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GLOBAL CARLEMAN ESTIMATE FOR STOCHASTIC PARABOLIC
EQUATIONS, AND ITS APPLICATION ∗

Xu Liu1

Abstract. This paper is addressed to proving a new Carleman estimate for stochastic parabolic
equations. Compared to the existing Carleman estimate in this respect (see [S. Tang and X. Zhang,
SIAM J. Control Optim. 48 (2009) 2191–2216.], Thm. 5.2), one extra gradient term involving in that
estimate is eliminated. Also, our improved Carleman estimate is established by virtue of the known
Carleman estimate for deterministic parabolic equations. As its application, we prove the existence of
insensitizing controls for backward stochastic parabolic equations. As usual, this insensitizing control
problem can be reduced to a partial controllability problem for a suitable cascade system governed
by a backward and a forward stochastic parabolic equation. In order to solve the latter controllability
problem, we need to use our improved Carleman estimate to establish a suitable observability inequality
for some linear cascade stochastic parabolic system, while the known Carleman estimate for forward
stochastic parabolic equations seems not enough to derive the desired inequality.
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1. Introduction and main results

Carleman-type estimates are one of important tools to study partial differential equations and the related
inverse/control problems. For example, the local Carleman estimate for elliptic operators with two independent
variables was introduced in [4] for studying the uniqueness problem. Later, more general results on uniqueness
problems for partial differential operators were given in [3,7,30], respectively, by virtue of the Carleman estimate
method. Also, the unique continuation properties of some evolution equations were derived by the local Carleman
estimates in [22]. Moreover, global Carleman estimates for general linear parabolic equations with homogeneous
boundary conditions and smooth diffusion coefficients were obtained in [6, 9], respectively. They have been
extensively used to establish observability inequalities in controllability problems and stability results for inverse
problems. In order to obtain some estimate on the pressure in linearized Navier−Stokes equations in the context
of controllability problems, a global Carleman estimate for elliptic operators with nonhomogeneous Dirichlet
boundary conditions was established in [8]. Recently, some Carleman estimates for parabolic operators with
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anisotropic diffusion coefficients having jumps at interfaces were established in [18], which can be used to
study the controllability of some parabolic equations with discontinuous diffusion coefficients. Nevertheless, to
the best of our knowledge, very little is known about Carleman estimates for stochastic parabolic equations.
In this respect, we refer to [17, 23] for some known results. In [17], a global Carleman estimate for linear
forward stochastic parabolic equations was established and based on this estimate, some inverse problems for
stochastic parabolic equations were studied. In [23], in order to establish the controllability for general linear
forward/backward stochastic parabolic equations, suitable global Carleman estimates for backward/forward
stochastic parabolic equations were derived. Notice that in [17, 23], a gradient term (with respect to diffusion
terms of forward stochastic parabolic equations) appears on the resulting Carleman estimates. This leads to
more requirement on the regularity for coefficients in studying the controllability and inverse problems for
stochastic parabolic equations. Furthermore, these known Carleman estimates cannot be used to establish the
controllability for some coupled stochastic parabolic systems (see Rem. 5.2 for more explanations). The main
purposes of this paper are to prove a new Carleman estimate for forwards stochastic parabolic equations, and
give its application in the insensitizing control problem for backward stochastic parabolic equations.

To begin with, we introduce some notations. Let G be a bounded domain in Rn (n ∈ N\{0}) with a boundary
Γ of class C4 and T > 0. Put Q = G × (0, T ) and Σ = Γ × (0, T ). Assume G0, O1 and O2 to be three given
nonempty open subsets of G such that G0 ∩ O1 �= ∅. Denote by χG0 the characteristic function of the set G0.
Fix a complete filtered probability space (Ω,F , {Ft}t≥0,P), on which a one-dimensional standard Brownian
motion {w(t)}t≥0 is defined such that {Ft}t≥0 is the natural filtration generated by w(·), augmented by all
the P-null sets in F . Let H be a Banach space, and let C([0, T ];H) be the Banach space of all H-valued
strongly continuous abstract functions defined on [0, T ]. We denote by L2

F(0, T ;H) the Banach space consisting
of all H-valued {Ft}t≥0-adapted processes X(·) such that E(|X(·)|2L2(0,T ;H)) <∞, with the canonical norm; by
L∞
F (0, T ;H) the Banach space consisting of all H-valued {Ft}t≥0-adapted essentially bounded processes; and

by L2
F(Ω;C([0, T ];H)) the Banach space consisting of all H-valued {Ft}t≥0-adapted continuous processes X(·)

such that E(|X(·)|2C([0,T ];H)) < ∞. Similarly, one can define L∞
F (Ω;Cm([0, T ];H)) for any positive integer m.

Moreover, it is well known that (see e.g. [6]), there exists a function ψ ∈ C4(G) such that

ψ(x) > 0, in G; ψ(x) = 0, on Γ ; |∇ψ(x)| > 0, in G \G1,

where G1 is any given nonempty open subset of G such that G1 ⊆ G0 ∩ O1. For any fixed k ≥ 1, and positive
parameters β and λ, write

γ(t) =
1

tk(T − t)k
, ϕ(x, t) =

eβψ(x)

tk(T − t)k
, α(x, t) =

eβψ(x) − e2β|ψ|C(G)

tk(T − t)k
, θ = eλα. (1.1)

Furthermore, we assume that the coefficients aij : Ω × G × [0, T ] → R (i, j = 1, 2, . . . , n) satisfy the following
conditions:
(1) aij ∈ L∞

F (Ω;C1([0, T ];W 1,∞(G))) and aij = aji;
(2) there is some positive constant ρ0 such that

n∑
i,j=1

aij(ω, x, t)ςiςj ≥ ρ0|ς|2 for any (ω, x, t, ς) = (ω, x, t, ς1, . . . , ςn) ∈ Ω ×Q× Rn.

Set A = sup
1≤i,j≤n

|aij |L∞
F (Ω;C1([0,T ];W 1,∞(G))).

Consider the following linear forward stochastic parabolic equation:⎧⎪⎪⎨⎪⎪⎩
dh−

n∑
i,j=1

(
aijhxi

)
xj

dt = F1dt+ F2dw(t) in Q,

h = 0 on Σ,

h(0) = h0 in G,

(1.2)



GLOBAL CARLEMAN ESTIMATE FOR STOCHASTIC PARABOLIC EQUATIONS, AND ITS APPLICATION 825

where Fi ∈ L2
F(0, T ;L2(G)) (i = 1, 2) and h0 ∈ L2(Ω,F0,P ;L2(G)). By [10], it is easy to check that (1.2)

admits one and only one solution h in the class of

h ∈ L2
F(Ω;C([0, T ];L2(G)))

⋂
L2
F(0, T ;H1

0 (G)).

