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A DETERMINISTIC AFFINE-QUADRATIC
OPTIMAL CONTROL PROBLEM ∗

Yuanchang Wang1,2 and Jiongmin Yong2

Abstract. A deterministic affine-quadratic optimal control problem is considered. Due to the nature
of the problem, optimal controls exist under some very mild conditions. Further, it is shown that under
some assumptions, the optimal control is unique which leads to the differentiability of the value function.
Therefore, the value function satisfies the corresponding Hamilton−Jacobi−Bellman equation in the
classical sense, and the optimal control admits a state feedback representation. Under some additional
conditions, it is shown that the value function is actually twice differentiable and the so-called quasi-
Riccati equation is derived, whose solution can be used to construct the state feedback representation
for the optimal control.
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1. Introduction

Consider the following controlled ordinary differential equation (ODE, for short):{
Ẋ(s) = A(s, X(s)) + B(s, X(s))u(s), s ∈ [t, T ],
X(t) = x,

(1.1)

with cost functional

J(t, x; u(·))=
∫ T

t

[
Q(s, X(s))+〈S(s, X(s)), u(s) 〉+

1
2
〈R(s, X(s))u(s), u(s) 〉

]
ds+G(X(T )), (1.2)

where A : [0, T ] × R
n → R

n, B : [0, T ] × R
n → R

n×m, Q : [0, T ] × R
n → R, S : [0, T ] × R

n → R
m,

R : [0, T ]×R
n → S

m
+ (Sm is the set of all symmetric matrices, and S

m
+ is the set of all positive definite matrices),

and G : [0, T ] × R
n → R are some given maps. Let U [t, T ] be the set of all admissible controls (which will be
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specified in the next section) on [t, T ]. Under some mild conditions, for any (t, x) ∈ [0, T )×R
n and u(·) ∈ U [t, T ],

the state equation (1.1) admits a unique solution X(·) ≡ X(· ; t, x, u(·)) and the cost functional (1.2) is well-
defined. Then we can pose the following optimal control problem.

Problem (AQ). For any given (t, x) ∈ [0, T ) × R
n, find a u∗(·) ∈ U [t, T ] such that

J(t, x; u∗(·)) = inf
u(·)∈U [t,T ]

J(t, x; u(·)) ≡ V (t, x). (1.3)

Any u∗(·) satisfying the above is called an optimal control for (t, x), and the corresponding X∗(·) ≡
X(· ; t, x, u∗(·)) is called an optimal trajectory for (t, x). The pair (X∗(·), u∗(·)) is called an optimal pair of
Problem (AQ) for the initial pair (t, x). The function V (· , ·) is called the value function of Problem (AQ).

We note that the right hand side of the state equation is affine with respect to the control and the integrand
in the cost functional is up to quadratic with respect to the control. Therefore, we call such a problem an
affine-quadratic optimal control problem (AQ problem, for short). We see that if⎧⎪⎨⎪⎩

A(t, x) = A(t)x, B(t, x) = B(t), Q(t, x) =
1
2
〈Q(t)x, x 〉,

S(t, x) = S(t)x, R(t, x) = R(t), G(x) =
1
2
〈Gx, x 〉,

∀(t, x) ∈ [0, T ]× R
n, (1.4)

for some matrix-valued functions A(·), B(·), Q(·), S(·), R(·), and some matrix G, then our Problem (AQ) is
reduced to a standard linear-quadratic optimal control problem (LQ problem, for short).

It is well-known that for LQ problem, under suitable conditions, one has the existence of a unique optimal
control which admits a state feedback representation via the solution of a differential Riccati equation (see [14],
and also [21]). On the other hand, for optimal control problem of general nonlinear ordinary differential equa-
tion with a Bolza type cost functional, one generally does not expect the existence of an optimal control;
However, under some mild conditions, one can characterize the value function of the optimal control problem
as the unique viscosity solution to the so-called Hamilton−Jacobi−Bellman (HJB, for short) equation ([4], see
also [5, 16], and the references cited therein). Note that our Problem (AQ) is between general (nonlinear) opti-
mal control problems and LQ problems. Therefore, one expects that our results should be “between” those for
the above-mentioned two kinds of problems. A little more precisely, under some mild conditions, we will have
the existence of optimal controls, and the optimality system (which is a two-point boundary value problem)
from Pontryagin’s minimum principle will admit a solution. By impose some proper conditions, we will show
that the optimality system has a unique solution, which leads to the uniqueness of the optimal control. Then
following from a result of [11], we obtain the differentiability of the value function. Hence, the value function
satisfies the Hamilton−Jacobi−Bellman (HJB, for short) in the classical sense, and the optimal control will
admit a state feedback representation. Furthermore, under some additional conditions, we show that the map
u(·) �→ J(t, x; u(·)) is uniformly convex, which yields the second order differentiability of the value function.
Then, by differentiating the HJB equation, we obtain a quasi-Riccati equation, whose solution is exactly the
one we need to represent the optimal control in a state feedback form. Our result covers those found in [22,23]
where Problem (AQ) with the state equation being linear and with the maps x �→ Q(t, x) and x �→ G(x) being
convex, and S(t, x) ≡ 0 was studied. Also, we mention that without giving details, Problem (AQ) for stochastic
differential equations was briefly discussed in [19].

We refer to [4, 11] for excellent surveys on the value function of (deterministic) optimal control theory. See
also [5,6,9,17] for some relevant results concerning the differentiability of value functions. We mention that the
so-called state-dependent Riccati equation (see [1–3,10], and references cited therein) have been used to study
Problem (AQ), with the main concerns being the approximation of optimal control and stabilization of the
system. Final, we mention an excellent book [8] (and the references cited therein) for relevant general (coercive)
optimization problems which are closely relevant to the current paper.

The rest of the paper is organized as follows. Section 2 collects some preliminary results. In Section 3,
we present the existence of optimal controls for our Problem (AQ) and recall a Pontryagin type minimum
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principle. In Section 4, we study the differentiability of the value function via the uniqueness of the solution
to the optimality system and the convexity of the cost functional. In Section 5, we calculate the first and the
second order Fréchet derivatives of the cost functional with respective to the control. Based on these, the uniform
positive definiteness of the Hessian DuuJ(t, x; u(·)) of the cost functional with respect to the control variable
is obtained in Section 6, under certain sufficient conditions. In Section 7, we derive the so-called quasi-Riccati
equation in a very natural way, via which a state feedback representation of the optimal control is obtained. A
couple of illustrative examples are presented as well. Finally, some concluding remarks are collected in Section 8.

2. Preliminaries

Throughout this paper, we let U ⊆ R
m be a nonempty convex and closed set, not necessarily bounded and it

could be U = R
m. For convenience, we assume hereafter that 0 ∈ U . Now, we introduce the following standing

assumptions.

(H1) The maps A : [0, T ] × R
n → R

n and B : [0, T ] × R
n → R

n×m are continuous. There exist constants
LA, LB, L̃B > 0 such that

|A(t, x) − A(t, x̄)| ≤ LA|x − x̄|, ∀t ∈ [0, T ], x, x̄ ∈ R
n, (2.1)

|B(t, x) − B(t, x̄)| ≤ L̃B|x − x̄|, ∀t ∈ [0, T ], x, x̄ ∈ R
n, (2.2)

and
〈[B(t, x) − B(t, x̄)]T (x − x̄), u 〉 ≤ LB|x − x̄|2, ∀(t, u) ∈ [0, T ]× U, x, x̄ ∈ R

n. (2.3)

Note that condition (2.3) is equivalent to the following:

sup
u∈U, x,x̄∈Rn, x �=x̄

〈[B(t, x) − B(t, x̄)]T (x − x̄), u 〉
|x − x̄|2 ≤ LB. (2.4)

On the other hand, under (2.2), the set

X =
{

[B(t, x) − B(t, x̄)]T (x − x̄)
|x − x̄|2

∣∣∣ x, x̄ ∈ R
n, x �= x̄

}
⊆ Bm

L̃B
(0), (2.5)

where Bm
r (0) is the closed ball in R

m centered at 0 with radius r. Therefore, in the case U is bounded, (2.4) is
satisfied with

LB ≥ L̃B sup
u∈U

|u|.

In the case U = R
m, (2.4) is equivalent to the following:

[B(t, x) − B(t, x̄)]T (x − x̄) = 0, ∀t ∈ [0, T ], x, x̄ ∈ R
n. (2.6)

If we denote

B(t, x) =
(
B1(t, x), B2(t, x), · · · , Bm(t, x)

)
, Bi : [0, T ]× R

n → R
n, 1 ≤ i ≤ m,

then (2.6) is equivalent to the following:

〈Bi(t, x) − Bi(t, x̄), x − x̄ 〉 = 0, 1 ≤ i ≤ m.

This is the case if Bi
x(t, x) is skew symmetric, for each 1 ≤ i ≤ m. In particular, this is the case, of course, if

B(t, x) = B(t) is independent of x. Note that even if B(t, x) = B(t) is independent of x, due to the fact that
x �→ A(t, x) is not necessarily linear, we still have a nonlinear state equation. Condition (2.3) plays an important
role in Proposition 2.1 below.

Next, we introduce the following hypothesis for the functions appearing in the cost functional.
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(H2) Maps Q : [0, T ]× R
n → R, S : [0, T ]×R

n → R
m, R : [0, T ]× R

n → S
m, and G : R

n → R are continuous.
There are constants L, Q0, G0, S0 > 0, ε0 ∈ (0, 1), and a continuous function ρ : R

n → [ρ0,∞) with
ρ0 > 0 such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

R(t, x) ≥ ρ(x)I,

(1 − ε0)Q(t, x) − 1
2
S(t, x)T R(t, x)−1S(t, x), G(x) ≥ −L,

Q(t, x) ≤ Q0(1 + |x|2), G(x) ≤ G0(1 + |x|2), |S(t, x)| ≤ S0(1 + |x|),
∀(t, x) ∈ [0, T ]× R

n,

(2.7)

and {
|B(t, x)R(t, x)−1S(t, x)| ≤ L(1 + |x|),
|B(t, x)R(t, x)−1B(t, x)T | ≤ L,

(t, x) ∈ [0, T ]× R
n. (2.8)

The first two conditions in (2.7) will lead to the coercivity of the cost functional u(·) �→ J(t, x; u(·)) and the
last condition in (2.7) implies that our framework covers the standard LQ problem.

