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PERIODIC STABILIZATION FOR LINEAR TIME-PERIODIC ORDINARY
DIFFERENTIAL EQUATIONS ∗, ∗∗
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and Yashan Xu
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Abstract. This paper studies the periodic feedback stabilization of the controlled linear time-periodic
ordinary differential equation: ẏ(t) = A(t)y(t)+B(t)u(t), t ≥ 0, where

[
A(·), B(·)] is a T -periodic pair,

i.e., A(·) ∈ L∞(R+; Rn×n) and B(·) ∈ L∞(R+; R
n×m) satisfy respectively A(t+T ) = A(t) for a.e. t ≥ 0

and B(t+T ) = B(t) for a.e. t ≥ 0. Two periodic stablization criteria for a T -period pair
[
A(·), B(·)] are

established. One is an analytic criterion which is related to the transformation over time T associated
with A(·); while another is a geometric criterion which is connected with the null-controllable subspace
of [A(·), B(·)]. Two kinds of periodic feedback laws for a T -periodically stabilizable pair [A(·), B(·)] are
constructed. They are accordingly connected with two Cauchy problems of linear ordinary differential
equations. Besides, with the aid of the geometric criterion, we find a way to determine, for a given
T -periodic A(·), the minimal column number m, as well as a time-invariant n×m matrix B, such that
the pair [A(·), B] is T -periodically stabilizable.
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1. Introduction

Throughout this paper, we refer that [A(·), B(·)] is a T -periodic pair if A(·) ∈ L∞(R+; Rn×n) and B(·) ∈
L∞(R+; Rn×m) satisfy respectively A(t + T ) = A(t) for a.e. t ≥ 0 and B(t + T ) = B(t) for a.e. t ≥ 0.
Corresponding to each T -periodic pair [A(·), B(·)], we consider the controlled equation

ẏ(t) = A(t)y(t) + B(t)u(t), t ≥ 0. (1.1)

Here, u(·) is a control taken from the space

Uad � L2
loc(R

+; Rm), with R
+ � [0,∞). (1.2)
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For each control u(·) ∈ Uad and each x ∈ Rn, we denote by y(·; 0, x, u) the solution of equation (1.1) with the
initial condition y(0) = x. equation (1.1) is said to be kT -periodically stabilizable if there exists a kT -periodic
K(·) in L∞(R+; Rm×n) (with k ∈ N) such that the zero solution to the equation

ẏ(t) =
[
A(t) + B(t)K(t)

]
y(t), t ≥ 0 (1.3)

is exponentially stable. Any such a K(·) is called a kT -periodic feedback stabilization law for the pair
[
A(·), B(·)

]
(or for Eq. (1.1)). The main purposes of this study are (i) to build up two different T -periodic stabilization criteria
for a T -periodic pair; (ii) to construct two different periodic feedback stabilization laws for a T -periodically
stabilizable pair, one is nT -periodic, while another is T -periodic.

Two important types of solutions for ordinary differential equations are equilibrium and periodic solutions.
A mature theory on stability and stabilization for equilibrium solutions of time-invariant linear ordinary differ-
ential equations has been established. One of the most important results on the stability is as follows (see, for
instance, [3]): The zero solution to the equation ẏ = Ay where A ∈ Rn×n is exponentially stable if and only if
σ(A) ∈ C− (where C− is denoted by the complex half plane {z ∈ C : Re(z) < 0}). The most important result
about stabilization is the following Kalman’s criterion (see, for instance, [7, 20]): A pair of matrices [A, B] in
Rn×n × Rn×m is stabilizable (i.e., there exists a matrix K in Rm×n such that σ(A + BK) ∈ C−) if and only
if rank(λI − A, B) = n for each λ ∈ C \ C−. When a pair [A, B] is stabilizable, any matrix K with the above-
mentioned property is called a feedback stabilization law for the pair [A, B]. The usual structure of such feedback
laws is connected with either Riccati equations or Lyapunov functions (see, for instance, either Chap. 7, [16] or
Chap. 5, [20]). With respect to linear time-periodic ordinary differential equations, a well-established stability
theory has been developed. One of the most important results is the following stability criterion (see, for in-
stance, [9,10]): any periodic solution yπ(·) to the equation: ẏ(t) = A(t)y(t), t ≥ 0 (where A(·) ∈ L∞(R+; Rn×n)
is T -periodic) is exponentially stable if and only if σ(P) ⊂ B. In view of Kalman’s criterion for the stabilization
of time-invariant pairs and the periodic stability theory mentioned above, it is natural and important to ask
for periodic stabilization criteria on a T -periodic pair and the way to construct periodic feedback stabilization
laws for a periodically stablizable pair.

To present our main results, some preliminaries are given in order. We start with some notations. For each
k ∈ N, ‖ · ‖Rk and 〈 ·, · 〉

Rk denote accordingly the Euclidean norm and inner product in Rk. We will simply
write them as ‖ · ‖ and 〈 ·, · 〉, when it will not cause any confusion. We denote by {e1, . . . , ek} the standard
basis of Rk, with k ∈ N, where each ei is a column vector. We treat an element in Rk1×k2 , with k1, k2 ∈ N,
as a k1 × k2 real matrix. When k1, k2 ∈ N, 0k1×k2 and Ik1 stand for the k1 × k2 null matrix and the k1 × k1

identity matrix, respectively. For each matrix P , ‖P‖ represents its operator norm, P ∗ denotes its transpose
and P∼1 stands for its Moore–Penrose inverse (see [19] for its definition). For each linear map L over a linear
space, σ(L), N (L) and R(L) denote its spectrum, kernel and range, respectively. We use B to denote the unit
open ball in the complex plane C, Bc to denote the complement of B. Let ΦA(·)(·) be the fundamental solution
associated with A(·). We will simply write it as Φ(·) when there is no risk to cause any confusion. Let

P � Φ(T ), (1.4)

which is called the transformation over time T associated with A(·) (see p. 256 in [3]).
Next, for each T -periodic pair

[
A(·), B(·)

]
and ε > 0, two linear ordinary differential equations with initial

conditions are introduced. The first one is

Ṡn(t) − A(t)Sn(t) − Sn(t)A(t)∗ +
1
ε
B(t)B(t)∗ = 0, t ∈ [0, nT ], Sn(nT ) = I; (1.5)

while the second one is

Ṡ(t) − A(t)S(t) − S(t)A(t)∗ +
1
ε
B(t)B(t)∗ = 0, t ∈ [0, T ], S(T ) = PXX∗P∗, (1.6)

where X is an invertible matrix in Rn×n.
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Then, two periodic matrix-valued functions Kε
n(·), Kε(·) and a special matrix Q̄ will be defined. Write Sε

n(·)
and Sε(·) for the unique solutions of equations (1.5) and (1.6), respectively. It is proved that Sε

n(·) and Sε(·)
are symmetric and positive definite matrix-valued functions over [0, nT ] and [0, T ], respectively (see Lem. 2.3
and Step 2 in Part 2 of the Proof of Thm. 1.1). It is also shown that

Q̄ � lim
ε→0+

(Sε
n(0))−1 (1.7)

is a symmetric and positive semi-definite matrix (see Lem. 2.3). For each ε > 0, we define an nT -periodic
matrix-valued function Kε

n(·) in L∞(R+; Rm×n) by

Kε
n(t) = −1

ε
B∗(t)

(
Sε

n(t)
)−1

for a.e. t ∈ [0, nT ); Kε
n(t) = Kε

n(t + nT ) for a.e. t ∈ R
+. (1.8)

Similarly, a T -periodic matrix-valued function Kε(·) in L∞(R+; Rm×n) is defined by

Kε(t) = −1
ε
B∗(t)

(
Sε(t)

)−1 for a.e. t ∈ [0, T ); Kε(t) = Kε(t + T ) for a.e. t ∈ R
+. (1.9)

Then, for each T -periodic pair [A(·), B(·)], its null-controllable subspace and the null-controllable subspace
on [0, kT ], with k ∈ N, are accordingly defined by

V[A(·),B(·)]
Δ=
{

x ∈ R
n

∣∣∣∣ ∃ u ∈ Uad and t > 0 s.t. y(t; 0, x, u) = 0
}

(1.10)

and

V[A(·),B(·)],k
Δ=
{

x ∈ R
n

∣∣∣∣ ∃ u ∈ Uad s.t. y(kT ; 0, x, u) = 0
}

. (1.11)

We will simply write them as V and Vk, respectively, when it will not cause any confusion.
Finally, given a finite dimension linear space H and a linear map L on H , there is a unique pair (H1(L), H2(L))

of subspaces such that (see, for instance, Theorem 1 on p. 78, [10])

H = H1(L) ⊕ H2(L), (1.12)

where H1(L) and H2(L) are invariant under L and satisfy σ(L|H1(L)) ⊂ B and σ(L|H2(L)) ⊂ Bc.
The main results of this paper are presented by the following two theorems.

Theorem 1.1. Let
[
A(·), B(·)

]
be a T -periodic pair with P and Q̄ given by (1.4) and (1.7), respectively. Then,

the following statements are equivalent:
(a) the pair

[
A(·), B(·)

]
is nT -periodically stabilizable;

(b) the pair
[
A(·), B(·)

]
is T -periodically stabilizable;

(c) it holds that
σ
(
Q̄∼1Q̄P

)
⊂ B. (1.13)

Furthermore, when
[
A(·), B(·)

]
is T -periodically stabilizable, each Kε

n(·) defined by (1.8), with∥∥∥(Sε
n(0)

)−1−Q̄
∥∥∥ < 1, is an nT -periodic feedback stabilization law for this pair; and meanwhile there are an

invertible X ∈ Rn×n (depending on V[A(,·),B(·)],k, with k = 1, . . . , n) and a positive number ε0 (depending on n,
‖X‖ and ‖P‖) such that each Kε(·) given by (1.9), with ε ≤ ε0, is a T -periodic feedback stabilization law for
this pair.

Theorem 1.2. Let [A(·), B(·)] be a T -periodic pair with P, V and Rn
2 (P) given by (1.4), (1.10) and (1.12),

respectively. Then, the following statements are equivalent:
(i) the pair

[
A(·), B(·)

]
is T -periodically stabilizable;

(ii) it holds that
R

n
2 (P) ⊆ V. (1.14)
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Based on Theorem 1.1, we can get an estimate on the decay rate for solutions of equation (1.3) where
[A(·), B(·)] is T -periodically stabilizable and K(·) = Kε

n(·) with ε sufficiently small. To state it, we let

ρ̄ = min
λ∈σ(Q̄∼1Q̄P)\{0}

− ln |λ|/T. (1.15)

Write PV and PV ⊥ for the orthogonal projections of Rn to V and V ⊥, respectively.

Theorem 1.3. Let [A(·), B(·)] be a T -periodically stabilizable pair with V and Kε
n(·) given by (1.10) and (1.8)

respectively. Then, given δ > 0, there are positive ε � ε(δ) and M � M(δ) such that the solutions yε(·) to (1.3)
with K(·) = Kε

n(·) satisfy

‖yε(t)‖ ≤ M
(
e−t/δ ‖PV (yε(0))‖ + e−(ρ̄−δ)t ‖PV ⊥ (yε(0))‖

)
for all t ∈ R

+. (1.16)

Theorem 1.2 has the following application: For each T -periodic A(·) ∈ L∞(R+; Rn), define

CBA(·) =
{
B̂ ∈ R

n×m
∣∣ m ∈ N, [A(·), B̂] is T-periodically stabilizable

}
. (1.17)

For each B̂ ∈ CBA(·), denote by M(B̂) the number of columns of B̂. Set

M
(
CBA(·)

)
� min

{
M(B̂)

∣∣ B̂ ∈ CBA(·)
}

. (1.18)

With the aid of Theorem 1.2, we can find a way to determine the number M
(
CBA(·)

)
and to design a matrix B̂

in CBA(·), with M
(
CBA(·)

)
columns. In particular, when A(·) ≡ A (i.e., A(·) is time-invariant), our way leads to

M (CBA) = max
λ∈σ(A)\C−

m(λ),

where m(λ) denotes the geometric multiplicity of the eigenvalue λ. Moreover, a corresponding matrix B̂ has an
explicit expression (see Rem. 6.19).

