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Abstract. The Euler−Poinsot rigid body motion is a standard mechanical system and it is a model
for left-invariant Riemannian metrics on SO(3). In this article using the Serret−Andoyer variables we
parameterize the solutions and compute the Jacobi fields in relation with the conjugate locus evaluation.
Moreover, the metric can be restricted to a 2D-surface, and the conjugate points of this metric are
evaluated using recent works on surfaces of revolution. Another related 2D-metric on S2 associated to
the dynamics of spin particles with Ising coupling is analysed using both geometric techniques and
numerical simulations.
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1. Introduction

The Euler−Poinsot rigid body motion describing the inertial revolution of a rigid body is a standard me-
chanical system associated to the attitude control in space mechanics. The model is the following: let {e1, e2, e3}
be a fixed orthonormal frame in R

3, and denote by {E1, E2, E3} an orthonormal frame attached to the body.
The attitude of the body is represented by the matrix of directional cosines R(t) = (E1(t), E2(t), E3(t)), which
transforms {ei}3

i=1 into {Ei}3
i=1. If the moving frame {E1, E2, E3} coincides with the principal axes of inertia

of the body, its trajectories are solutions to the following optimal control system on SO(3):

dR(t)
dt

= R(t)

⎛
⎝ 0 −u3 u2

u3 0 −u1

−u2 u1 0

⎞
⎠ =

3∑
i=1

ui �Ai(R(t)),
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1
2

T∫
0

3∑
i=1

Iiu
2
i (t)dt −→ min

u(·)
,

where Ii’s are the principal momenta of inertia of the body. Geometrically it amounts to define a left-invariant
metric on SO(3), where the basis �Ai(R) = RAi forms an orthonormal frame, and conversely, every invariant
metric on SO(3) can be set in this normal form, the ratio of the principal momenta of inertia I1/I3 and I2/I3
being the invariants of the metric.

Numerous articles are devoted to the analysis of the extremal curves of the described problem: geometric
properties of the extremals, integrability properties using the Poinsot representation, and explicit computations
of the solution by means of the Jacobi or Weierstrass elliptic functions [2, 17, 20].

According to the Pontryagin maximum principle [23], the optimal solutions of the problem are projections
of the extremal curves, i.e., the integral curves of the Hamiltonian vector field �H associated to the function
H = 1

2

(
M2

1 I
−1
1 + M2

2 I
−1
2 + M2

3 I
−1
3

)
, where the vector M = (M1,M2,M3), which represents the angular

momentum of the body measured in the moving frame, is related to the angular velocity vector Ω = (u1, u2, u3):
Mi = Iiui. In this representation the limit case I2 → +∞ leads to the sub-Riemannian problem associated to
H = 1

2

(
M2

1 I
−1
1 +M2

3 I
−1
3

)
. Conversely, every left invariant sub-Riemannian metric on SO(3) can be set in this

normal form where k2 = I1/I3 is the only invariant of the problem [26].
Beyond the standard integrability analysis of the extremals, an important geometric control problem is

to compute the conjugate and cut loci of such a metric. Recall that given a complete Riemannian manifold
(M, g), the conjugate locus C(q0) of a point q0 ∈ M is the set of points, where the geodesic curves emanating
from q0 loose their optimality for the C1 topology on the set of curves, while the cut locus Ccut(q0) is the set of
points where they loose optimality globally. Computing these sets is equivalent to solving the Hamilton−Jacobi-
Bellman equation. In general, it is a very complicated problem and little is known in the literature about the
explicit construction of conjugate and cut loci [22]. Very recently a detailed analysis was done for geodesic
flows of Riemannian metrics on 2-spheres of revolution, wich are reflectionally symmetric with respect to the
equator [6, 25] with an application to the case of an ellipsoid of revolution. It was extended to a general
ellipsoid [16], such computations were also done in the geometric control context [8, 11] and in [3] for the
axisymmetric ellipsoid of inertia.

This article is a first step to perform such a computation for a left-invariant Riemannian or sub-Riemannian
metric on SO(3) by considering the reduction on two-dimensional manifolds. The first case to analyze is the
Riemannian metric on a two-dimensional surface related to the Serret−Andoyer variables [15], which define
a two-dimensional projection of the full problem. Indeed, assuming I1 > I2 > I3, on can introduce suitable
symplectic coordinates (x, y, w, px, py, pw), such that the Hamiltonian takes the form H = 1

4 [z(y)p2
x + (2I−1

3 −
z(y))p2

y], where z = 2(I−1
1 sin2 y+I−1

2 cos2 y). In such a representation the HamiltonianH , which does not depend
explicitly on w and pw, describes a Riemannian metric in the (x, y)-variables. In particular, this reduction is
crucial for the integration of the system and for the analysis of the Jacobi equation associated to the left-invariant
metric on SO(3).

The second case relies on the sub-Riemannian situation, which can be realized by making I2 → +∞. It defines
a reduced metric g = (dr21 + k2dr23)r

−2
2 on the two sphere S2, where k2 = I1I

−1
3 , and ri’s are the coordinates on

the sphere such that r23 = 1−r21−r22 . Such a metric has a singularity at r2 = 0, and it is related to the dynamics
of a three spin system with Ising coupling [28]. Introducing the spherical coordinates r2 = cosϕ, r1 = sinϕ cos θ,
r3 = sinϕ sin θ, one gets

g =
(
cos2 θ + k2 sin2 θ

)
dϕ2 + 2(k2 − 1) tanϕ sin θ cos θdϕdθ + tan2 ϕ

(
sin2 θ + k2 cos2 θ

)
dθ2,

which in the case k = 1 corresponds to the standard Grushin metric on S2 introduced in [9], whose conjugate
and cut loci were described in [6, 7].

In the two examples above: the Serret−Andoyer problem and in the limit case k = 1 of the spin problem, the
reduction leads to a metric of the form g = dϕ2 + μ(ϕ)dθ2 on a surface of revolution. As it was shown in the
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previous articles in case of a sphere, under some suitable assumptions the description of conjugate and cut loci
can be made explicitly in terms of the period mapping pθ → T (pθ) (see Sect. 3.3.1 for the formal definition) of
the ϕ variable.

Besides the geometric analysis, an important role in our study is played by the Hampath code [12], which
allows the explicit numerical computation based on the evaluation of conjugate points and determination of the
cut locus using the continuation methods. This will be illustrated by the two examples described above.

The organization of this article is the following. In Section 2 we present the preliminary results to conduct our
analysis, based on [17], and introduce the Serret−Andoyer formalism in Euler−Poinsot problem [15]. Section 3
contains the main contribution of the article: the study of the two-dimensional Riemannian metric g = 2dx2

z(y) +
2dy2

2C−z(y) , which is performed in two steps. First, applying the methodology proposed in [8], we parameterize
the extremals and estimate the conjugate times. Then we compute the Darboux normal form dϕ2 + μ(ϕ)dθ2 of
the Serret−Andoyer metric in order to derive the global geometric properties of the conjugate locus in relation
with the Gauss curvature. Our analysis extends the previous study of metrics on two dimensional spheres of
revolution. In Section 4 we introduce the optimal control problem of the dynamics of spin systems [27, 28]
in connection with the left-invariant sub-Riemannian metric on SO(3) and present the preliminary geometric
results. In Section 5 we illustrate our results by numerical computations using the Hampath code.

2. Left-invariant metrics on SO(3) and the serret−andoyer formalism

in the Euler−poinsot rigid body motion

2.1. Left-invariant metrics on SO(3)

For the presentation and notations concerning the left-invariant metric on SO(3) and its relation with geo-
metric optimal control we use notations of V. Jurdjevic [17]. Denote {e1, e2, e3} the (inertial) Euclidean frame in
R

3. The rigid body position can be represented by the matrix R(t) = (E1(t), E2(t), E3(t)) describing the trans-
formation from ei’s to Ei’s, where E1, E2, E3 form an orthonormal frame attached to the body. In addition,
denote by Ai the standard basis of SO(3)

A1 =

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠, A2 =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠, A3 =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠,

and by [·, ·] the Lie bracket computed with the convention [A,B] = AB − BA. The vector fields �Ai(R) = RAi
form a basis of left-invariant vector fields on SO(3) and one has

[A1, A2] = −A3, [A1, A3] = A2, [A2, A3] = −A1.

Consider now the following optimal control problem on SO(3):

dR
dt

=
3∑
i=1

ui �Ai(R),
1
2

T∫
0

3∑
i=1

Iiu
2
idt −→ min

u(.)
, (2.1)

where the I ′is are the principal momenta of inertia of the body. The Euler−Poinsot dynamics can be derived
using the Pontryagin maximum principle [23] and the appropriate (Poincaré) coordinates in the following way.
Let λ be an element of T ∗

RSO(3) and denote Hi = λ( �Ai(R)), i = 1, 2, 3, the symplectic lifts of the vector
fields �Ai. The pseudo-Hamiltonian associated to the problem (2.1) takes the form

H =
3∑
i=1

uiHi − 1
2

3∑
i=1

Iiu
2
i .
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The maximization condition of the Pontryagin maximum principle implies that along the extremal solutions
∂H
∂u = 0, and hence ui = HiI

−1
i , i = 1, 2, 3. Plugging such ui’s into H we get the true Hamiltonian

Hn =
1
2

(
H2

1

I1
+
H2

2

I2
+
H2

3

I3

)
·

From the point of view of Mechanics, the vector H = (H1, H2, H3) describes the angular momentum of the
body measured in the moving frame and related to the angular velocity in the following way: Hi = Iiui. Then
the well-known Euler equation describing the rigid body evolution takes the form

dHi

dt
= dHi( �Hn) = {Hi, Hn},

where {·, ·} denotes the Poisson bracket. Using the standard relation between Poisson and Lie brackets:
{Hi, Hj} = λ([Ai, Aj ]), we immediately get the following differential equations

dH1

dt
=

1
I2

{H1, H2}H2 +
1
I3

{H1, H3}H3 = H2H3

(
1
I3

− 1
I2

)
,

dH2

dt
= H1H3

(
1
I1

− 1
I3

)
,

dH3

dt
= H1H2

(
1
I2

− 1
I1

)
· (2.2)

Proposition 2.1. Euler equations (2.2) are integrable by quadratures using the two first integrals: the
Hamiltonian Hn and the Casimir |H |2 = H2

1 +H2
2 +H2

3 . The solutions to Euler’s equations can be seen as the
curves on the energy ellipsoid formed by its intersection with the sphere of the constant angular momentum.