We also need the following assumption later.

(H3) The map (t, x) �→ (A(t, x), B(t, x), Q(t, x), S(t, x), R(t, x), G(x)) is twice continuously differentiable.
For any 0 ≤ t < T , let

U [t, T ] =
{

u(·) ∈ L2(t, T ; Rm)
∣∣ u(s) ∈ U, a.e. s ∈ [t, T ]

}
. (2.9)

Any u(·) ∈ U [t, T ] is called an admissible control on [t, T ]. We denote

‖u(·)‖L2(t,s) =
(∫ s

t

|u(r)|2dr

) 1
2

, ∀u(·) ∈ U [t, s].

The following simple result is concerned with the well-posedness of the state equation (1.1), whose proof is
straightforward.

Proposition 2.1. Let (H1) hold. Then for any initial pair (t, x) ∈ [0, T ] × R
n and u(·) ∈ U [t, T ], state equa-

tion (1.1) admits a unique solution X(·) ≡ X(· ; t, x, u(·)), and the following estimate holds:

|X(s; t, x, u(·))| ≤ K
[
1 + |x| + ‖u(·)‖L2(t,s)

]
, ∀s ∈ [t, T ], (2.10)

and
|X(s; t, x, u(·)) − x| ≤ K

[
1 + |x| + ‖u(·)‖L2(t,s)

][√
s − t + ‖u(·)‖L2(t,s)

]√
s − t, (2.11)

hereafter, K > 0 denotes a generic constant which can be different from line to line. Further, for any t ∈ [0, T ],
x, x̄ ∈ R

n, and u(·) ∈ U [t, T ], it holds

|X(s; t, x, u(·)) − X(s; t, x̄, u(·))| ≤ e(LA+LB)(T−t)|x − x̄|, s ∈ [t, T ]. (2.12)

In establishing the above estimates, condition (2.3) is used. As a consequence of the above, using the technique
found in [16], we have the following result on the value function.

Proposition 2.2. Let (H1)–(H2) hold. Then the value function V (· , ·) is continuous and there exists a constant
K > 0 such that

−L(T − t + 1) ≤ V (t, x) ≤ K(1 + |x|2), ∀(t, x) ∈ [0, T ]× R
n, (2.13)

and
|V (t, x) − V (t, x̄)| ≤ K(|x| ∨ |x̄|)|x − x̄|, ∀t ∈ [0, T ], x, x̄ ∈ R

n, (2.14)
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where |x| ∨ |x̄| = max{|x|, |x̄|}. Moreover, the value function V (· , ·) is the unique viscosity solution to the
following HJB equation:⎧⎪⎪⎨⎪⎪⎩

Vt(t, x) + 〈Vx(t, x), A(t, x) 〉+Q(t, x)

+ inf
u∈U

[
〈B(t, x)T Vx(t, x) + S(t, x), u 〉+

1
2
〈R(t, x)u, u 〉

]
= 0, (t, x) ∈ [0, T ]× R

n,

V (T, x) = G(x).

(2.15)

Note that in the case U = R
m, the above HJB equation can be written as{

Vt(t, x) + H(t, x, Vx(t, x)) = 0, (t, x) ∈ [0, T ]× R
n,

V (T, x) = G(x), x ∈ R
n,

(2.16)

with

H(t, x, p)=Q(t, x)+〈 p, A(t, x) 〉−1
2
[
B(t, x)Tp+S(t, x)

]T
R(t, x)−1

[
B(t, x)Tp+S(t, x)

]
,

(t, x, p) ∈ [0, T ]× R
n × R

n.

(2.17)

Further, in the case that V (t, x) is differentiable, it is the classical solution to the above HJB equation and by
the verification theorem, the optimal control admits the following state feedback representation:

u(s) = −R(s, X(s))−1
[
B(s, X(s))T Vx(s, X(s)) + S(s, X(s))

]
, s ∈ [t, T ], (2.18)

with X(·) being the solution to the closed-loop system:⎧⎨⎩Ẋ(s)=A(s, X(s)) − B(s, X(s))R(s, X(s))−1
[
B(s, X(s))T Vx(s, X(s)) + S(s, X(s))

]
, s ∈ [t, T ],

X(t) = x.
(2.19)

Remark 2.3. Note that when V (· , ·) is differentiable, by (2.14), x �→ Vx(s, x) is at most of linear growth.
Therefore, by condition (2.8), the right hand side of equation in (2.19) is at most of linear growth in X(s).
Hence, the solution X(·) exists globally on [t, T ]. Further, if V (· , ·) is twice continuously differentiable, then the
right hand side of the equation in (2.19) is at least locally Lipschitz in X(s), together with the linear growth in
X(s), we obtain the uniqueness of the solution X(·) to the closed-loop system (2.19).

From [16], we note that to guarantee the uniqueness of viscosity solution to the HJB equation, we need⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

|H(t, x, p) − H(t, y, p)| ≤ ω(|x| + |y|, |p|, |x − y|), t ∈ [0, T ], x, y, p ∈ R
n,

|H(t, x, p) − H(t, x, q)| ≤ K0

k∑
i=1

〈x 〉 λi
(|p| ∨ |q|)νi |p − q|, t ∈ [0, T ], x, p, q ∈ R

n,

|G(x) − G(y)| ≤ K0

( 〈x 〉 ∨ 〈 y 〉 )μ−1|x − y|, ∀x, y ∈ R
n,

λi, νi ≥ 0, λi + (μ − 1)νi ≤ 1, 1 ≤ i ≤ k,

(2.20)

with 〈x 〉 =
√

1 + |x|2. For the current case, we may let μ = 2. Then

|G(x) − G(y)| ≤ L(〈x 〉 ∨ 〈 y 〉)|x − y|, ∀x, y ∈ R
n.

When U = R
m, the Hamiltonian has the explicit form (2.17). Clearly, the first condition in (2.20) holds. For

the second condition, we observe that

|Hp(t, x)| ≤ |A(t, x) + B(t, x)R(t, x)−1S(t, x)| + |B(t, x)R(t, x)−1B(t, x)Tp |
≤ K0

(〈x 〉+|p| ),
which is implied by (2.8). Thus, the second condition in (2.20) holds with

λ1 = ν2 = 1, λ2 = ν1 = 0.
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3. Existence of optimal controls and minimum principle

We first present the following result.

Proposition 3.1. Under (H1)–(H2), for any initial pair (t, x) ∈ [0, T )×R
n, Problem (AQ) admits an optimal

control.

Proof. Let (t, x) ∈ [0, T )× R
n be given. Let X0(·) = X(· ; t, x, 0). According to (2.10), we have

|X0(s)| ≤ K(1 + |x|), ∀s ∈ [t, T ], (3.1)

for some K > 0. Let uk(·) ∈ U [t, T ] be a minimizing sequence with the corresponding state trajectory Xk(·) ≡
X(· ; t, x, uk(·)). Then we may assume that (making use of (2.7))

J(t, x; 0) + 1 ≥ J(t, x; uk(·))

=
∫ T

t

[
Q(s, Xk(s)) + 〈S(s, Xk(s)), uk(s) 〉+

1
2
〈R(s, Xk(s))uk(s), uk(s) 〉

]
ds + G(Xk(T ))

=
∫ T

t

[
1

1 − ε0

(
(1 − ε0)Q(s, Xk(s)) − 1

2
S(s, Xk(s))T R(s, Xk(s))−1S(s, Xk(s))

)
+

1
2

∣∣(1 − ε0)
1
2 R(s, Xk(s))

1
2 uk(s) + (1 − ε0)−

1
2 R(s, Xk(s))−

1
2 S(s, Xk(s))

∣∣2
+

ε0

2
〈R(s, Xk(s))uk(s), uk(s) 〉

]
ds + G(Xk(T ))

≥ −L(T − t)
1 − ε0

+
ε0ρ0

2

∫ T

t

|uk(s)|2ds − L.

Thus, ∫ T

t

|uk(s)|2ds ≤ K, ∀k ≥ 1. (3.2)

Consequently,
|Xk(s)| ≤ K

(
(1 + |x| + ‖uk(·)‖U [t,T ]

)
≤ K, ∀s ∈ [t, T ], k ≥ 1.

Then for any t ≤ s < τ ≤ T ,

|Xk(τ) − Xk(s)| ≤
∫ τ

s

(
A0 + LA|Xk(r)| + (B0 + L̃B|Xk(r))|)|uk(r)|

)
dr

≤ K(τ − s) + K(τ − s)
1
2 ‖uk(·)‖U [t,T ] ≤ K(τ − s)

1
2 .

Thus, {Xk(·)} is uniformly bounded and equicontinuous. Hence, we may assume that Xk(·) → X∗(·) in
C([t, T ]; Rn). Then a standard argument applies to get the existence of an optimal control (see [7]). �

The following is a kind of Pontryagin type minimum principle for Problem (AQ). The proof is pretty standard.

Proposition 3.2. Let (H1)–(H3) hold and (t, x) ∈ [0, T ) × R
n be given. Let (X∗(·), u∗(·)) be an optimal pair

of Problem (AQ) for (t, x). Then the following adjoint equation admits a unique solution⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẏ (s) = −
⎡⎣Ax(s, X∗(s)) +

m∑
j=1

u∗
j(s)B

j
x(s, X∗(s))

⎤⎦T

Y (s) − Qx(s, X∗(s))T

−Sx(s, X∗(s))T u∗(s) − 1
2

m∑
j,k=1

u∗
j (s)u

∗
k(s)Rjk

x (s, X∗(s))T , s ∈ [t, T ],

Y (T ) = Gx(X∗(T ))T ,

(3.3)
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and the following minimum condition holds:

[
B(s, X∗(s))T Y (s) + S(s, X∗(s))

]
u∗(s) +

1
2
u∗(s)T R(s, X∗(s))u∗(s)

= min
u∈U

{[
B(s, X∗(s))T Y (s) + S(s, X∗(s))

]
u +

1
2
uT R(s, X∗(s))u

}
, s ∈ [t, T ].