The first main result of this paper is the following global Carleman estimate for (1.2):

Theorem 1.1. There exists a positive constant β1, depending only on n,G,G1, T, ρ0 and A, such that for any
β ≥ β1, one can find two positive constants λ1 = λ1(β) and C = C(β) so that for any h0 ∈ L2(Ω,F0,P ;L2(G))
and Fi ∈ L2

F(0, T ;L2(G)) (i = 1, 2), the corresponding solution h of (1.2) satisfies

E
∫
Q

θ2
(
λ3γ3h2 + λγ|∇h|2) dxdt ≤ C

(
E
∫ T

0

∫
G1

θ2λ3γ3h2dxdt+ E
∫
Q

θ2F 2
1 dxdt + E

∫
Q

θ2λ2γ2F 2
2 dxdt

)
,

(1.3)
for any λ ≥ λ1.

Remark 1.2. Compared to the known Carleman estimate for forward stochastic parabolic equations (see [23],
Thm. 5.2), we eliminate an extra term involving ∇F2. Meanwhile, in the weighted functions γ and θ, the value
of the parameter k is allowed to be only larger than or equal to 1 rather than 2. Moreover, the coefficients
aij(i, j = 1, 2, . . . , n) are only W 1,∞ functions with respect to the space variable rather than W 2,∞ ones.
Therefore, using this new Carleman estimate, we can relax some assumption on the regularity for coefficients
of stochastic parabolic equations in the context of the controllability and inverse problems.

Remark 1.3. Carleman-type estimates are a kind of weighted energy estimates. For example, suppose that
in (1.2), F1 = F2 = 0 in Q, P-a.s. Roughly speaking, the Carleman estimate (1.3) means that the local
information (in the domain G1) of the solution h for equation (1.2) can determine the whole one of it.

Remark 1.4. By a similar method used in the proof of Theorem 1.1, it is easy to show the following global
Carleman estimate for (1.2) in H−1-space. There exists a positive constant β2, depending only on n,G,G1, T, ρ0

and A, such that for any β ≥ β2, one can find two positive constants λ2 = λ2(β) and C = C(β) so that for
any F1 ∈ L2

F(0, T ;H−1(G)), F2 ∈ L2
F(0, T ;L2(G)) and h0 ∈ L2(Ω,F0,P ;L2(G)), the corresponding solution h

of (1.2) satisfies

E
∫
Q

θ2
(
λγ3h2 + λ−1γ|∇h|2) dxdt ≤ C

(
E
∫ T

0

∫
G1

θ2λγ3h2dxdt+ E
∫ T

0

γ2|θF1|2H−1(G)dt+ E
∫
Q

θ2γ2F 2
2 dxdt

)
,

(1.4)
for any λ ≥ λ2.

The Carleman estimate for forward stochastic parabolic equations in [23] was established by virtue of a
weighted energy identity for equations themselves. However, in order to get the improved Carleman esti-
mates (1.3) and (1.4), we adopt a different new method by establishing some relationship between Carleman
estimates for forward stochastic parabolic equations and those for deterministic parabolic equations. More
precisely, we first transform the desired Carleman estimates for forward stochastic parabolic equations into
a null controllability problem for a certain backward stochastic parabolic equation. Then, this controllability
problem is reduced to a Carleman estimate for some forward random parabolic equation. Therefore, by this
approach, we can establish a new Carleman estimate for forward stochastic parabolic equations by virtue of the
known Carleman estimates for deterministic parabolic equations directly. Notice that, as a byproduct, this new
Carleman estimate can be used to improve the known controllability result for backward stochastic parabolic
equations by relaxing some assumption on the coefficients (see Rem. 2.3 for more explanations).
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As a typical application of the Carleman estimate (1.3), we study the insensitivity problems for the following
controlled backward stochastic parabolic equation:⎧⎪⎨⎪⎩

dy +Δydt = (ξ + μY + χG0u)dt+ (Y + v)dw(t) in Q,

y = 0 on Σ,

y(T ) = yT + τ ŷT in G,

(1.5)

where (u, v) is the control variable, (y, Y ) is the state variable, μ ∈ L∞
F (0, T ;L∞(G)) is a given process, ξ ∈

L2
F (0, T ;L2(G)) and yT ∈ L2(Ω,FT ,P ;L2(G)) are, respectively, a known heat source and a given terminal

state, τ is an unknown small real number, and ŷT ∈ L2(Ω,FT ,P ;L2(G)) is unknown. By the duality analysis
as that in [27], one can prove that for any (u, v) ∈ L2

F(0, T ;L2(G0)) × L2
F(0, T ;L2(G)), τ ∈ R and ŷT ∈

L2(Ω,FT ,P ;L2(G)), (1.5) admits one and only one solution in the class of

(y, Y ) ∈
(
L2
F
(
Ω;C

(
[0, T ];L2(G)

))⋂
L2
F
(
0, T ;H1

0(G)
))× L2

F
(
0, T ;L2(G)

)
.

Define the following energy functional for (1.5):

Φ(y, Y ) =
1
2

E
∫ T

0

∫
O1

|y(x, t; τ, u, v)|2dxdt+
1
2

E
∫ T

0

∫
O2

|Y (x, t; τ, u, v)|2dxdt, (1.6)

where (y, Y ) = (y(x, t; τ, u, v), Y (x, t; τ, u, v)) denotes the solution of (1.5) associated to τ , u and v. Introduce
the following notion of insensitizing control.

Definition 1.5. For given ξ ∈ L2
F(0, T ;L2(G)) and yT ∈ L2(Ω,FT ,P ;L2(G)), a pair of control functions

(u, v) ∈ L2
F(0, T ;L2(G0)) × L2

F (0, T ;L2(G)) is said to insensitize the functional Φ if

∂Φ(y, Y )
∂τ

∣∣∣∣
τ=0

= 0, ∀ ŷT ∈ L2(Ω,FT ,P ;L2(G)) with |ŷT |L2(Ω,FT ,P;L2(G)) = 1. (1.7)

Backward stochastic parabolic equations have been studied in the stochastic control and nonlinear filtering
theory (see [19, 21, 28]). Such equations are also useful in mathematical finance as they provide a generalized
version of the celebrated Black–Scholes formula (see [20]). Roughly speaking, the insensitizing control problem
of (1.5) means that we are expected to find an arbitrarily located internal controller u, such that the local energy
Φ is almost invariant with respect to small perturbations on the terminal value yT .