Several remarks are given in order:

• R. Brockett formulated the following problem in [5]: What are the conditions on a triple (A, B, C) (with
A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n) ensuring the existence of a periodic K(·) (with K(t) ∈ Rm×p) such
that the system ẏ(t) = Ay(t) + BK(t)Cy(t) is asymptotically stable? After the Brockett problem, it was
pointed out in [15] that however, the stabilizaiton of the above system by a constant matrix K is a classical
problem in the control theory, from this point of view, the Brockett problem can be reformulated as: can the
time periodic matrices K(t) aid in the stabilization? Furthermore, the positive answer for the reformulated
Brockett problem (at least for the case where n = 2) was given in [15]. The connections of our Theorem 1.1
and the reformulated Brockett problem are as follows. By Theorem 1.1, we will find that (see Rem. 3.1)
when

[
A(·), B(·)

]
= [A, B] is time-invariant, (1.1) is T -periodically stabilizable for some T > 0 if and only

if (1.1) is T -periodically stabilizable for any T > 0 if and only if (1.1) is feedback stabilizable by a constant
matrix. Hence, the time periodic matrices K(t) will not aid in the stabilization of any triple (A, B, C) with
rankC = n, i.e., the reformulated Brockett problem has the positive answer only if rankC < n.
We expect that our main results, as well as the application of Theorem 1.2, given in Section 6, can be
connected with the original Brockett problem. Unfortunately, we have no any result on it so far, except for
the trivial case where rankC = n.

• There have been studies on periodic stabilization criteria for linear periodic systems. In [14], the following
criterion was established (see Thm. 2 in [14]): T -periodic stabilization ⇔ H-stabilization. Here, a T -periodic
pair

[
A(·), B(·)

]
is said to be H-stabilizable, if for each λ ∈ σ(P) with |λ| ≥ 1, it holds that

η = 0, when P∗η = λη and B∗(t)(Φ(t)∗)−1η = 0 for a.e. t ∈ [0, T ]. (1.19)
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The property (1.19) is a kind of unique continuation property for eigenfunctions of P∗ corresponding to
λ ∈ σ(P) with |λ| ≥ 1. There is a similar version of this kind of unique continuation property in infinite
dimensional systems (see [4]). With the aid of the above-mentioned criterion, the authors of [14] built up a
T -periodic feedback stabilization law via the solution of the following T -periodic matrix Riccati equation

Q̇ + A∗Q + QA + H∗H − QBB∗Q = 0; Q(t) = Q(t + T ), t ∈ R
+, (1.20)

where H(·) is a T -periodic matrix-valued function such that [A(·)∗, H(·)∗] is H-stabilizable. It was proved
in [13] that when both

[
A(·), B(·)

]
and [A(·)∗, H(·)∗] are H-stabilizable, the equation (1.20) admits a unique

positive semi-definite matrix-valued T -periodic solution (see [13]). Furthermore, K(·) = −B(·)∗Q(·) is a
T -periodical feedback stabilization law.
The novelties of our paper, compared with the results in [14], are as follows: (a) we establish two criterions
differing from the H-stabilization in [14]. (b) We build up two kinds of periodic stabilization laws through
solving accordingly two linear equations with initial conditions.

• The study in [14] was partially motivated by [6], where the author proved the fact that a T -periodic pair
[A(·), B(·)] is controllable if and only if it is controllable over [0, nT ]. This also hints us to define the concept
of nT -periodic stabilization and to build up a nT -periodic stabilization law.

• The equivalent condition (1.13) in Theorem 1.1 is a natural extension of Kalman’s rank condition (see
Rem. 3.1).

• The matrix X in Theorem 1.1 can be explicitly structured. (See Step 1 in Part 2 of the proof of Thm. 1.1).
• When [A(·), B(·)] is T -periodically stabilizable, one can use a very similar method as that used in the Proof

of Theorem 1.3 to derive a similar estimate to (1.16) for solutions yε(·) to equation (1.3) with K(·) = Kε(·)
where Kε(·) is defined by (1.9) with X given by Theorem 1.1. We omit its proof in this paper.

• By our understanding, the procedure to stabilize periodically a system: ẏ(t) = A(t)y(t) (where A(·) ∈
L∞(R+; Rn×n) is T -periodic) is as follows: one first builds up a T -periodic B(·) ∈ L∞(R+; Rn×m) such
that [A(·), B(·)] is T -periodically stablizable, and then design a periodic (such as T -periodic or nT -period)
K(·) ∈ L∞(R+; Rm×n) such that A(·) + B(·)K(·) is exponentially stable. We call the aforementioned B(·)
as a control machine and the corresponding K(·) as a feedback law. Control machines could be treated
as control equipments which belong to the category of hardware, while feedback laws could be treated as
control programs which belong to the category of software. Thus, it is interesting to answer to following
question: How to design a simple T -periodic B(·) for a given T -periodic A(·) such that [A(·), B(·)] is T -
periodically stablizable? A matrix B̂, with M

(
CBA(·)

)
columns, in CBA(·) (see (1.17) and (1.18)) could be

one of the simplest ones. From this point of view, we give an answer for the above question, with the help
of Theorem 1.2.

• As a byproduct of this study, it is built up that V = N (Q̄) for any T -periodic pair [A(·), B(·)], where V is
defined by (1.10) and Q̄ is defined by (1.7) (see Lem. 2.3). This is a connection between the null-controllable
subspace V of a T -periodic pair [A(·), B(·)] and the corresponding operator (or matrix) Q̄. This connection
appears to be new and plays an important role in the proof of our main results.

The rest of this paper is organized as follows: Section 2 presents some preliminary lemmas. Section 3 proves
Theorem 1.1. Section 4 verifies Theorems 1.2 and 1.3. Section 5 gives an example to illustrate our main results.
Section 6 provides an application of Theorem 1.2, i.e., a way to determine M

(
CBA(·)

)
given by (1.18).

2. Preliminary lemmas

Lemma 2.1. Let
[
A(·), B(·)

]
be a T -periodic pair with P, V and Vk given by (1.4), (1.10) and (1.11), respec-

tively. Then

Vk =
k−1∑
j=0

P−jV1 for all k ∈ N; V = Vn. (2.1)
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Moreover, it holds that

PV = V = P−1V ; P∗V ⊥ = V ⊥ = (P∗)−1V ⊥. (2.2)

Proof. Recall the definition of Vk (see (1.11)). It holds that

Vk =

{∫ kT

0

Φ−1(s)B(s)u(s)ds
∣∣∣ u(·) ∈ Uad

}
. (2.3)

Now, we prove (2.1) and (2.2) by three steps as follows:

Step 1. To show the first equality in (2.1)
Arbitrarily fix a k ∈ N. By the periodicity of B(·) and Φ(·), we have

∫ kT

0

Φ−1(s)B(s)u(s)ds =
k−1∑
j=0

∫ (j+1)T

jT

Φ−1(s)B(s)u(s)ds

=
k−1∑
j=0

∫ T

0

P−jΦ−1(s)B(s)u(s)ds ∈
k−1∑
j=0

P−jV1,

which leads to Vk ⊆
∑k−1

j=0 P−jV1. On the other hand, given x1, . . . , xk ∈ V1, there are u1(·), . . . , uk(·) ∈ Uad

such that

xj =
∫ T

0

Φ(s)B(s)uj(s)ds, j ∈ {1, 2, . . . , k}.

Let x̂ =
k−1∑
j=0

P−jxj and define û ∈ Uad by

û(jT + t) = uj(t) for all j ∈ {1, . . . , k}, t ∈ [0, T ), û(t) = 0 for all t ∈ [kT,∞).

Then, it holds that

x̂ =
∫ kT

0

Φ−1(s)B(s)û(s)ds,

which leads to x̂ ∈ Vk. From this,
∑k−1

j=0 P−jV1 ⊆ Vk. Hence the first equality in (2.1) holds for all k ∈ N.

Step 2. To prove that V = Vn

It is obvious that Vn ⊆ V . To show the reverse, let x ∈ V . By the definition of V , there are u(·) ∈ Uad and
t > 0 such that y(t; 0, x, u) = 0. Let û(s) = χ(0,t)(s)u(s) for s ≥ 0 and N(t) the non-negative integer such that
N(t)T < t ≤ (N(t) + 1)T . Then

y((N(t) + 1)T ; 0, x, û) = y((N(t) + 1)T ; t, 0, û) = 0,

from which, it follows that x ∈ VN(t)+1. On the other hand, it follows from the Hamilton−Cayley theorem and
the first equality in (2.1), indicates that

VN(t)+1 =
N(t)∑
j=0

P−jV1 ⊆
n−1∑
j=0

P−jV1 = Vn.

Therefore, x ∈ Vn which leads to V = Vn.
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Step 3. To show (2.2).
Since

P−1V = P−1Vn = P−1
n−1∑
j=0

P−jV1 =
n∑

j=1

P−jV1 ⊆
n−1∑
j=0

P−jV1 = Vn,

it follows from the second equality in (2.1) that

P−1V ⊂ V. (2.4)

Because P is invertible, dim(P−1V ) = dimV , which, along with (2.4), yields that P−1V = V , i.e., V = PV .
Hence, the first statement in (2.2) stands. The second statement in (2.2) is a direct consequence of the first one.
This completes the proof. �

Define, for each ε > 0, x ∈ Rn and t ∈ [0, nT ), the linear quadratic optimal control problem

(LQ)ε
t,x : inf

u∈L2(t,nT ;Rm)
Jε(u(·); t, x).

Here,

Jε(u(·); t, x) =
∫ nT

t

ε < u(s), u(s) >Rm ds+ < y(nT ; t, x, u), y(nT ; t, x, u) >Rn ,

where y(·; t, x, u) is the solution to equation (1.1) over [t, nT ], with the initial condition y(t) = x. The corre-
sponding value function is

W ε(t, x) = inf
u∈L2(t,nT ;Rm)

Jε(u(·); t, x), t ∈ [0, nT ) and x ∈ R
n.

The classical theory on optimal controls (see, for instance, Thm. 37, p. 364, [20]) leads to the next lemma.

Lemma 2.2. For each ε > 0, it holds that

W ε(t, x) = 〈 x, Qε
n(t)x 〉 for all (t, x) ∈ [0, nT )× R

n, (2.5)

where Qε
n(·) is a symmetric and positive definite n × n matrix-valued function (over [0, nT ]) solving uniquely

the Riccati equation

Q̇(t) + A(t)∗Q(t) + Q(t)A(t) − 1
ε
Q(t)B(t)B(t)∗Q(t)∗ = 0, t ∈ [0, nT ]; Q(nT ) = I. (2.6)

Moreover, if yt,x(·) is the solution to the equation

ẏ(s) =
(

A(s) + B(s)
(
−1

ε
B(s)∗Qε

n(s)
))

y(s), s ≥ t; y(t) = x, (2.7)

then the function

ūε
x(s) = −1

ε
B(s)∗Qε

n(s)yt,x(s) for a.e. s ∈ [t, nT ] (2.8)

is the unique optimal control to Problem (LQ)ε
t,x.