Such curves are called polhodes in Classical Mechanics.

Remark 2.2. As it was pointed in [17], the above property holds for every left-invariant Hamiltonian of the
form Hn = Q(H1, H2, H3) on SO(3). In particular, it is true in the SR-case, which is established next as a limit
case of the Riemannian one.

2.2. The sub-Riemannian case

Setting u2 = εv2, with ε → 0, one gets a control system with two control inputs only. Since ui = Hi/Ii, this
is equivalent to the assumption I2 → +∞. Then

Hn =
1
2

(
H2

1

I1
+
H2

3

I3

)

and the Euler equations take the form

dH1

dt
=
H2H3

I3
,

dH2

dt
= H1H3

(
1
I1

− 1
I3

)
,

dH3

dt
= −H1H2

I1
· (2.3)

The parameter k2 = I1/I3 corresponds to the invariant classifying the SR-metrics on SO(3) described in [27].

2.3. The Euler angles

Once the Euler equation is integrated, the next step is to find the solution of the full system. It relies on the
following general property [17]:

Proposition 2.3. For each invariant Hamiltonian Hn on SO(3) the full system is integrable by quadratures us-
ing the four first integrals: the Hamiltonian Hn and the Hamiltonian lifts of the right invariant vector fields AiR.
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Note that the remaining integrals are simply deduced from the Noëther theorem in the Hamiltonian form.
An explicit description of the quadratures can be easily obtained using the chart on SO(3) associated to the
Euler angles Φ1, Φ2, Φ3, which can be defined by the following decomposition of the rotation matrix:

R = exp(Φ1A3) ◦ exp(Φ2A2) ◦ exp(Φ3A3).

As it is shown in [17], the angles Φ2 and Φ3 can be found from the relations

H1 = −|H | sinΦ2 cosΦ3, H2 = |H | sinΦ2 sinΦ3, H3 = |H | cosΦ2, (2.4)

while Φ1 is computed by integrating the differential equation

dΦ1

dt
=

|H |
H2 sinΦ3 −H1 cosΦ3

(
sinΦ3

∂Hn

∂H2
− cosΦ3

∂Hn

∂H1

)
· (2.5)

In terms of the Euler angles, the Hamiltonian takes the form

Hn =
1

2I1

(
p2 sinΦ3 − cosΦ3

sinΦ2
(p1 − p3 cosΦ2)

)2

+
1

2I2

(
p2 cosΦ3 +

sinΦ3

sinΦ2
(p1 − p3 cosΦ2)

)2

+
1

2I3
p2
3,

where pi denotes the canonical impulse associated to Φi, i = 1, 2, 3. The corresponding Riemannian metric reads

g =
((
I1 cos2 Φ3 + I2 sin2 Φ3

)
sinΦ2

2 + I3 cos2 Φ2

)
dΦ2

1

+
(
I2 cos2 Φ3 + I1 sin2 Φ3

)
dΦ2

2 + I3 dΦ2
3

+
(I2 − I1)

2
sin 2Φ3 sinΦ2 dΦ1dΦ2 + I3 cosΦ2 dΦ1dΦ3.

2.4. The Serret−Andoyer variables

The complete integration of the Euler−Poinsot problem can be performed by choosing symplectic coordinates
adapted to the problem by applying the Serret−Andoyer transformation. Indeed, it is well-known from the
Euler−Poinsot analysis that, except the solutions of the Euler equation corresponding to separating polhodes,
every trajectory evolves on a two dimensional torus, and the motion is defined by two angular variables. This
leads to the Liouville action-angle representation in a degenerated form, where one frequency is zero.

A complete description of the Serret−Andoyer transformation and its relation to the Euler angles is given,
for instance, in [15]. Symplectic coordinates (g, k, l, G,K,L), where G, K, L denote the canonical impulses
associated to the variables g, k, l, are defined by

H1 =
√
G2 − L2 sin l, H2 =

√
G2 − L2 cos l, H3 = L.

So, G = |H | and the Hamiltonian Hn takes the form

Hn(g, k, l, G,K,L) =
1
2

(
sin2 l

I1
+

cos2 l
I2

)
(G2 − L2) +

L2

2I3
· (2.6)

This yields the Hamiltonian given in the Section 1.

Ha =
1
2
(
(p2
x − p2

y)(A sin2 y +B cos2 y) + Cp2
y

)
,

where y = l = arctan(H1
H2

), px = G, py = L, A = I−1
1 , B = I−1

2 , C = I−1
3 .
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Note that by construction G ≥ |L|. The inverse transformation towards the Euler angles can be found as
follows:

p1 = K,

p3 = L,

p2 sinΦ2 = − 1
G

√
G2 − L2

√
G2 −K2 sin g,

cosΦ2 =
1
G2

(
KL−

√
G2 − L2

√
G2 −K2 cos g

)
,

which finally yields

Φ1 = k + arctan
(
L−K cosΦ2

p2 sinΦ2

)
, Φ3 = l + arctan

(
K − L cosΦ2

p2 sinΦ2

)
·

An additional canonical transformation, based on the Hamilton−Jacobi method, described in a recent
work [19], leads to a standard action-angle representation of the Euler−Poinsot problem. Instead, in this pa-
per we will use the Serret−Andoyer formalism to transform the Euler−Poinsot problem into a Riemmanian
problem on a two-dimensional surface. Denoting z(y) = 2(A sin2 y + B cos2 y), we rewrite the Serret−Andoyer
Hamiltonian as follows:

Ha =
1
2

(
z(y)
2
p2
x +

(
C − z(y)

2

)
p2
y

)
. (2.7)

Observe that Ha is positive. Moreover, it defines a Riemannian metric

ga =
2
z(y)

dx2 +
2

2C − z(y)
dy2, (2.8)

provided the momenta of inertia of the body are ordered as A < B < C. Indeed, in this case z(y) ∈ [2A, 2B]
and 2C − z(y) > 0. In what follows we will call ga the Serret−Andoyer metric.

3. The Serret−Andoyer riemannian metric

3.1. The pendulum representation

We start by recalling some well-known facts concerning the Euler−Poinsot rigid body dynamics. From now
on we assume4 I1 > I2 > I3, or equivalently, A < B < C. According to Proposition 2.1, the physical motion
occurs if 2h ∈ [Ap2

x, Cp
2
x]. Every polhode is periodic, except the pair of separating polhodes formed by two

circles contained in the planes of intersection of the energy ellipsoid AH2
1 + BH2

2 + CH2
3 = 2h with the

sphere of angular momentum H2
1 + H2

2 + H2
3 = p2

x = 2h/B. These two planes are defined by the equation

H3 = ±
√

B−A
C−BH1. If Ap2

x = 2h or Cp2
x = 2h, then the corresponding periodic polhodes degenerate into the

pairs of points on the energy ellipsoid, which describe the steady rotations of the body around the axes of its
maximal and minimal momenta of inertia.

In the Serret−Andoyer representation, the Hamiltonian

Ha(x, y, w, px, py, pw) =
1
2
[(
p2
x − p2

y

) (
A sin2 y +B cos2 y

)
+ Cp2

y

]
does not depend on w and pw. Hence

dw
dt

=
dpw
dw

= 0,

4This assumption is not restrictive due to the spherical symmetry of the Hamiltonian Hn = 1
2

(
AH2

1 + BH2
2 + CH2

3

)
.
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and the reduced dynamics on the (x, y) plane is described by the system of equations

dx
dt

= px(A sin2 y +B cos2 y),
dpx
dt

= 0,

dy
dt

= py(C −A sin2 y −B cos2 y),
dpy
dt

= (B −A)(p2
x − p2

y) sin y cos y.
(3.1)

The canonical impulse px is a first integral of this system corresponding to the cyclic variable x, while on the
(y, py) plane we obtain a 2D pendulum-type phase portrait. Indeed, the Hamiltonian function Ha is π-periodic
with respect to y-variable, it verifies the following symmetry relations:

Ha(y, py) = Ha(y,−py), Ha(y, py) = Ha(−y, py), (3.2)

and py = 0, y = kπ/2, k = 0, 1 are the equilibrium points. The standard computation shows that in the
neighborhood of the point y = 0, py = 0 the eigenvalues of the linearized system are solutions to the equation
λ2 = (B − A)(C − B)p2

x, and hence both eigenvalues are real since (B − A)(C − B) > 0. Similarly, in the
neighborhood of the point y = π/2, py = 0 one gets the equation λ2 = −(B − A)(C − A)p2

x, whose roots are
purely imaginary.

To obtain a more detailed picture, consider the fixed energy level set Ha = h with h ∈ [Ap2
x/2, Cp

2
x/2
]
. Since

ẏ = py(C − z/2), the evolution of the variable y satisfies the natural mechanical system of the form

ẏ2 + V (y) = 0, V (y) =
(
C − z(y)

2

)(
p2
xz(y)
2

− 2h
)
· (3.3)

In other words, for all initial conditions, y(·) is a trajectory of the natural mechanical system ẏ2 + V (y) = H
lying on the zero energy level H = 0. Observe that V (y) = 0 implies cos2 y = 2h−Ap2x

p2x(B−A) = ξ1, where ξ1 ∈ [0, 1]
if h ∈ [Ap2

x/2, Bp2
x/2
]
, and ξ1 /∈ [0, 1] otherwise. Combining these facts with the analysis of the equilibria we

obtain the following classification of the trajectories of (3.3) for y ∈ [0, π]:

– h ∈ [Ap2
x/2, Bp

2
x/2
]
. System (3.3) admits three types of trajectories: a stable equilibrium y = π/2 if h =

Ap2
x/2, an unstable equilibrium and a separatrice y = 0 mod π if h = Bp2

x/2, which describes the motion along
the separating polhode, and oscillating periodic trajectory with y(t) ∈ [arccos

√
ξ1, π− arccos

√
ξ1] describing

the polhodes around the major semi-axis of the energy ellipsoid.
– h ∈ ]Bp2

x/2, Cp2
x/2
]
. The system (3.3) admits rotational trajectories for h ∈ ]Bp2

x/2, Cp2
x/2
]
, the limit case

h = Cp2
x/2 describing the steady rotation around the minor axis of the energy ellipsoid.