Deterministic insensitivity control problem was introduced by Lions in [12]. In [24], the author showed that
when G\G0 �= ∅, one could not expect the existence of insensitizing controls for every initial value y0 ∈ L2(G),
even for the linear parabolic equation; while when G0∩O1 �= ∅, for y0 = 0 and ξ satisfying suitable assumptions,
the existence of insensitizing controls was also proved in that paper for some semilinear heat equations with
globally Lipschitz continuous nonlinearity and Dirichlet boundary conditions. Later, this result was extended
to semilinear heat equations with superlinear nonlinearities and other boundary conditions (see e.g. [2] and
the rich references therein). In [14], the existence of insensitizing controls for a class of quasilinear parabolic
equations was presented.

However, very little is known for stochastic insensitivity control problems. As far as we know, there is only one
published paper [25] addressing the insensitivity control problem for stochastic parabolic equations. In [25], the
existence of insensitizing controls for forward stochastic heat equations was established. Also, it was commented
in [25], Remark 6 that when treating the similar insensitizing control problem for backward stochastic heat
equations, one might encounter the difficulty of establishing the desired observability inequality by means of
known Carleman estimates. In this paper, we use the improved Carleman estimate (1.3) to overcome this
difficulty. Notice however that for deterministic parabolic equations, there is no essential difference between the
insensitivity problem for forward equations and that for the backward counterparts.

The other main result in this paper, stated below, is to prove the existence of insensitizing controls for the
backward stochastic parabolic equation (1.5).
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Theorem 1.6. Assume that G0 ∩O1 �= ∅, O2 = G and yT = 0 in G, P-a.s. Then there exist two positive con-
stants M and C depending only on n, T,G,G0,O1 and |μ|L∞

F (0,T ;L∞(G)), such that for any ξ ∈ L2
F(0, T ;L2(G))

satisfying ∣∣∣∣exp
(

M

(T − t)2

)
ξ

∣∣∣∣
L2

F(0,T ;L2(G))

<∞, (1.8)

one can find a pair of control functions (u, v) ∈ L2
F(0, T ;L2(G0)) × L2

F(0, T ;L2(G)), which insensitizes the
functional Φ (defined in (1.6)) in the sense of Definition 1.5. Moreover,

|u|L2
F (0,T ;L2(G0)) + |v|L2

F (0,T ;L2(G)) ≤ C

∣∣∣∣exp
(

M

(T − t)2

)
ξ

∣∣∣∣
L2

F (0,T ;L2(G))

.

Several further remarks are in order.

Remark 1.7. It would be interesting to study the insensitivity problems when O2 is a nonempty subset of G
satisfying O2 � G. However, it seems difficult to establish the desired observability estimate in this case (see
Rem. 4.5).

Remark 1.8. It would be interesting to study the existence of insensitizing controls for backward stochastic
parabolic equations without the extra control v. However, this seems to be very difficult, because in the proof
of Theorem 1.6 we need to use a known Carleman estimate for backward stochastic parabolic equations [23].

The rest of this paper is organized as follows. In Section 2, we prove a new global Carleman estimate for
forward stochastic parabolic equations (Thm. 1.1). In Section 3, we reduce an insensitivity control problem to
a partial controllability problem of a cascade stochastic parabolic system. Section 4 is devoted to establishing a
global Carleman estimate for linear cascade stochastic parabolic systems, based on the Carleman estimate (1.3).
Finally, in Section 5, we give a proof of Theorem 1.6.

2. Carleman estimate for forward stochastic parabolic equations

In this section, we derive a new Carleman estimate for the forward stochastic parabolic equation (1.2).
Notice that when F2 ≡ 0, equation (1.2) becomes a random parabolic equation. Therefore, recalling the known
Carleman estimates for deterministic parabolic equations (see e.g. [9, 15]) and (1.1), we conclude the following
global Carleman estimate for random parabolic equations.

Lemma 2.1. If F2 ≡ 0, then there exist two positive constants β0 and λ0, depending only on n,G,G1, T, ρ0

and A, such that for any F1 ∈ L2
F(0, T ;L2(G)) and h0 ∈ L2(Ω,F0,P ;L2(G)), the corresponding solution

h ∈ L2
F(0, T ;H1

0(G)) of (1.2) (with F2 ≡ 0) satisfies

E
∫
Q

θ2
(
λ3γ3h2 + λγ|∇h|2) dxdt ≤ C

(
E
∫ T

0

∫
G1

θ2λ3γ3h2dxdt+ E
∫
Q

θ2F 2
1 dxdt

)
,

for any β ≥ β0 and λ ≥ λ0.

In the following, we denote by β and λ two fixed constants satisfying the conditions mentioned in
Lemma 2.1. Also, for convenience, in the sequel, we denote by C any positive constant, depending only on
n,G,G0, G1, T, ρ0, β,O1, A and |μ|L∞

F (0,T ;L∞(G)), which may be different from one place to another.
As a preliminary to prove Theorem 1.1, based on the known Carleman estimate in Lemma 2.1, we first need

to study the null controllability of a backward stochastic parabolic equation by the duality technique. Indeed, for
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any fixed Fi ∈ L2
F(0, T ;L2(G)) (i = 1, 2) and h0 ∈ L2(Ω,F0,P ;L2(G)), let h denote the corresponding solution

of equation (1.2). Consider the following controlled backward stochastic parabolic equation:

⎧⎪⎪⎨⎪⎪⎩
dr +

n∑
i,j=1

(
aijrxi

)
xj

dt = (θ2λ3γ3h+ χG1g)dt+Rdw(t) in Q,

r = 0 on Σ,

r(T ) = 0 in G,

(2.1)

where g is the control variable and (r,R) is the state variable. Then, we have the following null controllability
result for equation (2.1).

Proposition 2.2. There exists a control ĝ ∈ L2
F(0, T ;L2(G1)) such that equation (2.1) admits a solution

(r̂, R̂) ∈ (
L2
F(Ω;C([0, T ];L2(G)))

⋂
L2
F(0, T ;H1

0(G))
) × L2

F(0, T ;L2(G)) associated to ĝ satisfying r̂(0) = 0
in G, P-a.s. Moreover,

E
∫
Q

(
θ−2r̂2 + θ−2λ−3γ−3ĝ2

)
dxdt+ E

∫
Q

θ−2λ−2γ−2R̂2dxdt ≤ CE
∫
Q

θ2λ3γ3h2dxdt. (2.2)

Proof. We borrow some ideas from [9]. The main steps are as follows. First, we construct a family of optimal
(approximate-null) control problems for equation (2.1). Next, we establish a uniform estimate for these optimal
(approximate) solutions. Finally, by taking the limit, one obtains the desired null controllability result.

