ (‖u‖) 2−exp(−σh)
1−exp(−σh) , for all integers i ≥ 0, h = 1

σ ln
(

1
λ

)− r and for all
q ∈ [

0, 1
σ ln

(
1
λ

)− r
)
. Since, for every t ≥ 0 there exists integer i ≥ 0 and q ∈ [

0, 1
σ ln

(
1
λ

)− r
)

with t = ih + q,
we obtain:

V (ηt) ≤ exp (−σ t) V (η0) +
1

1 − λ

2 − λ exp(σr)
1 − λ exp(σr)

γ̃ (‖u‖) , for all t ≥ 0. (2.32)

Inequality (2.32) in conjunction with (2.27) gives for all ε > 0:

ã1 (‖ηt‖) ≤ max
(

(1 + ε) exp (−σ t) a2 (‖η0‖) ,
1 + ε−1

1 − λ

2 − λ exp(σr)
1 − λ exp(σr)

γ̃ (‖u‖)
)

, for all t ≥ 0. (2.33)

Inequality (2.33) with ε = 1 and σ = 1
r ln

(
2

1+λ

)
shows that there exists σ ∈ KL such that for every

η0 ∈ L∞ ([−r, 0); Rn), d ∈ L∞ ([−r, +∞); D), u ∈ L∞ ([−r, +∞); U), there exists η ∈ L∞
loc ([−r, +∞); Rn)

satisfying η(t) = f(ηt, dt, ut) for t ∈ [0, +∞) a.e., η(t) = η0(t) for t ∈ [−r, 0) a.e. and ‖ηt‖ ≤ σ (‖η0‖ , t)+γ (‖u‖)
for all t ≥ 0 with γ(s) := a−1

1 ( 8
(1−λ)2(1+λ) γ̃ (s)) for all s ≥ 0. A standard causality argument shows that

the estimate ‖ηt‖ ≤ σ (‖η0‖ , t) + sup
0≤s≤t

γ (‖us‖) holds for all t ≥ 0 and u ∈ L∞
loc ([−r, +∞); U). Therefore,

Theorem 2.4 implies that system (1.1) is ISS from the input u ∈ U ⊆ R
m2 uniformly in d ∈ D ⊆ R

m1 with gain
function γ(s) := a−1

1 ( 8
(1−λ)2(1+λ) γ̃ (s)) for all s ≥ 0. The proof is complete. �

Example 2.7. Consider the linear system described by the single IDE:

η(t) = d(t)
∫ 0

−1
q(s)η(t + s)ds + u(t)

η(t) ∈ R , d(t) ∈ [−1, 1] , u(t) ∈ R

(2.34)

where q : [−1, 0] → R is a continuous function. Using Theorem 2.6 with W (η) = |η|, we can conclude that
system (2.34) is ISS from the input u ∈ R under the assumption that there exists λ ∈ (0, 1) such that∫ 0

−1
|q(s)| ds ≤ λ. The gain function of the input u ∈ R is estimated by Theorem 2.6 to be the linear func-

tion γ(s) := 8
(1−λ)2(1+λ)s for all s ≥ 0.

3. Systems described by a single first-order hyperbolic partial differential

equation

Consider the system described by a single FOH-PDE of the form (1.2), (1.3), (1.4) under the following
assumption:

(A1) There exist non-decreasing functions L : R+ → R+, σ : R+ → R+ such that the functionals G : R
m ×

L∞ ((0, 1]; R) → R, Ki : R
m ×L∞ ((0, 1]; R) → R (i = 1, . . . , N) satisfy the following inequalities for all R ≥ 0:

|G(w, x)−G(w, y)|+
N∑

i=1

|Ki(w, x) − Ki(w, y)|≤L(R)h sup
0<z≤h

(|x(z) − y(z)|)+L(R) sup
h<z≤1

(|x(z)−y(z)|), (3.1)

for all h ∈ (0, 1), w ∈ W with |w| ≤ R and x, y ∈ L∞ ((0, 1]; [−R, R])

|G(w, x)| +
N∑

i=1

|Ki(w, x)| ≤ σ(R), for all w ∈ W with |w| ≤ R and x ∈ L∞ ((0, 1]; [−R, R]) . (3.2)

We show next how to transform system (1.2), (1.3), (1.4) under assumption (A1) to an equivalent system
described by IDEs.
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Consider a classical solution of (1.2), (1.3), (1.4) with sufficiently regular initial condition x(0, z) = x0(z) for
z ∈ (0, 1] corresponding to a sufficiently regular input w : R+ → W . We assume that the solution exists for all
t ∈ J , where J ⊆ R+ is an interval with non-empty interior and 0 ∈ J . First, we define for t ∈ J :

v(t) = G(w(t), xt). (3.3)

If we define for almost all q ∈ (0, c−1]:

v(−q)=exp
(
−
∫ 0

−q

a(p(s), c(q + s))ds

)
x0(cq)−

∫ 0

−q

exp
(
−
∫ τ

−q

a(p(s), c(q + s))ds

)
g(c(q + τ))p(τ)dτ (3.4)

then integration on the characteristic line allows us to conclude that the solution of (1.2), (1.3), (1.4) must
satisfy the following equation for all t ∈ J and z ∈ [0, 1]:

x(t, z) = exp
(∫ t

t−c−1z

a(p(s), z + c(s − t))ds

)
v(t − c−1z) (3.5)

+
∫ t

t−c−1z

exp
(∫ t

τ

a(p(s), z + c(s − t))ds

)
g(z + c(τ − t))p(τ)dτ.

Let pt ∈ L∞ (
[−c−1, 0); RN

)
be the mapping defined by (pt) (s) = p(t + s) for t ∈ J , s ∈ [−c−1, 0). Sim-

ilarly, let vt ∈ L∞ (
[−c−1, 0); R

)
be the mapping defined by (vt) (s) = v(t + s) for t ∈ J , s ∈ [−c−1, 0).

Clearly, equation (3.5) allows us to define for every p ∈ L∞ (
[−c−1, 0); RN

)
a bounded linear operator

A(p) : L∞ (
[−c−1, 0); R

) → L∞ ((0, 1]; R) and a mapping B : L∞ (
[−c−1, 0); RN

) → L∞ ((0, 1]; R), so that
the following equation holds for all t ∈ J :

xt = A(pt)vt + B(pt) (3.6a)

(A(p)v)(z) := exp
(∫ 0

−c−1z

a(p(t + q), z + cq)dq

)
v(−c−1z)

(B(p))(z) :=
∫ 0

−c−1z

exp
(∫ 0

s

a(p(q), z + cq)dq

)
g(z + cs)p(s)ds, for z ∈ (0, 1]. (3.6b)

It follows from (3.3) and (3.6a) that the following equations hold for all t ∈ J :

pi(t) = Fi(w(t), pt, vt), for i = 1, . . . , N and v(t) = FN+1(w(t), pt, vt) (3.7)

where the mappings Fi : W × L∞ (
[−c−1, 0); RN+1

) → R (i = 1, . . . , N + 1) are defined for every (w, p, v) ∈
W × L∞ (

[−c−1, 0); RN+1
)

by the equations:

Fi(w, p, v) = Ki(w, A(p)v + B(p)), for i = 1, . . . , N and FN+1(w, p, v) = G(w, A(p)v + B(p)). (3.8)

In other words, every classical solution xt of (1.2), (1.3), (1.4) corresponds to a solution (pt, vt) ∈
L∞ (

[−c−1, 0); RN+1
)

of the system described by the integral delay equations (3.7), (3.8).
The procedure described above is rigorous and the system described by the IDEs (3.7), (3.8) is equivalent to

the system described by the single FOH-PDE (1.2), (1.3), (1.4). This is shown by the following theorem. The
key idea in Theorem 3.1 is to bypass the existence problem for the solutions of (1.2), (1.3), (1.4) by studying
the system of IDEs (3.7). However, we first have to generalize the notion of the solution of the (1.2), (1.3), (1.4).

A solution of (1.2), (1.3), (1.4) on the interval [0, T ), where T > 0, can be any mapping t → xt ∈ L∞ ([0, 1]; R)
which satisfies (1.3), (1.4), (3.3) for t ∈ [0, T ) a.e. with (p, v) ∈ L∞

loc

(
[0, T ); RN+1

)
, and

x(t, z) =
∫ t

max(0,t−c−1z)
exp

(∫ t

τ
a(p(s), z + c(s − t))ds

)
g(z + c(τ − t))p(τ)dτ

+ exp
(∫ t

max(0,t−c−1z) a(p(s), z + c(s − t))ds
)⎧⎨
⎩

v(t − c−1z) for z ≤ ct

x0(z − ct) for z > ct

(3.9)
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for all t ∈ [0, T ) and almost all z ∈ [0, 1]. This is a notion of a solution which is close to the notion of the “mild”
solution for first-order systems of hyperbolic PDEs (see [9] and references therein). A solution of system (3.7)
gives us directly (by means of (3.4) and (3.5)) a locally bounded mapping [0, tmax) � t → xt ∈ L∞ ([0, 1]; R)
satisfying (1.3), (1.4), (3.3) for t ∈ [0, tmax) a.e. with (p, v) ∈ L∞

loc

(
[0, tmax); RN+1

)
, and (3.9) for all t ∈ [0, tmax)

and almost all z ∈ [0, 1]. This is the “mild” solution of the PDE (1.2), (1.3), (1.4). Uniqueness is established by
exploiting the classical semigroup property of the solution mapping for (1.2), (1.3), (1.4).

Theorem 3.1. Assume that a ∈ C0(RN × [0, 1]; R) is locally Lipschitz and gi ∈ C0([0, 1]; R) (i = 1, . . . , N).
Moreover, assume that there exist non-decreasing functions L : R+ → R+, σ : R+ → R+ such that the functionals
G : W × L∞ ((0, 1]; R) → R, Ki : W × L∞ ((0, 1]; R) → R (i = 1, . . . , N) satisfy inequalities (3.1), (3.2) for
all R ≥ 0. Finally, let the following assumption hold for the mapping F : W × L∞ (

[−c−1, 0); RN+1
)→ R

N+1,
where F (w, p, v) := (F1(w, p, v), . . . , FN+1(w, p, v)) and Fi : W × L∞ (

[−c−1, 0); RN+1
)→ R (i = 1, . . . , N + 1)

are defined by (3.8) with the aid of (3.6b).