Lemma 2.3. Let
[
A(·), B(·)

]
be a T -periodic pair with V , Qε

n(·) and Q̄ given by (1.10), (2.6) and (1.7) respec-
tively. Then the following statements stand:

(i) the solution Sε
n(·) of equation (1.5) is Qε

n(·)−1;
(ii) the matrix Q̄ is well defined, and is symmetric and positive semi-definite;
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(iii) it holds that
V = N (Q̄) and V ⊥ = R(Q̄). (2.9)

Proof.

(i) Since Qε
n(·) solves equation (2.6), it follows from some simple calculation that Sε

n(·) is the solution to
equation (1.5).

(ii) Arbitrarily fix x ∈ Rn and u(·) ∈ L2(0, nT ; Rm). Clearly, Jε1(u; 0, x) ≤ Jε2(u; 0, x) when ε1 ≤ ε2. Thus,
〈x, Qε

n(0)x 〉 (which equals to W ε(0, x) by Lem. 2.2) is monotonically increasing with respect to ε and
bounded from below by 0. Hence, lim

ε→0+
〈 x, Qε

n(0)x 〉 exists for each x ∈ Rn. From this, lim
ε→0+

Qε
n(0) exists,

since we are working in the finite dimensional space Rn. Clearly, this limit is a symmetric and positive
semi-definite matrix, since Qε

n(0) is symmetric and positive definite for each ε > 0.
(iii) We first claim the statement that

x ∈ V if and only if 〈x, Q̄x 〉 = 0. (2.10)

In fact, on one hand, if x ∈ V , then it follows from Lemma 2.1 that x ∈ Vn, i.e., there is a control û(·) ∈ Uad

such that y(nT ; 0, x, û) = 0. We restrict this control on [0, nT ] and still denoted by û(·) the restricted control,
which is clearly in L2(0, nT ; Rm). Then, one can easily check that

0 ≤ 〈x, Q̄x 〉 = lim
ε→0+

W ε(0, x) ≤ lim
ε→0+

Jε(û; 0, x) = lim
ε→0+

ε

∫ nT

0

‖û(t)‖2dt = 0.

On the other hand, if x ∈ Rn satisfies 〈x, Q̄x 〉 = 0, then by the definition of Jε,

0 = 〈x, Q̄x 〉 = lim
ε→0+

inf
u∈L2(0,nT ;Rm)

Jε(u; 0, x) ≥ inf
u∈L2(0,nT ;Rm)

‖y(nT ; 0, x, u)‖2. (2.11)

Since {
y(nT ; 0, x, u)

∣∣ u ∈ L2(0, nT ; Rm)
}

= Φ(nT )x + Φ(nT )V,

(where Φ(·) denotes the fundamental solution associated with A(·)), it follows from (2.11) that

inf
z∈Φ(nT )x+Φ(nT )V

‖z‖2 = 0.

From this, Φ(nT )x + Φ(nT )x0 = 0 for some x0 ∈ V , which leads to x ∈ V , and proves (2.10).
Finally, since Q̄ is symmetric and positive semi-definite, it is clear that 〈 x, Q̄x 〉 = 0 if and only if Q̄x = 0.

This, along with (2.10), leads to the first equality in (2.9). The second equality in (2.9) follows from facts that
V ⊥ = (N (Q̄))⊥ = R(Q̄∗) = R(Q̄). This completes the proof. �

The next lemma is a modified version of Lemma 1 in [11].

Lemma 2.4. Let
[
A(·), B(·)

]
be a T -periodic pair with V , P and Q̄ given by (1.10), (1.4) and (1.7), respectively.

Then there are T -periodic A11(·), A12(·) and A22(·) in L∞(R+; Rn×n) and B1(·) in L∞(R+; Rn×m) such that
any solution y(·) of equation (1.1), with a control u(·) ∈ Uad, can be uniquely expressed as

y(t) = y1(t) + y2(t), t ∈ R
+, (2.12)

where the pair (y1(·), y2(·)) satisfies{
ẏ1(t) = A11(t)y1(t)+ A12(t)y2(t) + B1(t)u(t),

ẏ2(t) = A22(t)y2(t),
t ∈ R

+, (2.13)

y1(t) ∈ Φ(t)V and y2(t) ∈ (Φ(t)−1)∗V ⊥ for each t ∈ R
+ (2.14)

and
y2(nT ) = Q̄∼1Q̄Pny2(0) ∈ V ⊥. (2.15)

Here, Φ(·) denotes the fundamental solution associated with A(·).
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Proof. By Lemma 1 in [11], there are Â11(·), Â12(·) and Â22(·) in L∞(R+; Rn×n) and B̂1(·) in L∞(R+; Rn×m),
which depend only on [A(·), B(·)], such that any solution y(·) to equation (1.1), with a control u(·), can be
uniquely expressed by (2.12), where (y1(·), y2(·)) satisfies{

ẏ1(t) = Â11(t)y1(t)+ Â12(t)y2(t) + B̂1(t)u(t),
ẏ2(t) = Â22(t)y2(t),

t ∈ R
+ (2.16)

and (2.14) (see Rem. 2.5 following the proof of this lemma). Define A11(·), A12(·), A22(·) and B1(·) by

A11(kT + t) = Â11(t), A12(kT + t) = Â12(t),
A22(kT + t) = Â22(t), B1(kT + t) = B̂1(t),

t ∈ [0, T ), k ∈ N. (2.17)

Clearly, they are T -periodic.
Now we arbitrarily fix a control u(·) ∈ Uad and let y(·) be a solution to equation (1.1) corresponding to this

control u(·). For each k ∈ N, we define

yk(t) = y(t + kT ) and uk(t) = u(t + kT ), t ≥ 0. (2.18)

From the T -periodicity of [A(·), B(·)] and (2.18), one can easily check that each yk(·) is a solution to equa-
tion (1.1) corresponding to the control uk(·). Then, by Lemma 1 in [11], yk(·) can be uniquely expressed as

yk(t) = yk
1 (t) + yk

2 (t), t ∈ R
+, (2.19)

where (yk
1 (·), yk

2 (·)) satisfies⎧⎪⎪⎨⎪⎪⎩
d
dt

yk
1 (t) = Â11(t)yk

1 (t)+ Â12(t)yk
2 (t) + B̂1(t)uk(t),

d
dt

yk
2 (t) = Â22(t)yk

2 (t),
t ∈ R

+ (2.20)

and

yk
1 (t) ∈ Φ(t)V and yk

2 (t) ∈ (Φ(t)−1)∗V ⊥ for all t ∈ R
+. (2.21)

From (2.19), (2.18), (2.12), (2.14) and (2.2), three observations are in order:

yk
1 (t) + yk

2 (t) = yk(t) = y(t + kT ) = y1(t + kT ) + y2(t + kT ), k ∈ N, t ∈ [0, T );

y1(t + kT ) ∈ Φ(t + kT )V = Φ(t)Φ(kT )V = Φ(t)Φ(T )kV = Φ(t)V, k ∈ N, t ∈ [0, T );

y2(t + kT ) ∈ (Φ(t + kT )−1)∗V ⊥ = (Φ(t)−1)∗V ⊥, k ∈ N, t ∈ [0, T ).

These, along with (2.21), indicates that

yk
1 (t) = y1(t + kT ) and yk

2 (t) = y2(t + kT ) for all t ≥ 0 and k ∈ N.

From these, (2.16), (2.20) and (2.18), one can easily check that (y1(·), y2(·), u(·)) satisfies system (2.13) with
T -periodic A11(·), A12(·), A22(·) and B1(·) given by (2.17).

The rest is to show (2.15). By the variation of constant formula and (1.4),

y(nT ) = Pny(0) + Pn

∫ nT

0

Φ−1(s)B(s)u(s)ds. (2.22)
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On one hand, it follows from (2.12), (2.14) and (1.4) that

y(nT ) = y1(nT ) + y2(nT ), y1(nT ) ∈ PnV and y2(nT ) ∈ (P−n)∗V ⊥.

Because PV = V and (P−1)∗V ⊥ = V ⊥ (see (2.2) in Lemma 2.1), it holds that y1(nT ) ∈ V, y2(nT ) ∈ V ⊥.
Hence,

PV ⊥
(
y(nT )

)
= y2(nT ). (2.23)

On the other hand, since y(0) = y1(0) + y2(0), y1(0) ∈ V and y2(0) ∈ V ⊥, it holds that

Pny(0) = Pny1(0) + Pny2(0) and Pny1(0) ∈ PnV = V. (2.24)

By Lemma 2.6 (where M = Q̄), we see that

Pny2(0) = Q̄∼1Q̄Pny2(0) +
(
Pny2(0) − Q̄∼1Q̄Pny2(0)

)
, (2.25)

Q̄∼1Q̄Pny2(0) ∈ R(Q̄) = V ⊥ and Pnx − Q̄∼1Q̄Pny2(0) ∈ N (Q̄) = V. (2.26)

Besides, it follows from Lemma 2.1 that

Pn

∫ nT

0

Φ−1(s)B(s)u(s)ds ∈ PnVn = PnV = V.

Along with (2.22), (2.24), (2.25) and (2.26), this indicates that

PV ⊥
(
y(nT )

)
= PV ⊥

(
Pny(0)) = PV ⊥

(
Pny2(0)) = Q̄∼1Q̄Pny2(0).

This, along with (2.23), leads to (2.15).
Finally, the uniqueness of such a decomposition follows from (2.14) at once. �

Remark 2.5.
(i) In [11], the proof of (2.14) is hidden in the proof Lemma 1 (see Line 6, p. 721, [11]), where the null-controllable

subspace w.r.t. the time-varying system is defined in the same manner as (1.10).
(ii) In Lemma 1 of [11], it is assumed that V is a proper subspace of Rn. This assumption can be dropped if

one regards {0} as a zero-dimensional subspace of Rn.

The next lemma is about a decomposition of vectors related to the Moore–Penrose inverse of a symmetric
matrix.

Lemma 2.6. Let M be a symmetric matrix in Rn×n. Then, any vector ξ in Rn can be decomposed into two
orthogonal vectors M∼1Mξ and ξ − M∼1Mξ such that

M∼1Mξ ∈ R(M) and ξ − M∼1Mξ ∈ N (M). (2.27)

Proof. By the definition of the Moore–Penrose inverse matrix (see [19]) and by the symmetry of M , it holds
that

M∼1Mξ = (M∼1M)ξ = (MM∼1)ξ = M(M∼1ξ) ∈ R(M);

and
M(ξ − M∼1Mξ) = Mξ − (MM∼1M)ξ = Mξ − Mξ = 0.

These lead to (2.27). Besides, it follows from the symmetry of M that R(M) = N (M∗)⊥ = N (M)⊥. Hence,
the vectors M∼1Mξ and (ξ − M∼1Mξ) are orthogonal. �

The next lemma is a direct consequence of Theorem 1 on page 67 in [10].
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Lemma 2.7. Let H be a real n-dimensional linear space. Let L be a linear map on H. Then H can be uniquely
decomposed as

H = H1(L)
⊕

H2(L), (2.28)

where H1(L) and H2(L) are invariant under L and satisfy accordingly

σ
(
L
∣∣
H1(L)

)
⊂ B and σ

(
L
∣∣
H2(L)

)
⊂ Bc. (2.29)

Remark 2.8.

(i) Let L be a linear map on Rn. Let Z ⊂ Rn be an invariant subspace of L. Then, Lemma 2.7 provides a
unique decomposition of Z corresponding to the map L

∣∣
Z
. We will simply denote this decomposition by

(Z1(L), Z2(L)), when there is no risk to cause any confusion.
(ii) Let [A(·), B(·)] be a T -periodic pair. Let V be its null controllable subspace. By Lemma 2.2, V is an invariant

subspace of P , where P is the transformation over time T associated with A(·). Thus, Lemma 2.7 provides
a unique decomposition (V1(P), V2(P)) for the space V .