Step 1. For any ε > 0, write αε ≡ αε(x, t) =
eβψ(x) − e2β|ψ|C(G)

(t+ ε)k(T − t+ ε)k
and construct the following optimal

(approximate-null) control problem (Pε):

min
g∈U

{
1
2

E
∫
Q

e−2λαεr2dxdt+
1
2

E
∫ T

0

∫
G1

θ−2λ−3γ−3g2dxdt+
1
2ε

E
∫
G

r2(0)dx

}
,

subject to equation (2.1), where U =

{
g ∈ L2

F(0, T ;L2(G1)); E
∫ T

0

∫
G1

θ−2γ−3g2dxdt <∞
}

.

Similar to [11], it is easy to check that for any ε > 0, the above optimal control problem (Pε) admits a unique
optimal solution (gε, rε, Rε) ∈ U × L2

F(0, T ;H1
0 (G)) × L2

F(0, T ;L2(G)). Moreover, by the standard variational
method (see [11, 13]), it follows that

gε = χG1θ
2λ3γ3zε in Q, P-a.s., (2.3)

where zε satisfies

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dzε −

n∑
i,j=1

(
aijzε,xi

)
xj

dt = e−2λαεrεdt in Q,

zε = 0 on Σ,

zε(0) =
1
ε
rε(0) in G.

(2.4)
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Step 2. We now establish a uniform estimate for the optimal solutions {(gε, rε, Rε)}ε>0. By (2.1), (2.4), Itô’s
formula and (2.3), it follows that

−E
∫
G

rε(0)zε(0)dx

= E
∫
Q

⎧⎨⎩rε
⎡⎣ n∑
i,j=1

(
aijzε,xi

)
xj

+ e−2λαεrε

⎤⎦ + zε

⎡⎣− n∑
i,j=1

(
aijrε,xi

)
xj

+ θ2λ3γ3h+ χG1gε

⎤⎦⎫⎬⎭dxdt

= E
∫
Q

(
e−2λαεr2ε + θ2λ3γ3zεh+ χG1θ

2λ3γ3z2
ε

)
dxdt.

This, together with the last equality of (2.4) and Lemma 2.1, indicates that for sufficiently small ρ > 0,

E
∫
Q

(
e−2λαεr2ε + χG1θ

2λ3γ3z2
ε

)
dxdt+

1
ε

E
∫
G

r2ε(0)dx

≤
∣∣∣∣E∫

Q

θ2λ3γ3zεhdxdt
∣∣∣∣

≤ ρE
∫
Q

θ2λ3γ3z2
εdxdt+ C(ρ)E

∫
Q

θ2λ3γ3h2dxdt

≤ ρC

[
E
∫ T

0

∫
G1

θ2λ3γ3z2
εdxdt+ E

∫
Q

θ2(e−2λαεrε)2dxdt

]
+ C(ρ)E

∫
Q

θ2λ3γ3h2dxdt.

(2.5)

Notice that θ2e−2λαε ≤ 1. Therefore, by (2.3) and (2.5), we see that

E
∫
Q

(
e−2λαεr2ε + θ−2λ−3γ−3g2

ε

)
dxdt+

1
ε

E
∫
G

r2ε(0)dx ≤ CE
∫
Q

θ2λ3γ3h2dxdt. (2.6)

On the other hand, by the first equation of (2.1), it follows that

d
(
e−2λαελ−2γ−2r2ε

)
=
(
e−2λαελ−2γ−2

)
t
r2εdt+ e−2λαελ−2γ−2(drε)2

+ 2e−2λαελ−2γ−2rε

⎡⎣− n∑
i,j=1

(aijrε,xi)xj dt+ θ2λ3γ3hdt+ χG1gεdt+Rεdw(t)

⎤⎦.
Then, by Young’s inequality, this implies that

E
∫
Q

e−2λαελ−2γ−2R2
εdxdt+ 2E

∫
Q

e−2λαελ−2γ−2
n∑

i,j=1

aijrε,xirε,xj dxdt

= −E
∫
Q

(
e−2λαελ−2γ−2

)
t
r2εdxdt − 2E

∫
Q

n∑
ij=1

aij(e−2λαελ−2γ−2)xjrε,xirεdxdt

−2E
∫
Q

θ2e−2λαελγrεhdxdt− 2E
∫
Q

χG1e
−2λαελ−2γ−2rεgεdxdt.
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Notice that e−2λαε ≤ θ−2. By a simple calculation, we find that

E
∫
Q

e−2λαελ−2γ−2R2
εdxdt+ 2E

∫
Q

e−2λαελ−2γ−2|∇rε|2dxdt

≤ C

(
E
∫
Q

e−2λαελ−1r2εdxdt+ E
∫
Q

e−2λαελ−1γ−1|∇rε||rε|dxdt

+E
∫
Q

θe−λαελγ|rεh|dxdt+ E
∫
Q

e−2λαελ−2γ−2|rεgε|dxdt
)

≤ E
∫
Q

e−2λαελ−2γ−2|∇rε|2dxdt+ CE
∫
Q

(
e−2λαεr2ε + e−2λαελ−4γ−4g2

ε + θ2λ3γ3h2
)
dxdt

≤ E
∫
Q

e−2λαελ−2γ−2|∇rε|2dxdt+ CE
∫
Q

(
e−2λαεr2ε + θ−2λ−3γ−3g2

ε + θ2λ3γ3h2
)
dxdt.

(2.7)

Combining (2.7) with (2.6), we conclude that

E
∫
Q

(
e−2λαεr2ε + θ−2λ−3γ−3g2

ε

)
dxdt+

1
ε

E
∫
G

r2ε(0)dx+ E
∫
Q

e−2λαελ−2γ−2R2
εdxdt

≤ CE
∫
Q

θ2λ3γ3h2dxdt.
(2.8)

Therefore, it is easy to check that there exists (ĝ, r̂, R̂) ∈ L2
F(0, T ;L2(G1))×L2

F(0, T ;H1
0 (G))×L2

F(0, T ;L2(G))
such that as ε→ 0,

gε → ĝ weakly in L2((0, T ) ×Ω;L2(G1));

rε → r̂ weakly in L2((0, T ) ×Ω;H1
0 (G));

Rε → R̂ weakly in L2((0, T ) ×Ω;L2(G)).

(2.9)

Step 3. We conclude that (r̂, R̂) is the solution of (2.1) associated to ĝ. In fact, by the dual-
ity analysis as that in [27], it is easy to show that (2.1) has one and only one solution (r̃, R̃) ∈(
L2
F (Ω;C([0, T ];L2(G)))

⋂
L2
F(0, T ;H1

0 (G))
) × L2

F(0, T ;L2(G)) associated to ĝ ∈ L2
F(0, T ;L2(G1)). Then, for

any fi ∈ L2
F(0, T ;L2(G)) (i = 1, 2), consider the following forward stochastic parabolic equation:⎧⎪⎪⎨⎪⎪⎩

dφ−
n∑

i,j=1

(
aijφxi

)
xj

dt = f1dt+ f2dw(t) in Q,

φ = 0 on Σ,

φ(0) = 0 in G.