(A2) For every δ > 0, (p, v) ∈ L∞ (
[−c−1, δ); RN+1

)
, w ∈ L∞ ([0, δ]; W ), every function ξ : [−c−1, δ) → R

N+1

defined by ξ(t) = (p(t), v(t)) for t ∈ [−c−1, 0) a.e. and ξ(t) = F (w(t), pt, vt) for t ∈ [0, δ) a.e. satisfies ξ ∈
L∞ (

[−c−1, δ); RN+1
)
.

Then for every x0 ∈ L∞ ([0, 1]; R), w ∈ L∞
loc ([0, +∞); W ) there exists tmax = tmax(x0, w) ∈ (0, +∞] and a

unique locally bounded mapping [0, tmax) � t → xt ∈ L∞ ([0, 1]; R) satisfying (1.3), (1.4), (3.3) for t ∈ [0, tmax)
a.e. with (p, v) ∈ L∞

loc

(
[0, tmax); RN+1

)
, and (3.9) for all t ∈ [0, tmax) and almost all z ∈ [0, 1]. The mapping

t → xt ∈ L∞ ([0, 1]; R) is obtained from (3.5) and the solution of the system (3.7) with arbitrary initial condition
(p, v) ∈ L∞ (

[−c−1, 0); RN+1
)

that satisfies (3.4). Moreover, if tmax < +∞ then lim sup
t→t−max

sup
0≤z≤1

|(xt)(z)| = +∞.

The reader should notice that no regularity result is provided for the mapping t → xt ∈ L∞ ([0, 1]; R). It
is clear that the unique mapping t → xt ∈ L∞ ([0, 1]; R) satisfying (1.3), (1.4), (3.3) for t ∈ [0, tmax) a.e. with
(p, v) ∈ L∞

loc

(
[0, tmax); RN+1

)
, (3.9) for all t ∈ [0, tmax) and almost all z ∈ [0, 1] is not a classical solution

of the initial value problem (1.2), (1.3), (1.4) with initial condition x(0, z) = x0(z) for z ∈ [0, 1] a.e., where
x0 ∈ L∞ ([0, 1]; R).

The time tmax = tmax(x0, w) ∈ (0, +∞] is the maximal existence time of the “mild” solution of the
PDE (1.2), (1.3), (1.4). Indeed, Theorem 3.1 guarantees that a finite value for tmax implies “blow up” of the
solution (a “finite escape time”) exactly as in the case of systems described by ODEs (see [8]), systems described
by Retarded Functional Differential Equations (see [10]) and systems described by IDEs (see Thm. 2.1 above).
Therefore, the system (1.2), (1.3), (1.4) satisfies the Boundedness-Implies-Continuation property (see [12]).

The “mild” solution of the PDE (1.2), (1.3), (1.4) satisfies additional properties. It depends continuously on
the initial conditions and is a continuous mapping when embedded in the spaces Lμ ([0, 1]; R) for μ ∈ [1, +∞).
This is guaranteed by the following result.

Theorem 3.2. Consider system (1.3), (1.4), (3.3) under all assumptions made in Theorem 3.1. Then for every
x0 ∈ L∞ ([0, 1]; R), w ∈ L∞

loc ([0, +∞); W ) the unique locally bounded mapping [0, tmax) � t → xt ∈ L∞ ([0, 1]; R)
satisfying (1.3), (1.4), (3.3) for t ∈ [0, tmax) a.e. with (p, v) ∈ L∞

loc

(
[0, tmax); RN+1

)
, and (3.9) for all t ∈ [0, tmax)

and almost all z ∈ [0, 1] is a continuous mapping t → xt ∈ Lμ ([0, 1]; R) on [0, tmax) for every μ ∈ [1, +∞).
Finally, there exist non-decreasing functions P : R+ → R+, Q : R+ → R+ such that for every x0 ∈ L∞ ([0, 1]; R),
y0 ∈ L∞ ([0, 1]; R), w ∈ L∞

loc ([0, +∞); W ) it holds that:

sup
0≤z≤1

|(xt)(z) − (yt)(z)| ≤ Q(s(t)) exp(P (s(t)) t) sup
0≤z≤1

|(x0)(z) − (y0)(z)| , for all t ∈ [0, δ) (3.10)

where δ = min (tmax(x0, w), tmax(y0, w)), s(t) := max
(

sup
0≤τ<t

sup
0≤z≤1

|(xτ )(z)| , sup
0≤τ<t

sup
0≤z≤1

|(yτ )(z)| , sup
0≤τ≤t

|w(t)|
)

and the mappings t → xt ∈ L∞ ([0, 1]; R), t → yt ∈ L∞ ([0, 1]; R) are the unique mappings satisfy-
ing (1.3), (1.4), (3.3) for t ∈ [0, tmax) a.e. with (p, v) ∈ L∞

loc

(
[0, tmax); RN+1

)
, (3.9) for all t ∈ [0, tmax) and

almost all z ∈ [0, 1] as well as the analogous equations with y replacing x.
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The proofs of Theorems 3.1 and 3.2 are provided at the Appendix.
Having stated Theorems 3.1 and 3.2, we are justified for arbitrary x0 ∈ L∞ ([0, 1]; R), w ∈ L∞

loc ([0, +∞); W )
to name the unique mapping [0, tmax) � t → xt ∈ L∞ ([0, 1]; R) satisfying (1.3), (1.4), (3.3) for t ∈ [0, tmax) a.e.
with (p, v) ∈ L∞

loc

(
[0, tmax); RN+1

)
, and (3.9) for all t ∈ [0, tmax) and almost all z ∈ [0, 1] as “the solution xt

of (1.2), (1.3), (1.4) with initial condition x0 ∈ L∞ ([0, 1]; R), corresponding to input w ∈ L∞
loc ([0, +∞); W )”,

without explicit reference to the maximal existence time of the solution tmax = tmax(x0, w) ∈ (0, +∞].
A number of system-theoretic properties can be proved by using the results of Theorems 3.1 and 3.2. More

specifically, we study system (1.2), (1.3), (1.4) under assumptions (A1), (A2) and the following assumption:
(A3) w = (d, u), where d ∈ D ⊆ R

m1 is a compact set, u ∈ U ⊆ R
m2 is a closed set with 0 ∈ Uand m = m1+m2.

Moreover, there exists b ∈ K∞ such that for every x ∈ L∞ ([0, 1]; R), d ∈ D, u ∈ U , the following inequality
holds:

|G(d, u, x)| +
N∑

i=1

|Ki(d, u, x)| ≤ b

(
max

(
|u| , sup

0≤z≤1
|x(z)|

))
. (3.11)

We are ready to give a list of properties for system (1.2), (1.3), (1.4) that are derived from the results of
Theorems 3.1 and 3.2.

Property 1: Robustness of the equilibrium point.
Assumption (A3) guarantees that 0 ∈ L∞ ([0, 1]; R) is an equilibrium point for system (1.2), (1.3), (1.4), when
u ∈ U ⊆ R

m2 is zero for any d ∈ D ⊆ R
m1 . However, in order to study the robust stability properties of the

equilibrium point of (1.2), (1.3), (1.4) we need a stronger assertion, namely that 0 ∈ L∞ ([0, 1]; R) is a robust
equilibrium point for the system (1.2), (1.3), (1.4) with input u ∈ U ⊆ R

m2 (see [12]).

Theorem 3.3. Consider system (1.2), (1.3), (1.4) under assumptions (A1), (A2), (A3). The function 0 ∈
L∞ ([0, 1]; R) is a robust equilibrium point for the system (1.2), (1.3), (1.4) with input u ∈ U ⊆ R

m2 , i.e., for
all ε > 0 and T ≥ 0 there exists δ := δ(ε, T ) > 0 such that for every x0 ∈ L∞ ([0, 1]; R), d ∈ L∞ ([0, +∞); D),
u ∈ L∞

loc ([0, +∞); U) with sup
0≤z≤1

|x0(z)| + sup
t≥0

|u(t)| < δ the unique solution t → xt ∈ L∞ ([0, 1]; R)

of (1.2), (1.3), (1.4) with initial condition x0 ∈ L∞ ([0, 1]; R), corresponding to inputs d ∈ L∞ ([0, +∞); D),
u ∈ L∞

loc ([0, +∞); U) satisfies sup
0≤z≤1

|(xt)(z)| < ε for all t ∈ [0, T ].

Proof. The proof is a direct consequence of Theorem 2.2: under assumption (A3) system (3.7) satisfies assump-
tion (H3). Details are left to the reader. �

Property 2: Robust global asymptotic stability and Input-to-State stability.
Using the results contained in [12], we are in a position to define the notion of Robust Global Asymptotic
Stability and Input-to-State Stability for system (1.2), (1.3), (1.4) under assumptions (A1), (A2), (A3).

Definition 3.4. Consider system (1.2), (1.3), (1.4) under assumptions (A1), (A2), (A3) and assume that for
every x0 ∈ L∞ ([0, 1]; R), d ∈ L∞ ([0, +∞); D), u ∈ L∞

loc ([0, +∞); U), the solution t → xt ∈ L∞ ([0, 1]; R)
of (1.2), (1.3), (1.4) with initial condition x0 ∈ L∞ ([0, 1]; R), corresponding to inputs d ∈ L∞ ([0, +∞); D),
u ∈ L∞

loc ([0, +∞); U) exists for all t ≥ 0. We say that system (1.2), (1.3), (1.4) is Input-to-State Stable (ISS)
from the input u ∈ U ⊆ R

m2 uniformly in d ∈ D ⊆ R
m1 , if there exists a continuous non-decreasing function

γ : R+ → R+ (called the gain function of the input u ∈ L∞
loc ([0, +∞); U)) such that the following properties

hold:

Robust Lagrange Stability: For every ε > 0 it holds that

sup
{

sup
0≤z≤1

|(xt)(z)| − sup
0≤s≤t

γ (|u(s)|) :

t ≥ 0 , sup
0≤z≤1

|x0(z)| ≤ ε , d ∈ L∞ ([0, +∞); D) , u ∈ L∞
loc ([0, +∞); U)

}
< +∞.
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Robust Lyapunov Stability: For every ε > 0 there exists δ := δ(ε) > 0 such that

sup
{

sup
0≤z≤1

|(xt)(z)| − sup
0≤s≤t

γ (|u(s)|) :

t ≥ 0 , sup
0≤z≤1

|x0(z)| ≤ δ , d ∈ L∞ ([0, +∞); D) , u ∈ L∞
loc ([0, +∞); U)

}
< ε.