Lemma 2.9. Let Z be a finite-dimensional vector space and L be a linear map on Z. Suppose that Y ⊆ Z is
an invariant subspace of L. Then

Y1(L) ⊆ Z1(L) and Y2(L) ⊆ Z2(L). (2.30)

Proof. Let Ẑ = Y1(L)
⊕

Z2(L). Then

Z = Ẑ + Z = (Y1(L) + Z1(L)) + Z2(L). (2.31)

Subspaces Y1(L) and Z1(L) are invariant under L, so is Y1(L) + Z1(L). Clearly, it holds that

σ
(
L
∣∣
Y1(L)+Z1(L)

)
⊂ B.

This, together with the fact that σ
(
L
∣∣
Z2(L)

)
⊂ Bc, implies

(Y1(L) + Z1(L))
⋂

Z2(L) = {0}.

Along with (2.31), this yields
Z = (Y1(L) + Z1(L))

⊕
Z2(L).

Then, because of the uniqueness of the decomposition provided by Lemma 2.7, we see that

Y1(L) + Z1(L) = Z1(L),

which implies that Y1(L) ⊆ Z1(L).
Similarly, we can verify the second conclusion in (2.30). This completes the proof. �

We end this section with introducing some notations which will be used in the Proof of Theorems 1.1 and 1.2.
By (2.2), V is invariant space of P . Hence, V1(P) and V2(P) are uniquely provided by Lemma 2.7. We write

k1
Δ= dimV, k2

Δ=dimV1(P), k3
Δ= dimR

n
1 (P). (2.32)

Clearly,

k1 ≥ k2 ≤ k3, (2.33)

k1 − k2 = dimV2(P), n − k3 = dimR
n
2 (P). (2.34)

Since V2(P) ⊆ Rn
2 (P) (see Lem. 2.9), it holds that

k1 + k3 ≤ n + k2. (2.35)
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3. The Proof of Theorem 1.1

The proof will be organized as two parts as follows.

Part 1. To show (a) ⇔ (c)

It is hidden in the proof of this part that if (c) stands, then Kε
n(·) given by (1.8) is an nT -periodic feedback

law when ε is sufficiently small. The strategy to prove the equivalence in this part is showing

(a) ⇔ σ
(
Q̄∼1Q̄Pn

)
⊂ B and (c) ⇔ σ

(
Q̄∼1Q̄Pn

)
⊂ B.

The proof of these two equivalence will be carried by three steps as follows:

Step 1 in Part 1: To prove (a) ⇒ σ
(
Q̄∼1Q̄Pn

)
⊂ B

Let A11(·), A12(·), A22(·) and B1(·) be the matrices given by Lemma 2.4. According to Lemma 2.4, each
solution y(·; 0, x, u) to equation (1.1) has a unique decomposition (yx,u

1 (·), yx,u
2 (·)) satisfying (2.12), (2.13), (2.14)

and (2.15). By the second equation in (2.13),

yx,u
2 (t) = yx,0

2 (t), when t ≥ 0, u ∈ Uad. (3.1)

We claim
σ
(
Q̄∼1Q̄Pn

)
⊂ B ⇔ lim

t→∞ yx,0
2 (t) = 0 for all x ∈ R

n. (3.2)

To this end, it suffices to show that

lim
t→∞ yx,0

2 (t) = 0 ∀ x ∈ R
n ⇔ lim

k→∞

(
Q̄∼1Q̄Pn

)k

z = 0 ∀ z ∈ V ⊥ (3.3)

and
lim

k→∞

(
Q̄∼1Q̄Pn

)k

z = 0 ∀ z ∈ V ⊥ ⇔ σ
(
Q̄∼1Q̄Pn

)
⊂ B. (3.4)

To prove (3.3), we first observe that

lim
t→∞ yx,0

2 (t) = 0 ∀ x ∈ R
n ⇔ lim

k→∞
yx,0
2 (knT ) = 0 ∀ x ∈ R

n. (3.5)

Indeed, we only need to show the right side of (3.5) implies the left side of (3.5), since the reverse is obvious.
For this purpose, we write ΦA22(·) for the fundamental solution associated with A22(·). For each t ≥ 0, let N(t)
be the non-negative integer such that N(t)nT < t ≤ (N(t) + 1)nT . By the T -periodicity and the boundedness
of A22(·), there is a positive constant C such that

‖yx,0
2 (t)‖ = ‖ΦA22

(
t − N(t)nT

)
ΦA22(N(t)nT )yx,0

2 (0)‖
≤ C‖yx,0

2 (N(t)nT )‖ for all t ≥ 0 and x ∈ Rn.

This yields (3.5). Then, we can easily derive from Lemma 2.4 (see (2.15)) that

yx,0
2 (knT ) =

(
Q̄∼1Q̄Pn

)k

yx,0
2 (0) ∈ V ⊥ for all k ∈ N and x ∈ R

n. (3.6)

It is clear that {yx,0
2 (0)

∣∣ x ∈ Rn} = V ⊥. This, along with (3.5) and (3.6), gives (3.3).
We next verify (3.4). It is well-known that the right side of (3.4) implies the left side of (3.4) (see Appendix C5

in [20]). Now we show the reverse. From Lemma 2.6 where M = Q̄, it follows that

Pnz − Q̄∼1Q̄Pnz ∈ N Q̄ for each z ∈ R
n. (3.7)
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On the other hand, by Lemmas 2.1 and 2.3, we have

z ∈ V ⇒ Pnz ∈ V = N (Q̄). (3.8)

By (3.7) and (3.8), we find that Q̄∼1Q̄Pnz = 0 for all z ∈ V . From this and the left side of (3.4), it follows that

lim
k→∞

(
Q̄∼1Q̄Pn

)k

z = 0 for all z ∈ R
n.

This yields the right side of (3.4) (see Appendix C5 in [20]). Hence, the claim (3.2) has been proved.
Now, we suppose that (a) (in Thm. 1.1) stands. Let K(·) be an nT -periodic stabilization law for the pair[

A(·), B(·)
]
. Consider the following equation:

ẏ(t) =
[
A(t) + B(t)K(t)

]
y(t), t ∈ R

+; y(0) = x. (3.9)

For each x ∈ Rn, we denoted by y(·; 0, x) the unique solution of equation (3.9). Since K(·) is a feedback
stabilization law, we have

lim
t→∞ y(t; 0, x) = 0 for each x ∈ R

n. (3.10)

For each x ∈ Rn, we denote by (yx
1 (·), yx

2 (·)) the decomposition of the solution y(·; 0, x) provided by Lemma 2.4
where u(·) = K(·)y(·; 0, x). By (2.14), we have that < yx

1 (t), yx
2 (t) >= 0 for all t ≥ 0, from which, it follows that

‖yx
2 (t)‖ ≤

√
‖yx

1 (t)‖2 + ‖yx
2 (t)‖2 = ‖y(t; 0, x)‖ for all t ≥ 0.

This, along with (3.10), yields that

lim
t→∞ yx

2 (t) = 0 for each x ∈ R
n. (3.11)

On the other hand, if we write ūx(·) � K(·)y(·; 0, x), then y(·; 0, x, ūx) = y(·; 0, x). Thus, yx,ūx

2 (·) = yx
2 (·). This,

along with (3.1), indicates that
yx
2 (t) = yx,0

2 (t), when t ≥ 0, x ∈ R
n. (3.12)

In summary, we conclude from (3.12), (3.11) and (3.2) that σ
(
Q̄∼1Q̄Pn

)
⊂ B.

Step 2 in Part 1: To show σ
(
Q̄∼1Q̄Pn

)
⊂ B ⇒ (a)

Suppose that σ
(
Q̄∼1Q̄Pn

)
⊂ B. By the part (i) of Lemma 2.3 and (1.7), there is an ε0 > 0 such that

‖Qε
n(0) − Q̄‖ < 1, when 0 < ε ≤ ε0. We arbitrarily fix an ε ∈ (0, ε0], and then write

λ1 � λ1(ε) � ‖Qε
n(0) − Q̄‖1/2 = ‖(Sε

n(0))−1 − Q̄‖ 1
2 < 1. (3.13)

Let Kε
n(·) be given by (1.8). It suffices to show that Kε

n(·) is an nT -periodic stabilization law for [A(·), B(·)].
For this purpose, we write Ψε(·) for the fundamental solution associated with A(·) + B(·)Kε

n(·) and write
Pε � Ψε(nT ). Let yε(·; t0, x) be the unique solution to the equation

ẏ(t) =
(
A(t) + B(t)Kε

n(t)
)
y(t), t ≥ 0, (3.14)

with the initial condition y(t0) = x, where t0 ≥ 0 and x ∈ Rn. Clearly, yε(·; t0, x) is also the unique solution to
equation (1.1), where u(·) = Kε

n(·)yε(·; t0, x), with the initial condition y(t0) = x. Write (y1(·; t0, x), y2(·; t0, x))
for the decomposition of yε(·; t0, x) provided by Lemma 2.4. (we omit ε in the notation of the decomposition pair
to simplify the notation). Then the pair (y1(·; t0, x), y2(·; t0, x)) satisfies (2.13) (where u(·) = Kε

n(·)yε(·; t0, x)),
(2.14) and (2.15). The key is to show that

∃ k̄ ∈ N, s.t. lim
j→∞

yε(jk̄nT ; 0, x) = 0 for all x ∈ R
n. (3.15)
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When (3.15) is proved, we have σ
(
Pε

)
⊂ B (see Appendix C5 in [20]). Hence, equation (3.14) is exponentially

stable ((see [18] or [17]), i.e., Kε
n(·) is an nT -periodic stabilization law for [A(·), B(·)].

The rest of this step is to show (3.15). the proof is built upon the following two cases:
The first case where x ∈ V : We first claim that

‖yε(nT ; 0, z)‖ ≤ λ1‖z‖ for all z ∈ V. (3.16)

In fact, it follows from Lemma 2.3 (see (2.9)) that

〈 z, Q̄z 〉 = 0 for all z ∈ V. (3.17)

On the other hand, from Lemma 2.2, the control ūε
z(·) (whit z ∈ V ) defined by

ūε
z(t)

Δ= Kε
n(t)yε(t; 0, z) = −1

ε
B∗(t)Qε

n(t)yε(t; 0, z) for a.e. t ∈ [0, nT ],

is the optimal control to Problem (LQ)ε
0,z. This, along with (2.5), (3.13) and (3.17), indicates

‖yε(nT ; 0, z))‖2 ≤ W ε(0, z) = 〈 z, Qε
n(0)z 〉 ≤ λ2

1‖z‖2 + 〈 z, Q̄z 〉 = λ2
1‖z‖2,

which leads to (3.16). Next, since x ∈ V , it follows from (2.12) and (2.14) that y2(0; 0, x) = 0. Then, by the
second equation in system (2.13), we find that y2(·; 0, x) ≡ 0. From (2.2) and (2.14), we see that

yε(knT ; 0, x) = y1(knT ; 0, x) ∈ Φ(knT )V = PknV = V for all k ∈ N.

Here and throughout the proof, Φ(·) denotes the fundamental solution associated with A(·). Let z =
yε(knT ; 0, x). Then by the nT -periodicity of

(
A(·) + B(·)Kε

n(·)
)
,

yε(nT ; 0, z) = yε((k + 1)nT ; 0, x).