(2.10)

By (2.1), (2.10) and Itô’s formula, we see that

E
∫
Q

(
θ2λ3γ3h+ χG1 ĝ

)
φdxdt + E

∫
Q

(
r̃f1 + R̃f2

)
dxdt = 0, (2.11)

and

E
∫
Q

(
θ2λ3γ3h+ χG1gε

)
φdxdt+ E

∫
Q

(rεf1 +Rεf2) dxdt = 0,
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which, together with (2.9), indicates that

E
∫
Q

(
θ2λ3γ3h+ χG1 ĝ

)
φdxdt + E

∫
Q

(r̂f1 + R̂f2)dxdt = 0. (2.12)

Therefore, by (2.11) and (2.12), it follows that r̃ = r̂ and R̃ = R̂ in Q, P-a.s.
Moreover, by (2.8), we get that r̂(0) = 0 in G, P-a.s. and (2.2) holds. �

Now, we prove the Carleman estimate (1.3) based on the null controllability result for the backward parabolic
equation (2.1), by the duality technique again.

Proof of Theorem 1.1. For any Fi ∈ L2
F(0, T ;L2(G)) (i = 1, 2) and h0 ∈ L2(Ω,F0,P ;L2(G)), let h denote the

corresponding solution of equation (1.2) and (r̂, R̂) denote the solution of equation (2.1) associated to ĝ, which
satisfy all conditions mentioned in Proposition 2.2. Then, by Itô’s formula, we see that

E
∫
Q

θ2λ3γ3h2dxdt = −E
∫
Q

(χG1 ĝh+ r̂F1 + R̂F2)dxdt.

It follows that for sufficiently small ρ > 0,

E
∫
Q

θ2λ3γ3h2dxdt ≤ ρE
∫
Q

θ−2
(
λ−3γ−3ĝ2 + r̂2 + λ−2γ−2R̂2

)
dxdt

+C(ρ)

(
E
∫ T

0

∫
G1

θ2λ3γ3h2dxdt+ E
∫
Q

θ2F 2
1 dxdt+ E

∫
Q

θ2λ2γ2F 2
2 dxdt

)
.

By (2.2), this implies that

E
∫
Q

θ2λ3γ3h2dxdt ≤ C

(
E
∫ T

0

∫
G1

θ2λ3γ3h2dxdt+ E
∫
Q

θ2F 2
1 dxdt+ E

∫
Q

θ2λ2γ2F 2
2 dxdt

)
. (2.13)

On the other hand, notice that

d(θ2λγh2) = (θ2λγ)th2dt+ 2θ2λγh

⎡⎣ n∑
i,j=1

(aijhxi)xj dt+ F1dt+ F2dw(t)

⎤⎦ + θ2λγ(dh)2.

Therefore, by a simple calculation, we conclude that for sufficiently small ρ > 0,

2E
∫
Q

θ2λγ
n∑

i,j=1

aijhxihxjdxdt

= E
∫
Q

⎡⎣(θ2λγ)th2 − 2
n∑

i,j=1

aij(θ2λγ)xjhxih+ 2θ2λγhF1 + θ2λγF 2
2

⎤⎦dxdt

≤ CE
∫
Q

(
θ2λ2γ3h2 + θ2λ2γ2|∇h||h| + θ2λγ|hF1| + θ2λγF 2

2

)
dxdt

≤ ρE
∫
Q

θ2λγ|∇h|2dxdt+ C(ρ)
(

E
∫
Q

θ2λ3γ3h2dxdt+ E
∫
Q

θ2F 2
1 dxdt+ E

∫
Q

θ2λγF 2
2 dxdt

)
.
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By (2.13), this implies that

E
∫
Q

θ2λγ|∇h|2dxdt ≤ C

(
E
∫ T

0

∫
G1

θ2λ3γ3h2dxdt+ E
∫
Q

θ2F 2
1 dxdt+ E

∫
Q

θ2λ2γ2F 2
2 dxdt

)
. (2.14)

Combining (2.13) with (2.14), we arrive at the desired estimate (1.3). �

Remark 2.3. As one of applications of the Carleman estimate (1.3), the known null controllability result for
backward stochastic parabolic equations can be improved by relaxing the assumptions on some coefficients.
Indeed, the assumptions on aij , p in [23], Theorem 2.2 and on c in [23], Theorem 2.4 can be relaxed as aij ∈
L∞
F (Ω;C1([0, T ];W 1,∞(G))) and p, c ∈ L∞

F (0, T ;L∞(G)), respectively.

3. Reduction of the insensitizing control problems

As an application of the Carleman estimate (1.3), we shall prove the existence of insensitizing controls for
the equation (1.5). As usual, we need to reduce this insensitivity problem to a partial controllability problem
for some stochastic cascade parabolic system, as stated below.

Proposition 3.1. Given ξ ∈ L2
F(0, T ;L2(G)) and yT ∈ L2(Ω,FT ,P ;L2(G)). Suppose that (y, Y, z) ∈(

L2
F (Ω;C([0, T ];L2(G)))

⋂
L2
F(0, T ;H1

0 (G))
)×L2

F(0, T ;L2(G))×L2
F(Ω;C([0, T ];H1

0 (G))) is the solution of the
following linear cascade stochastic parabolic system associated to a pair of controls (u, v) ∈ L2

F(0, T ;L2(G0)) ×
L2
F (0, T ;L2(G)) : ⎧⎪⎨⎪⎩

dy +Δydt = (ξ + μY + χG0u)dt+ (v + Y )dw(t) in Q,

y = 0 on Σ,

y(T ) = yT in G,

(3.1)

and ⎧⎪⎨⎪⎩
dz −Δzdt = χO1ydt+ (−μz + χO2Y )dw(t) in Q,

z = 0 on Σ,

z(0) = 0 in G.

(3.2)

Then, z(T ) = 0 in G, P-a.s. if and only if the insensitivity condition (1.7) holds for (u, v).