Uniform Robust Attractivity: For every ε > 0 and R ≥ 0 there exists τ := τ(ε, R) > 0 such that

sup
{

sup
0≤z≤1

|(xt)(z)| − sup
0≤s≤t

γ (|u(s)|) :

t ≥ τ , sup
0≤z≤1

|x0(z)| ≤ R , d ∈ L∞ ([0, +∞); D) , u ∈ L∞
loc ([0, +∞); U)

}
< ε.

If U = {0} then we say that 0 ∈ L∞ ([0, 1]; R) is (Uniformly) Robustly Globally Asymptotically Stable (RGAS)
for (1.2), (1.3), (1.4).

Lemmas 2.1, Lemma 4.2, Theorem 2.2 in [12] and Theorems 3.1, 3.2, 3.3 give us the following result.

Theorem 3.5. Consider system (1.2), (1.3), (1.4) under assumptions (A1), (A2), (A3). Then the following
statements are equivalent:

(a) System (1.2), (1.3), (1.4) is ISS from the input u ∈ U ⊆ R
m2 uniformly in d ∈ D ⊆ R

m1 .
(b) There exists σ ∈ KL and a continuous, non-decreasing function γ : R+ → R+ such that for every

x0 ∈ L∞ ([0, 1]; R), d ∈ L∞ ([0, +∞); D), u ∈ L∞
loc ([0, +∞); U), the solution t → xt ∈ L∞ ([0, 1]; R)

of (1.2), (1.3), (1.4) with initial condition x0 ∈ L∞ ([0, 1]; R), corresponding to inputs d ∈ L∞ ([0, +∞); D),

u ∈ L∞
loc ([0, +∞); U) satisfies sup

0≤z≤1
|(xt)(z)| ≤ σ

(
sup

0≤z≤1
|x0(z)| , t

)
+ sup

0≤s≤t
γ (|u(s)|) for all t ≥ 0.

(c) System (3.7) is ISS from the input u ∈ U ⊆ R
m2 uniformly in d ∈ D ⊆ R

m1 .
Furthermore, if U = {0} then the following statement is equivalent to statements (a), (b):

(d) System (1.2), (1.3), (1.4) is Robustly Forward Complete, i.e., for every T ≥ 0 and R ≥ 0 it

holds that sup
{

sup
0≤z≤1

|(xt)(z)| : t ∈ [0, T ] , sup
0≤z≤1

|x0(z)| ≤ R , d ∈ L∞ ([0, +∞); D)
}

< +∞, where xt ∈
L∞ ([0, 1]; R) denotes the solution of (1.2), (1.3), (1.4) with initial condition x0 ∈ L∞ ([0, 1]; R), corre-
sponding to input d ∈ L∞ ([0, +∞); D), and the property of Uniform Robust Attractivity of Definition 3.3
holds.

Property 3: Lyapunov Characterization of RGAS.
Theorem 3.4 in [12] and the results of Theorems 3.1, 3.2, 3.3, 3.5 allow us to obtain a complete Lyapunov
characterization of the RGAS property for system (1.2), (1.3), (1.4).

Theorem 3.6. Consider system (1.2), (1.3), (1.4) under assumptions (A1), (A2), (A3) and assume that U =
{0}. The equilibrium point 0 ∈ L∞ ([0, 1]; R) is RGAS for (1.2), (1.3), (1.4) if and only if there exists a functional
V : L∞ ([0, 1]; R) → R+, a non-decreasing function Q : R+ → R+ and functions a1, a2 ∈ K∞ such that the
following inequalities hold:

a1

(
sup

0≤z≤1
|x(z)|

)
≤ V (x) ≤ a2

(
sup

0≤z≤1
|x(z)|

)
, for all x ∈ L∞ ([0, 1]; R) (3.12)

|V (x) − V (y)| ≤ Q

(
max

(
sup

0≤z≤1
|x(z)| , sup

0≤z≤1
|y(z)|

))
sup

0≤z≤1
|x(z) − y(z)| , for all x, y ∈ L∞ ([0, 1]; R)

(3.13)
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V (xt) ≤ exp (−t)V (x0), for all t ≥ 0, x0 ∈ L∞ ([0, 1]; R) , d ∈ L∞ ([0, +∞); D) (3.14)

where xt ∈ L∞ ([0, 1]; R) denotes the solution of (1.2), (1.3), (1.4) with initial condition x0 ∈ L∞ ([0, 1]; R),
corresponding to input d ∈ L∞ ([0, +∞); D).

Again, it should be pointed out that inequality (3.13) guarantees that the functional V : L∞ ([0, 1]; R) → R+

is Lipschitz on bounded sets of the state space L∞ ([0, 1]; R). However, inequality (3.13) does not guarantee
Frechet differentiability of the functional V : L∞ ([0, 1]; R) → R+ nor that the limit lim

t→0+
t−1 (V (xt) − V (x0))

exists for the solution xt of (1.2), (1.3), (1.4) with initial condition x0 ∈ L∞ ([0, 1]; R), corresponding to
input d ∈ L∞ ([0, +∞); D). Notice that inequality (3.14) guarantees that for every x0 ∈ L∞ ([0, 1]; R),
d ∈ L∞ ([0, +∞); D), the solution xt of (1.2), (1.3), (1.4) with initial condition x0 ∈ L∞ ([0, 1]; R), correspond-
ing to input d ∈ L∞ ([0, +∞); D) satisfies lim sup

t→0+
t−1 (V (xt) − V (x0)) ≤ −V (x0).

Property 4: Sufficient conditions for stability properties.
Theorem 3.6 is not the most convenient way of proving RGAS or ISS for (1.2), (1.3), (1.4). For practical purposes
we can use the following result, which is a direct consequence of Theorem 2.6 and the equivalent description of
system (1.2), (1.3), (1.4) by means of system (3.7). Its proof is omitted.

Theorem 3.7. Consider system (1.2), (1.3), (1.4) under assumptions (H1), (H2), (H3). Assume that there
exists a continuous, positive definite and radially unbounded function W : R

N+1 → R+, a continuous, non-
decreasing function γ : R+ → R+ and a constant λ ∈ (0, 1) such that the following inequality holds for all
(p, v) ∈ L∞ (

[−c−1, 0); RN+1
)
, d ∈ D, u ∈ U :

W (F (d, u, p, v)) ≤ λ sup
−c−1≤s<0

W (p(s), v(s)) + γ (|u|) (3.15)

where F (d, u, p, v) := (F1(d, u, p, v), . . . , FN+1(d, u, p, v)) and Fi : D × U × L∞ (
[−c−1, 0); RN+1

) → R (i =
1, . . . , N +1) are defined by (3.8). Then system (1.2), (1.3), (1.4) is ISS from the input u ∈ U ⊆ R

m2 uniformly
in d ∈ D ⊆ R

m1 .

4. Illustrative examples

The first example of this section illustrates the use of Theorem 3.7 for nonlinear uncertain systems described
by a single FOH-PDE. Moreover, the fact that a single FOH-PDE can lead to the study of a system described
by more than one IDEs is illustrated as well.

Example 4.1. Consider system (1.2), (1.3), (1.4), where c = 1, a(p, z) ≡ 0, N = 2, U = {0}, K1(d, u, x) =
k1

∫ L

0 |x(z)| dz, K2(d, u, x) = k2

∫ 1

0 x(z)dz, G(d, u, x) = cd
∫ 1

0 x(z)dz, g1(z) ≡ 1, g2(z) = z, k1, k2, k3 ∈ R+,

L ∈ [0, 1] are constants with k1L
2 < 2, k2 ∈

(
0,

6(2−k1L2)
k1L3−k1L2+2

)
and D := [−1, 1] ⊂ R, namely the system

∂ x

∂ t
(t, z) +

∂ x

∂ z
(t, z) = k1

∫ L

0

|x(t, z)| dz + zk2

∫ 1

0

x(t, z)dz, x(t, 0) = k3d(t)
∫ 1

0

x(t, z)dz, |d(t)| ≤ 1. (4.1)

For this example, system (3.7) is given by:

p1(t) = k1

∫ L

0

∣∣∣v(t − z) +
∫ t

t−z
p1(τ)dτ +

∫ t

t−z
(z + τ − t)p2(τ)dτ

∣∣∣ dz

p2(t) = k2

∫ t

t−1 v(s)ds + k2

∫ t

t−1 (1 + τ − t) p1(τ)dτ + k2
2

∫ t

t−1 (1 + τ − t)2 p2(τ)dτ

v(t) = d(t)k2k3

∫ t

t−1 v(s)ds + d(t)k2k3

∫ t

t−1 (1 + τ − t) p1(τ)dτ + d(t)k2k3
2

∫ t

t−1 (1 + τ − t)2 p2(τ)dτ

(4.2)
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and the solution of (4.1) is related to the solution of (4.2) by means of the equations:

x(t, z) = v(t − z) +
∫ t

t−z

p1(τ)dτ +
∫ t

t−z

(z + τ − t)p2(τ)dτ,

p1(t) =
∫ L

0

|x(t, z)| dz, p2(t) =
∫ 1

0

x(t, z)dz. (4.3)

Clearly, assumptions (H1), (H2), (H3) are satisfied for system (4.2) and assumptions (A1), (A2), (A3) are
satisfied for system (4.1). In this example we show that the equilibrium point 0 ∈ L∞ ([0, 1]; R) is RGAS for
system (4.1) provided that there exists γ > 0 with 6−k2

3k2
> γ > k1L3

3(2−k1L2) such that

k2k3 <
1

(3γ + 1)max
(

k2
6−(3γ+1)k2

, k1L
6γ−(3γ+L)k1L2

)
+ 1

· (4.4)

Indeed, we apply Theorem 3.7 with

F (d, u, p, v) =

⎡
⎢⎢⎢⎣

k1

∫ 0

−L

∣∣∣v(s) +
∫ 0

s
p1(τ)dτ +

∫ 0

s
(τ − s)p2(τ)dτ

∣∣∣ ds

k2

∫ 0

−1

(
v(s) + (1 + s) p1(s) + (1+s)2

2 p2(s)
)

ds

dk2k3

∫ 0

−1

(
v(s) + (1 + s) p1(s) + (1+s)2

2 p2(s)
)

ds

⎤
⎥⎥⎥⎦ and W (p1, p2, v) = max (|p1| , γ |p2| , M |v|),

where M > 0 is a constant that satisfies max
(

6γk2
6−(3γ+1)k2

, 6γk1L
6γ−(3γ+L)k1L2

)
< M < 6γ 1−k2k3

k2k3(3γ+1) . Using the fact
that |d| ≤ 1, we obtain:

W (F (d, u, p, v)) ≤ max
(

k1L

(
‖v‖ +

L

2
‖p1‖ +

L2

6
‖p2‖

)
, max (γ, Mk3) k2

(
‖v‖ +

1
2
‖p1‖ +

1
6
‖p2‖

))
.