Thus, it follows from (3.16) that

‖yε((k + 1)nT ; 0, x)‖ ≤ λ1‖yε(knT ; 0, x)‖ for all k ∈ N and x ∈ V. (3.18)

Since λ1 < 1 (see (3.13)), it holds that

lim
k→∞

yε(knT ; 0, x) = 0 for all x ∈ V. (3.19)

The second case when x ∈ V ⊥: Since σ
(
Q̄∼1Q̄Pn

)
⊂ B, there is a natural number k̄ such that (see Ap-

pendix C5 in [20])

λ2
Δ= ‖(Q̄∼1Q̄Pn)k̄‖ < 1. (3.20)

Let
aj = y1(jk̄nT ; 0, x) and βj = y2(jk̄nT ; 0, x), j = 0, 1, 2, . . . (3.21)

Clearly, when x ∈ V ⊥, αj + βj = yε(jk̄nT ; 0, x) for all j ∈ N; α0 = 0 and β0 = x. By the nT -periodicity of(
A(·) + B(·)Kε

n(·)
)
, one can easily check that

αj+1 = yε
(
k̄nT ; 0, αj

)
+ yε

(
k̄nT ; 0, βj

)
− βj+1. (3.22)

Because {αj}∞j=0 ⊂ V (see (2.14) and (2.2)), it follows from (3.18) that

‖yε(k̄nT ; 0, αj)‖ ≤ λk̄
1‖αj‖ for all j = 0, 1, 2, . . . (3.23)



PERIODIC STABILIZATION FOR LINEAR TIME-PERIODIC ORDINARY DIFFERENTIAL EQUATIONS 283

Write Ψε(·) for the fundamental solution associated with (A(·) + B(·)Kε
n(·)). Clearly,∥∥yε

(
k̄nT ; 0, βj

)∥∥ ≤ ∥∥Ψε

(
k̄nT

)∥∥ · ‖βj‖ . (3.24)

On the other hand, by the definition of βj and the T -periodicity of A22(·) (see Lem. 2.4), we can easily check
that

βj+1 = y2(k̄nT ; 0, βj) for all j = 0, 1, . . .

and
y2 (knT ; 0, βj) = y2

(
nT ; 0, y2 ((k − 1)nT ; 0, βj)

)
for all k ∈ N and j = 0, 1, 2, . . .

By these, by using (2.15) repeatedly and then by (3.20), we can obtain that

‖βj+1‖ =
∥∥∥(Q̄∼1Q̄Pn

)k̄
βj

∥∥∥ ≤ λ2‖βj‖ for all j = 0, 1, 2, . . . (3.25)

Now, from (3.22)–(3.25), one can deduce the estimate

‖αj+1‖ ≤ λk̄
1‖αj‖ +

(
λ2 +

∥∥Ψε

(
k̄nT

)∥∥) ‖βj‖ for all j = 0, 1, 2, . . . ,

which together with (3.25), implies that(
‖αj+1‖
‖βj+1‖

)
≤
(

λk̄
1 λ2 +

∥∥Ψε

(
k̄nT

)∥∥
λ2

)(
‖αj‖
‖βj‖

)
for all j = 0, 1, 2, . . . (3.26)

Because λk̄
1 , λ2 < 1, it holds that lim

j→∞
αj = lim

j→∞
βj = 0. Thus, we have

lim
j→∞

yε
(
jk̄nT ; 0, x

)
= 0 for all x ∈ V ⊥, (3.27)

since yε
(
jk̄nT ; 0, x

)
= αj + βj . Now, the key statement (3.15) follows from (3.19) and (3.27).

Step 3 in Part 1. To verify (c) ⇔ σ
(
Q̄∼1Q̄Pn

)
⊂ B

Since V is an invariant subspace of P (see (2.2)), we have V = V1(P) ⊕ V2(P) (see Rem. 2.8). Let us
recall (2.32). Because V1(P) ⊆ Rn

1 (P) and V2(P) ⊆ Rn
2 (P) (see Lem. 2.9), we can take {ξ1, . . . , ξk2 , . . . , ξk3}

as a basis of Rn
1 (P), where Θ1 � {ξ1, ξ2, . . . , ξk2} is a basis of V1(P); and take {η1, . . . , ηk1−k2 , . . . , ηn−k3} to

be a basis of Rn
2 (P), where Θ3 � {η1, η2, . . . , ηk1−k2} is a basis of V2(P). Write Θ2 � {ξk2+1, ξk2+2, . . . , ξk3}

and Θ4 � {ηk1−k2+1, ηk1−k2+2, . . . , ηn−k3}. Since V1(P), V2(P), Rn
1 (P) and Rn

2 (P) are invariant subspaces
of P , there are matrices A1 ∈ R

k2×k2 , A12 ∈ R
k2×(k3−k2), A2 ∈ R

(k3−k2)×(k3−k2), A3 ∈ R
(k1−k2)×(k1−k2),

A34 ∈ R(k1−k2)×(n−k3−k1+k2) and A4 ∈ R(n−k3−k1+k2)×(n−k3−k1+k2) such that

P(Θ1, Θ2, Θ3, Θ4) = (Θ1, Θ2, Θ3, Θ4)

⎛⎜⎝A1 A12 0 0
0 A2 0 0
0 0 A3 A34

0 0 0 A4

⎞⎟⎠. (3.28)

Then, there are matrices Â12 ∈ Rk2×(k3−k2) and Â34 ∈ R(k1−k2)×(n−k3−k1+k2) such that

Pn(Θ1, Θ2, Θ3, Θ4) = (Θ1, Θ2, Θ3, Θ4)

⎛⎜⎜⎝
An

1 Â12 0 0
0 An

2 0 0
0 0 An

3 Â34

0 0 0 An
4

⎞⎟⎟⎠. (3.29)
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On the other hand, by (2.27) and (2.9), I − Q̄∼1Q̄ is a linear transform from Rn to V = V1(P)
⊕

V2(P).
Thus, there are vectors c1, . . . , ck1 in Rn such that

(I − Q̄∼1Q̄)ζ =
k2∑

i=1

〈 ζ, ci 〉 ξi +
k1−k2∑

i=1

〈 ζ, ck2+i 〉 ηi for all ζ ∈ R
n,

which leads to

Q̄∼1Q̄ζ = ζ −
k2∑

i=1

〈 ζ, ci 〉 ξi −
k1−k2∑

i=1

〈 ζ, ck2+i 〉 ηi for all ζ ∈ R
n.

This, together with the fact that Q̄V = {0} (see (2.9)), yields that there are matrices C1 ∈ R
k2×(k3−k2),

C2 ∈ R(k1−k2)×(k3−k2), C3 ∈ Rk2×(n−k3−k1+k2), C4 ∈ R(k1−k2)×(n−k3−k1+k2) such that

Q̄∼1Q̄(Θ1, Θ2, Θ3, Θ4) = (Θ1, Θ2, Θ3, Θ4)

⎛⎜⎝0 C1 0 C3

0 Ik3−k2 0 0
0 C2 0 C4

0 0 0 In−k3−k1+k2

⎞⎟⎠. (3.30)

From (3.28) and (3.30), it follows that

Q̄∼1Q̄P(Θ1, Θ2, Θ3, Θ4) = (Θ1, Θ2, Θ3, Θ4)

⎛⎜⎝0 C1A2 0 C3A4

0 A2 0 0
0 C2A2 0 C4A4

0 0 0 A4

⎞⎟⎠,

which yields that

σ
(
Q̄∼1Q̄P

)
=

{
σ(A2)

⋃
σ(A4)

⋃
{ 0}, if k1 ≥ 1;

σ(A2)
⋃

σ(A4), if k1 = 0.
(3.31)

Similarly, it follows from (3.29) and (3.30) that

σ
(
Q̄∼1Q̄Pn

)
=

{
σ(An

2 )
⋃

σ(An
4 )
⋃
{ 0}, if k1 ≥ 1;

σ(An
2 )
⋃

σ(An
4 ), if k1 = 0.

(3.32)

By (3.31) and (3.32), we see that

σ
(
Q̄∼1Q̄Pn

)
=
{

λn
∣∣ λ ∈ σ

(
Q̄∼1Q̄P

)}
. (3.33)

Therefore, it holds that σ
(
Q̄∼1Q̄P

)
⊂ B ⇔ σ

(
Q̄∼1Q̄Pn

)
⊂ B, i.e., (c) ⇔ σ

(
Q̄∼1Q̄Pn

)
⊂ B.

In summary, we conclude that the proof of Part 1 is finished.

Part 2. To show (a) ⇔ (b)

Clearly, (a) ⇔ (b) in the case that n = 1. Thus, we can assume that n ≥ 2. It is obvious that (b) ⇒ (a). Now
we show that (a) ⇔ (b) for the case that n ≥ 2. Suppose that (a) stands and n ≥ 2. It suffices to show that there
is a T -periodic stabilization law for [A(·), B(·)]. To verify this, we first construct a special n × n real matrix X
(which will appear in (1.6)), then provide an ε0 > 0 (depending on n, ‖X‖ and ‖P‖), and finally prove that
when ε ∈ (0, ε0], Kε(·), given by (1.9) with the aforementioned X , is a T -periodic feedback stabilization law for[
A(·), B(·)

]
. The detailed proof will be carried by several steps.
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Step 1 in Part 2. Structure of X in (1.6) where n ≥ 2

Recall that k1 = dimV (see (2.32)). Hence, dimV ⊥ = n− k1. We arbitrarily take a basis {η̂1, . . . , η̂n−k1} of V ⊥.
The desired X will be defined by

X � (ζ1, . . . , ζk1 , η̂1, . . . , η̂n−k1). (3.34)

Here, {ζ1, . . . , ζk1} is a special basis of V , which will be determined later. Clearly, X is invertible. To construct
the aforementioned basis {ζ1, . . . , ζk1}, we will build up subspaces W1, W2, . . . and Wn of V such that

Vj =
j⊕

i=1

Wi for all j ∈ {1, 2, . . . , n} (3.35)

and
PWj+1 ⊆ Wj for all j ∈ {1, . . . , n − 1}. (3.36)

Here, we agree that {0} is the 0-dimension subspace of Rn.
When the above-mentioned {W1, . . . , Wn} is structured, it follows accordingly from (3.35) and (3.36) that

V = Vn =
n⊕

i=1

Wi (3.37)

and
dimWj+1 ≤ dimWj for each j ∈ {1, . . . , n − 1}.

The latter implies that

Wj+1 = {0}, whenever Wj = {0} for some j ∈ {1, . . . , n − 1}. (3.38)

Write {ζ̂1, . . . , ζ̂k̂1
}, {ζ̂k̂1+1, . . . , ζ̂k̂2

}, . . . , and {ζ̂k̂n−1+1, . . . , ζ̂k̂n
} for bases of W1, W2, . . . , and Wn, respectively.

Here, we agree that any basis of Wj is ∅, if Wj = {0}. From the fact that k1 = dimV , (3.37) and (3.38), it follows
that {ζ̂1, . . . , ζ̂k1} is a basis of V . Then we take the desired basis {ζ1, . . . , ζk1} in (3.34) to be {ζ̂1, . . . , ζ̂k1}.

The rest of this step is to structure {W1, . . . , Wn} satisying (3.35) and (3.36). Two observations are given in
order:

Vj = P−1Vj−1 + Vj−1 for all j ∈ {2, . . . , n} (3.39)

and
Vj = Vj−1 + P−(j−1)V1 for all j ∈ {2, . . . , n}. (3.40)

Now we construct the above-mentioned {W1, . . . , Wn} by the following two cases:

The first case when n = 2. We first take W1 = V1. Then, from (3.40) where j = 2, we see that V2 = V1 +P−1V1,
by which, there is a subspace W2 such that V2 = V1

⊕
W2 and W2 ⊂ P−1V1. Hence, {W1, W2} satisfies (3.35)

and (3.36) in the case that n = 2.