Proof. For any (u, v) ∈ L2
F(0, T ;L2(G0)) × L2

F(0, T ;L2(G)), τ ∈ R and ŷT ∈ L2(Ω,FT ,P ;L2(G))
with |ŷT |L2(Ω,FT ,P;L2(G)) = 1, we denote by (yτ , Yτ ) the solution of equation (1.5) associated to τ and (u, v).
Then, it follows that

∂Φ(yτ , Yτ )
∂τ

∣∣∣∣
τ=0

= lim
τ→0

1
2

[
E
∫ T

0

∫
O1

(yτ + y)
yτ − y

τ
dxdt+ E

∫ T

0

∫
O2

(Yτ + Y )
Yτ − Y

τ
dxdt

]
, (3.3)

where (y, Y ) is the solution of equation (3.1) associated to (u, v). Write y = yτ−y
τ and Y = Yτ−Y

τ . Obviously,
(y, Y ) satisfies the following backward stochastic parabolic equation:⎧⎪⎨⎪⎩

dy +Δydt = μY dt+ Y dw(t) in Q,

y = 0 on Σ,

y(T ) = ŷT in G.

(3.4)
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Then, by (3.2), (3.4) and Itô’s formula, we see that

E
∫
G

ŷT z(T )dx = E
∫
Q

[
z(−Δy + μY ) + y(Δz + χO1y) + Y (−μz + χO2Y )

]
dxdt

= E
∫ T

0

∫
O1

yydxdt+ E
∫ T

0

∫
O2

Y Y dxdt.

Combining the above equality with (3.3), it follows that

∂Φ(yτ , Yτ )
∂τ

∣∣∣∣
τ=0

= E
∫
G

ŷT z(T )dx, ∀ ŷT ∈ L2(Ω,FT ,P ;L2(G)) with |ŷT |L2(Ω,FT ,P;L2(G)) = 1.

Hence,

∂Φ(yτ , Yτ )
∂τ

∣∣∣∣
τ=0

= 0 if and only if z(T ) = 0 in G, P-a.s.

This completes the proof of Proposition 3.1. �

4. Global Carleman estimate for a linear stochastic parabolic system

As a preliminary to prove Theorem 1.6, the main goal of this section is to derive a global Carleman estimate
for the following linear cascade stochastic parabolic system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dp+Δpdt = μPdt+ Pdw(t) in Q,

dq −Δqdt = χO1pdt+ (χO2P − μq)dw(t) in Q,

p = q = 0 on Σ,

p(T ) = pT , q(0) = 0 in G,

(4.1)

where μ ∈ L∞
F (0, T ;L∞(G)) and pT ∈ L2(Ω,FT ,P ;L2(G)).

In the sequel, we choose k = 2 in the weighted functions γ and θ. Then, the main result of this section is the
following global Carleman estimate for the system (4.1).

Proposition 4.1. If O2 = G, there exists a positive constant β̂, depending only on n,G,G0, G1 and T such that
for any β ≥ β̂, one can find two positive constants λ̂ = λ̂(β) and C = C(β) so that solutions of the system (4.1)
satisfy

E
∫
Q

θ2
(
p2 + λ−2γ−2|∇p|2)dxdt + E

∫
Q

θ2
(
λ3γ3q2 + λγ|∇q|2) dxdt

≤ C

[
E
∫ T

0

∫
G0

θ2λ4γ4q2dxdt + E
∫
Q

θ2λ2γ2(P − μq)2dxdt

]
,

for any pT ∈ L2(Ω,FT ,P ;L2(G)) and λ ≥ λ̂.

Before giving a proof of Proposition 4.1, consider the following backward stochastic parabolic equation:⎧⎪⎨⎪⎩
dh+Δhdt = Fdt+Hdw(t) in Q,

h = 0 on Σ,

h(T ) = hT in G,

(4.2)

where F ∈ L2
F(0, T ;L2(G)) and hT ∈ L2(Ω,FT ,P ;L2(G)) are arbitrarily given. Then, we have the following

known Carleman estimate for equation (4.2) (see [23], Thm. 6.1).
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Lemma 4.2. There exists a positive constant β3, depending only on n,G,G1 and T such that for any β ≥ β3,
one can find two positive constants λ3 = λ3(β) and C = C(β), so that for any F ∈ L2

F(0, T ;L2(G)) and
hT ∈ L2(Ω,FT ,P ;L2(G)), any solution (h,H) ∈ L2

F(0, T ;H1
0 (G)) × L2

F(0, T ;L2(G)) of equation (4.2) satisfies

E
∫
Q

θ2
(
λ3γ3h2 + λγ|∇h|2) dxdt ≤ C

(
E
∫ T

0

∫
G1

θ2λ3γ3h2dxdt+ E
∫
Q

θ2F 2dxdt+ E
∫
Q

θ2λ2γ2H2dxdt

)
,

for any λ ≥ λ3.

Further, following the method used in [9], one has the following more general Carleman estimate for equa-
tion (4.2).

Lemma 4.3. There exists a positive constant β3, depending only on n,G,G1 and T such that for any β ≥ β3,
one can find two positive constants λ3 = λ3(β) and C = C(β), so that for any d ∈ R, F ∈ L2

F(0, T ;L2(G)) and
hT ∈ L2(Ω,FT ,P ;L2(G)), any solution (h,H) ∈ L2

F(0, T ;H1
0 (G)) × L2

F(0, T ;L2(G)) of equation (4.2) satisfies

E
∫
Q

θ2
(
λ3γ3+dh2 + λγ1+d|∇h|2) dxdt

≤ C

(
E
∫ T

0

∫
G1

θ2λ3γ3+dh2dxdt + E
∫
Q

θ2γdF 2dxdt+ E
∫
Q

θ2λ2γ2+dH2dxdt

)
,

for any λ ≥ λ3.

Sketch of the proof of Lemma 4.3. Write ĥ = γ
d
2 h and Ĥ = γ

d
2H . Then, it is easy to check that

dĥ+Δĥdt =
[
γ

d
2F − d(T − 2t)γ

1
2 ĥ
]
dt+ Ĥdw(t) in Q.

Applying Lemma 4.2 to (ĥ, Ĥ), one can get the desired estimate in Lemma 4.3. �

Now, we come back to the proof of Proposition 4.1.

Proof of Proposition 4.1. First, applying Lemma 4.3 and Theorem 1.1 to p and q, respectively, we conclude that
there exist two sufficiently large positive constants β̂ = max(β1, β3) and λ̂ = max(λ1, λ3) such that for d = −3,
β ≥ β̂ and λ ≥ λ̂,

E
∫
Q

θ2
(
p2 + λ−2γ−2|∇p|2) dxdt ≤ C

(
E
∫ T

0

∫
G1

θ2p2dxdt+ E
∫
Q

θ2λ−1γ−1P 2dxdt

)
, (4.3)

and

E
∫
Q

θ2
(
λ3γ3q2 + λγ|∇q|2) dxdt

≤ C

[
E
∫ T

0

∫
G1

θ2λ3γ3q2dxdt+ E
∫
Q

θ2λ2γ2(P − μq)2dxdt+ E
∫ T

0

∫
O1

θ2p2dxdt

]
.