Since sup
−1≤s<0

W (p1(s), p2(s), v(s)) = max (‖p1‖ , γ ‖p2‖ , M ‖v‖), we get:

(F (d, u, p, v)) ≤ max
(

k1L

(
1
M

+
L

2
+

L2

6γ

)
, max (γ, Mk3) k2

(
1
M

+
1
2

+
1
6γ

))
sup

−1≤s<0
W (p1(s), p2(s), v(s)).

Consequently, (3.15) holds with λ := max(k1L
(

1
M + L

2 + L2

6γ

)
, max(γ, Mk3)k2( 1

M + 1
2 + 1

6γ )) < 1 (and γ ≡ 0).
The second example of this section shows how the results of the previous sections can be used for control

purposes. The example deals with a linear FOH-PDE and helps us to illustrate many points arising in control
problems in a pedagogical way.

Example 4.2. Consider systems (1.2), (1.3), (1.4), where c = 1, a(p, z) ≡ 0, N = 1, U = R, K1(u, x) = x(1),
g1(z) = g, g ∈ R is a constant and d ∈ D is irrelevant. This problem was studied in [14] and a boundary feedback
control of the form:

G(u, x) =
∫ 1

0

k(z)x(z)dz (4.5)

was designed, where the kernel k ∈ C1 ([0, 1]; R) was explicitly given and guaranteed finite time stability for the
corresponding closed-loop system. Here we will provide an alternative methodology for the design of a robust
stabilizer for system (1.2), (1.3), (1.4) with G(u, x) = u ∈ R, namely, the system

∂ x

∂ t
(t, z) +

∂ x

∂ z
(t, z) = g lim sup

h→0+

(
h−1

∫ 1

1−h

x(t, z)dz

)
, x(t, 0) = u(t). (4.6)
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Notice that we have replaced the functional K1(u, x) = x(1) by the functional K1(u, x) =
lim sup
h→0+

(
h−1

∫ 1

1−h
x(z)dz

)
: the two functionals coincide when x ∈ L∞ ([0, 1]; R) is continuous at z = 1. However,

the functional K1(u, x) = lim sup
h→0+

(
h−1

∫ 1

1−h x(z)dz
)

is well-defined for all x ∈ L∞ ([0, 1]; R) and both function-

als G(u, x) = u ∈ R and K1(u, x) = lim sup
h→0+

(
h−1

∫ 1

1−h x(z)dz
)

satisfy assumption (A1). For this example,

system (3.7) is given by:

p(t) = g
∫ 0

−1 p(t + s)ds + lim sup
h→0+

(
h−1

∫ 1

1−h v(t − z)dz
)

v(t) = u(t)
(4.7)

and the solution of (4.6) is related to the solution of (4.7) by means of the equations:

x(t, z) = v(t − z) + g

∫ t

t−z

p(w)dw, p(t) = lim sup
h→0+

(
h−1

∫ 1

1−h

x(t, z)dz

)
. (4.8)

However, notice that since vt ∈ L∞ ([−1, 0); R), it holds that

lim sup
h→0+

(
h−1

∫ 1

1−h v(t − z)dz
)

= lim sup
h→0+

(
h−1

∫ t−1+h

t−1 v(s)ds
)

= v(t − 1) for t ≥ 0 a.e.. Therefore, for this

example, system (3.7) is given by:

p(t) = g
∫ 0

−1
p(t + s)ds + v(t − 1)

v(t) = u(t).
(4.9)

Equations (4.9) imply that the following differential equation holds for almost all t ≥ 0 for which the solution
of (4.9) exists:

d
dt

(p(t) − v(t − 1)) = g (p(t) − v(t − 1)) − gp(t − 1) + gv(t − 1). (4.10)

Consequently, the following equation holds for all t ≥ t0 ≥ 0 for which the solution of (4.9) exists:

p(t) = v(t−1)+exp (g(t − t0)) (p(t0) − v(t0 − 1))−g

∫ t

t0

exp (g(t − s)) p(s−1)ds+g

∫ t

t0

exp (g(t − s)) v(s−1)ds.

(4.11)
Using (4.9) and (4.11) with t0 = t − 1 we conclude that system (4.9) satisfies the following equations for t ≥ 1
a.e. (provided that the solution exists):

p(t) = v(t − 1) + g
∫ t−1

t−2 (exp(g) − exp(g(t − s − 1))) p(s)ds + g
∫ t−1

t−2 exp(g(t − s − 1))v(s)ds.
v(t) = u(t).

(4.12)

It is clear that the feedback law:

u(t) = ap(t) − g

∫ t

t−1

(exp(g) − exp(g(t − s))) p(s)ds − g

∫ t

t−1

exp(g(t − s))v(s)ds (4.13)

with |a| < 1 guarantees that the closed-loop system (4.9) with (4.13) satisfies for t ≥ 1 a.e. (provided that the
solution exists):

p(t) = ap(t − 1)
v(t) = ap(t) − g

∫ 0

−1 (exp(−gw)v(t + w) + (exp(g) − exp(−gw)) p(t + w)) dw.
(4.14)
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Clearly, assumptions (H1), (H2), (H3) are satisfied for the closed-loop system (4.9) with (4.13). Theorem 2.2
guarantees the local existence of a solution of the closed-loop system (4.9) with (4.13) for every initial con-
dition. Using (4.11) with t0 = 0, we are in a position to show that there exists a constant G > 0 such
that the estimate |p(t)| ≤ G( sup

−1≤s<0
(|p(s)|) + sup

−1≤s<0
(|v(s)|)) holds for every initial condition and for all

t ∈ [0, 1) for which the solution exists. Exploiting the previous estimate for p(t) and applying the Gronwall-
Bellman Lemma to equation v(t) = ap(t) − g

∫ 0

−1 (exp(−gw)v(t + w) + (exp(g) − exp(−gw)) p(t + w)) dw for
the continuous function v(t) − ap(t) we are in a position to show that there exists a constant N > 0 such
that the estimate |v(t)| ≤ N( sup

−1≤s<0
(|p(s)|) + sup

−1≤s<0
(|v(s)|)) holds for every initial condition and for all

t ∈ [0, 1) for which the solution exists. Using Theorem 2.2 and a standard contradiction argument we con-
clude that the solution of the closed-loop system (4.9) with (4.13) exists for all t ∈ [0, 1) and for every ini-
tial condition (because otherwise the solution should be unbounded). Using (4.9) (and more specifically, the
equation v(t) = p(t + 1) − g

∫ 0

−1 p(t + 1 + s)ds) we can conclude from (4.14) that p(t) = a[t]p (t − [t]) and

v(t) = a[t](ap(t− [t])− ga
∫ t+1

[t+1] p(w− [w])dw− g
∫ [t+1]

t p(w− [w])dw) for t ≥ 1 a.e., where [t] denotes the integer
part of t ≥ 1. At this point, we should emphasize that we have achieved exponential stabilization of system (4.9)
by means of the feedback law (4.13). Indeed, there exists a constant M ≥ 1 so that the following estimate holds
for the solution of the closed-loop system (4.9) with (4.13):

sup
t−1≤s<t

|v(s)| + sup
t−1≤s<t

|p(s)| ≤ Mσa(t)
(

sup
−1≤s<0

|v(s)| + sup
−1≤s<0

|p(s)|
)

, for all t ≥ 0 (4.15)

where

σa(t) =

{
1 if t ∈ [0, 2]

|a|[t−1] if t > 2.
(4.16)

More specifically, estimate (4.15) and definition (4.16) show that for a = 0 we have achieved finite-time stabi-
lization of the system (4.9) by means of the feedback law (4.13). However, we have not achieved stabilization of
system (4.6) by means of a state feedback law (in terms of the state of system (4.6)). This remains to be shown.
Indeed, using (4.8) we get from (4.13):

u(t) = ap(t) − g
∫ t

t−1
(exp(g) − exp(g(t − s))) p(s)ds − g

∫ t

t−1
exp(g(t − s))v(s)ds

= ap(t) − g
∫ t

t−1
(exp(g) − exp(g(t − s))) p(s)ds − g

∫ 1

0
exp(gz)v(t − z)dz

= ap(t) − g
∫ t

t−1
(exp(g) − exp(g(t − s))) p(s)ds + g2

∫ 1

0
exp(gz)

∫ t

t−z
p(s)dsdz − g

∫ 1

0
exp(gz)x(t, z)dz.