We summarize our analysis in the following

Proposition 3.1. The pendulum motion in the (y, py) plane can be interpreted on the cylinder y ∈ [0, π] mod π
with a stable equilibrium at y = π/2 and an unstable one at y = 0 mod π. There are two types of periodic
trajectories on the cylinder: oscillating trajectories homotopic to zero, and rotating trajectories, while non-
periodic trajectories are separatrices joining 0 to π, which correspond to separating polhodes. Moreover, all these
trajectories share the reflectional symmetry with respect to the axes y = 0 and py = 0.

In particular, it follows that in order to parameterize all phase trajectories on the (y, py) plane it would be
sufficient to integrate (3.1) with the initial condition y(0) = π/2.

On what follows we will extend the terms oscillating (or rotating) also to the trajectories on the (x, y) plane
according to the behaviour of the y component.

3.2. Parameterization of the extremal curves and the conjugate locus

The parameterization of the extremal curves of the Euler−Poinsot motion using elliptic functions is standard
(see, for instance, [20]). The aim of this section is to use a different method introduced in [8] in connection with
the computation of the conjugate locus.
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3.2.1. Parameterization of the periodic trajectories

Consider first the trajectories corresponding to the ascending branch of (3.3): ẏ =
√−V (y). Denoting ξ =

cos2 y, we get
ξ̇ = −

√
P (ξ), (3.4)

where
P (ξ) = 4ξ(1 − ξ)(C − (B −A)ξ −A)(2h− p2

x(B −A)ξ − p2
xA)

= 4p2
x(B −A)2ξ(1 − ξ)(ξ − ξ1)(ξ − ξ3),

(3.5)

and ξ3 = C−A
B−A > 1. It is easy to show that 0 ≤ ξ1 < ξ3, and ξ(t) ∈ [0,min{ξ1, 1}], which yields oscillating

trajectories if ξ1 < 1, separatrice is ξ1 = 1, and rotations otherwise. Changing the sign in the right-hand part
of (3.4) (or, equivalently, taking t < 0) we obtain the parameterization for the descending branch ẏ = −√−V (y).

Case ξ1 < 1. In order to reduce the integration to a known elliptic integral we will apply the method described
by Davis in [14]. Set

η =

√
ξ(1 − ξ1)
ξ1(1 − ξ)

· (3.6)

Observe that η is a monotone increasing function of ξ and η
∣∣
ξ=0

= 0 and η
∣∣
ξ=ξ1

= 1. The direct computation
yields

dη√
(1 − η2)(m′ +mη2)

= −Mdt,

where

m =
ξ1(ξ3 − 1)
ξ3 − ξ1

=
(C −B)(2h−Ap2

x)
(B −A)(Cp2

x − 2h)
,

m′ = 1 −m,

M2 = (B −A)2p2
x(ξ3 − ξ1) = (B −A)(Cp2

x − 2h).

Integrating, we obtain
η(t) = cn(Mt+ ψ0|m), ψ0 = cn−1(η(0)|m),

and by inverting (3.6), we finally get

ξ(t) =
ξ1cn2(Mt+ ψ0|m)

1 − ξ1sn2(Mt+ ψ0|m)
·

Recall now that ẋ = px((B −A) cos2 y +A) = px((B −A)ξ +A). The direct integration of this equation allows
to express x in terms of an elliptic integral of the third kind5:

x(t) − x(0) = px

[
Bt− (B −A)(1 − ξ1)

M
(Π (ξ1|am(Mt+ ψ0|m)|m) −Π (ξ1|am(ψ0|m)|m))

]
.

Case ξ1 > 1. In this case the parameterization formulae can be derived exactly in the same way as before using
the substitution

η =

√
ξ(ξ1 − 1)
(ξ1 − ξ)

,

5Throughout this paper we use the following definitions of the elliptic integrals of the second and of the third kind:

E(x|m) =

x∫
0

√
1 − m sin2 u du, Π(ξ|x|m) =

x∫
0

du

(1 − ξ sin2 u)
√

1 − m sin2 u
·
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which leads simply to the permutation of ξ1 and 1 in all expressions. We omit the details of this computation
and sum the results in the following

Proposition 3.2. Denote ξ1 = 2h−Ap2x
p2x(B−A) , ξ3 = C−A

B−A . Periodic trajectories of (3.1) on the (x, y)-plane starting
at the point (x0, y0) can be parameterized as follows:

i) oscillating trajectories:

cos2 y(t) =
ξ1cn2(Mt+ ψ0|m)

1 − ξ1sn2(Mt+ ψ0|m)
,

x(t) − x0 = px

[
Bt− (B −A)(1 − ξ1)

M
(Π (ξ1|am(Mt+ ψ0|m)|m) −Π(ξ1|am(ψ0|m)|m))

]
,

where

m =
ξ1(ξ3 − 1)
ξ3 − ξ1

, M = (B −A)px
√
ξ3 − ξ1, cn(ψ0|m) =

(1 − ξ1) cos2 y0
ξ1 sin2 y0

;

ii) rotating trajectories:

cos2 y(t) =
ξ1cn2(Mt+ ψ0|m)
ξ1 − sn2(Mt+ ψ0|m)

,

x(t) − x0 = px

[
(A+ (B −A)ξ1)t− (B −A)(ξ1 − 1)

M

(
Π(ξ−1

1 |am(Mt+ ψ0|m)|m) −Π
(
ξ−1
1 |am(ψ0|m)|m))],

where

m =
ξ3 − ξ1
ξ1(ξ3 − 1)

, M = (B −A)px
√
ξ1(ξ3 − 1), cn(ψ0|m) =

(ξ1 − 1) cos2 y0
ξ1 − cos2 y0

.

Corollary 3.3.

i) Solutions of (3.1) are quasi-periodic trajectories on the plane (x, y) for all h ∈ [Ap2
x/2, Cp

2
x/2] \ {Bp2

x/2},
the y-variable being 4K(m)

M -periodic along oscillating trajectories and 2K(m)
M -periodic along rotations, where

K(m) denotes the complete elliptic integral of the first kind;
ii) two oscillating trajectories of (3.1) issued from the same initial point (x0, y0) with initial conditions (px, py(0))

and (px,−py(0) intersect after a half period 2K(m)
M at y(2K(m)

M ) = π − y0.

In order to shorten the expressions, in what follows we will write cn for cn2(Mt + ψ0|m), cn0 for cn2(ψ0|m),
and similarly for other elliptic functions.

3.2.2. Conjugate times along oscillating trajectories

According to the definition, the time t∗ is conjugate to t0 = 0 if the differential of the end-point mapping

et(x0,y0)
: (px(0), py(0)) 	→ (x(t), y(t)),

degenerates at t = t∗, where the extremals of the Hamiltonian system (3.1) are parameterized by the initial
values of p(0) = (px, py(0)) and px is the first integral. In what follows we denote by t1∗ = min |t∗| the first
conjugate (to 0) time.

In order to simplify the further calculation, we first make a change of variables in the space of the canonical
impulses.

Lemma 3.4. Assume that the initial point (x0, y0) is such that cos2(y0) 
= ξ1 and h 
= Cp2
x/2. Then the map

Φ : (px, py(0)) 	→ (M, ξ1)

is non-degenerate.
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Proof. Indeed, Φ can be written as a composition map Φ = Φ2 ◦ Φ1, where

(px, py(0)) Φ1−→ (px, h) Φ2−→ (M, ξ1).

Then

detD(px,py(0))Φ1 = py(0)
(
C − z(0)

2

)
·

The expression of the Hamiltonian function Ha implies p2
y(0) = p2x(ξ1−cos2(y0))

(ξ3−cos2(y0))
. Hence Φ1 is non-degenerate if

py(0) 
= 0, i.e., if cos2(y0) 
= ξ1, which is also equivalent to the condition ψ0 
= 0 mod 2K(m). Further, we
have

D(px,h)Φ2 =
2
p3
x

√
Cp2

x − 2h
(B −A)


= 0

if h 
= Cp2
x/2. The statement follows now from the chain rule for composition maps. �

Lemma 3.5. Under the assumptions of Lemma 3.4, the conjugate times along oscillating trajectories starting
at (x0, y0) are solution to the equation

ΛMt = I(Mt), (3.7)

where

I(T ) =

T+ψ0∫
ψ0

du
sn2(u|m)

, Λ =
Bξ1

Bξ1 +A(1 − ξ1)
·

Proof. Indeed, we have

D(M,ξ1)e
t
(x0,y0)

=
∂y

∂ξ

∣∣
y=y(t)

Δ,

where

Δ =

(
∂x(t)
∂M

∂x(t)
∂ξ1

∂ξ(t)
∂M

∂ξ(t)
∂ξ1

)
.

Since ξ = cos2 y,
∂y

∂ξ
=

1
2
√
ξ(1 − ξ)

=
1

2
√
ξ1(1 − ξ1)

1 − ξ1sn2

cn
· (3.8)

On the other hand, a straightforward but rather tedious computation6 yields

detΔ = − t cndn sn
(B − A)

√
x3 − x1(1 − ξ1sn2)2

ΔMt,

where

ΔT = Bξ1

(
ET+ψ0 − Eψ0 +

cn dn
sn

− cn0 dn0

sn0

)
+A(1 − ξ1)

(
ET+ψ0 − Eψ0 +

cn dn
sn

− cn0 dn0

sn0
− T

)
T = Mt,

where we denote Eψ = E(am(ψ|m)|m), E(·|m) being the standard elliptic integral of the second kind of
modulus m. Since

ET+ψ0 − Eψ0 +
cn dn
sn

− cn0 dn0

sn0
= T −

T+ψ0∫
ψ0

du
sn2(u|m)

, (3.9)

6The authors used the Mathematica package.
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and taking into account (3.8), we finally found that for all initial points (x0, y0) such that cos2(y0) 
= ξ1 and
h 
= Cp2

x/2 the conjugate times of our problem are solutions to the implicit equation

sn ·

⎛
⎜⎝Bξ1T − (Bξ1 +A(1 − ξ1))

T+ψ0∫
ψ0

du
sn2(u|m))

⎞
⎟⎠ = 0, T = Mt. (3.10)

From (3.9) it is clear that solutions to (3.10) are zeros of the bracket term only, which leads to equation (3.7).
�

Lemma 3.6. Equation I(τ) = Λτ has exactly one root on each interval of the form [2iK(m), 2(i+1)K(m)−ψ0]
(for τ > 0) or [−2iK(m), −2(i+ 1)K(m) − ψ0] (for τ < 0), i = 1, 2, . . . .