(4.4)

Next, we estimate the last term in the right side of (4.4). Choose a nonnegative function ζ ∈ C∞
0 (G0)

satisfying ζ = 1 in G1. By (4.1), notice that

d(ζθ2pq) = ζ(θ2)tpqdt+ ζθ2pdq + ζθ2qdp+ ζθ2dpdq = ζ(θ2)tpqdt+ ζθ2p [(Δq + χO1p)dt+ (P − μq)dw(t)]

+ζθ2q [(−Δp+ μP )dt+ Pdw(t)] + ζθ2dpdq.
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Therefore, by integration by parts and a simple calculation, we get that for sufficiently small ρ > 0,

E
∫ T

0

∫
G1

θ2p2dxdt ≤ −E
∫
Q

[
ζ(θ2)tpq + 2∇(ζθ2) · ∇pq +Δ(ζθ2)pq + ζθ2P 2

]
dxdt

≤ CE
∫ T

0

∫
G0

(
θ2λγ2|pq| + θ2λγ|∇p||q| + θ2λ2γ2|pq|)dxdt

≤ ρE
∫
Q

θ2
(
p2 + λ−2γ−2|∇p|2) dxdt+ C(ρ)E

∫ T

0

∫
G0

θ2λ4γ4q2dxdt.

Combining the above inequality with (4.3), we find that

E
∫
Q

θ2
(
p2 + λ−2γ−2|∇p|2) dxdt ≤ 1

2
E
∫
Q

θ2
(
p2 + λ−2γ−2|∇p|2) dxdt

+CE
∫ T

0

∫
G0

θ2λ4γ4q2dxdt+ CE
∫
Q

θ2λ−1γ−1P 2dxdt.

It follows that

E
∫
Q

θ2
(
p2 + λ−2γ−2|∇p|2) dxdt ≤ C

(
E
∫ T

0

∫
G0

θ2λ4γ4q2dxdt+ E
∫
Q

θ2λ−1γ−1P 2dxdt

)
. (4.5)

This implies that

E
∫ T

0

∫
O1

θ2p2dxdt ≤ C

(
E
∫ T

0

∫
G0

θ2λ4γ4q2dxdt+ E
∫
Q

θ2λ−1γ−1P 2dxdt

)
. (4.6)

Substituting (4.6) into (4.4), we see that

E
∫
Q

θ2
(
λ3γ3q2 + λγ|∇q|2) dxdt

≤ C

[
E
∫ T

0

∫
G0

θ2λ4γ4q2dxdt + E
∫
Q

θ2λ2γ2(P − μq)2dxdt + E
∫
Q

θ2λ−1γ−1P 2dxdt

]

≤ C

[
E
∫ T

0

∫
G0

θ2λ4γ4q2dxdt + E
∫
Q

θ2λ2γ2(P − μq)2dxdt + E
∫
Q

θ2λ−1γ−1q2dxdt

]
.

Hence, it follows that

E
∫
Q

θ2
(
λ3γ3q2 + λγ|∇q|2) dxdt ≤ C

[
E
∫ T

0

∫
G0

θ2λ4γ4q2dxdt+ E
∫
Q

θ2λ2γ2(P − μq)2dxdt

]
. (4.7)

Finally, combining (4.5) and (4.7), we arrive at the desired estimate in Proposition 4.1. �

Based on Proposition 4.1, one has the following observability estimate for equation (4.1), by borrowing some
ideas from [24,25].

Corollary 4.4. If O2 = G, there exists a positive constant M > 0, depending only on n, T,G,G0,O1 and
|μ|L∞

F (0,T ;L∞(G)) such that for any pT ∈ L2(Ω,FT ,P ;L2(G)), any solution (p, P, q) of equation (4.1) satisfies

E
∫
Q

exp
( −M

(T − t)2

)
q2dxdt ≤ C

[
E
∫ T

0

∫
G0

q2dxdt+ E
∫
Q

(P − μq)2dxdt

]
. (4.8)
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Proof. First, we apply the usual energy estimate to the first two equations of (4.1). Notice that d(p2) = 2pdp+
(dp)2. For any t1, t2 ∈ [0, T ] with t1 < t2, by Young’s inequality, it is easy to see that

E
∫
G

p2(t2)dx − E
∫
G

p2(t1)dx = E
∫ t2

t1

∫
G

[
2p(−Δpdt+ μPdt) + P 2dt

]
dx

= 2E
∫ t2

t1

∫
G

|∇p|2dxdt+ 2E
∫ t2

t1

∫
G

μpPdxdt+ E
∫ t2

t1

∫
G

P 2dxdt

≥ −CE
∫ t2

t1

∫
G

p2dxdt.

Hence, in terms of the Gronwall inequality, it follows that

E
∫
G

p2(t1)dx ≤ CE
∫
G

p2(t2)dx, for any 0 ≤ t1 < t2 ≤ T.

This implies that

E
∫
G

p2(t)dx ≤ CE
∫
G

p2(t+
T

4
)dx, for any t ∈

[
0,
T

2

]
.

Integrating the above inequality on
(
0, T2

)
, we obtain that

E
∫ T

2

0

∫
G

p2dxdt ≤ CE
∫ 3T

4

T
4

∫
G

p2dxdt. (4.9)

On the other hand, note that d(q2) = 2qdq+(dq)2. For any t1, t2 ∈ [0, T ] with t1 < t2, by Young’s inequality,
it is easy to see that

E
∫
G

q2(t2)dx − E
∫
G

q2(t1)dx = E
∫ t2

t1

∫
G

[
2q(Δqdt+ χO1pdt) + (P − μq)2dt

]
dx

= −2E
∫ t2

t1

∫
G

|∇q|2dxdt + 2E
∫ t2

t1

∫
O1

pqdxdt+ E
∫ t2

t1

∫
G

(P − μq)2dxdt

≤ E
∫ t2

t1

∫
G

q2dxdt+ E
∫ t2

t1

∫
G

p2dxdt+ E
∫ t2

t1

∫
G

(P − μq)2dxdt.

By the Gronwall inequality, we get that

E
∫
G

q2(t)dx ≤ C

[
E
∫ t

0

∫
G

p2dxdt+ E
∫ t

0

∫
G

(P − μq)2dxdt
]
, for any t ∈ [0, T ].