Integrating by parts we get:

g2
∫ 1

0 exp(gz)
∫ t

t−z p(s)dsdz = g
∫ 1

0

d
dz

(exp(gz))
∫ t

t−z p(s)dsdz

= g
∫ 1

0

d
dz

(
exp(gz)

∫ t

t−z p(s)ds
)

dz − g
∫ 1

0 exp(gz)
d
dz

(∫ t

t−z p(s)ds
)

dz

= g exp(g)
∫ t

t−1 p(s)ds − g
∫ 1

0 exp(gz)p(t − z)dz = g
∫ t

t−1 (exp(g) − exp(g(t − s))) p(s)ds

and consequently we obtain

u(t) = a lim sup
h→0+

(
h−1

∫ 1

1−h

x(t, z)dz

)
− g

∫ 1

0

exp(gz)x(t, z)dz (4.17)

which is a boundary feedback law of the form (4.5) with k(z) = −g exp(gz) for a = 0. Notice that the closed-
loop system (4.6) with (4.17) satisfies assumptions (A1), (A2), (A3). An estimate which displays exponential
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convergence can be derived for the solution of the closed-loop system (4.6) with (4.17). Indeed, using (4.8)
we get sup

0<z≤1
|x(t, z)| ≤ sup

t−1≤s<t
|v(s)| + |g| sup

t−1≤s<t
|p(s)|. The previous inequality, estimate (4.15) and the fact

that (4.8) holds, allow us (by selecting p(s) ≡ 0 for s ∈ [−1, 0), which by virtue of (4.8) gives v(−q) = x(0, q)
for q ∈ (0, 1]) to obtain the estimate:

sup
0<z≤1

|x(t, z)| ≤ (1 + |g|)Mσa(t) sup
0<z≤1

|x(0, z)| , for all t ≥ 0 (4.18)

where σa is defined in (4.16). More specifically, estimate (4.18) allows us to conclude that the feedback law (4.5)
with k(z) = −g exp(gz) achieves finite-time stabilization of system (4.6).
The analysis presented so far allowed us to obtain some different features from the analysis in [14]:

1. The implementation of the feedback law: It follows from (4.8) that the feedback law (4.17) can be imple-
mented by using the following distributed delay feedback law:

u(t) = ax(t, 1) − g
∫ t

t−1
(exp(g) − exp(g(t − s))) x(s, 1)ds − g

∫ t

t−1
exp(g(t − s))x(s, 0)ds (4.19)

for all t ≥ 0 for which xt ∈ C0 ([0, 1]; R). The feedback law (4.19) shows that we do not need to measure the
whole state profile when xt ∈ C0 ([0, 1]; R): we only need to measure x(t, z) at two different space points
z = 0 and z = 1.

2. The issue of the state space: It should be emphasized that the feedback law (4.17) for a = 0, is exactly
the same with that obtained in [14]. However, we have proved that estimate (4.18) holds for initial
conditions x(0, z) = x0(z) for z ∈ [0, 1] with x0 ∈ L∞ ([0, 1]; R). Moreover, no compatibility condition (e.g.,
lim

z→0+
x0(z) = −g

∫ 1

0
exp(gz)x0(z)dz) is required to hold.

3. Control actuator errors: The implementation of the feedback law (4.17) for a = 0, may result to the equation:

u(t) = −g

∫ 1

0

exp(gz)x(t, z)dz + w(t), for t ≥ 0 (4.20)

where w ∈ L∞ (R+; R) is the control actuator error. Using the framework described in the present work, we
are in a position to study the closed-loop system (4.6) with (4.20). In this case, we get the integral delay
system:

p(t) = v(t − 1) + g
∫ 0

−1
p(t + s)ds

v(t) = w(t) − g
∫ 0

−1
(exp(g) − exp(−gs)) p(t + s)ds − g

∫ 0

−1
exp(−gs)v(t + s)ds

(4.21)

with w ∈ L∞ (R+; R) as input. Using (4.12), we get for all t ≥ 1:

p(t) = w(t − 1), v(t) = w(t) − g

∫ 0

−1

w(t + s)ds (4.22)

which implies (by means of a similar analysis to that of the disturbance-free case) the existence of constants
M ≥ 1, γ ≥ 0 such that the following estimate holds:

sup
t−1≤s<t

|v(s)|+ sup
t−1≤s<t

|p(s)| ≤ Mσ0(t)
(

sup
−1≤s<0

|v(s)|+ sup
−1≤s<0

|p(s)|
)

+γ sup
0≤s≤t

|w(s)| , for all t ≥ 0 (4.23)

where σ0(t) is defined in (4.16) with a = 0. Estimate (4.23) shows that the ISS property holds for sys-
tem (4.21). Estimate (4.23) shows (using exactly the same arguments as above) that the following estimate
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holds for the solution of (4.6) with (4.20):

sup
0<z≤1

|x(t, z)| ≤ (1 + |g|)Mσ0(t) sup
0<z≤1

|x(0, z)| + (1 + |g|) γ sup
0≤s≤t

|w(s)| , for all t ≥ 0 (4.24)

which is exactly the ISS property for the closed-loop system (4.6) with (4.20).

Having presented the analysis of the example, we are in a position to point out certain shortcomings of the
proposed methodology of the conversion of a single FOH-PDE to a system described by IDEs:

i) The major shortcoming of the above analysis is that the researcher studies a different system (an integral
delay system) from the original one (a system described by first-order hyperbolic pdes). This is important,
because a stabilizing feedback law for (4.9) may not be equivalent to a state feedback law for (4.6): it
may involve delay terms. Therefore, a stabilizing feedback law for (4.9), when expressed in the original
“coordinates” may not give us a closed-loop system of the form (4.6) but rather a system described by a
single first-order hyperbolic PDE with delays.

ii) Another shortcoming of the above analysis is the specific form (1.2), (1.3), (1.4) for which the conversion
to a system described by IDEs can be used. Not all systems described by first-order hyperbolic pdes can
be expressed by (1.2), (1.3), (1.4): the requirement that the functionals Ki : W × L∞ ([0, 1]; R) → R

(i = 1, . . . , N) are not allowed to depend on z ∈ [0, 1] is restrictive. There are systems which are studied
in [14] but cannot be studied in the proposed framework. However, one must bear in mind that a preliminary
integral transformation can be applied so that the transformed system is of the form (1.2), (1.3), (1.4).

The following example is a nonlinear extension of the previous example. The example illustrates that the
proposed approach is not limited to linear control systems. Instead, we can study highly nonlinear control
systems described by FOH-PDEs.

Example 4.3. Consider system (1.2), (1.3), (1.4), where c = 1, a(p, z) ≡ 0, N = 1, U = R, K1(u, x) =

ϕ

(
lim sup
h→0+

(
h−1

∫ 1

1−h x(z)dz
))

, where ϕ : R → R is a globally Lipschitz function with ϕ(0) = 0, G(u, x) = u ∈
R, g1(z) ≡ 1 and d ∈ D is irrelevant, namely, the system

∂ x

∂ t
(t, z) +

∂ x

∂ z
(t, z) = ϕ

(
lim sup
h→0+

(
h−1

∫ 1

1−h

x(t, z)dz

))
, x(t, 0) = u(t). (4.25)

Notice again that we have replaced the functional K1(u, x) = ϕ(x(1)) by the functional K1(u, x) =
ϕ(lim sup

h→0+
(h−1

∫ 1

1−h x(z)dz)): the two functionals coincide when x ∈ L∞([0, 1]; R) is continuous at z = 1.

However, the functional K1(u, x) = ϕ(lim sup
h→0+

(h−1
∫ 1

1−h
x(z)dz)) is well-defined for all x ∈ L∞ ([0, 1]; R) and

both functionals G(u, x) = u ∈ R and K1(u, x) = ϕ(lim sup
h→0+

(h−1
∫ 1

1−h x(z)dz)) satisfy assumption (A1). For

this example, system (3.7) is given by:

p(t) = ϕ

(∫ 0

−1
p(t + s)ds + lim sup

h→0+

(
h−1

∫ 1

1−h
v(t − z)dz

))
v(t) = u(t)

(4.26)

and the solution of (4.25) is related to the solution of (4.26) by means of the equations:

x(t, z) = v(t − z) +
∫ t

t−z

p(w)dw, p(t) = ϕ

(
lim sup
h→0+

(
h−1

∫ 1

1−h

x(t, z)dz

))
. (4.27)
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Since vt ∈ L∞ ([−1, 0); R), it holds that lim sup
h→0+

(
h−1

∫ 1

1−h
v(t − z)dz

)
= lim sup

h→0+

(
h−1

∫ t−1+h

t−1
v(s)ds

)
= v(t−1)

for t ≥ 0 a.e.. Therefore, for this example, system (3.7) is given by:

p(t) = ϕ
(∫ t

t−1 p(s)ds + v(t − 1)
)

v(t) = u(t).
(4.28)

A feedback stabilizer for (4.28) can be designed by using successive approximations for the solution map of (4.28).
Notice that for t ≥ 1 we get from (4.28)

∫ t

t−1 p(s)ds =
∫ t

t−1 ϕ
(
v(s − 1) +

∫ s

s−1 p(w)dw
)

ds. A first approximation

of the integral
∫ t

t−1
p(s)ds can be the functional

∫ t

t−1
ϕ
(
v(s − 1) +

∫ t−1

s−1
p(w)dw

)
ds with approximation error

for t ≥ 1: ∣∣∣∫ t

t−1 p(s)ds − ∫ t

t−1 ϕ
(
v(s − 1) +

∫ t−1

s−1 p(w)dw
)

ds
∣∣∣

=
∣∣∣∫ t

t−1
ϕ
(
v(s − 1) +

∫ s

s−1
p(w)dw

)
ds − ∫ t

t−1
ϕ
(
v(s − 1) +

∫ t−1

s−1
p(w)dw

)
ds
∣∣∣

≤ ∫ t

t−1

∣∣∣ϕ(v(s − 1) +
∫ s

s−1 p(w)dw
)
− ϕ

(
v(s − 1) +

∫ t−1

s−1 p(w)dw
)∣∣∣ds

≤ L
∫ t

t−1

∣∣∣∫ s

t−1
p(w)dw

∣∣∣ ds ≤ L
2 sup

t−1≤s<t
(|p(s)|)

where L ≥ 0 is the global Lipschitz constant of the function ϕ : R → R. Therefore, the following feedback law
is suggested:

u(t) = −
∫ t

t−1

ϕ

(
v(s) +

∫ t

s

p(w)dw

)
ds. (4.29)

Clearly, assumptions (H1), (H2), (H3) are satisfied for the closed-loop system (4.28) with (4.29). We show next
that 0 ∈ L∞ (

[−1, 0); R2
)

is GAS for the closed-loop system (4.28) with (4.29) provided that

L <
√

2. (4.30)

Using (4.27), this implies that 0 ∈ L∞ ([0, 1]; R) is GAS for the closed-loop system (4.25) with

u(t) = −
∫ 1

0

ϕ (x(t, z)) dz. (4.31)