(3.4)

In the above, B(s, x) = (B1(s, x), B2(s, x), · · · , Bm(s, x)) with Bi : [0, T ] × R
n → R

n, and Bi
x : [0, T ] × R

n →
R

n×n. In particular, if U = R
m, we have

u∗(s) = −R(s, X∗(s))−1
[
B(s, X∗(s))T Y (s) + S(s, X∗(s))

]
, s ∈ [t, T ]. (3.5)

Hereafter, we assume that U = R
m. From the above, we see that under (H1)–(H3), for any (t, x) ∈ [0, T )×R

n,
the following coupled two-point boundary value problem, called the optimality system of Problem (AQ), admits
a solution (X(·), Y (·)):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ(s) = A(s, X(s)) − B(s, X(s))R(s, X(s))−1
[
B(s, X(s))T Y (s) + S(s, X(s))

]
,

Ẏ (s) = −
⎡⎣Ax(s, X(s)) −

m∑
j=1

eT
j R(s, X(s))−1

{
B(s, X(s))T Y (s) + S(s, X(s))

}
Bj

x(s, X(s))

⎤⎦T

Y (s)

−Qx(s, X(s))T + Sx(s, X(s))T R(s, X(s))−1
[
B(s, X(s))T Y (s) + S(s, X(s))

]
−1

2

m∑
j,k=1

[
B(s, X(s))T Y (s) + S(s, X(s))

]T

R(s, X(s))−1eje
T
k R(s, X(s))−1

·
[
B(s, X(s))T Y (s) + S(s, X(s))

]
Rjk

x (s, X(s))T , s ∈ [t, T ],

X(t) = x, Y (T ) = Gx(X(T ))T ,

(3.6)

where ej ∈ R
m is the vector with entry 1 at the ith position and all other entries are zero. Further, if (3.6)

admits a unique solution (X(·), Y (·)), then X∗(·) = X(·) must be the optimal trajectory and the optimal control
u∗(·) must be given by (3.5).

We point out that optimal control u∗(·) of form (3.5) is not practically feasible because the involved Y (·) is
obtained from the above optimality system (3.6), and some future information, say, X(T ) of the state trajectory
X(·) seems to be needed. On the other hand, if we are able to show that actually one has

Y (s) = Θ(s, X(s)), s ∈ [t, T ],

for some map Θ(· , ·), then plugging the above into (3.5), we will end up with a nonlinear state feedback control
which will be practically feasible, in principle. The efforts in the rest of this paper is trying to achieve such a
goal, for the case U = R

m.
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4. Differentiability of the value function

Let us denote⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(s, x, y) = A(s, x) − B(s, x)R(s, x)−1
[
B(s, x)T y + S(s, x)

]
,

g(s, x, y) = −
⎡⎣Ax(s, x) −

m∑
j=1

eT
j R(s, x)−1

{
B(s, x)T y + S(s, x)

}
Bj

x(s, x)

⎤⎦T

y

−Qx(s, x)T+ Sx(s, x)T R(s, x)−1
[
B(s, x)Ty + S(s, x)

]
−1

2

m∑
j,k=1

[
B(s, x)Ty+S(s, x)

]T
R(s, x)−1eje

T
k R(s, x)−1

[
B(s, x)Ty+S(s, x)

]
Rjk

x (s, x)T ,

(s, x) ∈ [0, T ]× R
n,

h(x) = Gx(x)T , x ∈ R
n.

Then the optimality system (3.6) becomes⎧⎪⎨⎪⎩
Ẋ(s) = b(s, X(s), Y (s)),

Ẏ (s) = g(s, X(s), Y (s)),
s ∈ [t, T ],

X(t) = x, Y (T ) = h(X(T )).

(4.1)

For such a two-point boundary value problem, we have the following result.

Proposition 4.1. Let (H1)–(H2) hold. Suppose further that there exists a constant λ > 0 and a matrix Λ ∈
R

n×n such that
〈Λ(x − x̄), h(x) − h(x̄) 〉 ≥ λ|x − x̄|2, ∀x, x̄ ∈ R

n, (4.2)

and
〈ΛT [g(s, x, y) − g(s, x̄, ȳ)], x − x̄ 〉+ 〈Λ[b(s, x, y) − b(s, x̄, ȳ)], y − ȳ 〉 ≤ −λ|x − x̄|2,

∀s ∈ [0, T ], x, x̄, y, ȳ ∈ R
n.

(4.3)

Then for any (t, x) ∈ [0, T ) × R
n, (4.1) admits a unique solution (X(·), Y (·)). Consequently, Problem (AQ)

admits a unique optimal control, the value function V (· , ·) is differentiable, and the optimal control admits a
state feedback representation (2.18).

Proof. By regarding (4.1) as a special case of forward-backward stochastic differential equation, we may use the
result of [13] (see also [15], p. 152, Prop. 3.4). Then the unique solvability of (4.1) follows. Since any optimal
pair (X∗(·), u∗(·)) of Problem (AQ) will lead to an optimality system of form (4.1), by the uniqueness, we see
that the optimal pair must be unique. Then by [11], the value function must be differentiable. Finally, the state
feedback representation (2.18) follows from a standard verification theorem. �

When b, g, h are differentiable, conditions (4.2)–(4.3) can further be written as

hx(x)T Λ + ΛT hx(x) ≥ 2λI, ∀x ∈ R
n, (4.4)

and (
ΛT 0
0 Λ

)(
gx(s, x, y) gy(s, x, y)
bx(s, x, y) by(s, x, y)

)
+
(

gx(s, x, y) gy(s, x, y)
bx(s, x, y) by(s, x, y)

)T (
Λ 0
0 ΛT

)
≤ −2λI,

∀(s, x, y) ∈ [0, T ]× R
n × R

n.

(4.5)
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Let us look at a simple situation for which the condition imposed above is pretty close to those we are familiar
with. Consider the following linear state equation:{

Ẋ(s) = A(s)X(s) + B(s)u(s), s ∈ [t, T ],
X(t) = x,

with quadratic cost functional

J(t, x; u(·)) =
1
2

∫ T

t

[
〈Q(s)X(s), X(s) 〉+ 〈R(s)u(s), u(s) 〉

]
ds +

1
2
〈GX(T ), X(T ) 〉 .

We assume that R(·) is uniformly positive definite. Then{
b(s, x, y) = A(s)x − B(s)R(s)−1B(s)T y,

g(s, x, y) = −A(s)T y − Q(s)x.

Hence, by taking Λ = I, we see that (4.2) and (4.3) are equivalent to the following:

G(s) ≥ λI, Q(s) + B(s)R(s)−1B(s)T ≥ λI, s ∈ [0, T ],

which are almost standard in the classical LQ problems.
We point out that (4.2) and (4.3) are basically some sort of monotonicity conditions. In fact, they mean

that the maps x �→ ΛT h(x) and (x, y) �→ −(ΛT g(s, x, y), Λb(s, x, y)) are uniformly monotone, in the sense of
nonlinear monotone operators [25]. For the unique solvability of system (3.6), one may impose some other type
conditions. See for examples, [15,18,20], and so on. Therefore, there are some other situations, besides the case
in the above proposition, for which optimal control of Problem (AQ) uniquely exists and it has a state feedback
representation. However, the above-mentioned conditions usually will look very complicated, and practically,
they are not easy to use. Hence, some other alternative approaches to Problem (AQ) are also desirable.

Note that in the case U = R
m, for any t ∈ [0, T ), U [t, T ] is a Hilbert space whose dual U [t, T ]∗ can be identified

with U [t, T ] by the Riesz representation theorem. For any initial pair (t, x) ∈ U [t, T ], by Proposition 3.1, under
(H1)–(H2), Problem (AQ) admits an optimal control u∗(·) ∈ U [t, T ]. Thus, under (H1)–(H3), we have

DuJ(t, x; u∗(·)) = 0, (4.6)

and
DuuJ(t, x; u∗(·)) ≥ 0, (4.7)

i.e., DuuJ(t, x; u∗(·)) is positive semi-definite, meaning that

〈DuuJ(t, x; u∗(·))v(·), v(·) 〉 ≥ 0, ∀v(·) ∈ U [t, T ].

Now, suppose the above is strengthened to the following:

〈DuuJ(t, x; u(·))v(·), v(·) 〉 ≥ δ‖v(·)‖2
L2(t,T ), ∀u(·), v(·) ∈ U [t, T ], (4.8)

for some δ > 0, then u(·) �→ J(t, x; u(·)) is uniformly convex, which implies that Problem (AQ) admits a unique
optimal control for any initial pair (t, x) ∈ [0, T ) × R

n. Hence, the value function V (· , ·) is differentiable. The
following result says that under (4.8), we actually have a little more.

Theorem 4.2. Let (H1)–(H3) hold and (4.8) be satisfied for some δ > 0. Then the optimal control map (t, x) �→
u∗(· ; t, x) is differentiable and the value function V (· , ·) is twice differentiable.
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Proof. First of all, we naturally extend u(·) �→ J(t, x; u(·)) from U [t, T ] to U [0, T ] as follows:

Ĵ(t, x; u(·)) =
δ

2

∫ t

0

|u(s)|2ds + J(t, x; u(·)|[t,T ]), ∀u(·) ∈ U [0, T ],

where u(·)|[t,T ] stands for the restriction of u(·) ∈ U [0, T ] on [t, T ]. Then for any (t, x, u(·)) ∈ [0, T ]×R
n×U [0, T ],

〈DuĴ(t, x; u(·)), v(·) 〉 = δ

∫ t

0

〈u(s), v(s) 〉 ds + 〈DuJ(t, x; u(·)), v(·)∣∣
[t,T ]

〉, ∀v(·) ∈ U [0, T ],

and

〈[DuuĴ(t, x; u(·))]v(·), w(·) 〉 = δ

∫ t

0

〈 v(s), w(s) 〉 ds

+ 〈[DuuJ
(
t, x; u(·)∣∣

[t,T ]

)
]v(·)∣∣

[t,T ]
, w(·)∣∣

[t,T ]
〉, ∀v(·), w(·) ∈ U [0, T ].

Further, û∗(·) is a minimum of u(·) �→ Ĵ(t, x; u(·)) over U [0, T ] if and only if

û∗(s) = u∗(s)I[t,T ](s), s ∈ [0, T ],

with u∗(·) being a minimum of u(·) �→ J(t, x; u(·)) over U [t, T ]. Clearly, by (4.8), we see that

〈DuuĴ(t, x; u(·))v(·), v(·) 〉 ≥ δ‖v(·)‖2
L2(0,T ), ∀u(·), v(·) ∈ U [0, T ].