Proof. It is easy to see that I(·) is a monotone increasing function, I(0) = 0, I(τ) → +∞ as T → 2iK(m)− ψ0

from the left and I(τ) → −∞ as T → 2iK(m)−ψ0 from the right for i = 0,±1, . . . . In addition, on the interval
(0, 2K(m)−ψ0] the function I(τ) is positive and I ′(τ) = sn−2(τ +ψ0|m)) ≥ 1, while Λ ≤ 1, the equality taking
place only for 2h = Bp2

x, and hence this interval contains no root. Inverting the signs, we see that the interval
[−ψ0, 0) contains no root either. Therefore, the positive roots of the equation I(τ) = Λτ belong to the intervals
[2iK(m)−ψ0, 2(i+ 1)K(m)−ψ0], i = 1, 2, . . . , and the negative ones to [−2iK(m)−ψ0,−2(i+ 1)K(m)−ψ0],
i = 0, 1, 2, . . . .

Let us now show that there are no roots on the intervals of the form (2iK(m)−ψ0, 2iK(m)] and of the form
[−2iK(m),−2iK(m) − ψ0). Consider first the interval (2K(m) − ψ0, 2K(m)]. The function I(·) is monotone
increasing, moreover, I(2K(m)) = 2(K(m) − E(m)) > 0 for all m > 0, E(m) being the complete elliptic
integral of the second kind of modulus m. Further, observe that Λ

∣∣
ξ1=0

= 0, Λ
∣∣
ξ1=1

= 1, and moreover,

Λ(ξ1) is a monotone increasing and strictly concave function of ξ1. On the other hand, since m = ξ1(ξ3−1)
(ξ3−ξ1) ,

m(ξ1) is monotone increasing and strictly convex. Therefore for all ξ1 ∈ (0, 1) we have Λ > m. Since for all
m ∈ [0, 1] one has mK(m) ≥ K(m) − E(m) (the equality taking place iff m = 0), we deduce that the graph
of I lies below the line mT for all T ∈ (2K(m) − ψ0, 2K(m)], and hence there is no root on this interval.
Since I(−2K(m)) = −2(K(m) − E(m)) < 0, the same argument shows the absence of roots on the interval
[−2K(m),−2K(m) − ψ0]. Due to the 2K(m)

M -periodicity of equation (3.7), the proof is valid for all intervals of
the form (2iK(m)− ψ0, 2iK(m)] and [−2iK(m),−2iK(m)− ψ0). �

Since by construction ψ0 ∈ [0,K(m)], we immediately get the following upper bound:

Corollary 3.7. The first conjugate time verifies t1∗ <
3K(m)
M .

Lemma 3.8. Conjugate times of the trajectories issued from (x0, y0) such that cos2(y0) = ξ1 are of the form
ti∗ = 2iK(m)

M , i = ±1, . . .

Proof. The condition cos2(y0) = ξ1 implies η(0) = 0, and hence ψ0 = 0 mod 2K(m). We limit ourselves to the
case ψ0 = 0, the other case being the simple inversion of sign. We have cn0 = dn0 = 1, sn0 = 0, and according
to our previous calculation,

detD(px,py(0))e
t
(x0,y0)

= −
√
p2
x(ξ1 − cos2(y0))
ξ3 − cos2(y0)

(
C − z(0)

2

)
× 2
p3
x

√
Cp2

x − 2h
(B −A)

× 1
2
√
ξ1(1 − ξ1)

1 − ξ1sn2

cn
× t cn dn sn

(B −A)
√
x3 − x1(1 − ξ1sn2)2

ΔMt,

(3.11)
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where

ΔMt =
1

sn0

[
Bsn0ξ1

(
E(T + ψ0|m) − E(ψ0|m) +

cn dn
sn

)
−Bξ1cn0 dn0

+A(1 − ξ1)sn0

(
E(T + ψ0|m) − E(ψ0|m) +

cn dn
sn

− T
)
−A(1 − ξ1)cn0 dn0

]
.

On the other hand, since

sn2
0 =

ξ1 − cos2(y0)
ξ1(1 − cos2(y0))

,

√
ξ1 − cos2(y0)
ξ3 − cos2(y0)

= sn0

√
ξ1(1 − ξ1)
ξ3 − ξ1

·

Substituting these expressions into (3.11), we see that detDpx,py(0)et(x0,y0)
= 0 if and only if

t(Bξ1 +A(1 − ξ1)) sn(Mt|m) = 0.

Thus the conjugate times for the solutions verifying cos2(y0) = ξ1 are of the form 2iK(m)
M , i = 1, 2, . . . �

Summing up, we get the following

Theorem 3.9.

1. The first conjugate time (to 0) along any oscillating solution of the Hamiltonian system (3.1) satis-
fies 2K(m)

M ≤ t1∗ <
3K(m)
M , and moreover, t1∗ = 2K(m)

M along trajectories starting with py(0) = 0;

2. if px ∈
[√

2hA−1,
√

2hB−1
]
, then

min
px

t1∗ =
π
√
A√

2h(B −A)(C −A)
, lim

px→
√

2h
B

t1∗ = +∞.

Proof. The first point summarizes the results of Lemmata 3.4−3.8. For the second point observe that dξ1
dpx

= −4h
p3x

.
On the other hand, ξ1 ≥ m and

d
dξ1

(
2K(m(ξ1))
M(ξ1)

)
=

E(m) −K(m) + ξ1K(m)
(1 − ξ1)ξ1(B −A)

√
p2
x(ξ3 − ξ1)

≥ E(m) −K(m) +mK(m)
(1 − ξ1)ξ1(B −A)

√
p2
x(ξ3 − ξ1)

≥ 0.

Hence 2K(m)
M is a decreasing function of px if px > 0, and the statement follows. �

3.2.3. Conjugate times along rotating trajectories

The computation of the conjugate times along rotating trajectories is essentially the same as in the oscillating
case but using the second part of Proposition 3.2. We omit technical details of this computation and present
directly the result:

Lemma 3.10. The conjugate times along rotating trajectories are solutions to the equation

BTξ1 − (Bξ1 −A(ξ1 − 1))

ψ0+T∫
ψ0

sn2(u|m)du = 0, T = Mt. (3.12)

Corollary 3.11. Rotating trajectories have no conjugate points on the plane (x, y).

Proof. Indeed, rewriting the left hand side of (3.12) we get

Bξ1

ψ0+T∫
ψ0

cn2(u|m)du+A(ξ1 − 1)

ψ0+T∫
ψ0

sn2(u|m)du = 0,

which clearly has no non-trivial solution. �
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3.3. Geometric analysis using the (Darboux) polar representation of the metric

In this section we reduce our analysis to the study of the Riemannian metric on a surface of revolution,
see [24] for the general framework and [6, 25] for the case of two spheres of revolution.

3.3.1. Riemannian metric on a two-dimensional surface of revolution: generalities

Taking a local chart in an open domain U , the Riemannian metric on a two-dimensional surface of revolution
can be written in polar coordinates in the form

ds2 = dϕ2 + μ(ϕ)dθ2,

where μ(ϕ) > 0. We will use the Hamiltonian formalism to describe the geodesics of such a metric. Denote by
q = (ϕ, θ) ∈ U the state variables and by p = (pϕ, pθ) the corresponding coordinates on the fibers. In addition,
at each point z = (p, q) ∈ T ∗U we denote by ∂p and ∂q the vertical and the horizontal parts of the linear space
Tz(T ∗U). Then the Liouville form reads ω = pdq. The Hamiltonian associated to the metric is given by

H =
1
2

(
p2
ϕ +

p2
θ

μ(ϕ)

)
,

and the geodesics are projections on U of the extremal curves solutions to the Hamiltonian system

ϕ̇ = pϕ, ṗϕ =
1
2
μ′(ϕ)
μ2(ϕ)

, θ̇ =
pθ
μ(ϕ)

, ṗθ = 0. (3.13)

Fixing H = 1
2 one obtains the geodesics parameterized by the arc-length. The condition pθ = const defines the

Clairaut relation on a surface of revolution. There are two particular types of solutions of (3.13):

– meridian curves: pθ = 0, θ(t) = θ0;
– parallel solution: ϕ̇(0) = pϕ(0) = 0 and ϕ(t) = ϕ0, which, taking into account the Hamiltonian equations, is

equivalent to μ′(ϕ) = 0.

Solutions of (3.13) can be seen as trajectories of the one-parametric families of mechanical systems
ϕ̇2 + V (pθ, ϕ) = 1, where V (pθ, ϕ) = p2

θ/μ(ϕ) is a potential. Note that the parallel solutions correspond to
local extrema of V (pθ, ·) for each fixed value of the Clairaut constant pθ.

In what follows we assume that

(A1) μ′(0) = 0, i.e., ϕ = 0 is a parallel solution (called the equator);
(A2) the metric is reflectionally symmetric with respect to the equator: μ(ϕ) = μ(−ϕ), and μ′′(0) < 0.

Then in a neighborhood of ϕ = 0 on has a family of periodic trajectories solution to the equation

ϕ̇2 = 1 − p2
θ

μ(ϕ)
,

which describes the evolution of the ϕ variable along the geodesics parameterized by arc-length. Denote

g(ϕ, pθ) =

√
μ(ϕ)

μ(ϕ) − p2
θ

·

Then ϕ̇ = ±1/g(ϕ, pθ), where the sign “+” describes the ascending branch of the trajectory (ϕ(t), θ(t)).
In what follows, taking into account the symmetry of the problem, we assume θ0 = 0 and pθ ∈ (0, μ(ϕ0)). Let

us consider the ascending branch ϕ̇ > 0, and moreover, assume ϕ0 = 0, the generalization being straightforward.
Since the arc-length parameterized geodesics verify the equations

ϕ̇ =
1

g(ϕ, θ)
, θ̇ =

pθ
μ(ϕ)

,
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we can parameterize θ by ϕ, which yields

dθ
dϕ

=
g(ϕ, pθ)pθ
μ(ϕ)

=
pθ√

μ(ϕ)
√
μ(ϕ) − p2

θ

= f(ϕ, pθ). (3.14)

Let us now recall the main known results concerning the Jacobi equation and the conjugate locus for the
Darboux-type metrics. Denote by �H the Hamiltonian vector field associated to H , and by et �H the corresponding
Hamiltonian flow in T ∗U . The function H defines a quadratic form on the cotangent bundle. Computing its
variation along the solutions parameterized by the arc-length we get 〈p, δp〉 = 0.