Notice that assumptions (A1), (A2), (A3) hold the closed-loop system (4.25) with (4.31). Theorem 2.2 guarantees
local existence of the solution of the closed-loop system (4.28) with (4.29) for every initial condition. Using the
estimate |ϕ(x)| ≤ L |x| for all x ∈ R (which holds by virtue of the fact that ϕ(0) = 0 and that L ≥ 0
is the global Lipschitz constant of the function ϕ : R → R), we apply the Gronwall–Bellman Lemma to
the measurable functions p(t), v(t) and obtain the existence of a constant G ≥ 0 such that the estimate
|p(t)| + |v(t)| ≤ G( sup

−1≤s<0
(|p(s)|) + sup

−1≤s<0
(|v(s)|)) holds for every initial condition and for almost all t ∈ [0, 1)

for which the solution exists. Using Theorem 2.2 and a standard contradiction argument we conclude that
the solution of the closed-loop system (4.28) with (4.29) exists for all t ∈ [0, 1) and for every initial condition
(because otherwise the solution should be unbounded). Next, we apply Theorem 2.6 to the system:

p(t) = ϕ
(∫ t

t−1 ϕ
(
v(s − 1) +

∫ s

s−1 p(w)dw
)

ds − ∫ t

t−1 ϕ
(
v(s − 1) +

∫ t−1

s−1 p(w)dw
)

ds
)

v(t) = − ∫ t

t−1
ϕ
(∫ t−1

s−1
ϕ
(
v(w) +

∫ w+1

w
p(τ)dτ

)
dw − ∫ s

s−1
ϕ
(
v(w) +

∫ s

w
p(τ)dτ

)
dw
)

ds
(4.32)
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which describes the evolution of the solution of the closed-loop system (4.28) with (4.29) for t ≥ 1. Applying
Theorem 2.6 to system (4.32) with W (p, v) := max (|p| , M |v|), where M > 0 satisfies 2L2M < 3

(
2 − L2

)
, we

get:

W (F (p, v)) ≤ max
(

L2

2
‖p‖ , M

L2

3
‖p‖ + M

L2

2
‖v‖

)
(4.33)

where F (p, v) =

⎡
⎣ ϕ

(∫ 0

−1 ϕ
(
v(s − 1) +

∫ s

s−1 p(w)dw
)

ds − ∫ 0

−1 ϕ
(
v(s − 1) +

∫ −1

s−1 p(w)dw
)

ds
)

− ∫ 0

−1
ϕ
(∫ −1

s−1
ϕ
(
v(w) +

∫ w+1

w
p(τ)dτ

)
dw − ∫ s

s−1
ϕ
(
v(w) +

∫ s

w
p(τ)dτ

)
dw
)

ds

⎤
⎦.

Inequality (4.33) is obtained by repeated use of the Lipschirz inequality for ϕ : R → R and the fact that
|ϕ(x)| ≤ L |x| for all x ∈ R. Since sup

−1≤s<0
W (p(s), v(s)) = max (‖p‖ , M ‖v‖), we get:

W (F (p, v)) ≤ max
(

L2

2
, M

L2

3
+

L2

2

)
sup

−1≤s<0
W (p(s), v(s)).

Consequently, (2.24) holds with λ := max
(

L2

2 , M L2

3 + L2

2

)
(and γ̃ ≡ 0). Since

• 0 ∈ L∞ (
[−1, 0); R2

)
is GAS for system (4.32);

• the solution of the closed-loop system (4.28) with (4.29) satisfies (4.32) for t ≥ 1;

• there exists a constant G ≥ 0 such that the estimate |p(t)| + |v(t)| ≤ G

(
sup

−1≤s<0
(|p(s)|) + sup

−1≤s<0
(|v(s)|)

)
holds for every initial condition and for almost all t ∈ [0, 1).

It follows that statement (c) of Theorem 2.4 holds. Hence, 0 ∈ L∞ (
[−1, 0); R2

)
is GAS for the closed-loop

system (4.28) with (4.29). �

5. Concluding remarks

This paper establishes the equivalence between systems described by a single first-order hyperbolic partial
differential equation and systems described by integral delay equations. System-theoretic results are provided
for both classes of systems:

1. the Boundedness-Implies-Continuation property and the property of Lipschitz dependence on initial condi-
tions (Thms. 2.1, 3.1 and 3.2);

2. the robustness of an equilibrium point for systems with external inputs (Thms. 2.2 and 3.3);
3. characterizations of the Input-to-State Stability and Robust Global Asymptotic Stability (Thms. 2.4 and 3.5);
4. converse Lyapunov results (Thms. 2.5 and 3.6)
5. sufficient conditions for Input-to-State Stability and Robust Global Asymptotic Stability (Thms. 2.6 and 3.7).

The proposed framework can allow the study of discontinuous solutions for nonlinear systems described by
a single first-order hyperbolic partial differential equation under the effect of measurable inputs acting on
the boundary and/or on the differential equation. This aspect is important from a control-theoretic point of
view because all systems are subject to disturbances (modelling errors, control actuator errors and measurement
errors), which are typically modeled by measurable inputs. Illustrative examples have showed that the conversion
of a system described by a single first-order hyperbolic partial differential equation to an integral delay system
can simplify considerably the solution of the corresponding robust feedback stabilization problem and the
stability analysis.
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Appendix. Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. The proof is divided in three steps.

Step 1. We show that system (3.7) satisfies assumptions (H1), (H2). Therefore, by virtue of Theorem 2.1 for ev-
ery input w ∈ L∞

loc ([0, +∞); W ) and for every initial condition (p, v) ∈ L∞ (
[−c−1, 0); RN+1

)
that satisfies (3.4)

for certain x0 ∈ L∞ ([0, 1]; R), system (3.7) admits a unique solution. The obtained solution of system (3.7)
gives us directly (by means of (3.4) and (3.5)) a locally bounded mapping [0, tmax) � t → xt ∈ L∞ ([0, 1]; R)
satisfying (1.3), (1.4), (3.3) for t ∈ [0, tmax) a.e. with (p, v) ∈ L∞

loc

(
[0, tmax); RN+1

)
, and (3.9) for all t ∈ [0, tmax)

and almost all z ∈ [0, 1].
Step 2. We show that for every w ∈ L∞

loc ([0, +∞); W ), x0 ∈ L∞ ([0, 1]; R) there exists at most one locally
bounded mapping [0, tmax) � t → xt ∈ L∞ ([0, 1]; R) satisfying (1.3), (1.4), (3.3) for t ∈ [0, tmax) a.e. with
(p, v) ∈ L∞

loc

(
[0, tmax); RN+1

)
, and (3.9) for all t ∈ [0, tmax) and almost all z ∈ [0, 1]. Therefore, the mapping

obtained in Step 1 is the unique mapping that satisfies (1.3), (1.4), (3.3) for t ∈ [0, tmax) a.e. with (p, v) ∈
L∞

loc

(
[0, tmax); RN+1

)
, and (3.9) for all t ∈ [0, tmax) and almost all z ∈ [0, 1]. This means that for every initial

condition (p, v) ∈ L∞ (
[−c−1, 0); RN+1

)
that satisfies (3.4) for the given x0 ∈ L∞ ([0, 1]; R) the solution of

system (3.7) will be the same.
Step 3. Making use of the results of Theorem 2.1, we show that if tmax < +∞ then lim sup

t→t−max

sup
0≤z≤1

|(xt)(z)| = +∞.

Step 1: Assumption (A2) guarantees that assumption (H2) holds for system (3.7). Likewise, the validity of
assumption (H1) for system (3.7) is a direct consequence of assumption (A1). To see this, let R ≥ 0, (p, v) ∈
L∞ (

[−c−1, 0); RN+1
)
, (p̃, ṽ) ∈ L∞ (

[−c−1, 0); RN+1
)

with ‖(p, v)‖ ≤ R, ‖(p̃, ṽ)‖ ≤ R be given and let x, x̃ ∈
L∞ ((0, 1]; R) be defined by x = A(p)v+B(p), x̃ = A(p̃)ṽ+B(p̃), where A(p) : L∞ (

[−c−1, 0); R
)→ L∞ ((0, 1]; R)

and B : L∞ (
[−c−1, 0); RN

)→ L∞ ((0, 1]; R) are the mappings defined by (3.6b), i.e.,

x(z) = exp
(∫ 0

−c−1z
a(p(s), z + cs)ds

)
v(−c−1z) +

∫ 0

−c−1z
exp

(∫ 0

τ
a(p(s), z + cs)ds

)
g(z + cτ)p(τ)dτ,

for z ∈ [0, 1] a.e.
(A.1)

x̃(z) = exp
(∫ 0

−c−1z
a(p̃(s), z + cs)ds

)
ṽ(−c−1z) +

∫ 0

−c−1z
exp

(∫ 0

τ
a(p̃(s), z + cs)ds

)
g(z + cτ)p̃(τ)dτ,

for z ∈ [0, 1] a.e.
(A.2)

Define:
M̃(R) := max

z∈[0,1],|p|≤R
|a(p, z)| and C := max

z∈[0,1]
|g(z)| (A.3)

and notice that (A.1) and definitions (A.3) imply:

max
(

sup
0≤z≤1

|x(z)| , sup
0≤z≤1

|x̃(z)|
)

≤ (
1 + c−1C

)
exp

(
c−1M̃(R)

)
R. (A.4)

Using (3.2), definitions (3.8) and (A.4), we obtain:

|F (w, p, v)| ≤ σ
((

1 + c−1C
)
exp

(
c−1M̃(R)

)
R
)

,

for all (w, p, v) ∈ W × L∞ (
[−c−1, 0); RN+1

)
with ‖(p, v)‖ ≤ R and |w| ≤ R.

(A.5)

Inequality (A.5) shows that inequality (2.2) holds for the non-decreasing function
a(R) := σ

((
1 + c−1C

)
exp

(
c−1M̃(R)

)
R
)

for all R ≥ 0 (notice that definition (A.3) implies that M̃(R) is
non-decreasing).
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Using (3.1), definitions (3.8) and (A.4), we obtain:

|F (w, p, v) − F (w, p̃, ṽ)| ≤ L(K(R))h sup
0<z≤h

(|x(z) − x̃(z)|) + L(K(R)) sup
h<z≤1

(|x(z) − x̃(z)|) ,

for all h ∈ (0, 1), w ∈ W with |w| ≤ R
(A.6)

where K(R) :=
(
1 + c−1C

)
exp

(
c−1M̃(R)

)
R.