The second case that n > 2. Let W1 = V1. Now we build up {W2, . . . , Wn} in such an order: Wn → Wn−1 →
. . . → W2. By (3.40) where j = n, there is a subspace Wn such that

Vn = Vn−1

⊕
Wn and Wn ⊆ P−(n−1)V1. (3.41)

Then, from the second property in (3.41), it follows that

PWn ⊆ P−(n−2)V1. (3.42)

Besides, it holds that
PWn

⋂
Vn−2 = {0}. (3.43)
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In fact, if y ∈ PWn

⋂
Vn−2, then y = Pz for some z ∈ Wn. Thus, z = P−1y ∈ P−1Vn−2. This, along with (3.39)

where j = n − 1, indicates that z ∈ Vn−1. From this and the facts that z ∈ Wn and Vn−1

⋂
Wn = {0} (see the

first property in (3.41)), it follows that z = 0. Hence, y = Pz = 0, which leads to (3.43).
We next build up Wn−1. From (3.40) where j = n − 1, (3.42) and (3.43), we see that

Vn−1 = Vn−2 + P−(n−2)V1 = Vn−2 + P−(n−2)V1 + PWn =
(
Vn−2

⊕
PWn

)
+ P−(n−2)V1.

Thus, there is subspace Ŵn−1 such that

Ŵn−1 ⊆ P−(n−2)V1 and Vn−1 =
(
Vn−2

⊕
PWn

)⊕
Ŵn−1. (3.44)

Let
Wn−1 = PWn

⊕
Ŵn−1. (3.45)

It is clear that
Vn−1 = Vn−2

⊕
Wn−1 and PWn ⊆ Wn−1. (3.46)

Besides, from (3.45), (3.42) and the first result in (3.44), we obtain that

PWn−1 ⊆ P−(n−3)V1. (3.47)

By (3.39), with j = n − 2, and the fact that Vn−2

⋂
Wn−1 = {0} (see the first fact in (3.46)), using the same

method to show (3.43), we can easily verify that

PWn−1

⋂
Vn−3 = {0}. (3.48)

By (3.47) and (3.48), following the same way to construct Wn−1, we can build up a subspace Wn−2 with
the similar properties as those in (3.46), (3.47) and (3.48). Then we can structure, step by step, subspaces
Wn−3, . . . , W2 such that

Vj = Vj−1

⊕
Wj and PWj+1 ⊆ Wj for all j ∈ {n − 2, . . . , 2}. (3.49)

Now, from the first property in (3.41), (3.46), (3.49) and the fact that W1 = V1, one can easily check that the
subspaces W1, . . . , Wn built up above satisfy (3.35) and (3.36) in the case that n > 2.

We end this step with the following property which will be used later:

〈X−1z1, X
−1z2 〉 = 0 for all z1 ∈ Wi, z2 ∈ Wj , with i �= j and i, j ∈ {1, 2, . . . , n}. (3.50)

The property (3.50) can be easily verified, since Wj ∩ Wi = {0} for all i, j = 1, . . . , n with i �= j.

Step 2 in Part 2. Structure of a T -periodic Kε(·) in L∞(R+; Rm×n) and a positive number ε0

Let X be given by (3.34). For each ε > 0 and x ∈ Rn, consider the optimal control problem

(P ε
x) : Ŵ ε(t, x) � inf

u∈L2(0,T ;Rm)
Ĵε(u; x).

Here Ĵε(·; x) : L2(0, T ; Rm) → R+ is defined by

Ĵε(u; x) Δ=
∫ T

0

ε 〈u(t), u(t) 〉dt + 〈X−1P−1y(T ; 0, x, u), X−1P−1y(T ; 0, x, u) 〉, (3.51)
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where y(·; 0, x, u) is the solution of equation (1.1) over [0, T ], with the initial condition y(0) = x. According to
Theorem 37 on page 364 in [20] (see also Lem. 2.2),

Ŵ ε(t, x) = 〈x, Q̂ε(t)x〉 for all (t, x) ∈ [0, T )× R
n, (3.52)

where Q̂ε(·) is a symmetric and positive definite n×n matrix-valued function over [0, T ], and Sε(·) =
(
Q̂ε(·)

)−1

is the unique solution to the equation (1.6).
For each x ∈ V1, there is a control u1 ∈ Uad such that y(T ; 0, x, u1) = 0. Thus, by (3.52),

0 ≤ lim
ε→0+

< x, Q̂εx >= lim
ε→0+

Ŵ ε(0, x) ≤ lim
ε→0+

Ĵε(u1; x) = 0, when x ∈ V1.

From this, lim
ε→0+

< x, Q̂ε(0)x >= 0 for each x ∈ V1. Since V1 is a finite dimensional space,

〈x, Q̂ε(0)x〉 → 0 uniformly in
{
x ∈ V1 : ‖x‖ ≤ 1

}
. (3.53)

Let
δ � 1

2n‖X‖
(
1 +
(√

2‖P‖‖X‖‖X−1‖
)n ) · (3.54)

By (3.53), there is an
ε0 � ε0(δ) � ε0(n, X,P) > 0 (3.55)

such that when ε ∈ (0, ε0],

〈x, Q̂ε(0)x 〉 ≤ δ2‖x‖2 for all x ∈ V1. (3.56)

In the rest of the proof, we fix an ε ∈ (0, ε0]. Let Kε(·) be defined by (1.9), where X is given by (3.34). Write
ȳx(·) for the solution to the equation{

ẏ(t) =
(
A(t) + B(t)Kε(t)

)
y(t), a.e. t ∈ [0, +∞),

y(0) = x.
(3.57)

By Theorem 37, page 364, [20] (see also Lem. 2.2), the control

ūx(·) Δ=Kε(·)ȳx(·), (3.58)

when it is restricted over (0, T ), is the optimal control to problem (P ε
x ).

Step 3 in Part 2. To prove that the above Kε(·) is a T -periodic feedback stabilization law

Define a linear mapping L on Rn by

L(x) = x +
∫ T

0

Φ−1(s)B(s)ūx(s)ds for all x ∈ R
n, (3.59)

where ūx(·) is given by (3.58). Clearly,

ȳx(T ) = PL(x) for all x ∈ R
n. (3.60)

First, we claim

L(x) = x, if x ∈
n⊕

j=2

Wj ; L(x) ∈ W1 and ‖L(x)‖ ≤ ‖x‖, if x ∈ W1. (3.61)
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To prove the first statement in (3.61), it suffices to show that ūx(·) ≡ 0 for all x ∈
⊕n

j=2 Wj (see (3.59)). For
this purpose, we observe that for each u ∈ L2(0, T ; Rm),

z �
∫ T

0

Φ−1(s)B(s)u(s)ds ∈ V1 = W1 (see (2.3), (3.35), where j = 1),

and
y(T ; 0, x, u) = P(x + z) for all x ∈ R

n.

These, together with (3.50), yields that when x ∈
⊕n

j=2 Wj ,

Ĵε(u; x) =
∫ T

0

ε 〈u(t), u(t) 〉dt + 〈X−1P−1y(T ; 0, x, u), X−1P−1y(T ; 0, x, u) 〉

≥ 〈X−1P−1y(T ; 0, x, u), X−1P−1y(T ; 0, x, u) 〉
= 〈X−1(x + z), X−1(x + z) 〉 ≥ 〈X−1x, X−1x 〉 = Ĵε(0; x).

Hence, the null control is the optimal control to problem (P ε
x). Since the optimal control to this problem is

unique (see Lem. 2.2), it stands that ūx(·) ≡ 0.
To prove the second statement in (3.61), we first observe from (2.3) that LW1 ⊆ W1 (since W1 = V1). Then,

by the optimality of ūx, we see that

Ĵε(ūx; x) =< x, Q̂ε(0)x > for all x ∈ R
n.

This, together with the definition of Ĵε and (3.56), indicates that∥∥X−1P−1ȳx(T )
∥∥ ≤√Ĵε(ūx, x) =

√
〈x, Q̂ε(0)x 〉 ≤ δ‖x‖ for each x ∈ W1 = V1.

From this and (3.60),

‖L(x)‖ = ‖P−1ȳx(T )‖ ≤ ‖X‖
∥∥X−1P−1ȳx(T )

∥∥ ≤ δ‖X‖‖x‖ for each x ∈ W1, (3.62)

which, along with (3.54), leads to the second statement in (3.61).
Now we conclude that the claim (3.61) stands. In addition, by (3.62), we see that

‖ȳx(T )‖ = ‖PL(x)‖ ≤ ‖P‖‖L(x)‖ ≤ δ‖P‖‖X‖‖x‖ for each x ∈ W1. (3.63)

Second, we claim

‖ȳx(T )‖ ≤
√

2‖P‖‖X‖‖X−1‖‖x‖ for each x ∈ V. (3.64)

In fact, by (3.37), each x ∈ V can be expressed as: x = x1 + x2, where x1 ∈ W1 and x2 ∈
⊕n

j=2 Wj . Because
of (3.50), vectors X−1x1 and X−1x2 are orthogonal. Thus, it holds that

‖X−1x1 + X−1x2‖2 = ‖X−1x1‖2 + ‖X−1x2‖2 ≥ 1/2
(
‖X−1x1‖ + ‖X−1x2‖

)2
.

This, along with the second statement in (3.61), yields

‖ȳx(T )‖ = ‖ȳx1(T ) + ȳx2(T )‖ = ‖P
(
L(x1) + L(x2)

)
‖ ≤

√
2‖P‖‖X‖

(
‖X−1x1 + X−1x2‖

)
,

which leads to (3.64).
Next, we claim

‖yx(nT )‖ ≤ δ‖P‖n(
√

2‖X‖‖X−1‖)n−1‖X‖‖x‖ for all x ∈
n⋃

i=1

Wi. (3.65)
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For this purpose, we first observe from the T -periodicity of A(·) + B(·)Kε(·) that

ȳx(kT ) = ȳȳx((k−1)T )(T ) for all x ∈ R
n and k ∈ N. (3.66)

By (3.66) and (3.64), one can easily check that

‖ȳx(nT )‖ ≤
(√

2‖P‖‖X‖‖X−1‖
)n−1

‖ȳx(T )‖ for all x ∈ V.

This, along with (3.63), indicates that the estimate in (3.65) holds when x ∈ W1, i.e.,

‖ȳx(nT )‖ ≤ δ‖P‖n
(√

2‖X‖‖X−1‖
)n−1

‖X‖‖x‖ for all x ∈ W1. (3.67)

Now, we arbitrarily fix an x in Wj for some j ∈ {2, 3, . . . , n}. By (3.66), (3.60), (3.61) and (3.36), using the
mathematical induction, one can easily prove that

ȳx((j − 1)T ) = P ȳx((j − 2)T ) = Pj−1x ∈ W1.

This, together with (3.66) and (3.63), yields that

‖ȳx(jT )‖ ≤ δ‖P‖‖X‖‖ȳx((j − 1)T )‖ ≤ δ‖P‖j‖X‖‖x‖ for all x ∈ Wj . (3.68)

On the other hand, by (3.64), one can easily check that

‖ȳz(kT )‖ ≤
(√

2‖P‖‖X‖‖X−1‖
)k

‖z‖ for all z ∈ V and k ∈ N.

This, along with the fact that ȳx(nT ) = ȳȳx(jT )((n − j)T ), yields that

‖ȳx(nT )‖ ≤
(√

2‖P‖‖X‖‖X−1‖
)n−j

‖ȳx(jT )‖,

which, together with (3.68), shows that

‖ȳx(nT )‖ ≤ δ‖P‖n
(√

2‖X‖‖X−1‖
)n−j

‖X‖‖x‖ < δ‖P‖n
(√

2‖X‖‖X−1‖
)n−1

‖X‖‖x‖.

Since x was arbitrarily taken from one of Wj with j ∈ {2, 3, . . . , n}, the above estimate holds for all x ∈
⋃n

i=2 Wi.
This, along with (3.67), leads to (3.65).