Definition 3.12. Let t → γ(t), t ∈ [0, T ], be a solution of (3.13). The variational system associated to (3.13)
along γ(·) is called the Jacobi equation. The Jacobi field J : [0, T ] → Tγ(·)(T ∗U) is a non-trivial solution of the
Jacobi equation J(t) = et �H∗ J(0).

Assume that J(t) = (δq(t), δp(t)) is a Jacobi field vertical at t = 0, i.e., δq(0) = 0, and tangent to the level set
of H = H−1(1/2) : 〈p(0), δp(0)〉 = 0. Note that since et �H preserves the restriction of ω on H and ω(J(0)) = 0,
we have ω(J(t)) = 0 for all t. A complementary Jacobi field P (t), transversal to H and called the Poincaré field,
can be obtained by considering the vertical curve λ → (q0, expλp0) and its infinitesimal generator V = p∂p.
Since [ �H, V ] = − �H, we have P (t) = et

�H
∗ V = V − t[ �H, V ] = V + t �H . Hence ω(P (t)) = tp∂H∂p = 2tH(p, q) = t 
= 0

for t > 0. Thus, denoting π : (q, p) → q the standard projection, and by π∗ its differential, we get the following
result:

Lemma 3.13. Conjugate points are given by π∗(J(t∗)) = 0, where π∗(J(t)) =
(
∂ϕ(t,pθ)
∂pθ

, ∂θ(t,pθ)
∂pθ

)
. In addition,

for all t we have the collinearity relation

pϕ
∂ϕ

∂pθ
+ pθ

∂θ

∂pθ
= 0. (3.15)

In order to describe the conjugate locus to a point on the equator, we first recall the following result (see [24],
Cor. 7.2.1):

Lemma 3.14. Let pθ ∈ [0,
√
μ(ϕ(0))) be such that ϕ̇ > 0 on (0, t). Then this interval contains no conjugate

point.

Definition 3.15. Let I = (a,
√
μ(ϕ(0))), a ≥ 0, be an interval such that for any pθ ∈ I the ascending branch

starting at ϕ0 = 0 one has ϕ̇
(
T
4

)
= 0, and let ϕ+ = ϕ

(
T
4

)
. Then the trajectory t → ϕ(t) is periodic with

period T given by

T

4
=

ϕ+∫
0

g(pθ, ϕ)dϕ,

its first return to the equator occurs at the time T
2 , while θ changes by the quantity

Δθ(pθ) = θ

(
T

2

)
− θ0 = 2

ϕ+∫
0

f(ϕ, pθ)dϕ.

The mapping pθ ∈ I → T (pθ) is called the period mapping and R : pθ → Δθ(pθ) is called the first return
mapping.

Definition 3.16. The extremal flow is called tame on I if the first return mapping verifies R′(pθ) < 0.
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Proposition 3.17. An extremal curve of a tame flow corresponding to pθ ∈ I contains no conjugate point on
(0, T (pθ)/2).

Proof. As it was shown in [6], if R′ < 0, then the extremal curves issued from ϕ0 = 0 with pθ ∈ I do not intersect
before coming back to the equator. As conjugate points are limits of the intersecting geodesics, conjugate points
cannot occur before the return to the equator. �

The minimal distance to the conjugate locus can be estimated in terms of the Gauss curvature of the metric,
which in polar coordinates can be computed via the formula

G(ϕ) = − 1√
μ(ϕ)

∂2
√
μ(ϕ)

∂ϕ2
.

The following fact is standard and follows from the classical result by Poincaré [22]:

Lemma 3.18. Assume that G(0) = max
ϕ

G(ϕ) > 0. Then the first conjugate point along the equator occurs at

t1∗ = π/
√
G(0). Moreover, (ϕ(t∗), θ(t∗)) realizes the minimum distance from (0, 0) to the conjugate locus C(0,0),

which has a cusp at this point.

Assume now pθ ∈ I and consider t ∈ (T (pθ)/2, 3T (pθ)/4). According to our assumptions, on this interval we
have ϕ(t) < 0 and ϕ̇(t) < 0. Thus

θ(t, pθ) = Δθ(pθ) +

t∫
T
2

pθdτ
μ(ϕ(τ))

= Δθ(pθ) +

0∫
ϕ(t,pθ)

f(ζ, pθ)dζ.

The collinearity relation (3.15) implies that

Lemma 3.19. For pθ ∈ I the conjugate time in the open interval
(
T
2 ,

T
2 + T

4

)
is solution to the equation

∂θ

∂pθ
(ϕ, pθ) = 0, (3.16)

where

θ(ϕ, pθ) = Δθ(pθ) +

0∫
ϕ

f(ζ, pθ)dζ.

To conclude we recall the following relation between the period and the first return map, which we will use
in our further computations:

Lemma 3.20.

R′(pθ) =
T ′(pθ)
2pθ

·

3.3.2. The Darboux normal form of the Serret−Andoyer metric

We now apply the described technique to the analysis of the Serret−Andoyer metric. As before, we assume
that A < B < C. In order to put metric (2.8) into the Darboux normal form g = dϕ2 + μ(ϕ)dθ2, we have to
integrate the following equations

dy√
C − (A sin2 y +B cos2 y)

= dϕ, dθ = dx.
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The second equation implies that θ = x modulo a rotation by a fixed angle. As for the ϕ variable, according to
the argument of Section 2, we choose the initial condition at y0 = π/2.

Set X = sin y. Thus X(0) = 1 and∫ ϕ

ϕ0

dϕ =
∫ X

1

dX√
(1 −X2)((C −B) + (B −A)X2)

= −
∫ 1

X

dX√
(C −A)(1 −X2)

(
(C−B)
(C−A) + (B−A)

(C−A)X
2
)

= −
∫ 1

X

dX√
(C −A)(1 −X2)(k′ + kX2)

,

where

k =
(B −A)
(C −A)

=
1
ξ3
, k′ = 1 − k =

(C −B)
(C −A)

·

Denote α =
√
C −A. Choosing the initial condition ϕ0 = 0 we finally obtain a standard elliptic integral

−αϕ =
∫ 1

X

dX√
(1 −X2)(k′ + kX2)

= cn−1(X |k),

and hence
sin y = X = cn(−αϕ|k) = cn(αϕ|k),

which implies
z = 2

(
A sin2 y +B cos2 y

)
= 2(Acn2(αϕ|k) +Bsn2(αϕ|k)),

μ(ϕ) =
2
z

=
1

Acn2(αϕ|k) +Bsn2(αϕ|k) ·

So, we get the following

Proposition 3.21.

i) The Andoyer−Serret metric ga can be put into the Darboux normal form dϕ2 + μ(ϕ)dθ2 with
μ(ϕ) = (Acn2(αϕ|k) +Bsn2(αϕ|k))−1 ∈ [B−1, A−1], α =

√
C −A.

ii) The Gauss curvature of the Andoyer−Serret metric is given by

G(ϕ) =
(A+B + C)(z(ϕ) − z−)(z(ϕ) − z+)

z(ϕ)2
,

where z(ϕ) = 2(Acn2(αϕ|k) +Bsn2(αϕ|k)) and

z± =
2(AB +AC +BC ±√(AB +AC +BC)2 − 3ABC(A +B + C))

A+B + C
·

The second statement of the proposition can be verified by a straightforward computation using the Gauss
curvature formula mentioned above. In particular, it follows that G is 2K(k)

α -periodic and reflectionally sym-
metric: G(ϕ) = G(−ϕ). It also easy to show that z− ∈ [2A, 2B], while z+ > 2B, thus on [−K(k)

α , K(k)
α ] the

Gauss curvature changes it sign twice at ±ϕ1, ϕ1 = α−1sn−1(
√

z−−2A
2(B−A)). In addition, is has local maxima at

ϕ = ±K(k)
α and ϕ = 0, and a minimum at the point ϕ∗, which is the solution to the equation z(ϕ∗) = 2z−z+

z−+z+
.

More precisely,

max
[0, 2αK(k)]

G(ϕ) = G(0) =
(B −A)(C −A)

A
, min

[0, 2αK(k)]
G(ϕ) = − (A+B + C)(z+z−)2

4z−z+
·



880 B. BONNARD ET AL.

�1��1

K �k�

Α

�K �k�

Α

�

�B�A� �C�A�

A

Gmin

G���

Π 2Π
Θ

�
K �k�

Α

��0�

K �k�

Α

�

Figure 1. The function μ(ϕ) (dashed curve) and Gauss curvature (continuous curve) of the
Serret−Andoyer metric (left); extremal curves of the Serret−Andoyer metric (right).

The graph of G is represented by a continuous curve in the left subplot of Figure 1. The right subplot of Figure 1
shows the extremal trajectories of the Serret−Andoyer metric on the extended interval pθ ∈ [0, A−1/2]. The thick
dashed curves describe the permanent rotations around the minor axis of inertia, while the thick continuous
curves correspond to the separating polhodes. Note that physically realizable solutions of the Euler−Poinsot
problem concern pθ ∈ [

√
C−1,

√
A−1] (trajectories in the horizontal sector bounded by the thick dashed curves).

The Gauss curvature is positive in the gray stripe along the horizontal axis. It changes sign along rotational
trajectories, while it is positive along oscillating trajectories which remain sufficiently close to the horizontal
axis. Such trajectories correspond to the polhodes around the major axis of the energy ellipsoid.