Thus, for any (t, x) ∈ [0, T ) × R
n, the map u(·) �→ Ĵ(t, x; u(·)) is uniformly convex and therefore, it admits a

unique minimum û∗(·) ∈ U [0, T ]. Now, let us define

F (t, x, u(·)) = DuĴ
(
t, x; u(·)), ∀(t, x, u(·)) ∈ [0, T ]× R

n × U [0, T ]. (4.9)

Then F : [0, T ] × R
n × U [0, T ] → U [0, T ]∗ = U [0, T ]. For any fixed initial pair (t, x) ∈ [0, T ] × R

n, consider the
following equation:

F (t, x, u(·)) = 0. (4.10)

Under (H1)–(H3), from Proposition 3.1, and (4.8), u(·) �→ Ĵ(t, x; u(·)) admits a unique minimum û∗(·) ≡
û∗(· ; t, x) ∈ U [0, T ]. Thus,

V (t, x) = inf
u(·)∈U [t,T ]

J(t, x; u(·)) = J(t, x; û∗(·)|[t,T ]) = Ĵ(t, x; û∗(·)) = inf
u(·)∈U [0,T ]

Ĵ(t, x; u(·)). (4.11)

Then it is necessary that û∗(·) is a solution to equation (4.10), and

Fu(t, x; û∗(·)) = DuuĴ(t, x; û∗(·)) ≥ δI. (4.12)

This implies that Fu(t, x; û∗(·))−1 : U [0, T ] → U [0, T ] exists and is a bounded operator ([8], Lem. 4.123 on p. 365).
Then, by implicit function Theorem ([12], see also [24], Thm. 4.B on pp. 150–151), we have a differentiable map
(s, y) �→ ϕ(· ; s, y) defined in an open ball Oε(t, x) centered at (t, x) with radius ε > 0 such that⎧⎪⎨⎪⎩

ϕ(· ; t, x) = û∗(· ; t, x),

F (s, y; ϕ(· ; s, y)) ≡ DuĴ(s, y; ϕ(· ; s, y)) = 0, (s, y) ∈ Oε(t, x),
Fu(s, y; ϕ(· ; s, y)) ≡ DuuJ(s, y; ϕ(· ; s, y)) ≥ δI, (s, y) ∈ Oε(t, x).

(4.13)

and at (t, x),
ϕ(t,x)(· ; t, x) = Fu(t, x; û∗(·))−1F(t,x)(t, x; û∗(·))

≡ −DuuĴ(t, x; u∗(· ; t, x))−1[DuĴ ](t,x)(t, x; û∗(· ; t, x)).
(4.14)
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From (4.13), we see that for any (s, y) ∈ Oε(t, x), ϕ(· ; s, y) must be a local minimum of Ĵ(s, y; u(·)). By the
convexity of the functional u(·) �→ Ĵ(s, y; u(·)), this local minimum must be global. Thus, by the uniqueness of
the optimal control, we actually have

ϕ(· ; s, y) = û∗(· ; s, y), ∀(s, y) ∈ Oε(t, x). (4.15)

Hence, (t, x) �→ û∗(· ; t, x) is continuously differentiable. Next, denoting x0 = t, we have

V (x0, x) = Ĵ(x0, x; û∗(· ; x0, x)), DuĴ(x0, x; û∗(· ; x0, x)) = 0.

Thus, for 0 ≤ i ≤ n,

û∗
xi

(· ; x0, x) = −DuuĴ(x0, x; û∗(· ; x0, x))−1DuĴxi(x0, x; û∗(· ; x0, x)).

Hence,

Vxi(x0, x) = Ĵxi(x0, x; û∗(· ; x0, x)) + DuĴ(x0, x; û∗(· ; x0, x))û∗
xi

(· ; x0, x) = Ĵxi(x0, x; û∗(· ; x0, x)).

Further, for 0 ≤ i, j ≤ n,

Vxixj (x0, x) = Ĵxixj (x0, x; û∗(· ; x0, x)) + DuĴxi(x0, x; û∗(· ; x0, x))û∗
xj

(· ; x0, x)

+ [DuuĴ(x0, x; u∗(· ; x0, x))û∗
xi

(· ; x0, x)]û∗
xj

(· ; x0, x)

= Ĵxixj (x0, x; û∗(· ; x0, x)) + [DuuĴ(x0, x; u∗(· ; x0, x))û∗
xi

(· ; x0, x)]û∗
xj

(· ; x0, x).

Therefore, V (· , ·) is twice continuously differentiable. �

5. Fréchet differentiability of the cost functional

In this section, we will calculate the first and the second order Fréchet derivatives of the map u(·) �→
J(t, x; u(·)). Then we will find sufficient conditions for (4.8) to be true. Denote

x=

⎛⎜⎜⎝
x1

x2

...
xn

⎞⎟⎟⎠, y=

⎛⎜⎜⎝
y1

y2

...
yn

⎞⎟⎟⎠∈R
n, u=

⎛⎜⎜⎝
u1

u2

...
um

⎞⎟⎟⎠∈R
m,

and

A(t, x) =

⎛⎜⎜⎝
A1(t, x)
A2(t, x)

...
An(t, x)

⎞⎟⎟⎠ , B(t, x)=

⎛⎜⎜⎝
B11(t, x) B12(t, x) · · · B1m(t, x)
B21(t, x) B22(t, x) · · · B2m(t, x)

...
...

. . .
...

Bn1(t, x) Bn2(t, x) · · · Bnm(t, x)

⎞⎟⎟⎠ ,

S(t, x) =

⎛⎜⎜⎝
S1(t, x)
S2(t, x)

...
Sm(t, x)

⎞⎟⎟⎠ , R(t, x)=

⎛⎜⎜⎝
R11(t, x) R12(t, x) · · · R1m(t, x)
R21(t, x) R22(t, x) · · · R2m(t, x)

...
...

. . .
...

Rm1(t, x) Rm2(t, x) · · · Rmm(t, x)

⎞⎟⎟⎠ ,

Ai, Bij , Sj , Rjk : [0, T ]× R
n → R, 1 ≤ i ≤ n, 1 ≤ j, k ≤ m.
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Next, we denote

Bj(t, x) =

⎛⎜⎜⎜⎝
B1j(t, x)
B2j(t, x)

...
Bnj(t, x)

⎞⎟⎟⎟⎠ , B̃i(t, x) =

⎛⎜⎜⎜⎝
Bi1(t, x)
Bi2(t, x)

...
Bim(t, x)

⎞⎟⎟⎟⎠ ,

∀(t, x) ∈ [0, T ]× R
n, 1 ≤ j ≤ m, 1 ≤ i ≤ n.

Then, {
B(t, x) = (B1(t, x), B2(t, x), · · · , Bm(t, x)),

B(t, x)T = (B̃1(t, x), B̃2(t, x), · · · , B̃n(t, x)),
(t, x) ∈ [0, T ]× R

n.

We have the following result.

Theorem 5.1. Let (H1)–(H3) hold. Then for any (t, x) ∈ [0, T ) × R
n and u(·) ∈ U [t, T ],

〈DuJ(t, x; u(·)), v(·) 〉 =
∫ T

t

[
R(s, X(s))u(s) + S(s, X(s)) + B(s, X(s))T Y (s)

]
v(s)ds, ∀v(·) ∈ U [t, T ]. (5.1)

with (X(·), Y (·)) being the solution to the following decoupled two-point boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ(s) = A(s, X(s)) + B(s, X(s))u(s),

Ẏ (s) = −
[
Ax(s, X(s)) +

m∑
j=1

uj(s)Bj
x(s, X(s))

]T

Y (s) − Qx(s, X(s))T

−Sx(s, X(s))T u(s) − 1
2

m∑
j,k=1

uj(s)uk(s)Rjk
x (s, X(s))T ,

X(t) = x, Y (T ) = Gx(X(T ))T .

(5.2)

Further,

〈[DuuJ(t, x; u(·))v(·)], w(·) 〉 =
∫ T

t

[
R(s, X(s))v(s) + B(s, X(s))T Y1(s) + C(s)X1(s)

]
w(s)ds,

∀v(·), w(·) ∈ U [t, T ],

(5.3)

where ⎧⎪⎨⎪⎩
(

Ẋ1(s)
Ẏ1(s)

)
=
(

A(s) 0
−A1(s) −A(s)T

)(
X1(s)
Y1(s)

)
+
(

B(s, X(s))
−C(s)T

)
v(s), s ∈ [t, T ],

X1(t) = 0, Y1(T ) = Gxx(X(T ))X1(T ),

(5.4)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(s) = Ax(s, X(s)) +
m∑

j=1

uj(s)Bj
x(s, X(s)),

A1(s) =
n∑

i=1

Y i(s)Ai
xx(s, X(s)) + Qxx(s, X(s)) +

1
2

m∑
j,k=1

uj(s)uk(s)Rjk
xx(s, X(s))

+
m∑

j=1

uj(s)
[ n∑

i=1

Y i(s)Bij
xx(s, X(s))+Sj

xx(s, X(s))
]
,

C(s) =
m∑

j=1

uj(s)Rj
x(s, X(s)) + Sx(s, X(s)) +

n∑
i=1

Y i(s)B̃i
x(s, X(s)).

(5.5)
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Proof. Let (t, x) ∈ [0, T )× R
n be fixed and u(·), v(·) ∈ U [t, T ], let

X(·) = X(· ; t, x, u(·)), Xε(·) = X(· ; t, x, u(·) + εv(·)), (5.6)

with ε > 0. Let

X1(·) = lim
ε→0

Xε(·) − X(·)
ε

· (5.7)

Then

Ẋ1(s) = lim
ε→0

⎧⎨⎩A(s, Xε(s)) − A(s, X(s))
ε

+
m∑

j=1

uj(s)
Bj(s, Xε(s)) − Bj(s, X(s))

ε

⎫⎬⎭+ B(s, X(s))v(s)

=

⎡⎣Ax(s, X(s)) +
m∑

j=1

uj(s)Bj
x(s, X(s))

⎤⎦X1(s) + B(s, X(s))v(s).