Then, we claim

‖ȳx(nT )‖ ≤ δ‖x‖ for all x ∈ V. (3.69)

In fact, by (3.37), each x ∈ V can be expressed as: x =
∑n

j=1 xj with xj ∈ Wj for all j = 1, . . . , n. Thus, it
holds that

‖ȳx(nT )‖ = ‖ȳ
∑n

1 xj (nT )‖ =

∥∥∥∥∥
n∑

j=1

ȳxj(nT )

∥∥∥∥∥ ≤
n∑

j=1

‖ȳxj(nT )‖.

This, together with (3.65), yields that

‖ȳx(nT )‖ ≤ δ‖P‖n(
√

2‖X‖‖X−1‖)n−1‖X‖
n∑

j=1

‖xj‖.
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Meanwhile, since 〈X−1xi, X
−1xj 〉 = 0 when i �= j (see (3.50)), one can directly check that

n

∥∥∥∥∥
n∑

j=1

X−1xj

∥∥∥∥∥
2

= n

n∑
j=1

∥∥X−1xj

∥∥2 ≥
( n∑

j=1

∥∥X−1xj

∥∥)2.
From the above two inequalities, we can easily verify that

‖ȳx(nT )‖ < δn‖X‖(
√

2‖P‖‖X‖‖X−1‖)n‖x‖.

This, together with (3.54), leads to (3.69).
Now, we write P̂ε for the transformation over time T , associated with A(·) + B(·)Kε(·) (see (1.4)). It is clear

that
ȳx(nT ) =

(
P̂ε

)n
x for each x ∈ R

n, (3.70)

and

ȳx(T ) = P
[
x +

∫ T

0

Φ−1(s)B(s)ūx(s)ds

]
for each x ∈ R

n. (3.71)

Here, we recall that Φ(·) is the fundamental solution for A(·) and ūx
ε (·) is given by (3.58). Then, by (2.3), we

see that

x +
∫ T

0

Φ−1(s)B(s)ūx(s)ds ∈ V, when x ∈ V.

This, along with (3.71) and (2.2), yields that ȳx(T ) ∈ V , when x ∈ V . Thus, by making use of (2.2) again,
we see that ȳx(2T ) = ȳȳx(T )(T ) ∈ V . Then, step by step, we can reach that

ȳx(nT ) = ȳȳx((n−1)T )(T ) ∈ V, when x ∈ V.

This leads to
(P̂ε)n : V → V. (3.72)

Hence, there are Ã11 ∈ Rk1×k1 , Ã21 ∈ Rk1×(n−k1), Ã22 ∈ R(n−k1)×(n−k1) such that

(
P̂ε

)n
X = X

(
Ã11 Ã12

0 Ã22

)
. (3.73)

By (3.73), it holds that σ((P̂ε)n|V ) = σ(Ã11). Then, from (3.70) and (3.69), we see that if δ < 1 is given by (3.54),
then ‖(P̂ε)nx‖ ≤ δ‖x‖ for all x ∈ V . Since V is invariant under

(
P̂ε

)n (see (3.72)), the above inequality implies
that ‖(P̂ε)n|V ‖ < 1. Furthermore, it follows that σ((P̂ε)n|V ) ⊂ B (see Appendix C5 in [20]). Hence, σ(Ã11) ⊂ B.
We next prove that σ(Ã22) ⊂ B. When this is done, it follows from (3.73) that σ((P̂ε)n) ⊂ B, which leads to
the facts that σ(P̂ε) ⊂ B and Kε is a T -periodic feedback stabilization law for the pair [A(·), B(·)]. Thus, we
complete the proof of the statement that (a) ⇔ (b).

The rest of this step is to show σ(Ã22) ⊂ B. Recall that k1 and X =
(
ζ1, . . . , ζk1 , η̂1, . . . , η̂n−k1

)
are given

by (2.32) and (3.34), respectively. Since {η̂1, . . . , η̂n−k1} is a basis of V ⊥ (see (3.34)), the matrix (η̂1, . . . , η̂n−k1)
can be treated as a linear and one-to-one map from R

n−k1 to V ⊥. Write

z(c) � (η̂1, . . . , η̂n−k1)c ∈ V ⊥ for each c ∈ R
n−k1 . (3.74)

By (3.74) and (3.34), we see that

z(c) = X

(
0k1×k1

c

)
for all c ∈ R

n−k1 . (3.75)
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From (3.70), (3.75) and (3.73), it follows that

ȳz(c)(nT ) =
(
P̂ε

)n
z(c) = (ζ1, . . . , ζk1)Ã12c + (η̂1, . . . , η̂n−k1)Ã22c for all c ∈ R

n−k1 . (3.76)

Since {ζ1, . . . , ζk1} and {η̂1, . . . , η̂n−k1} are accordingly the bases of V and V ⊥, it holds that

(ζ1, . . . , ζk1)Ã12c ∈ V and (η̂1, . . . , η̂n−k1)Ã22c ∈ V ⊥ for all c ∈ R
n−k1 . (3.77)

Let
(
ȳ

z(c)
1 (·), ȳz(c)

2 (·)
)

be the unique decomposition of ȳz(c)(·) provided by Lemma 2.4, where y(·) and u(·) are
replaced by ȳz(c)(·) and ūz(c)(·) respectively. From the T -periodicity of the systems (3.57), (2.14) and (2.2), we
see that

ȳ
z(c)
1 (nT ) ∈ V and ȳ

z(c)
2 (nT ) ∈ V ⊥ for all c ∈ R

n−k1 .

These, together with (3.76) and (3.77), indicate that

ȳ
z(c)
2 (nT ) = (η̂1, . . . , η̂n−k1)Ã22c for all c ∈ R

n−k1 . (3.78)

Meanwhile, it follows from (2.15) and (3.74) that

ȳ
z(c)
2 (nT ) = Q̄∼1Q̄Pnȳ

z(c)
2 (0) = Q̄∼1Q̄Pnz(c) = Q̄∼1Q̄Pn(η̂1, . . . , η̂n−k1)c for all c ∈ R

n−k1 .

From (3.78) and the above, we see that

(η̂1, . . . , η̂n−k1)Ã22 = Q̄∼1Q̄Pn(η̂1, . . . , η̂n−k1). (3.79)

On the other hand, because V ⊥ is invariant under Q̄∼1Q̄Pn (see (2.15)), there is a matrix Ã2 ∈ R(n−k1)×(n−k1)

such that
Q̄∼1Q̄Pn(η̂1, . . . , η̂n−k1) = (η̂1, . . . , η̂n−k1)Ã2, (3.80)

and
σ(Ã2) ⊆ σ

(
Q̄∼1Q̄Pn

)
. (3.81)

By (3.79) and (3.80), we find that
Ã2 = Ã22. (3.82)

Since we already proved (a) ⇔ σ
(
Q̄∼1Q̄Pn

)
⊂ B in Part 1, and because we are in the case that (a) is assumed

to be true, it follows from (3.81) that
σ(Ã2) ⊂ B. (3.83)

This, along with (3.82), leads to σ(Ã22) ⊂ B.
In summary, we conclude that the Proof of Theorem 1.1 is finished.

Remark 3.1. The periodic stabilization criterion for T -periodic pairs in Theorem 1.1 is an extension of
Kalman’s stabilization criterion for time-invariant pairs in Rn×n×Rn×m. To see it, we let

[
A, B

]
∈ Rn×n×Rn×m,

with the null-controllable subspace V . Write {ξ1, ξ2, . . . , ξk1} and {ξk1+1, ξk1+2, . . . , ξn} for normalized orthog-
onal bases of V and V ⊥, respectively. Let

Q = (ξ1, . . . , ξk1 , . . . , ξn).

By the classical linear control theory (see, for instance, Thm. 1.6, p. 110, [16]), there are matrices A1 ∈ Rk1×k1 ,
A2 ∈ Rk1×(n−k1), A3 ∈ R(n−k1)×(n−k1) and B1 ∈ Rk1×m, with [A1, B1] controllable, such that

A = Q

(
A1 A2

0 A3

)
Q∗, B = Q

(
B1

0

)
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Furthermore, [A, B] is stabilizable if and only if A3 is exponentially stable; while A3 is exponentially stable if
and only if

[
A, B

]
satisfies the Kalman’s stabilization condition (see, for instance, [16] or [20]).

Let Φ(·) be the fundamental solution associated with A, and Q̄ be the matrix defined in Theorem 1.1, where[
A(·), B(·)

]
is replaced by

[
A, B

]
. By a direct calculation, we have that for any T > 0,

Φ(T ) = Q

⎛⎝ eTA1 ,

∫ T

0

e(T−s)A1A2esA3ds

0 eTA3

⎞⎠Q∗

and

Q̄ = Q

(
0 0
0 eTA∗

3eTA3

)
Q∗.

Thus, it holds that

Q̄∼1Q̄Φ(T ) = Q

(
0 0
0 eTA3

)
Q∗.

Hence, when
[
A(·), B(·)

]
≡ [A, B] is time-invariant, it holds that for any T > 0

σ(Q̄∼1Q̄Φ(T )) ⊂ B ⇔ σ(eTA3 ) ⊂ B ⇔ σ(A3) ⊂ C
− ⇔

[
A, B

]
holds Kalman’s stabilization condition .

From these, we see that if
[
A(·), B(·)

]
= [A, B] is time-invariant, then (1.1) is T -periodically stabilizable for some

T > 0 if and only if (1.1) is T -periodically stabilizable for any T > 0 if and only if (1.1) is feedback stabilizable
by a constant matrix.

4. The Proof of Theorems 1.2 and 1.3

The Proof of Theorem 1.2. Let Q̄ be the positive semi-definite matrix given by (1.7). By Lemma 2.3, it
holds that V = N (Q̄). Then, there is an orthogonal matrix P = (p1, . . . , pn), with pj its jth column vector,
such that

P ∗Q̄P = diag {λ1, . . . , λn−k1 , 0, . . . , 0} ,

where λi > 0 for i = 1, . . . , n − k1 and k1 is defined in (2.32). Hence,

V = Span {pn−k1+1, . . . , pn} . (4.1)

Along with the invariance of V under P , this indicates that

PP = P

(
A1 0
A2 A3

)
, (4.2)

where A1 ∈ R(n−k1)×(n−k1), A2 ∈ Rk1×(n−k1), A3 ∈ Rk1×k1 . Hence,

P ∗ · Q̄∼1Q̄P · P = (P ∗Q̄∼1P )(P ∗Q̄P )(P ∗PP ) = (P ∗Q̄P )∼1(P ∗Q̄P )(P ∗PP )

= diag
{
λ−1

1 , . . . , λ−1
n−k1

, 0, . . . , 0
}

diag
{
λ1, . . . , λn−k1 , 0, . . . , 0

}
(P ∗PP )

=
(

In−k1 0
0 0k1×k1

)(
A1 0
A2 A3

)
=
(

A1 0
0 0

)
.