Define La(R) := sup
{

|a(p,z)−a(p̃,z)|
|p−p̃| : p = p̃ , |p| ≤ R, |p̃| ≤ R , z ∈ [0, 1]

}
and notice that La(R) < +∞ for all

R ≥ 0 (since a ∈ C0(RN × [0, 1]; R) is assumed to be locally Lipschitz). Using (A.1), (A.2) and definitions (A.3)
we obtain for z ∈ [0, 1] a.e.:

|x(z) − x̃(z)| ≤ B1(R)
∣∣v(−c−1z) − ṽ(−c−1z)

∣∣+ B2(R)
∫ 0

−c−1z

|p(s) − p̃(s)| ds (A.7)

where B1(R) := exp
(
M̃(R)c−1

)
, B2(R) :=

(
RLa(R) + C + CRc−1La(R)

)
exp

(
3M̃(R)c−1

)
. Combining (A.6)

and (A.7) we obtain for all h ∈ (0, 1), w ∈ W with |w| ≤ R:

|F (w, p, v) − F (w, p̃, ṽ)| ≤ L(K(R))B1(R)h sup
−c−1h≤s<0

(|v(s) − ṽ(s)|)
+2L(K(R))B2(R)c−1h sup

−c−1h≤s<0

|p(s) − p̃(s)|
+L(K(R))B1(R) sup

c−1≤s<−c−1h

(|v(s) − ṽ(s)|)
+L(K(R))B2(R)c−1 sup

c−1≤s<−c−1h

|p(s) − p̃(s)| .

(A.8)

Inequality (A.8) shows that inequality (2.1) holds for appropriate non-decreasing functions M : R+ → R+,
N : R+ → R+.

Let arbitrary x0 ∈ L∞ ([0, 1]; R) and w ∈ L∞
loc ([0, +∞); W ). Consider now the solution of system (3.7)

corresponding to input w ∈ L∞
loc ([0, +∞); W ) with initial condition (p, v) ∈ L∞ (

[−c−1, 0); RN+1
)

with p(s) ≡ 0
and (3.4), i.e.,

v(t) = exp
(
−
∫ 0

t

a(0, c(s − t))ds

)
x0(−ct), for almost all t ∈ [−c−1, 0). (A.9)

Theorem 2.1 guarantees that there exists tmax := tmax(x0, w) ∈ (0, +∞] so that system (3.7) admits a unique
solution (p, v) ∈ L∞

loc

(
[−c−1, tmax); RN+1

)
. Using (3.5) and (A.9), we obtain a locally bounded mapping

[0, tmax) � t → xt ∈ L∞ ([0, 1]; R), which satisfies (1.3), (1.4), (3.3) for t ∈ [0, tmax) a.e. and (3.9) for all
t ∈ [0, tmax) and almost all z ∈ [0, 1].

Step 2: We show that by contradiction that for every w ∈ L∞
loc ([0, +∞); W ), x0 ∈ L∞ ([0, 1]; R) there exists at

most one locally bounded mapping [0, tmax) � t → xt ∈ L∞ ([0, 1]; R) satisfying (1.3), (1.4), (3.3) for t ∈ [0, tmax)
a.e. with (p, v) ∈ L∞

loc

(
[0, tmax); RN+1

)
, and (3.9) for all t ∈ [0, tmax) and almost all z ∈ [0, 1].

Suppose that there exist w ∈ L∞
loc ([0, +∞); W ), x0 ∈ L∞ ([0, 1]; R), a constant δ > 0 and two locally bounded

mappings [0, δ) � t → xt ∈ L∞ ([0, 1]; R), [0, δ) � t → x̃t ∈ L∞ ([0, 1]; R) so that (3.9) holds for all t ∈ [0, δ) and
almost all z ∈ [0, 1], equation

x̃(t, z) =
∫ t

max(0,t−c−1z)
exp

(∫ t

τ
a(p̃(s), z + c(s − t))ds

)
g(z + c(τ − t))p̃(τ)dτ

+ exp
(∫ t

max(0,t−c−1z) a(p̃(s), z + c(s − t))ds
)⎧⎨
⎩

ṽ(t − c−1z) for z ≤ ct

x0(z − ct) for z > ct

(A.10)
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for all t ∈ [0, δ) and almost all z ∈ [0, 1], (1.3), (1.4), (3.3) hold for t ∈ [0, δ) a.e., equations

p̃i(t) = Ki(w(t), x̃t), for i = 1, . . . , N and p̃(t) = (p̃1(t), . . . , p̃N(t))′ ∈ R
N (A.11)

ṽ(t) = G(w(t), x̃t) (A.12)

hold for t ∈ [0, δ) a.e. and such that

sup
t∈[0,δ)

sup
z∈[0,1]

|(xt)(z) − (x̃t)(z)| > 0. (A.13)

Let t1 ∈ [0, δ) be the greatest lower bound of all times t ∈ [0, δ) for which sup
z∈[0,1]

|(xt)(z) − (x̃t)(z)| > 0. Notice

that by virtue of (A.13), t1 ∈ [0, δ) is well defined and that sup
t∈[0,t1)

sup
z∈[0,1]

|(xt)(z) − (x̃t)(z)| = 0 for the case that

t1 > 0.
We show next that there exists h > 0 so that sup

t∈[0,t1+h)

sup
z∈[0,1]

|(xt)(z) − (x̃t)(z)| = 0, which contradicts the

fact that t1 ∈ [0, δ) is the greatest lower bound of all times t ∈ [0, δ) for which sup
z∈[0,1]

|(xt)(z) − (x̃t)(z)| > 0.

An important property that is used at this point is the so-called classical semigroup property (see [11]), i.e.,
the fact that every locally bounded mapping [0, tmax) � t → xt ∈ L∞ ([0, 1]; R) satisfying (1.3), (1.4), (3.3) for
t ∈ [0, tmax) a.e. with (p, v) ∈ L∞

loc

(
[0, tmax); RN+1

)
, and (3.9) for all t ∈ [0, tmax) and almost all z ∈ [0, 1]

satisfies the following identity for all t ∈ [0, tmax) and for all t0 ∈ [0, t]:

x(t, z) =
∫ t−t0
max(0,t−t0−c−1z) exp

(∫ t−t0
τ a(p(t0 + s), z + c(s + t0 − t))ds

)
g(z + c(τ + t0 − t))p(t0 + τ)dτ

+ exp
(∫ t−t0

max(0,t−t0−c−1z) a(p(t0 + s), z + c(s + t0 − t))ds
)⎧⎨
⎩

v(t − c−1z) for z + ct0 ≤ ct

(xt0 )(z + ct0 − ct) for z + ct0 > ct
,

for z ∈ [0, 1] a.e.

(A.14)

Therefore, identity (A.14) holds for all t ∈ [0, δ) and for all t0 ∈ [0, t]. Similarly, the following identity

x̃(t, z) =
∫ t−t0
max(0,t−t0−c−1z)

exp
(∫ t−t0

τ
a(p̃(t0 + s), z + c(s + t0 − t))ds

)
g(z + c(τ + t0 − t))p̃(t0 + τ)dτ

+ exp
(∫ t−t0

max(0,t−t0−c−1z)
a(p̃(t0 + s), z + c(s + t0 − t))ds

)⎧⎨
⎩

ṽ(t − c−1z) for z + ct0 ≤ ct

(x̃t0 )(z + ct0 − ct) for z + ct0 > ct
,

for z ∈ [0, 1] a.e.

(A.15)

holds for all t ∈ [0, δ) and for all t0 ∈ [0, t]. Using (A.14) and (A.15) with t0 ∈ (0, t1) for the case t1 > 0 and
t0 = 0 for the case t1 = 0 in conjunction with (1.3), (3.3), (A.3), (A.11), (A.12) (which implies that p(s) = p̃(s),
v(s) = ṽ(s), xs = x̃s for all s ∈ [0, t0]), we obtain:

|x(t, z) − x̃(t, z)| ≤
(t − t0) exp

(
3M̃(R)(t − t0)

)
(C + CR La(R)(t − t0) + 2RLa(R)) sup

t0≤s≤t
|p(s) − p̃(s)|

+ exp
(
M̃(R)(t − t0)

)⎧⎨
⎩
∣∣v(t − c−1z) − ṽ(t − c−1z)

∣∣ for z + ct0 ≤ ct

0 for z + ct0 > ct

(A.16)
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for z ∈ [0, 1] a.e. and for all t ∈ [t0, t1+δ
2

]
, where

R = sup
0≤s≤ t1+δ

2

max
(
|p(s)| , |p̃(s)| , |v(s)| , |ṽ(s)| , sup

0≤z≤1
|(xs)(z)| , sup

0≤z≤1
|(x̃s)(z)| , |w(s)|

)
La(R) := sup

{
|a(p,z)−a(p̃,z)|

|p−p̃| : p = p̃ , |p| ≤ R, |p̃| ≤ R , z ∈ [0, 1]
}

.