Thus, X1(·) solves the following:{
Ẋ1(s) = A(s)X1(s) + B(s, X(s))v(s), s ∈ [t, T ],
X1(t) = 0,

with A(·) being defined in (5.5). We have

〈DuJ(t, x; u(·)), v(·) 〉 = lim
ε→0

J(t, x; u(·) + εv(·)) − J(t, x; u(·))
ε

=
∫ T

t

[
Qx(s, X(s))X1(s) + 〈S(s, X(s)), v(s) 〉+ 〈Sx(s, X(s))X1(s), u(s) 〉

+ 〈R(s, X(s))u(s), v(s) 〉+
1
2

m∑
j,k=1

uj(s)uk(s)Rjk
x (s, X(s))X1(s)

]
ds + Gx(X(T ))X1(T )

=
∫ T

t

[
〈Qx(s, X(s))T + Sx(s, X(s))T u(s) +

1
2

m∑
j,k=1

uj(s)uk(s)Rjk
x (s, X(s))T , X1(s) 〉

+ 〈S(s, X(s)) + R(s, X(s))u(s), v(s) 〉
]
ds + Gx(X(T ))X1(T ).

(5.8)

Let (X(·), Y (·)) be the solution to (5.2). Then (note (5.5))

d
ds

〈Y (s), X1(s) 〉 = 〈 Ẏ (s), X1(s) 〉+ 〈Y (s),A(s)X1(s) 〉+ 〈Y (s), B(s, X(s))v(s) 〉
= 〈 Ẏ (s) + A(s)T Y (s), X1(s) 〉+ 〈B(s, X(s))T Y (s), v(s) 〉 .

Noting X1(t) = 0, one has

Gx(X(T ))X1(T ) = 〈Y (T ), X1(T ) 〉

=
∫ T

t

{
〈 Ẏ (s) + A(s)T Y (s), X1(s) 〉+ 〈B(s, X(s))T Y (s), v(s) 〉

}
ds.
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Consequently,

〈DuJ(t, x; u(·)), v(·) 〉 =
∫ T

t

{
〈 Ẏ (s) + A(s)T Y (s)

+ Qx(s, X(s))T + Sx(s, X(s))T u(s) +
1
2

m∑
j,k=1

uj(s)uk(s)Rjk
x (s, X(s))T , X1(s) 〉

+ 〈B(s, X(s))T Y (s) + S(s, X(s)) + R(s, X(s))u(s), v(s) 〉
}

ds

=
∫ T

t

〈R(s, X(s))u(s) + S(s, X(s)) + B(s, X(s))T Y (s), v(s) 〉 ds.

This proves (5.1).
Next, we calculate DuuJ(t, x; u(·)). To this end, for any ε ∈ (0, 1), let (Xε(·), Y ε(·)) be the solution to the

following: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋε(s) = A(s, Xε(s)) + B(s, Xε(s))
[
u(s) + εv(s)],

Ẏ ε(s) = −
[
Ax(s, Xε(s)) +

m∑
j=1

[uj(s) + εvj(s)]Bj
x(s, Xε(s))

]T

Y ε(s)

−Qx(s, Xε(s))T − Sx(s, Xε(s))T [u(s) + εv(s)]

−1
2

m∑
j,k=1

[uj(s) + εvj(s)][uk(s) + εvk(s)]Rjk
x (s, Xε(s))T ,

Xε(t) = x, Y ε(T ) = Gx(Xε(T ))T .

(5.9)

Then
[DuJ(t, x; u(·)+εv(·))](s)=R(s, Xε(s))[u(s)+εv(s)]+S(s, Xε(s))+B(s, Xε(s))T Y ε(s),

s ∈ [t, T ].

Hence,

[DuuJ(t, x; u(·))v(·)](s) = lim
ε→0

[DuJ(t, x; u(·) + εv(·))](s) − [DuJ(t, x; u(·))](s)
ε

= lim
ε→0

{
R(s, Xε(s))v(s) +

R(s, Xε(s)) − R(s, X(s))
ε

u(s) +
S(x, Xε(s)) − S(s, X(s))

ε

+B(s, Xε(s))T Y ε(s) − Y (s)
ε

+
B(s, Xε(s))T − B(s, X(s))T

ε
Y (s)

}

= R(s, X(s))v(s) +
m∑

j=1

uj(s)Rj
x(s, X(s))X1(s) + Sx(s, X(s))X1(s)

+B(s, X(s))T Y1(s) +
n∑

i=1

Y i(s)B̃i
x(s, X(s))X1(s)

= R(s, X(s))v(s) + B(s, X(s))T Y1(s)

+

[
m∑

j=1

uj(s)Rj
x(s, X(s)) + Sx(s, X(s)) +

n∑
i=1

Y i(s)B̃i
x(s, X(s))

]
X1(s)

≡ R(s, X(s))v(s) + B(s, X(s))T Y1(s) + C(s)X1(s),
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where

Y1(s) = lim
ε→0

Y ε(s) − Y (s)
ε

, (5.10)

and C(·) is defined in (5.5). Then to complete the proof, we need only to derive the equation for Y1(·). First of
all,

Y1(T ) = lim
ε→0

Y ε(T ) − Y (T )
ε

= lim
ε→0

Gx(Xε(T ))T − Gx(X(T ))T

ε

= Gxx(X(T ))
[
lim
ε→0

Xε(T ) − X(T )
ε

]
= Gxx(X(T ))X1(T ).

(5.11)

Next,

Ẏ1(s) = lim
ε→0

Ẏ ε(s) − Ẏ (s)
ε

= − lim
ε→0

{
Ax(s, Xε(s))T Y ε(s) − Y (s)

ε
+

n∑
i=1

Y i A
i
x(s, Xε(s))T − Ai

x(s, X(s))T

ε

+
m∑

j=1

vj(s)Bj
x(s, Xε(s))T Y ε(s) +

m∑
j=1

uj(s)Bj
x(s, Xε(s))T Y ε(s) − Y (s)

ε

+
m∑

j=1

n∑
i=1

uj(s)
Bij

x (s, Xε(s))T − Bij
x (s, X(s))T

ε
Y i(s) +

Qx(Xε(s))T − Qx(X(s))T

ε

+Sx(s, Xε(s))T v(s) +
Sx(s, Xε(s))T − Sx(s, X(s))T

ε
u(s)

+
1
2

m∑
j,k=1

uj(s)uk(s)
Rjk

x (s, Xε(s))T−Rjk
x (s, X(s))T

ε
+

m∑
j,k=1

uj(s)vk(s)Rjk
x (s, Xε(s))T

}
.

Hence,

Ẏ1(s) = −Ax(s, X(s))T Y1(s) −
n∑

i=1

Y i(s)Ai
xx(s, X(s))X1(s) −

m∑
j=1

vj(s)Bj
x(s, X(s))T Y (s)

−
m∑

j=1

uj(s)Bj
x(s, X(s))T Y1(s) −

m∑
j=1

n∑
i=1

uj(s)Y i(s)Bij
xx(s, X(s))X1(s)

−Qxx(s, X(s))X1(s) − Sx(s, X(s))T v(s) −
m∑

j=1

uj(s)Sj
xx(s, X(s))X1(s)

−1
2

m∑
j,k=1

uj(s)uk(s)Rjk
xx(s, X(s))X1(s) −

m∑
j,k=1

uj(s)vk(s)Rjk
x (s, X(s))T

= −
[
Ax(s, X(s)) +

m∑
j=1

uj(s)Bj
x(s, X(s))

]T

Y1(s)

−
[

n∑
i=1

Y i(s)Ai
xx(s, X(s)) +

m∑
j=1

n∑
i=1

uj(s)Y i(s)Bij
xx(s, X(s)) + Qxx(s, X(s))

+
m∑

j=1

uj(s)Sj
xx(s, X(s)) +

1
2

m∑
j,k=1

uj(s)uk(s)Rjk
xx(s, X(s))

]
X1(s)
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−
[
Sx(s, X(s)) +

n∑
i=1

Y i(s)B̃i
x(s, X(s)) +

m∑
j=1

uj(s)Rj
x(s, X(s))

]T

v(s)

= −A(s)T Y1(s) − A1(s)X1(s) − C(s)T v(s),

where A(·), A1(·), and C(·) are given by (5.5). Thus, (X1(·), Y1(·)) solves (5.4). �

Note that for given (t, x) ∈ [0, T ) × R
n and u(·) ∈ U [t, T ], both X1(·) and Y1(·) depend on v(·). It will be

desirable to have a representation of [DuuJ(t, x; u(·))v(·)] explicitly in terms of v(·). The following is such a
result.

Theorem 5.2. Let (H1)–(H3) hold. For any (t, x) ∈ [0, T ) × R
n and u(·) ∈ U [t, T ], let A(·), A1(·), and C(·)

be defined by (5.5). Then

[DuuJ(t, x; u(·))v(·)](s) = R(s, X(s))v(s) +
∫ T

t

F(s, r)v(r)ds, ∀v(·) ∈ U [t, T ], (5.12)

where

F(s, r) = B(s, X(s))TΦA(T, s)T Gxx(X(T ))ΦA(T, r)B(r, X(r))

+
∫ T

s∨r

B(s, X(s))T ΦA(r′, s)TA1(r′)ΦA(r′, r)B(r, X(r))dr′

+C(s)ΦA(s, r)B(r, X(r))I[t,s](r) + B(s, X(s))T ΦA(r, s)T C(r)T I[s,T ](r),

(5.13)

and ΦA(· , ·) is the fundamental matrix of A(·), i.e., for any τ ∈ [t, T ),⎧⎪⎨⎪⎩
d
ds

ΦA(s, τ) = A(s)ΦA(s, τ), s ∈ [τ, T ],

ΦA(τ, τ) = I.