3.3.3. Conjugate locus of the Serret−Andoyer metric

We limit our analysis to the physically interesting case pθ ∈ [
√
C−1,

√
A−1], and consider the geodesics

parameterized by the arc-length (h = 1
2 ). According to Corollary 3.11, conjugate points belong to oscillating

trajectories only. In order to put the analysis of the Serret−Andoyer case in the same framework as in Sec-
tion 3.3.1, we set θ ≡ x and pθ ≡ px. The general results in Section 3.3.1 can be extended to the Serret−Andoyer
case, provided the symmetry assumptions (A1) and (A2) are verified.

Using the explicit form of the function μ(ϕ) given in Proposition 3.21 (dashed curve in left subplot of Fig. 1),
we immediately derive the following symmetry properties of ga:

Proposition 3.22. The Serret−Andoyer metric ga is invariant with respect to rotation by angle θ (pθ = const.),
it possesses the reflectional symmetry induced by μ(−ϕ) = μ(ϕ), and μ′(ϕ) 
= 0 for ϕ ∈ (0,K(k)α−1).

In particular, assumptions (A1), (A2) are true. The period mapping of oscillating trajectories is T = 4K(m)
M ,

where m and M are given in the first part of Proposition 3.2. Using the explicit parameterization formulae, the
first return mapping along oscillating trajectories of the Serret−Andoyer metric can be easily computed:

Δθ(pθ) = θ

(
t+

2K(m)
M

)
− θ(t) =

2pθ
M

[K(m)B − (B −A)(1 − ξ1)Π(ξ1|m)] ,

Π(·|m) being a complete elliptic integral if the third kind of modulus m.

Proposition 3.23. For the non-negative values of the Clairaut constant pθ such that 1/B < p2
θ < 1/A the first

return mapping of the Serret−Andoyer metric is a strictly convex monotone decreasing function. In particular,
the corresponding geodesic flow is tame.
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Proof. Denoting ′ the derivatives with respect to pθ and differentiating the period map T = 4K(m)
M we get

1
4

dT
dpθ

=
m′

M

dK(m)
dm

− K(m)M ′

M2
,

1
4

d2T

dp2
θ

=
K(m)
M3

(2M ′2 −MM ′′) +
1
M2

dK(m)
dm

(Mm′′ − 2m′M ′) +
d2K(m)

dm2

m′2

M
·

By definition, K(m) =
π
2∫
0

dx√
1−m sin2 x

, hence for all m ∈ [0, 1] dK(m)
dm > 0 and d2K(m)

dm2 > 0.

Further, if I2 < p2
θ ≤ I1, then

m′ = −2(C −A)(C −B)pθ
(B −A)(Cp2

θ − 1)2
< 0, M ′ =

Cpθ
√
B −A√

Cp2
θ − 1

> 0,

and hence T is a monotone decreasing function if p2
θ ∈ (1/B, 1/A). In addition, we have

Mm′′ − 2m′M ′ =
2(C −A)(C −B)(1 + 5Cp2

θ)√
B −A(Cp2

θ − 1)5/2
> 0,

2M ′2 −MM ′′ =
(B −A)C(1 + 2Cp2

θ)
Cp2

θ − 1
> 0, m′2 > 0.

Hence T is a strictly convex function of pθ. The statement now follows from Lemma 3.20. �

As usual, the dynamics of ϕ-variable is obtained by integrating the natural mechanical system ϕ̇2+ z(ϕ)
2 p2

θ = 1,
whose potential is given by V (ϕ, pθ) = p2

θz(ϕ)/2, and hence V (·, pθ) is an increasing function of pθ. Varying
pθ, we obtain a one parametric family of potentials represented in Figure 2. The gray zone corresponds to
pθ ∈ [

√
B−1,

√
A−1], where the limit value pθ =

√
B−1 describes the separatrice. Oscillating trajectories starting

at ϕ0 are generated by the values pθ ∈ (
√
B−1,

√
2z(ϕ0)−1] (dark gray stripe).

Theorem 3.24. The first conjugate locus to a point (0, ϕ0) of the Serret−Andoyer metric ga consist of two
components, symmetric with respect to the vertical line θ = 0. Each component is composed by two smooth
branches, which asymptotically tend to the horizontal lines ϕ = ±K(k)

α and form a unique horizontal cusp on
the line ϕ = −ϕ0.
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Proof. The vertical symmetry of the conjugate locus can be easily derived from (3.2), and it is easy to see that
the left component of the locus corresponds to the negative values of pθ. Let us focus on the right component
with pθ > 0.

Consider the ascending branch (ϕ̇(0) > 0) of the trajectory starting at ϕ0 ∈ [−K(k)α−1, 0], θ(0) = 0.
According to Theorem 3.9, the first conjugate time along any trajectory t∗1 ∈ [T2 ,

3T
4 ). Taking into account that

ϕ̇ = 0 at ϕ = ±K(k)
α , on the interval [0, 3T

4 ) we can parameterize θ by ϕ as follows:

θ(ϕ, pθ) =

0∫
ϕ0

f(ζ, pθ)dζ +Δθ(pθ) −
ϕ(pθ)∫
0

f(ζ, pθ)dζ.

The conjugacy condition ∂θ(ϕ,pθ)
∂pθ

= 0 implies

−
ϕ∗(pθ)∫

0

f ′(ζ, pθ)dζ = −
0∫

ϕ0

f ′(ζ, pθ)dζ −Δθ′(pθ),

where ϕ∗(pθ) = ϕ(t∗1(pθ)). Computing, we have

−
0∫

ϕ0

f ′(ζ, pθ)dζ −Δθ′(pθ) =

ϕ0∫
−K(k)

α

f ′(ζ, pθ)dζ − 3
2
Δθ′(pθ) > 0

since f ′(ζ, pθ) > 0 and Δθ is monotone decreasing. In particular, it follows that ϕ∗(pθ) < 0. Differentiating
again we get

−f ′(ϕ∗(pθ), pθ)ϕ′
∗(pθ) = −Δθ′′(pθ) −

0∫
ϕ0

f ′′(ζ, pθ)dζ +

ϕ∗(pθ)∫
0

f ′′(ζ, pθ)dζ < 0,

since Δθ(pθ) is strictly convex, f ′′(ζ, pθ) > 0 and ϕ∗(pθ) < 0. Therefore ϕ′∗(pθ) > 0, which implies that the
conjugate locus can be smoothly parameterized by pθ.

Denote γ = (θ(ϕ∗(pθ), pθ), ϕ∗(pθ)) such a parameterization of the conjugate locus. Then its tangent vector
is given by ϕ′

∗(
∂θ
∂ϕ∂θ + ∂ϕ), where pθ ∈ (

√
B−1,

√
2/z(ϕ0)]. The global structure of the conjugate locus can be

undersood from the asymptotic behaviour of the curve γ as pθ tends to its limits.

a) Case pθ → 1√
B

+. Then

lim
pθ→ 1√

B
+
f(ϕ∗(pθ), pθ) =

Acn2(αϕ∗|k) +Bsn2(αϕ∗|k)√
(B −A)cn2(αϕ∗|k)

·

By definition, ϕ∗ = ϕ(t∗1). Since when pθ → 1√
B

+, ϕ(t) → ϕs(t), where ϕs describes the dynamics of the ϕ

variable along the separatrice, we have lim
pθ→ 1√

B+

ϕ∗ = ϕs(t1∗) = ±K(k)
α , because, according to Theorem 3.9,

t∗1 → +∞ as pθ → 1√
B

+. Therefore, since ∂θ
∂ϕ = ±f(ϕ∗(pθ), pθ) → ±∞ as pθ → 1√

B
+, the extremities of the

conjugate locus asymptotically tend to the horizontal lines ϕ = ±K(k)
α .

b) Case pθ →
√

2
z(ϕ0)

. Though the existence of the horizontal cusp in this case follows from [22], here we derive
it directly from Proposition 3.2. We have

lim
pθ→

√
2

z(ϕ0)

f(ϕ∗(pθ), pθ) =
Acn2(αϕ∗|k) +Bsn2(αϕ∗|k)√

A(cn2(αϕ0|k) − cn2(αϕ∗|k)) +B(sn2(αϕ0|k) − sn2(αϕ∗|k))
·
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Observe that pθ =
√

2
z(ϕ0)

implies ϕ̇0 = 0, and hence ψ0 = 0 mod 2K(m)
M , where ψ0, m and M are described

in the first part of Proposition 3.2. Then, according to Theorem 3.9, t1∗ = 2K(m)
M and ϕ∗(pθ) = −ϕ0. Applying

the formulae of the first part of Proposition 3.2, we obtain

lim
pθ→

√
2

z(ϕ0)

cn2(αϕ∗|k) = sin2 y(t)
∣∣
t= 2K(m)

M

= 1 − ξ(t)
∣∣
t= 2K(m)

M

= 1 − ξ1.

On the other hand, since η(0) = cn−1(0|m) = 1, ξ(0) = ξ1 and hence

lim
pθ→

√
2

z(ϕ0)

cn2(αϕ0|k) = sin2(y0) = 1 − ξ(0) = 1 − ξ1.

Therefore ∂θ
∂ϕ = ±f(ϕ∗(pθ), pθ) → ±∞ as ϕ→ −ϕ0, forming a horizontal cusp. �

Remark 3.25. Let θ∗(ϕ0) = θ(t1∗). We know that t̄∗ = min
ϕ0

t1∗ = π
√
A√

(B−A)(C−A)
(Thm. 3.9 or Lem. 3.18).

Moreover, Lemma 3.18 implies

min
ϕ0

θ∗(ϕ0) = θ∗(0) = θ(t̄∗) =
πA

√
A√

(B −A)(C −A)
·

4. Optimal control of a three spin system with inequal Ising coupling

and left-invariant sub-Riemannian metrics on SO(3)

In this section we analyse the optimal control of three spin systems with Ising coupling introduced in [27,28]
in relation with invariant SR-metrics on SO(3) [18].