Integrating the above inequality on (0, T2 ), it follows that

E
∫ T

2

0

∫
G

q2dxdt ≤ C

[
E
∫ T

2

0

∫
G

p2dxdt+ E
∫ T

2

0

∫
G

(P − μq)2dxdt

]
. (4.10)

Next, it is easy to check that there exists a positive constantM > 0, depending only on n, T,G,G0, G1,O1 and
|μ|L∞

F (0,T ;L∞(G)), such that for two fixed constants β and λ satisfying the conditions mentioned in Proposition 4.1,

exp
( −M

(T − t)2

)
≤ C exp

(
2λ

eβψ − e2β|ψ|C(G)

t2(T − t)2

)
t−6(T − t)−6, in

(
T

2
, T

)
×G.
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Hence, by Proposition 4.1, we get that

E
∫ T

T
2

∫
G

exp
( −M

(T − t)2

)
q2dxdt ≤ CE

∫
Q

θ2γ3q2dxdt ≤ C

[
E
∫ T

0

∫
G0

q2dxdt+ E
∫
Q

(P − μq)2dxdt

]
. (4.11)

Moreover, by (4.10), (4.9) and Proposition 4.1, we see that

E
∫ T

2

0

∫
G

exp
( −M

(T − t)2

)
q2dxdt ≤ E

∫ T
2

0

∫
G

q2dxdt

≤ C

[
E
∫ T

2

0

∫
G

p2dxdt+ E
∫ T

2

0

∫
G

(P − μq)2dxdt

]

≤ C

[
E
∫ 3T

4

T
4

∫
G

p2dxdt+ E
∫ T

2

0

∫
G

(P − μq)2dxdt

]

≤ C

[
E
∫ 3T

4

T
4

∫
G

θ2p2dxdt+ E
∫ T

2

0

∫
G

(P − μq)2dxdt

]

≤ C

[
E
∫ T

0

∫
G0

q2dxdt+ E
∫
Q

(P − μq)2dxdt

]
.

(4.12)

Combining (4.11) with (4.12), we get the desired inequality (4.8). �

Remark 4.5. If O2 � G, in order to get the desired controllability result for the system (3.1)−(3.2), one has
to prove that there exists a positive constant M > 0, depending only on n, T,G,G0,O1, O2 and μ such that for
any pT ∈ L2(Ω,FT ,P ;L2(G)), any solution (p, P, q) of equation (4.1) satisfies the following estimate:

E
∫
Q

exp
( −M

(T − t)2

)
q2dxdt ≤ C

[
E
∫ T

0

∫
G0

q2dxdt + E
∫
Q

(χO2P − μq)2dxdt

]
.

However, this observability inequality seems very difficult.

5. Proof of the insensitivity result

In the following, we prove the existence of insensitizing controls for (1.5).

Proof of Theorem 1.6. First, we introduce the following linear subspace of L2
F(0, T ;L2(G0))×L2

F(0, T ;L2(G)):

L =
{

(q|Ω×(0,T )×G0 , P − μq)
∣∣ (p, P, q) solves (4.1) with some pT ∈ L2(Ω,FT ,P ;L2(G))

}
and define a linear functional on L as follows:

L(q|Ω×(0,T )×G0 , P − μq) = −E
∫
Q

qξdxdt.

By means of (4.8), for any ξ ∈ L2
F(0, T ;L2(G)) satisfying

∣∣∣exp
(

M
(T−t)2

)
ξ
∣∣∣
L2

F (0,T ;L2(G))
<∞, we see that L is a

bounded linear functional on L. Then, by the Hahn−Banach theorem, L can be extended to a bounded linear
functional on L2

F(0, T ;L2(G0)) × L2
F(0, T ;L2(G)). For simplicity, we use the same notation for this extension.

Therefore, one can find a pair of random fields (u, v) ∈ L2
F(0, T ;L2(G0)) × L2

F(0, T ;L2(G)) such that

E
∫ T

0

∫
G0

uqdxdt+ E
∫
Q

v(P − μq)dxdt = −E
∫
Q

qξdxdt. (5.1)
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Moreover, there exists a positive constant C, depending only on n, T,G,G0,O1 and |μ|L∞
F (0,T ;L∞(G)) such that

|u|L2
F (0,T ;L2(G0)) + |v|L2

F (0,T ;L2(G)) ≤ C

∣∣∣∣exp
(

M

(T − t)2

)
ξ

∣∣∣∣
L2

F (0,T ;L2(G))

.

Next, we prove that the pair of random fields (u, v) is the desired control. Indeed, for any pT ∈
L2(Ω,FT ,P ;L2(G)), by the system (3.1)−(3.2), equation (4.1) and Itô’s formula, we see

E
∫
G

pT z(T )dx = E
∫
Q

(pdz + zdp+ dpdz − ydq − qdy − dydq)dx

= −
[
E
∫
Q

qξdxdt + E
∫ T

0

∫
G0

uqdxdt+ E
∫
Q

v(P − μq)dxdt

]
.

Combining (5.1) with the above equality, we obtain

E
∫
G

pT z(T )dx = 0, for any pT ∈ L2(Ω,FT ,P ;L2(G)).

Hence, we get that z(T ) = 0 in G, P-a.s. By Proposition 3.1, we complete the proof of Theorem 1.6. �

Remark 5.1. As pointed out in Proposition 3.1, the key in the proof of Theorem 1.6 is to show a controllability
result for the coupled linear stochastic parabolic system (3.1)−(3.2). In the last decades, there are many works
addressing the controllability of deterministic parabolic equations/systems (e.g. [1, 5, 6, 26, 29] and the rich
references therein). However, as far as we know, very little is known about the controllability of stochastic
parabolic equations. We refer to [16, 23] for some known results in this respect. Note however that the desired
controllability result in this paper involves solving a controllability problem for some coupled system governed
by a backward stochastic parabolic equation and a forward one. Therefore, it is technically more difficult to
treat this sort of controllability problem than the case of single stochastic parabolic equations.

Remark 5.2. Compared to the insensitivity problems for forward stochastic parabolic equations, there exists
an essential new difficulty in the study of the same problem but for backward stochastic parabolic equations.
Indeed, the key observability estimate in [25] was established by means of the known Carleman estimates
(in [23]) for forward and backward stochastic parabolic equations. However, when we study the insensitivity
control problem for the backward stochastic parabolic equation (1.5), the known Carleman estimates are not
enough to establish the desired observability estimate for the involved cascade system (4.1). In fact, the first
equation in this cascade system is backward, and therefore it has two state variables p and P . Further, the
diffusion term of the second forward equation in (4.1) contains P . Consequently, if trying to employ simply the
known Carleman estimate (in [23]) for forward stochastic parabolic equations, one would need to establish a
suitable estimate for ∇P , but, this sort of estimates seem to be unavailable. In order to overcome this difficulty,
we use the improved Carleman estimate (1.3) to establish the desired controllability result for the coupled
parabolic system (3.1)−(3.2).

Acknowledgements. The author thanks Professor Xu Zhang (Sichuan University) for his valuable suggestions to improve
this paper.
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