Proof. Let ΦA(· , ·) be the fundamental matrix of A(·). Then

X1(s) =
∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr, s ∈ [t, T ],

and

Y1(s)= ΦA(T, s)T Gxx(X(T ))X1(T ) +
∫ T

s

ΦA(r, s)T
[
A1(r)X1(r) + C(r)T v(r)

]
dr

= ΦA(T, s)T Gxx(X(T ))
∫ T

t ΦA(T, r)B(r, X(r))v(r)dr

+
∫ T

s

ΦA(r, s)TA1(r)
∫ r

t

ΦA(r, r′)B(r′, X(r′))v(r′)dr′dr+
∫ T

s

ΦA(r, s)TC(r)Tv(r)dr

= ΦA(T, s)T Gxx(X(T ))
∫ T

t ΦA(T, r)B(r, X(r))v(r)dr

+
∫ T

t

[∫ T

s∨r

ΦA(r′, s)TA1(r′)ΦA(r′, r)dr′
]

B(r, X(r))v(r)dr+
∫ T

s

ΦA(r, s)TC(r)Tv(r)dr
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Hence,

[DuuJ(t, x; u(·))v(·)](s) = R(s, X(s))v(s) + B(s, X(s))T Y1(s) + C(s)X1(s)

= R(s, X(s))v(s) + C(s)
∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr

+B(s, X(s))T

[
ΦA(T, s)T Gxx(X(T ))

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr

+
∫ T

t

(∫ T

s∨r

ΦA(r′, s)TA1(r′)ΦA(r′, r)dr′
)

B(r, X(r))v(r)dr+
∫ T

s

ΦA(r, s)TC(r)Tv(r)dr

]

= R(s, X(s))v(s) +
∫ T

t

F(s, r)v(r)ds,

proving (5.12). �

We note that F(s, r) is depending on the given u(·) and is independent of v(·).

6. Invertibility of DuuJ(t, x; u(·))
Having calculated DuuJ(t, x; u(·)), we now would like to look at conditions under which (4.8) holds. The

following is a general result whose proof is straightforward.

Theorem 6.1. Theorem 6.1. Let (H1)–(H3) hold and let (t, x) ∈ [0, T ) × R
n, u(·) ∈ U [t, T ] be given. Define

F(· , ·) by (5.13), with (X(·), Y (·)) being the solution to (5.2). Then DuuJ(t, x; u(·)) admits a bounded inverse
operator if and only if for any w(·) ∈ U [t, T ], the following second kind Fredholm integral equation is well-posed:

w(s) = R(s, X(s))v(s) +
∫ T

t

F(s, r)v(r)dr, s ∈ [t, T ]. (6.1)

A sufficient condition for the above is

|R(s, X(s))−1F(s, r)| ≤ α <
1
T

, s, r ∈ [0, T ]. (6.2)

Practically, to use the above result, we need to first solve a (decoupled) two-point boundary value prob-
lem (5.2) to get (X(·), Y (·)). Then calculate A(·), A1(·) and C(·), etc., followed by ΦA(· , ·). Next, construct
F(· , ·) and then check see if the Fredholm integral equation (6.1) is well-posed or sufficiently look at if (6.2)
holds. Roughly speaking, when R(s, x) is sufficiently positive definite, (6.2) will be true. Thus, we have some
sufficient condition under which (4.8) holds. Let us look at a special case:

B(t, x) = B(t), R(t, x) = R(t), S(t, x) = 0, (t, x) ∈ [0, T ]× R
n. (6.3)

In this case, ⎧⎪⎨⎪⎩
A(s) = Ax(s, X(s)), C(s) = 0,

A1(s) =
n∑

i=1

Y i(s)Ai
xx(s, X(s)) + Qxx(s, X(s)),

s ∈ [0, T ], (6.4)

and F(· , ·) has a relatively simpler form:

F(s, r) = B(s)T ΦA(T, s)T Gxx(X(T ))ΦA(T, r)B(r)

+
∫ T

s∨r

B(s)T ΦA(r′, s)TA1(r′)ΦA(r′, r)B(r)dr′, s, r ∈ [0, T ].
(6.5)



650 Y. WANG AND J. YONG

We now look at some more direct sufficient conditions under which (4.8) holds. To this end, we first present
the following proposition.

Theorem 6.2. Let (H1)–(H3) hold. Let (t, x) ∈ [0, T )×R
n, and u(·) ∈ U [t, T ] be given. Let (X(·), Y (·)) be the

solution to (5.2) and A(·), A1(·), and C(·) be defined by (5.5). Then∫ T

t

〈 [DuuJ(t, x; u(·))v(·)](s), v(s) 〉 ds =
∫ T

t

〈R(s, X(s))v(s), v(s) 〉 ds

+ 〈Gxx(X(T ))
∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr,

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr 〉

+
∫ T

t

〈A1(s)
∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr,

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr 〉 ds

+2
∫ T

t

〈C(s)
∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr, v(s) 〉 ds.

(6.6)

Further, suppose Ḡ ∈ S
n
+ and Q̄ : [0, T ] → S

n
+ such that for some α ∈ (0, 1),{

Gxx(X(T )) + Ḡ ≥ 0,

A1(s) + Q̄(s) − α−1C(s)T R(s, X(s))−1C(s) ≥ 0, s ∈ [t, T ],
(6.7)

and
(1 − α)R(s, X(s)) − [

Ĝ(t) + Q̂(s, t)
]
I ≥ δI, s ∈ [t, T ], (6.8)

for some δ > 0, with⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ĝ(t) =

[∫ T

t

∫ T

t

|B(s, X(s))T ΦA(T, s)T ḠΦA(T, r)B(r, X(r))|2drds

] 1
2

,

Q̂(s, t) =
∫ T

s

[∫ τ

t

∫ τ

t

|B(r, X(r))T ΦA(τ, r)T Q̄(τ)ΦA(τ, r′)B(r′, X(r′))|2dr′dr

] 1
2

dτ,

(6.9)

then
DuuJ(t, x; u(·)) ≥ δI. (6.10)

Proof. Let (t, x) ∈ [0, T )× R
n and u(·) ∈ U [t, T ] be given. We have∫ T

t

∫ T

t

〈F(s, r)v(r), v(s) 〉 drds

=

〈
Gxx(X(T ))

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr,

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr

〉

+
∫ T

t

〈
A1(s)

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr,

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr

〉
ds

+
∫ T

t

∫ s

t

〈
C(s)ΦA(s, r)B(r, X(r))v(r), v(s)

〉
drds

+
∫ T

t

∫ T

s

〈
B(s, X(s))T ΦA(r, s)TC(r)T v(r), v(s)

〉
drds
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=

〈
Gxx(X(T ))

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr,

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr

〉

+
∫ T

t

〈
A1(s)

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr,

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr

〉
ds

+2
∫ T

t

〈
C(s)

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr, v(s)

〉
ds.

This proves (6.6). From this, one further has∫ T

t

〈[DuuJ(t, x; u(·))v(·)](s), v(s) 〉 ds =
∫ T

t

〈R(s, X(s))v(s), v(s) 〉 ds

+

〈
Gxx(X(T ))

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr,

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr

〉

+
∫ T

t

〈
A1(s)

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr,

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr

〉
ds

+2
∫ T

t

〈
C(s)

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr, v(s)

〉
ds

=
∫ T

t

〈(1 − α)R(s, X(s))v(s), v(s) 〉 ds +
∫ T

t

(∣∣α 1
2 R(s, X(s))

1
2 v(s)

∣∣2ds

+2 〈α− 1
2 R(s, X(s))−

1
2 C(s)

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr, α
1
2 R(s, X(s))

1
2 v(s) 〉

+

∣∣∣∣∣α− 1
2 R(s, X(s))−

1
2 C(s)

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr

∣∣∣∣∣
2)

ds

+

〈
Gxx(X(T ))

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr,

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr

〉

+
∫ T

t

〈[
A1(s) − α−1C(s)T R(s, X(s))−1C(s)

] ∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr,

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr

〉
ds

=
∫ T

t

〈
(1 − α)R(s, X(s))v(s), v(s)

〉
ds

+
∫ T

t

∣∣∣α 1
2 R(s, X(s))

1
2 v(s) + α− 1

2 R(s, X(s))−
1
2 C(s)

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr
∣∣∣2ds

+

〈[
Gxx(X(T )) + Ḡ

] ∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr,

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr

〉

+
∫ T

t

〈[
A1(s)+Q̄(s)−α−1C(s)TR(s, X(s))−1C(s)

]∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr〉ds
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−
〈

Ḡ

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr,

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr

〉

−
∫ T

t

〈
Q̄(s)

∫ s

t

ΦA(s, r)B(r)v(r)dr,

∫ s

t

ΦA(s, r)B(r)v(r)dr

〉
ds

≥
∫ T

t

〈(1−α)R(s, X(s))v(s), v(s) 〉ds−
〈

Ḡ

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr,

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr

〉

−
∫ T

t

〈 Q̄(s)
∫ s

t

ΦA(s, r)B(r)v(r)dr,

∫ s

t

ΦA(s, r)B(r)v(r)dr〉ds.

Note that

〈
Ḡ

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr,

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr

〉

=
∫ T

t

〈∫ T

t

B(s, X(s))T ΦA(T, s)T ḠΦA(T, r)B(r, X(r))v(r)dr, v(s)

〉
ds

≤
(∫ T

t

∣∣∣∣∣
∫ T

t

B(s, X(s))T ΦA(T, s)T ḠΦA(T, r)B(r, X(r))v(r)dr

∣∣∣∣∣
2

ds

) 1
2
(∫ T

t

|v(s)|2ds

) 1
2

≤
[ ∫ T

t

(∫ T

t

|B(s, X(s))T ΦA(T, s)T ḠΦA(T, r)B(r, X(r))|2drds

)(∫ T

t

|v(r)|2dr

)] 1
2
(∫ T

t

|v(r)|2dr

) 1
2

=

[ ∫ T

t

∫ T

t

|B(s, X(s))T ΦA(T, s)T ḠΦA(T, r)B(r, X(r))|2drds

] 1
2∫ T

t

|v(r)|2dr ≡
∫ T

t

〈
Ĝ(t)v(s), v(s)

〉
ds,

and similarly,

∫ T

t

〈
Q̄(s)

∫ s

t

ΦA(s, r)B(r, X(r)))v(r)dr,

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr

〉
ds

=
∫ T

t

∫ s

t

〈∫ s

t

B(r′, X(r′))T ΦA(s, r′)Q̄(s)ΦA(s, r)B(r, X(r))v(r)dr, v(r′ )

〉
dr′ds

≤
∫ T

t

[∫ s

t

∫ s

t

|B(r, X(r))T ΦA(s, r)T Q̄(s)ΦA(s, r′)B(r′, X(r′))|2dr′dr

] 1
2 ∫ s

t

|v(r)|2drds

=
∫ T

t

{∫ T

τ

[∫ s

t

∫ s

t

|B(r, X(r))T ΦA(t, x)T Q̄(s)ΦA(s, r′)B(r′, X(r′)|2dr′dr

] 1
2

ds

}
|v(τ)|2dτ

≡
∫ T

t

Q̂(s, t)|v(s)|2ds,
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where Ĝ(t) and Q̂(s, t) are given by (6.9). Consequently,∫ T

t

〈 [DuuJ(t, x; u(·))v(·)](s), v(s) 〉 ds

≥
∫ T

t

〈(1−α)R(s, X(s))v(s), v(s) 〉ds−
〈

Ḡ

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr,

∫ T

t

ΦA(T, r)B(r, X(r))v(r)dr

〉

−
∫ T

t

〈
Q̄(s)

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr,

∫ s

t

ΦA(s, r)B(r, X(r))v(r)dr

〉
ds

≥
∫ T

t

〈(
(1 − α)R(s, X(s)) − [Ĝ(t) + Q̂(s, t)]I

)
v(s), v(s)

〉
ds.