4.1. The physical problem

Spin dynamics with application in NMR are described in [21] and the general mathematical model is described
in [13]. Here we consider a system of three spins with Ising coupling analyzed in [27, 28]. In a chosen rotating
frame, the Hamiltonian takes the form

H0 = 2π(J12I1zI2z + J23I2zI3z),

where J12, J23 are the coupling Ising constants and Ikα, α = x, y, z are the standard tensor products of the
respective Pauli matrix Iα:

Ikα = 1 ⊗ . . . 1 ⊗ Iα ⊗ 1 · · · ⊗ 1,

where Iα appears at the kth position and 1 is the identity matrix.
Following [28], we consider the transfer from I1x to 4I1yI2yI3z in minimum time, which realizes an intermediate

step of the fastest transfer from I1x to I3x. After reduction to the transfer from x1 to x4 identified below, the
control system can be written in the form

dx(t)
dt

=

⎛
⎜⎝

0 −1 0 0
1 0 −u(t) 0
0 u(t) 0 −k
0 0 k 0

⎞
⎟⎠ x(t), k =

J23

J12
> 0, (4.1)

where x = (x1, x2, x3, x4), x1 = 〈I1x〉, x2 = 〈2I1yI2z〉, x3 = 〈2I1yI2x〉, x4 = 〈4I1yI2yI3z〉 and 〈O〉 denotes the
expectation value of the operator O. The original optimal control problem then becomes the problem of transfer
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(1, 0, 0, 0) to (0, 0, 0, 1) in minimum time. Introducing the coordinates r1 = x1, r2 =
√
x2

2 + x2
3, r3 = x4 and

tanα = x3/x2, we get the system

dr(t)
dt

=

⎛
⎝ 0 − cosα 0

cosα 0 −k sinα
0 k sinα 0

⎞
⎠ r(t) (4.2)

where r = (r1, r2, r3) ∈ S2 and α(t) is plays the role of control. In these coordinates the minimum time problem
for (4.1) becomes the problem of the fastest transfer of the point (1, 0, 0) to the point (0, 0, 1) on the sphere.

4.2. The related almost-Riemannian and sub-Riemannian problems

The original optimal control problem leads to analyze the problem of transfer r(0) = (1, 0, 0) to r(T ) = (0, 0, 1)
for the system

ṙ1 = u3r2, ṙ2 = −u3r1 + u1r3, ṙ3 = −u1r2 (4.3)

by minimizing the functional
T∫

0

(I1u2
1(t) + I3u

2
3(t))dt. (4.4)

Since r ∈ S2, this problem defines a singular metric on S2 called almost-Riemannian in the literature [1]:

g =
dr21 + k2dr23

r22
, k2 =

I1
I3
> 0.

We have the following

Lemma 4.1.

1) In the spherical coordinates r2 = cosϕ, r1 = sinϕ cos θ, r3 = sinϕ sin θ the metric g takes the form

g = (cos2 θ + k2 sin2 θ)dϕ2 + 2(k2 − 1) tanϕ sin θ cos θdϕdθ + tan2 ϕ(sin2 θ + k2 cos2 θ)dθ2,

with associated Hamiltonian

H =
1

4k2

(
p2
ϕ(sin2 θ + k2 cos2 θ) + p2

θ cot2 ϕ(cos2 θ + k2 sin2 θ) − 2 (k2 − 1)pϕpθ cotϕ sin θ cos θ
)
.

2) If k = 1, the Hamiltonian takes the form H = 1/4
(
p2
ϕ + p2

θ cot2 ϕ
)

and describes the standard Grushin metric
on S2.

Moreover, we have

Lemma 4.2. The family of metrics g depending upon the parameter k have a fixed singularity on the equator and
a discrete symmetry group defined by the two reflexions: H(ϕ, pϕ) = H(π−ϕ,−pϕ) and H(θ, pθ) = H(−θ,−pθ).

Optimal control problem (4.3), (4.4) admits the following interpretation. Introduce the following matrix:
R(t) = (rij(t)) ∈ SO(3), and denote r1 = r11, r2 = r12, r3 = r13 the components of its first line. Consider the
solutions of the right-invariant control system

dRt(t)
dt

=

⎛
⎝ 0 u3(t) 0
−u3(t) 0 u1(t)

0 −u1(t) 0

⎞
⎠Rt(t), (4.5)



RIEMANNIAN METRICS ON 2D-MANIFOLDS RELATED TO THE EULER−POINSOT RIGID BODY MOTION 885

minimizing the cost:
T∫

0

(I1u2
1(t) + I3u

2
3(t))dt. (4.6)

Define the two sub-manifolds of SO(3):

M0 =
{
R ∈ SO(3); Rt = (r(0), ·, ·), r(0) = (1, 0, 0)

}
,

M1 =
{
R ∈ SO(3); Rt = (r(T ), ·, ·), r(T ) = (0, 0, 1)

}
.

Denoting by M⊥ the symplectic lift of a sub-manifold M ∈ SO(3), and using the analysis of Section 2, one has:

Proposition 4.3. The extremals of the almost-Riemannian metric g on S2 verifying the boundary conditions
r(0) = (1, 0, 0), r(T ) = (0, 0, 1) are extremals of the sub-Riemannian problem defined by (4.5), (4.6) with
k2 = I1/I3, which satisfy the boundary conditions (R(0), λ(0)) ∈ M⊥

0 , (R(T ), λ(T )) ∈ M⊥
1 , λ being the adjoint

vector.

Introducing the isothermal coordinates x = r1, y = kr3 of the metric g, so that g = λ(x, y)(dx2 + dy2) with

λ(x, y) =
(

1 − x2 − y2

k2

)−1

> 0,

we can easily compute the Gaussian curvature G(x, y):

G = − 1
2 λ(x, y)

Δ ln(λ(x, y)) = −1 − 1
k2

− 2λ(x, y)
(
x2 +

y2

k4

)
,

where Δ = ∂xx + ∂yy. This leads to the following

Lemma 4.4. The cut locus of the equatorial point is the equator minus zero.

Proof. The Gaussian curvature G is strictly negative in each hemisphere of the sphere, where the almost-
Riemannian metric is Riemannian. Hence a geodesic starting from the equator cannot have a conjugate point
before returning to the equator. In view of the reflectional symmetry with respect to the equator, the cut point
along each geodesic starting from the equatorial point is on the equator. �

In conclusion we observe, that according to [6], the conjugate and cut loci near the equator can be easily
computed and the whole conjugate locus are determined numerically using a continuation method. We also
remark that when this paper was already accepted for publication, we came to know about work [10], where,
though in a different physical context, the sub-Riemannian problem (4.5), (4.6) was treated in detail, and the
cut locus was computed using a different argument. Our results below provide additional details on the structure
of the conjugate locus of the problem.

4.3. Computation of the extremal curves

The identification provided by Proposition 4.3 allows to parameterize the extremal curves of the Riemannian
metric g using the extremals of the left-invariant problem with the Hamiltonian

Hn =
1
2

(
H2

1

I1
+
H2

3

I3

)
·

According to Section 2.2, Euler’s equations take the form

dH1

dt
=
H2H3

I3
,

dH2

dt
= H1H3

(
1
I1

− 1
I3

)
,

dH3

dt
= −H1H2

I1
·
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Fixing Hn = 1/2 and introducing α such that cosα = H1I
−1/2
1 , sinα = H3I

−1/2
3 , we get the pendulum equation

d2α

dt2
=
k2 − 1
2I1

sin 2α, k2 =
I1
I3
, (4.7)

which can be easily integrated. Then, using (2.4), one can compute the Euler angles Φ2 and Φ3, and finally R(t)
can be found by integrating the remaining equation for Φ1:

dΦ1

dt
=

G

H2 sinΦ3 −H1 cosΦ3

(
sinΦ3

∂Hn

∂H2
− cosΦ3

∂Hn

∂H1

)
=

GH2
1

I1(H2
1 +H2

2 )
, (4.8)

where G = |H | denotes the angular momentum constant,
The integration of the pendulum equation (4.7) is a standard exercise of Classical Mechanics (see for instance

in [20]). In our case the final result depends on the sign of k2 − 1. i.e., on the sign of I1 − I3. In what follows
we asume k 
= 1 (or equivalently I1 
= I3). Then (4.7) has non-trivial periodic solutions, and in particular, if
I1 < I3, we get the well-known pendulum phase portrait with stable equilibria at 0 mod π and the instable
ones at α = ±π/2 mod π. In the case I3 < I1 this picture is shifted by π/2, so that the stable equilibria are at
α = π/2 mod π.

Setting ν = 2α, we can rewrite (4.7) as a natural mechanical system

1
2
ν̇2 +

I1 − I3
I1I3

cos ν = c, (4.9)

which has solutions if and only if the energy constant verifies c ≥ − |I1−I3|
I1I3

. The value of c is completely defined
by I1, I3 and G. Indeed, Euler’s equations imply H2 = −√

I1I3α̇. Recalling that G2 = H2
1 +H2

2 +H2
3 and using

the definition of α, we get

c =
2G2 − I1 − I3

I1I3
·

The standard analysis of the pendulum phase portrait now yields

Proposition 4.5. Pendulum equation (4.7) admits oscillating solutions if I1 > G2 > I3 or I3 > G2 > I1, and
rotating solutions if G2 > I1 > I3 or G2 > I3 > I1.

We skip the technical details of our final computations since they are rather standard, and present directly the
parametrization formulae for the extremals of (4.5). As before, here we extend the terms “oscillating/rotating”
to the extremals in the full space taking into account the behavior of the variable α.

Case k < 1. we have I1 < I3, and denoting ω =
√

I3−I1
I1I3

we get the following parametrization:
– Oscillating extremals:

sinα(t) =
√
msn(ωt+ ψ0|m), ψ0 = sn−1(sinα(0)m−1/2|m), m =

G2 − I1
I3 − I1

,

Φ1(t) − Φ1(0) =
G

I3

[
t+

I3 −G2

ωG2

(
Π
(I3m
G2

∣∣∣am(ωt+ ψ0|m)
∣∣∣m)

)
−Π

(I3m
G2

∣∣∣am(ψ0|m)
∣∣∣m))] ,

cosΦ2 =
√
I3m

G
sn(ωt+ ψ0|m), tanΦ3 =

√
I3mω

cn(ωt+ ψ0|m)
dn(ωt+ ψ0|m)

.