Using (1.3), (3.1), (3.3), (A.11) and (A.12) we obtain:

|p(s) − p̃(s)| ≤ 2L(R) sup
0≤z≤1

|x(s, z) − x̃(s, z)| , for almost all s ∈
[
t0,

t1 + δ

2

]
(A.17)

∣∣v(t − c−1z) − ṽ(t − c−1z)
∣∣ ≤ L(R)

(
t − c−1z − t0

)
sup

0≤s≤t−c−1z−t0

∣∣x(t − c−1z, s) − x̃(t − c−1z, s)
∣∣

+L(R) sup
t−c−1z−t0<s≤1

∣∣x(t − c−1z, s) − x̃(t − c−1z, s)
∣∣ ,

for almost all t ∈ (t0, min
(

t1+δ
2 , t0 + c−1

))
and 0 ≤ z < c(t − t0). (A.18)

We define for all h ∈ (0, min
(

δ−t1
2 , c−1

))
:

Δ(h) := sup
t0<t≤t0+h

(
sup

c(t−t0)<z≤1

|x(t, z) − x̃(t, z)|
)

, E(h) := sup
t0<t≤t0+h

(
sup

0≤z≤c(t−t0)

|x(t, z) − x̃(t, z)|
)

. (A.19)

Using (A.16), (A.17), (A.18) and definitions (A.19) we obtain for all h ∈ (0, min
(

δ−t1
2 , c−1

))
:

Δ(h) ≤ hΓ1(R)max (Δ(h), E(h)) (A.20)

E(h) ≤ hΓ1(R)max (Δ(h), E(h)) + hΓ2(R)E(h) + Γ2(R)Δ(h) (A.21)

where Γ1(R) := exp
(
3M(R)c−1

) (
C + CR La(R)c−1 + 2RLa(R)

)
2L(R), Γ2(R) := exp

(
M(R)c−1

)
L(R). Us-

ing (A.21) and assuming that h ≤ 1
2(Γ1(R)+Γ2(R)) we get E(h) ≤ max (1, 2Γ2(R)) Δ(h). In this case, inequal-

ity (A.20) implies Δ(h) ≤ hΓ1(R)max (1, 2Γ2(R))Δ(h) which gives:

Δ(h) = E(h) = 0, for all h ∈
(

0,
1
2

min
(

c−1,
δ − t1

2
,

1
2 (Γ1(R) + Γ2(R)) (1 + 2Γ2(R))

)]
· (A.22)

Implication (A.22), definitions (A.19) and the fact that sup
t∈[0,t0]

sup
z∈[0,1]

|(xt)(z) − (x̃t)(z)| = 0 imply that

sup
t∈[0,t0+h]

sup
z∈[0,1]

|(xt)(z) − (x̃t)(z)| = 0.

Since t0 ∈ (0, t1] is arbitrarily close to t1, we get sup
t∈[0,t1+h)

sup
z∈[0,1]

|(xt)(z) − (x̃t)(z)| = 0.

Thus, the locally bounded mapping [0, tmax) � t → xt ∈ L∞ ([0, 1]; R), which satisfies (1.3), (1.4), (3.3) for
t ∈ [0, tmax) a.e. and (3.9) for all t ∈ [0, tmax) and almost all z ∈ [0, 1], which was found in Step 1 is unique.

Step 3: In this step we show that if tmax < +∞ then lim sup
t→t−max

sup
0≤z≤1

|(xt)(z)| = +∞ and that there exist non-

decreasing functions P : R+ → R+, Q : R+ → R+ such that for every x0 ∈ L∞ ([0, 1]; R), y0 ∈ L∞ ([0, 1]; R),
w ∈ L∞

loc ([0, +∞); W ) estimate (3.10) holds.
Indeed, if tmax < +∞ for the unique solution (p, v) ∈ L∞

loc

(
[−c−1, tmax); RN+1

)
of (3.7) corresponding to input

w ∈ L∞
loc ([0, +∞); W ) with initial condition (p, v) ∈ L∞ (

[−c−1, 0); RN+1
)

satisfying p(s) ≡ 0 and (A.9), then
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Theorem 2.1 guarantees that lim sup
t→t−max

‖(pt, vt)‖ = +∞. By virtue of inequality (3.2) and equations (1.3), (3.3),

lim sup
t→t−max

‖(pt, vt)‖ = +∞ cannot happen unless lim sup
t→t−max

sup
0≤z≤1

|(xt)(z)| = +∞. The proof is complete. �

Proof of Theorem 3.2. Theorem 2.1 guarantees that there exist non-decreasing functions P̃ : R+ → R+, G̃ :
R+ → R+ such that for every v0 ∈ L∞ (

[−c−1, 0); R
)
, ṽ0 ∈ L∞ (

[−c−1, 0); R
)
, w ∈ L∞

loc ([0, +∞); W ) it holds
that:

‖pt − p̃t‖ + ‖vt − ṽt‖ ≤ G̃(s(t)) exp(P̃ (s(t)) t) ‖v0 − ṽ0‖ , for all t ∈ [0, δ) (A.23)

where δ = min (tmax(v0, w), tmax(ṽ0, w)), s(t) := max( sup
0≤τ≤t

‖(pτ , vτ )‖ , sup
0≤τ≤t

‖(p̃τ , ṽτ )‖ , sup
0≤τ≤t

‖w(τ)‖) and

(p, v) ∈ L∞
loc

(
[−c−1, tmax(v0, w)); RN+1

)
, (p̃, ṽ) ∈ L∞

loc

(
[−c−1, tmax(ṽ0, w)); RN+1

)
are the unique solutions

of (3.7) corresponding to input w ∈ L∞
loc ([0, +∞); W ) with initial conditions (0, v0) ∈ L∞ (

[−c−1, 0); RN+1
)

and (0, ṽ0) ∈ L∞ (
[−c−1, 0); RN+1

)
, respectively.

Let x0 ∈ L∞ ([0, 1]; R), x̃0 ∈ L∞ ([0, 1]; R), w ∈ L∞
loc ([0, +∞); W ) and consider the locally bounded mappings

[0, tmax(x0, w)) � t → xt ∈ L∞ ([0, 1]; R), [0, tmax(x̃0, w)) � t → x̃t ∈ L∞ ([0, 1]; R), which satisfy (1.3), (1.4), (3.3)
for t ∈ [0, tmax) a.e. and (3.9) for all t ∈ [0, tmax) and almost all z ∈ [0, 1] as well as the analogous equations with
x̃ replacing x and x̃0 replacing x0. The mappings [0, tmax(x0, w)) � t → xt ∈ L∞ ([0, 1]; R), [0, tmax(x̃0, w)) �

t → x̃t ∈ L∞ ([0, 1]; R) are found by obtaining the solutions (p, v) ∈ L∞
loc

(
[−c−1, tmax(v0, w)); RN+1

)
,

(p̃, ṽ) ∈ L∞
loc

(
[−c−1, tmax(ṽ0, w)); RN+1

)
of (3.7) with input w ∈ L∞

loc ([0, +∞); W ) and initial conditions
(0, v0) ∈ L∞ (

[−c−1, 0); RN+1
)
, (0, ṽ0) ∈ L∞ (

[−c−1, 0); RN+1
)
, respectively, and by using (3.5), (A.9) and

ṽ(t) = exp
(
−
∫ 0

t

a(0, c(s − t))ds

)
x̃0(−ct), for almost all t ∈ [−c−1, 0). (A.24)

Inequality (3.10) for appropriate non-decreasing functions P : R+ → R+, Q : R+ → R+ is a direct consequence
of (A.16) with t0 = 0, (A.23), (A.9), (A.24), (1.3), (3.3) and (3.2).

In order to show that the mapping t → xt ∈ Lμ ([0, 1]; R) is continuous on [0, tmax) for every μ ∈ [1, +∞), it
suffices to use the classical semigroup property (identity (A.14)) and to show that for every μ ∈ [1, +∞), ε > 0
there exists δ̃ > 0 such that

∫ 1

0

|x(t, z) − x0(z)|μ dz ≤ εμ, for all t ∈ [0, δ̃]. (A.25)

Since C0 ([0, 1]; R) is dense in Lμ ([0, 1]; R) for every μ ∈ [1, +∞) for every ε > 0 and x0 ∈ L∞ ([0, 1]; R) there
exists x̃0 ∈ C0 ([0, 1]; R) with

∫ 1

0 |x̃0(z) − x0(z)|μ dz ≤ (ε/3)μ and sup
0≤z≤1

|x̃0(z)| ≤ sup
0≤z≤1

|x0(z)|. Moreover, there

exists δ ∈ (0, 1) such that sup
0≤s≤δ

sup
s≤z≤1

|x̃0(z − s) − x̃0(z)| ≤ ε
3 . Using the inequality

(∫ 1

δ

|x0(z − s) − x0(z)|μ dz

)1/μ

≤
(∫ 1

s

|x0(z − s) − x̃0(z − s)|μ dz

)1/μ

+
(∫ 1

s

|x̃0(z − s) − x̃0(z)|μ dz

)1/μ

+
(∫ 1

s

|x̃0(z) − x0(z)|μ dz

)1/μ

we obtain
∫ 1

δ |x0(z − s) − x0(z)|μ dz ≤ εμ for all s ∈ [0, δ]. Consequently, for every μ ∈ [1, +∞), for every ε > 0
and x0 ∈ L∞ ([0, 1]; ) there exists δ ∈ (0, 1) such that sup

0≤s≤δ

∫ 1

s
|x0(z − s) − x0(z)|μ dz ≤ εμ.

Using the identity
∫ 1

0 |x(t, z) − x0(z)|μ dz =
∫ ct

0 |x(t, z) − x0(z)|μ dz +
∫ 1

ct |x(t, z) − x0(z)|μ dz for all t ∈
[0, c−1], we get
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∫ 1

0

|x(t, z) − x0(z)|μ dz ≤ 2μcRμt +
∫ 1

ct

|x(t, z) − x0(z)|μ dz, for all t ∈ [0, min(c−1/2, tmax/2)] (A.26)

where R = sup
0≤s≤tmax/2

max
(
|p(s)| , |v(s)| , sup

0≤z≤1
|(xs)(z)| , |w(s)|

)
. Moreover, using (3.9) and definitions (A.3)

we get for all t ∈ [0, min(c−1/2, tmax/2)] and almost all z ∈ (ct, 1]:

|x(t, z) − x0(z)| ≤ exp
(
M̃(R)t

)(
C + M̃(R)

)
Rt + |x0(z − ct) − x0(z)| . (A.27)

Combining (A.26) and (A.27) we obtain for all t ∈ [0, min(c−1/2, tmax/2)]:

∫ 1

0

|x(t, z) − x0(z)|μ dz ≤ 2μcRμt + 2μ exp
(
μM̃(R)t

)(
C + M̃(R)

)μ

Rμtμ + 2μ

∫ 1

ct

|x0(z − ct) − x0(z)|μ dz.

(A.28)
Let δ ∈ (0, 1) be such that 2μ sup

0≤s≤δ

∫ 1

s
|x0(z − s) − x0(z)|μ dz ≤ 1

3εμ. It follows from the previous inequality in

conjunction with (A.28) that (A.25) holds with δ̃ = min
(

1
2c ,

tmax
2 , δ

c , ε
3(2R)μc ,

exp(−M̃(R)c−1)
2R(C+M̃(R))

(
ε
3

)1/μ
)

. The proof

is complete. �
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