Hence, (6.10) follows. �

We now look at some interesting cases.

6.1. Linear quadratic case

Let ⎧⎪⎨⎪⎩
A(t, x) = A(t)x, B(t, x) = B(t), Q(t, x) =

1
2
〈Q(t)x, x 〉,

S(t, s) = S(t)x, R(t, x) = R(t), G(x) =
1
2
〈Gx, x 〉 .

(6.11)

This is a classical LQ case. In this case,

A(s) = A(s), A1(s) = Q(s), C(s) = S(s), s ∈ [0, T ].

Then (6.7) holds if {
G + Ḡ ≥ 0,

Q(s) + Q̄(s) − α−1S(s)T R(s)−1S(s) ≥ 0, s ∈ [0, T ].

for some Ḡ ∈ S
n
+, Q̄ : [0, T ] → S

n
+, and α ∈ (0, 1). In this case, ΦA(· , ·), the fundamental matrix of A(·), is

independent of u(·), X(·) and Y (·). Consequently,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ĝ(t) =

[∫ T

t

∫ T

t

|B(s)T ΦA(T, s)T ḠΦA(T, r)B(r)|2drds

] 1
2

,

Q̂(s, t) =
∫ T

s

[∫ τ

t

∫ τ

t

|B(r)T ΦA(τ, r)T Q̄(τ)ΦA(τ, r′)B(r′)|2dr′dr

] 1
2

dτ.

(6.12)

are independent of u(·), X(·), and Y (·). Then, by Theorem 6.2, we obtain the following result.

Proposition 6.3. Let (H1)–(H3) and (6.11) hold. Suppose there exist α ∈ (0, 1), and Ḡ ∈ S
n
+, Q̄ : [t, T ] → S

n
+

such that
Q(s) + Q̄(s) − α−1S(s)T R(s)−1S(s) ≥ 0, G + Ḡ ≥ 0, s ∈ [t, T ], (6.13)

and
(1 − α)R(s) − [Ĝ(t) + Q̂(s, t)]I ≥ δI, s ∈ [t, T ], (6.14)

for some δ > 0, where Ĝ(t) and Q̂(s, t) are defined by (6.12). Then

DuuJ(t, x; u(·)) ≥ δI, ∀u(·) ∈ U [t, T ].
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We point out that under the following classical conditions for LQ problems:

R(s) ≥ δI, Q(s) − S(s)T R(s)−1S(s) ≥ 0, G ≥ 0, (6.15)

we need only take
α = 0, Ḡ = 0, Q̄(·) = 0.

Therefore, the above result covers the classical LQ problem. Further, Proposition 6.3 shows that for LQ problems,
the failure of the last two conditions in (6.15) can be compensated by the sufficient positive definiteness of R(s).
On the other hand, we see that due to the nature of LQ problem, the positive definiteness of DuuJ(t, x; u(·))
obtained above is automatically uniform in u(·).
6.2. Linear semi-convex case

Let us first assume the following:{
A(t, x) = A(t)x, B(t, x) = B(t), S(t, x) = 0, R(t, x) = R(t) ≥ δI,

x �→ Q(t, x), x �→ G(x) are convex.
(6.16)

In the above case, we have a linear state equation and a convex cost functional. This is a natural generalization
of LQ case and we refer to it as linear-convex problem. Such kind of problems were carefully studied in [22,23]
by means of the so-called quasi-Riccati equation.

Note that under (6.16), it is straightforward that u(·) �→ J(t, x; u(·)) is uniformly convex. In our framework,
one has

A(s) = A(s), A1(s) = Qxx(s, X(s)), C(s) = 0, s ∈ [0, T ].

Then ∫ T

t

〈[DuuJ(t, x; u(·))v(·)](s), v(s) 〉 ds

=
∫ T

t

〈
R(s)v(s), v(s)

〉
ds +

〈
Gxx(X(T ))

∫ T

t

ΦA(T, r)B(r)v(r)dr,

∫ T

t

ΦA(T, r)B(r)v(r)dr

〉

+
∫ T

t

〈
Qxx(s, X(s))

∫ s

t

ΦA(s, r)B(r)v(r)dr,

∫ s

t

ΦA(s, r)B(r)v(r)dr

〉
ds

≥
∫ T

t

〈R(s)v(s), v(s) 〉 ds ≥ δ

∫ T

t

|v(s)|2ds,

proving the uniform convexity of the map u(·) �→ J(t, x; u(·)).
We can actually do a little bit more. Here is the result whose proof follows from Theorem 6.2 easily.

Proposition 6.4. Let (H1)–(H3) hold such that for some Q̄ : [0, T ] → S
n
+ and Ḡ ∈ S

n
+,

A(t, x) = A(t)x, B(t, x) = B(t), S(t, x) = S(t)x, R(t, x) = R(t), (6.17)

and {
Qxx(s, x) + Q̄(s) − α−1S(s)T R(s)−1S(s) ≥ 0, (s, x) ∈ [t, T ]× R

n,

Gxx(x) + Ḡ ≥ 0, s ∈ [t, T ],
(6.18)

and
(1 − α)R(s) − [Ĝ(t) + Q̂(s, t)]I ≥ δI, s ∈ [t, T ], (6.19)

for some δ > 0, where Ĝ(t) and Q̂(s, t) are defined by (6.12). Then DuuJ(t, x; u(·)) is uniformly positive definite.
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Recall that maps x �→ Q(t, x) and x �→ G(x) as semi-convex maps if there is a constant K > 0 such that

x �→ Q(t, x) + K|x|2, x �→ Q(x) + K|x|2

are convex. It is clear that under (6.18), x �→ Q(t, x) and x �→ G(x) are semi-convex. Hence, the associated
problem is referred to as a linear semi-convex problem. Our result basically shows that the possible deviation
from the convexity of the maps x �→ Q(t, x) and x �→ G(x) could be possibly compensated by the sufficient
positive definiteness of R(·).
6.3. Another nonlinear case

We now impose the following conditions:

B(t, x) = B(t), R(t, x) = R(t), S(t, x) = 0, (t, x) ∈ [0, T ]× R
n. (6.20)

Note that we still allow x �→ (A(t, x), Q(t, x), G(x)) to be nonlinear. In the current case, we have⎧⎪⎨⎪⎩
A(s) = Ax(s, X(s)), C(s) = 0,

A1(s) =
n∑

i=1

Y i(s)Ai
xx(s, X(s)) + Qxx(s, X(s)).

(6.21)

Also, ∫ T

t

〈 [DuuJ(t, x; u(·))v(·)](s), v(s) 〉 ds

≥
∫ T

t

〈
(1 − α)R(s)v(s), v(s)

〉
ds −

〈
Ḡ

∫ T

t

ΦA(T, r)B(r)v(r)dr,

∫ T

t

ΦA(T, r)B(r)v(r)dr

〉

−
∫ T

t

〈
Q̄(s)

∫ s

t

ΦA(s, r)B(r)v(r)dr

∫ s

t

ΦA(s, r)B(r)v(r)dr

〉
ds

+

〈
(Gxx(X(T )) + Ḡ)

∫ T

t

ΦA(T, r)B(r)v(r)dr,

∫ T

t

ΦA(T, r)B(r)v(r)dr

〉

+
∫ T

t

〈[
A1(s)+Q̄(s)

]∫ s

t

ΦA(s, r)B(r)v(r)dr,

∫ s

t

ΦA(s, r)B(r)v(r)dr

〉
ds

=
∫ T

t

〈{(1 − α)R(s) − [Ĝ(t) + Q̂(s, t)]I}v(s), v(s) 〉 ds + I2 + I3,

where Ĝ(·) and Q̂(·) are defined by the following:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ĝ(t) =

[∫ T

t

∫ T

t

|B(s)T ΦA(T, s)T ḠΦA(T, r)B(r)|2drds

] 1
2

,

Q̂(s, t) =
∫ T

s

[∫ τ

t

∫ τ

t

|B(r)T ΦA(τ, r)T Q̄(τ)ΦA(τ, r′)B(r′)|2dr′dr

] 1
2

dτ,

(6.22)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
I2 =

〈
(Gxx(X(T )) + Ḡ)

∫ T

t

ΦA(T, r)B(r)v(r)dr,

∫ T

t

ΦA(T, r)B(r)v(r)dr

〉

I3 =
∫ T

t

〈[
A1(s)+Q̄(s)

]∫ s

t

ΦA(s, r)B(r)v(r)dr,

∫ s

t

ΦA(s, r)B(r)v(r)dr

〉
ds.
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Naturally, we may still assume
Gxx(x) + Ḡ ≥ 0, ∀x ∈ R

n,

which implies I2 ≥ 0. To ensure I3 ≥ 0, we may let

A1(s) + Q̄(s) ≡
n∑

i=1

Y i(s)Ai
xx(s, X(s)) + Qxx(s, X(s)) + Q̄(s) ≥ 0. (6.23)

Note that in the current case, ⎧⎪⎨⎪⎩
Ẋ(s) = A(s, X(s)) + B(s)u(s),

Ẏ (s) = −Ax(s, X(s))T Y (s) − Qx(s, X(s))T

X(t) = x, Y (T ) = Gx(X(T ))T .