– Rotating extremals:

sinα(t) = sn(ω̄t+ ψ0|m), ψ0 = sn−1(sinα(0)|m), m =
I3 − I1
G2 − I1

, ω̄ =
ω√
m
,
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Φ1(t) − Φ1(0) =
G

I3

[
t+

I3 −G2

ω̄G2

(
Π
( I3
G2

∣∣∣am(ω̄t+ ψ0|m)
∣∣∣m)−Π

( I3
G2

∣∣∣am(ψ0|m)
∣∣∣m))] ,

cosΦ2 =
√
I3
G

sn(ω̄t+ ψ0|m), tanΦ3 =
√
I3ω̄

dn(ω̄t+ ψ0|m)
cn(ω̄t+ ψ0|m)

·

Case k > 1. we have I1 > I3, and setting ω =
√

I1−I3
I1I3

we obtain the following formulae:
– Oscillating extremals:

cosα(t) = −√
msn(ωt+ ψ0|m), ψ0 = −sn−1(cosα(0)m−1/2|m), m =

G2 − I3
I1 − I3

,

Φ1(t) − Φ1(0) =
G

I3

[
t− 1

ω

(
Π
( I3
I3 − I1

∣∣∣am(ωt+ ψ0|m)
∣∣∣m)) −Π

( I3
I3 − I1

∣∣∣am(ψ0|m)
∣∣∣m)

))]
,

cosΦ2 =
√
I3
G

dn(ωt+ ψ0|m), tanΦ3 = −
√
I3ω

cn(ωt+ ψ0|m)
sn(ωt+ ψ0|m)

.

– Rotating extremals:

sinα(t) = −cn(ω̄t+ ψ0|m), ψ0 = cn−1(− sinα(0)|m), m2 =
I1 − I3
G2 − I3

, ω̄ =
ω√
m
,

Φ1(t) − Φ1(0) =
G

I3

[
t− 1

ω̄

(
Π
( I3
I3 −G2

∣∣∣am(ω̄t+ ψ0|m)
∣∣∣m) −Π(

I3
I3 −G2

∣∣∣am(ψ0|m)
∣∣∣m))] ,

cosΦ2 = −
√
I3
G

cn(ω̄t+ ψ0|m), tanΦ3 =
√
I3ω̄

dn(ω̄t+ ψ0|m)
sn(ω̄t+ ψ0|m)

·

4.4. Integrability

We can write the Hamiltonian of the problem in the form H = H0 +(1−k2)H ′, where H0 is the Hamiltonian
of the Grushin metric and

H ′ =
1

4k2
(pϕ sin θ + pθ cotϕ cos θ)2.

Since G2 = H2
1 +H2

2 +H2
3 is the Casimir function on SO(3), we get the following

Proposition 4.6. Denote by

F = p2
ϕ +

p2
θ

sin2 ϕ

the Hamiltonian of the round metric on S2 written in spherical coordinates. Then {F,H0} = {F,H ′} = 0 and
hence {F,H} = 0 for every k 
= 0.

A direct integration of the geodesics equation of the metric g can be done using the following method [4, 5].
The existence of the first integral quadratic on fibers allows to find normal coordinates (u, v) such that the
metric g takes the Liouville normal form

g(u, v) = (f(u) + h(v))
(
du2 + dv2

)
,

whose integration is standard. To this end one needs first to write the first integral F in the isothermal coordi-
nates x, y of the metric g:

F (x, y) = b1(x, y)p2
x + 2b2(x, y)pxpy + b3(x, y)p2

y .

Then the coordinates (u, v) can be found by solving the equation Φ′(w) =
√
R(Φ(w)) where w = u + i v,

Φ : w → z = x+ i y and
R(z) = (b1(x, y) − b3(x, y)) + 2i b2(x, y).
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Figure 3. Conjugate locus of Serret−Andoyer metric.

5. Numerical analysis

An important tool in the analysis of the conjugate and cut loci is the Hampath code [12]. A series of
commented numerical results is presented next. In all tests below we took A = 1.5, B = 2 and C = 2.8.

5.1. Serret−Andoyer Riemannian metric

In Figure 3 we show the results of the numerical calculation of the the conjugate loci (red curves) for the
Serret−Andoyer problem using the Hampath code. The thick dashed line represents the separatrix. The cut
locus is formed by the horizontal ray starting at the extremity of the horizontal cusp with x ≥ θ∗(ϕ0). It is
formed by the self-intersections of the wave front, which is represented by the isocost curves (green dotted
curves).

5.2. The spin case

Next the conjugate and cut loci are computed for the fixed initial conditions: ϕ(0) = π/2, θ(0) = 0, and are
represented via the deformation of the parameter k starting from k = 1 using the method described in [8]. There
are two different cases to be analyzed: k > 1 and k < 1. Similar computations for the cut locus of this problem
were done in [10]. Starting from the axis of symmetry, the Hamiltonian reduces to H(θ(0), ϕ(0), pθ(0), pϕ(0)) =
p2
ϕ(0)/4, and restricting the extremals to H = 1, we can parameterize the geodesics by pϕ(0) = ±2, pθ(0) ∈ R.

By symmetry we can fix pϕ(0) = −2 and consider pθ(0) ≥ 0. For any k, the conjugate locus has a contact of
order two at the initial point, as pθ(0) → ∞.

We study the deformation of the conjugate locus for k ≥ 1 in Figures 4–6. The key point is: when k > 1, θ
is not monotonous for all the trajectories. This is true even for small k, like k = 1.01, taking pθ(0) = 0.1 and
tf > 14.

5.2.1. k ≥ 1

We denote t1(pθ, k) the first conjugate time and q1(pθ, k) = (θ, ϕ)|t=t1(pθ,k) the associated conjugate point.
In Figure 4, we represent the map k ∈ [1, 1.5] 	→ q1(k) for pθ fixed to 10−4. The value 1.5 is heuristically chosen
to simplify the analysis. We can notice that θ(t1(k)) only takes approximately the values 0 and π and so it is on
the same meridian as the initial point. It switches three times at 1 < k1 < k2 < k3 < 1.5, with k2−k1 
= k3−k2.
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1 k1 k2 k3
0

pi/2

pi

Figure 4. The first conjugate point with respect to k, for pθ(0) fixed to 10−4. In red is plotted
θ(t1(pθ, k)) while we have in blue ϕ(t1(pθ, k)). The θ-variable takes the values 0 and π. The
values k1, k2, k3 are approximately and respectively 1.061, 1.250, 1.429.
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Figure 5. The deformation of one branch (pϕ(0) = −2 and pθ(0) ≥ 0) of the conjugate
locus with respect to the parameter k ∈ [1, k3]. (top) k = 1.0, 1.05. (left) k = 1.1, 1.2. (right)
k = 1.3, 1.4.
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Figure 6. The four types of trajectories which clarify the evolution of the conjugate locus.

We then restrict the study of the conjugate locus to k ≤ k3 to simplify. We can see in Figure 5, three subplots
which represent the deformation of one branch (pϕ(0) = −2 and pθ(0) ≥ 0) of the conjugate locus resp. for k
in [1, k1], [k1, k2] and [k2, k3]. For any k ∈ [1, k3], the branch is located in the half-plane θ ≥ 0. If we denote
k1 < k < k2, the parameter value such that ϕ(t1(k)) = π/2, then the branch form a loop for k ≤ k ≤ k3.

The deformation of the conjugate locus can be explained analysing the behaviors of the trajectories. We
describe four types of trajectories in (θ, ϕ)-coordinates (see Fig. 6), limiting the study to k ≤ k3 to simplify and
pθ(0) ≥ 0 by symmetry. These trajectories clarify the evolution of the conjugate locus.

i) The first type occuring for any k such that 1 ≤ k ≤ k3, is represented in the top left subplot of Figure 6.
Its characteristic is that the θ-variable is monotonous non-decreasing on [0, t1].
The three others trajectories do not have a monotonous θ-variable on [0, t1]. We denote t the first time when
the trajectory leaves the domain 0 ≤ θ ≤ π.

ii) The second type (top right) existing for k1 ≤ k ≤ k3 has no self-intersection on [0, t] and is such that
θ(t) = 0.
The last types of extremals have a self-intersection in the state-space in [0, t].

iii) The third kind of trajectories (bottom left) is such that θ(t) = 0 and occurs for k ≤ k ≤ k3.
iv) The last one (bottom right) exists only for k2 ≤ k ≤ k3 and has θ(t) = π.
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Figure 7. Conjugate locus with 15 trajectories for k = 0.8, 0.5, 0.2, 0.1 from top left-hand to
bottom right-hand.

5.2.2. k ≤ 1

The deformation of the conjugate locus in the case k < 1 is easier to analyze. We give on Figure 7 the
conjugate locus for k ∈ {0.8, 0.5, 0.2, 0.1} with 15 chosen trajectories. The key point is the non-monotony of the
θ-variable for k < 1.

5.2.3. Deformation of the conjugate locus on the sphere

The deformation of the conjugate locus on the sphere is given Figure 8. Only the half: pϕ(0) = −2, pθ(0) ∈ R
is plotted to clarify the figures. The deformation is clear: the cusp moves along the meridian with respect to
the parameter k. It does not cross the equator for k < 1 while for k > 1 it first crosses the North pole (k = k1),
then the equator (k = k). For k ≥ k, the conjugate locus has self-intersections. Then, it crosses poles again for
k = k2 and k3. This is repeated for greater values of k making the loops smaller and smaller.

5.3. Riemannian metric on SO(3)

A preliminary computation of conjugate points is shown in Figure 9. We consider two test trajectories defined
by the initial conditions:

Case 1. Φ1 = 0, Φ2 = 2.8506, Φ3 = −0.32175, p1 = p2 = 0, p3 = 0.3155946;

Case 2. Φ1 = 0, Φ2 = 2.327, Φ3 = −0.32175, p1 = 0.55, p2 = 0, p3 = 0.3155946;
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In Figure 9 we show the evolution of the Euler angles along these trajectories. The cross indicates the starting
point, while the thick red points mark the conjugate points.

By inverting the Serret−Andoyer transformation, one can show that both trajectories considered above
project on the same curve defined by

px = 1.1, py(0) = 0.3155946, x0 = 0, y0 = arccos
√

0.1,

which lies on the energy level h = 1. The first conjugate time of this trajectory is t∗1 � 5.4177, but the comparison
of the conjugate times t and τ is not really meaningful, since the Serret−Andoyer transformation mixes the
state and the co-state variables.
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