(6.24)

Thus, if
|Ax(t, x)| ≤ LA, |Qx(t, x)| ≤ LQ, |Gx(x)| ≤ LG, (t, x) ∈ [0, T ]× R

n, (6.25)

for some constants LA, LQ, LG > 0, then

|Y (s)| ≤ LG +
∫ T

s

(LA|Y (r)| + LQ)dr, s ∈ [t, T ].

By Gronwall’s inequality, we have

|Y (s)| ≤ eLA(T−s)LG +
LQ

LA

(
eLA(T−s) − 1

)
≤ LY , s ∈ [t, T ]. (6.26)

with

LY = LGeLAT +
LQ

LA

(
eLAT − 1

)
. (6.27)

Then we have the following result.

Proposition 6.5. Let Ḡ ∈ S
n and Q̄ : [0, T ] → S

n such that for some α ∈ (0, 1) and δ > 0,

Gxx(x) + Ḡ ≥ 0, x ∈ R
n, (6.28)

R(s) − [Ĝ(t) + Q̂(s)]I ≥ δI, 0 ≤ t ≤ s ≤ T, (6.29)

with Ĝ(·) and Q̂(·) defined as in (6.22), and

Qxx(s, x) + Q̄(s) − LY

n∑
i=1

|Ai
xx(s, x)| ≥ 0, (s, x) ∈ [0, T ]× R

n. (6.30)

Then DuuJ(t, x; u(·)) is positive definite.

From (6.30), we see that due to the nonlinearity of x �→ A(t, x), we basically need the semi-convexity of
x �→ Q(t, x) and the sufficient positive definiteness of R(·) to compensate.

Along the above line, it is possible to give many other similar conditions under which (4.8) holds. We prefer
not to get into such kind of details.
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7. Quasi-riccati equation

Let us assume the following:

B(t, x) = B(t), R(t, x) = R(t), (t, x) ∈ [0, T ]× R
n. (7.1)

We have seen from Theorem 4.2 that when (H1)–(H3) and (4.8) hold, the value function V (· , ·) is actually twice
continuously differentiable. Consequently, V (· , ·) satisfies the HJB equation in the classical sense, and by the
smoothness of the coefficients, we can differentiate the equation once. Note that in the current case, our HJB
equation reads:⎧⎪⎪⎨⎪⎪⎩

Vt(t, x) + Vx(t, x)A(t, x) + Q(t, x)

−1
2
[Vx(t, x)B(t)+S(t, x)T ]R(t)−1[B(t, x)TVx(t, x)T+S(t, x)]=0, (t, x)∈ [0, T )×R

n,

V (T, x) = G(x), x ∈ R
n.

(7.2)

Now, we define
P (t, x) = Vx(t, x)T .

Then
Px(t, x) = Vxx(t, x) = Px(t, x)T , ∀(t, x) ∈ [0, T )× R

n,

and the following holds:⎧⎪⎨⎪⎩
Pt(t, x) + Px(t, x)A(t, x) + Ax(t, x)T P (t, x) + Qx(t, x)T

−[Px(t, x)B(t) + Sx(t, x)T ]R(t)−1[B(t)T P (t, x) + S(t, x)] = 0, (t, x) ∈ [0, T ]× R
n,

P (T, x) = Gx(x), x ∈ R
n.

(7.3)

The above is called a Quasi-Riccati equation of Problem (AQ). This is an extension of that presented in [23] for
linear-convex problems. We now have the following result.

Theorem 7.1. Let (H1)–(H3) hold. Let (X∗(·), u∗(·)) be an optimal pair of Problem (AQ). Suppose the value
function V (· , ·) of Problem (AQ) is twice differentiable. Then P (· , ·) ≡ Vx(· , ·)T is a solution to the quasi-Riccati
equation (7.3), and the optimal control u∗(·) admits the following state feedback representation:

u∗(s) = −R(s)−1
[
B(s)T P (s, X∗(s)) + S(x, X∗(s))

]
, s ∈ [t, T ]. (7.4)

Proof. It is known that if (X∗(·), u∗(·)) is an optimal pair of Problem (AQ) for the initial pair (t, x) ∈ [0, T )×R
n,

and Y (·) is the solution to the corresponding adjoint equation, then

Y (s) = Vx(s.X∗(s))T = P (s, X∗(s)), s ∈ [t, T ],

and

u∗(s) = −R(s)−1
[
B(s)T Y (s) + S(x, X∗(s))

]
= −R(s)−1

[
B(s)T P (s, X∗(s)) + S(x, X∗(s))

]
, s ∈ [t, T ].

(7.5)

This proves our conclusion. �

In the case

A(t, x) = A(t)x, Q(t, x) =
1
2
〈Q(t)x, x 〉, S(t, x) = S(t)x, G(x) =

1
2
〈Gx, x 〉
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we see that
P (t, x) = P (t)x, (t, x) ∈ [0, T ]× R

n,

with P (·) being the solution to the following:{
Ṗ (t)+P (t)A(t)+A(t)TP (t)+Q(t)−[P (t)B(t)+S(t)T ]R(t)−1[B(t)TP (t)+S(t)]=0, t ∈ [0, T ],
P (T ) = G,

which is the Riccati equation for a standard LQ problem.
To conclude this section, we present two illustrative examples.

Example 7.2. Consider the following one-dimensional linear controlled system:{
Ẋ(s) = X(s) + u(s), s ∈ [t, T ],
X(t) = x,

with cost functional:

J(t, x; u(·)) =
∫ T

t

(
−1

2
cos2 X(s) +

1
2
ρu(s)2

)
ds − 1

2
sin2 X(T ),

where ρ > 0. This is a linear-semi-convex problem. According to Proposition 6.4, we may choose

Q̄(t) ≡ Ḡ = 1.

Then

Ĝ(t) =
∫ T

t

e2(T−s)ds =
e2(T−t) − 1

2
≤ Ĝ(0) =

e2T − 1
2

,

and

Q̂(s) =
∫ T

s

∫ τ

s

e2(τ−r)drdτ =
1
2

∫ T

s

(
e2(τ−s) − 1

)
ds

=
e2(T−s) − 1

4
− T − s

2
≤ Q̂(0) =

e2T − 1
4

− T

2
·

Hence, under condition

ρ >
e2T − 1

4
− T

2
+

e2T − 1
2

=
3(e2T − 1)

4
− T

2
,

we have the uniform convexity of u(·) �→ J(t, x; u(·)). Therefore, optimal control unique exists and the value
function is twice differentiable. In this case the optimal control u∗(·) admits a state feedback representation:

u∗(s) = −ρ−1P (s, X∗(s)), s ∈ [t, T ],

with P (· , ·) solves the following quasi-Riccati equation:{
Pt(t, x) + xPx(t, x) + P (t, x) + sin 2x − ρ−1Px(t, x)P (t, x) = 0, t ∈ [0, T ],
P (T, x) = − sin 2x, x ∈ R,

and X∗(·) is the solution to the following closed-loop system:{
Ẋ∗(s) = X∗(s) − ρ−1P (s, X∗(s)), s ∈ [t, T ],
X∗(t) = x,



A DETERMINISTIC AFFINE-QUADRATIC OPTIMAL CONTROL PROBLEM 659

Example 7.3. Consider a one-dimensional controlled affine system{
Ẋ(s) = sin X(s) + u(s), s ∈ [t, T ],
X(t) = x,

with cost functional

J(t, x; u(·)) =
∫ T

t

(√
1 + |X(s)|2 +

R(s)
2

|u(s)|2
)

ds.

In this case, we have ⎧⎪⎨⎪⎩Ẏ (s) = Y (s) cos X(s) − X(s)√
1 + |X(s)|2 ,

Y (T ) = 0.

Thus, we may take
LA = LQ = 1, LG = 0.

Then
LY = eT − 1.

In the current case, by taking Ḡ = 0, we have

Gxx(x) + Ḡ = 0.

Also, by letting Q̄(s) = eT − 1, we have

Qxx(s, x) + Q̄(s) − LY |Axx(s, x)| =
1

(1 + x2)
3
2

+ eT − 1 − (eT − 1)| cosx| ≥ 0.

Then
Ĝ(t) = 0,

and

Q̂(s, t) =
∫ T

s

[∫ τ

t

∫ τ

t

|ΦA(T, r)(eT − 1)ΦA(T, r)|2dr′dr

] 1
2

dτ

≤ (eT − 1)
∫ T

s

[∫ τ

t

∫ τ

t

e2(T−r)e2(T−r′)dr′dr

] 1
2

dτ

= (eT − 1)
∫ T

s

1
2

[
e2(T−t) − e2(T−τ)

]
dτ ≤ eT − 1

2
e2T (T − s).

Hence, provided

R(s) − [Ĝ(t) + Q̂(s)] = R(s) − eT − 1
2

e2T (T − s) ≥ δI, 0 ≤ s ≤ T, (7.6)

we have the uniform convexity of u(·) �→ J(t, x; u(·)). In the current case, the quasi-Riccati equation reads:{
Pt(t, x)+(sinx)Px(t, x)+(cosx)P (t, x)+

√
1 + x2−P (t, x)Px(t, x)= 0, (t, x)∈ [0, T ]×R

n,

P (T, x) = 0, x ∈ R
n.

(7.7)

According to our result, the above quasi-Riccati equation admits a solution, provided

R(s) ≥ eT − 1
2

e2T (T − s) + δI, 0 ≤ s ≤ T. (7.8)
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In this case, the optimal control admits a state feedback representation of form

u∗(s) = −R(s)−1P (s, X∗(s)), s ∈ [t, T ],

with X∗(·) being the solution to the closed-loop system:{
Ẋ∗(s) = sinX∗(s) − R(s)−1P (s, X∗(s)), s ∈ [t, T ],
X∗(t) = x,

8. Concluding remarks

We have presented some primitive results concerning what we call the affine-quadratic optimal control prob-
lems, which are a natural generalization of classical LQ problems, and also contains linear-convex problems as
well as linear-semi-convex problems. Our results for linear state equation cover and substantially extend the
known results for LQ problems and linear-convex problems in the literature. Further, we have obtained some
results for the problems with (nonlinear) affine state equations. However, we point out that our results are far
from satisfactory and there are many challenging problems left open. The most interesting one is the following:
Is there an equivalence between the (unique) solvability of the optimality system, a two-point boundary value
problem, and the corresponding quasi-Riccati equation? We hope to report some further relevant results in our
future publications.
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version of the paper, which leads to the current much better version.
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