From the above and the equivalence of (b) and (c) in Theorem 1.1, it follows that

(i) in Theorem 1.2 ⇔ σ(A1) ⊂ B. (4.3)
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Since V is an invariant subspace of P , we have (see Lem. 2.7 and Rem. 2.8)

V = V1(P)
⊕

V2(P), σ
(
P
∣∣
V1(P)

)
⊂ B, σ

(
P
∣∣
V2(P)

)
⊂ Bc. (4.4)

From properties of V2(P) and R
n
2 (P), one can easily check that

(ii) in Theorem 1.2 ⇔ V1(P) = R
n
2 (P). (4.5)

Thus, to prove (i) ⇔ (ii), it suffices to verify

V2(P) = R
n
2 (P) ⇔ σ(A1) ⊂ B. (4.6)

Now, we are on the position to prove (4.6). Write

V1(P) = Span{η1, . . . , ηk2} with the basis {η1, . . . , ηk2} (4.7)

and
V2(P) = Span{ηk2+1, . . . , ηk1} with the basis {ηk2+1, . . . , ηk1}. (4.8)

By (4.4), (4.7) and (4.8), there are invertible A31 ∈ Rk2×k2 and A32 ∈ R(k1−k2)×(k1−k2) such that

P(η1, . . . , ηk1) = (η1, . . . , ηk1)
(

A31 0
0 A32

)
; (4.9)

σ(A31) = σ
(
P
∣∣
V1(P)

)
⊂ B, σ(A32) = σ

(
P
∣∣
V2(P)

)
⊂ Bc. (4.10)

By (4.1), (4.7) and (4.8), {p1, . . . , pn−k1 , η1, . . . , ηk1} is a basis of Rn. From (4.2) and (4.9),

P(p1, . . . , pn−k1 , η1, . . . , ηk1−k2 , . . . , ηk1)

= (p1, . . . , pn−k1 , η1, . . . , ηk1−k2 , . . . , ηk1)

⎛⎝ A1 0 0
A21 A31 0
A22 0 A32

⎞⎠
for some A21 ∈ Rk2×(n−k1) and A22 ∈ R(k1−k2)×(n−k1). Write

Â1 =
(

A1 0
A21 A31

)
∈ R

(n−k1+k2)×(n−k1+k2), (4.11)

Â2 =
(
A22, 0(k1−k2)×k2

)
∈ R

(k1−k2)×(n−k1+k2)

and
P̂ = (p1, . . . , pn−k1 , η1, . . . , ηk1). (4.12)

One can directly check that

P̂−1PP̂ =
(

Â1 0
Â2 A32

)
. (4.13)

The rest of the proof of (4.6) is carried out by the following two steps.

Step 1. σ(A1) ⊂ B ⇒ V2(P) = Rn
2 (P)

Suppose that σ(A1) ⊂ B. Then, by (4.10) and (4.11), it holds that σ(Â1) ⊂ B. This, along with (4.10), yields
that σ(Â1)

⋂
σ(A32) = ∅. Thus, the Sylvster equation

A32X − XÂ1 = Â2 (4.14)
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has a unique solution X̂ ∈ R(k1−k2)×(n−k1+k2) (see p. 131, [21]). Let

P̃ � P̂

(
In−k1+k2 0

−X̂ Ik1−k2

)
. (4.15)

From (4.13), (4.14) and (4.15), it follows that

P̃−1PP̃ =
(

Â1 0
0 A32

)
. (4.16)

Write p̃j for the jth column vector of P̃ . Let

Y1 = Span {p̃1, p̃2, . . . , p̃n−k1+k2} ; Y2 = Span {p̃n−k1+k2+1, p̃n−k1+k2+2, . . . , p̃n} . (4.17)

By (4.16), they are invariant subspaces of P and satisfy

Y1 ⊕ Y2 = R
n, σ(P

∣∣
Y1

) = σ(Â1) ⊂ B and σ(P
∣∣
Y2

) = σ(A32) ⊂ Bc.

Then, by Lemma 2.7, it stands that
Y2 = R

n
2 (P). (4.18)

On the other hand, by (4.15) and (4.12),

p̃n−k1+k2+j = ηk2+j , j = 1, . . . , k1 − k2. (4.19)

Now, it follows from (4.18), (4.17), (4.19) and (4.8) that Rn
2 (P) = V2(P).

Step 2. V2(P) = R
n
2 (P) ⇒ σ(A1) ⊂ B

Suppose that
V2(P) = R

n
2 (P). (4.20)

Then it holds that
k1 − k2 = n − k3, (4.21)

where k3 is given by (2.32). By Lemma (2.9), V1(P) ⊆ Rn
1 (P). Thus, we can write

R
n
1 (P) = Span{β1, . . . , βn−k1 , η1, . . . , ηk2} with the basis {β1, . . . , βn−k1 , η1, . . . , ηk2}, (4.22)

where {η1, . . . , ηk2} is given by (4.7). By (4.20), we have

R
n
1 (P)

⊕
V2(P) = R

n
1 (P)

⊕
R

n
2 (P) = R

n.

This, along with (4.22) and (4.8), yields that
{
β1, . . . , βn−k1 , η1, . . . , ηk1

}
is a basis of Rn. Recall that{

p1, . . . , pn−k1 , η1, . . . , ηk1

}
is also a basis of Rn (see (4.12)). Thus,

(β1, . . . , βn−k1 , η1, . . . , ηk1) = (p1, . . . , pn−k1 , η1, . . . , ηk1)
(

Â3 0
Â4 Ik1

)
, (4.23)

where Â3 ∈ R(n−k1)×k1 is invertible and Â4 ∈ Rk1×(n−k1). Since Rn
1 (P) is invariant under P and σ(P|Rn

1 (P)) ⊂ B,
by (4.9), there are Â6 ∈ Rk2×(n−k1) and invertible Â5 ∈ R(n−k1)×(n−k1) with

σ(Â5) ⊂ B. (4.24)



PERIODIC STABILIZATION FOR LINEAR TIME-PERIODIC ORDINARY DIFFERENTIAL EQUATIONS 295

such that
P (β1, . . . , βn−k1 , η1, . . . , ηk2 , ηk2+1 . . . , ηk1)

= (β1, . . . , βk2 , η1, . . . , ηk2 , ηk2+1 . . . , ηk1)

⎛⎝ Â5 0 0
Â6 A31 0
0 0 A32

⎞⎠.
(4.25)

Write

Â7 =
(

Â6

0(k1−k2)×(n−k1)

)
∈ R

k1×(n−k1), Â8 =
(

A31 0
0 A32

)
∈ R

k1×k1 . (4.26)

From (4.12), (4.23), (4.25) and (4.26), we can directly check that

PP̂ = P̂

(
Â3Â5Â

−1
3 0(n−k1)×k1

∗ ∗

)
. (4.27)

Because both {pn−k1+1, . . . , pn} and {η1, . . . , ηk1} are base of V (see (4.1), (4.7) and (4.8)), there is an invertible
matrix A9 ∈ Rk1×k1 such that P̂ = P · diag{In−k1 , A9}. Then, it follows from (4.27) that

P−1PP =
(

Â3Â5Â
−1
3 0

∗ ∗

)
.

Combined with (4.2), the above shows that A1 = Â3Â5Â
−1
3 . Along with (4.24), this indicates that σ(A1) =

σ(Â5) ⊂ B.
In summary, we complete the Proof of Theorem 1.2.

The Proof of Theorem 1.3. We organize the proof by the following two cases.

Case 1. where V = R
n: Let yε(·) be a solution to equation (1.3) with K(·) = Kε

n(·). It follows from the
second equality in (2.9) that Q̄ = 0n×n in this case. This, together with (1.15), yields that ρ̄ = +∞. Hence, the
estimate (1.16) is equivalent to the estimate

‖yε(t)‖ ≤ Me−t/δ‖yε(0)‖ for any t ∈ R
+. (4.28)

By (1.7) and (3.13), we see that

lim
ε→0+

λ1(ε) � lim
ε→0+

‖(Sε
n(0))−1 − Q̄‖ 1

2 = 0.

Then, given δ > 0, there is an ε � ε(δ) > 0 such that

λ1(ε) ≤ e−nT/δ. (4.29)

Notice that any solution yε(·) to equation (1.3) with K(·) = Kε
n(·) satisfies that yε(0) ∈ V in this case. Thus,

it follows from (3.18), where λ1 = λ1(ε) (see (3.13)), and (4.29) that

‖yε(jnT )‖ ≤ e−jnT/δ‖yε(0)‖ for all yε(0) ∈ V and j ∈ N. (4.30)

Write Φε(·) for the fundamental solution associated with A(·) + B(·)Kε
n(·). Let

M ε
1

Δ= sup
t∈[0,nT ]

∥∥Φε(t)
(
Φε(nT )

)−1∥∥. (4.31)

By (4.31) and (4.30), we see that

‖yε(t)‖ =
∥∥Φε(t)

(
Φε
([

t
nT

]
+ 1
)
nT
)−1

Φε
(([

t
nT

]
+ 1
)
nT
)
yε(0)

∥∥
≤ M ε

1 e−(nT/δ)([ t
nT ]+1)‖yε(0)‖ ≤ M ε

1e−t/δ‖yε(0)‖ for each t > 0.
(4.32)

Since (4.28) ⇔ (1.16) in this case, (4.32) leads to (1.16) in the case that V = Rn.
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Case 2. where V �= Rn: It follows from the second equality in (2.9) that Q̄ �= 0n×n for the current case. This
implies that Q̄∼1Q̄P �= 0n×n, i.e., there is a nonzero eigenvalue of Q̄∼1Q̄P . Thus, ρ̄ < +∞ (see (1.15) for the
definition of ρ̄). Meanwhile, since [A(·), B(·)] is T -periodically stabilizable, it follows from Theorem 1.1 that
σ
(
Q̄∼1Q̄P

)
⊂ B. Hence, ρ̄ > 0 (see (1.15)).

Given δ > 0, we take
ρ2 = max {ρ̄ − δ ρ̄/2} and λ̂ = e−ρ2T . (4.33)

Since 0 < ρ2 < ρ̄, it follows from (1.15) and the second property in (4.33) that

max
{
|λ|
∣∣ λ ∈ σ

(
Q̄∼1Q̄P

)}
< λ̂ < 1.

This, together with (3.33), implies that

max
{
|λ|
∣∣ λ ∈ σ

(
Q̄∼1Q̄Pn

)}
< λ̂n < 1,

i.e., the spectral radius of Q̄∼1Q̄Pn is less than 1. By the equivalent definition of spectral radius (see [23]), there
is a k̄ ∈ N such that

λ2 �
∥∥∥(Q̄∼1Q̄nP

)k̄∥∥∥ ≤ λ̂k̄n = e−ρ2k̄nT < 1. (4.34)

On the other hand, in Case 1, we already proved that for the δ given above, there is an ε = ε(δ) > 0 such
that (4.30) stands. Let

ρ1 � max {ρ2 + 1, 1/δ} and λ1 � e−ρ1nT . (4.35)

Then, by (4.30), with j = 1, and by (4.35), we see that

‖yε(nT )‖ ≤ e−ρ1nT ‖yε(0)‖ = λ1‖yε(0)‖ for all yε(0) ∈ V. (4.36)

Notice that (4.36) and (4.34) correspond to accordingly (3.16) (with different λ1) and (3.20)(with different λ2

and k̄).
Now, for the above-mentioned ε = ε(δ), let yε(·) be a solution to equation (3.14) (=equation (1.3) with

K(·) = Kε
n(·)). Set yε(0) = x. Write (y1(·; 0, x), y2(·; 0, x)) for the decomposition of yε(·) provided by Lemma 2.4.

Let (αj , βj) be defined by (3.21), i.e.,

aj = y1(jk̄nT ; 0, x) and βj = y2(jk̄nT ; 0, x), for each j ∈ {0, 1, 2, . . .}. (4.37)

Then, from (4.36) and (4.34) (they correspond to according to (3.16) and (3.20)), following the same arguments
as those in Step 2 of Part 1 in the Proof of Theorem 1.1 (noticing that Φε(·) here corresponds to Ψε(·) there),
we can reach the estimate (3.26) for the current case, i.e.,(

‖αj+1‖
‖βj+1‖

)
≤
(

e−ρ1k̄nT e−ρ2k̄nT +
∥∥Φε

(
k̄nT

)∥∥
0 e−ρ2k̄nT

)(
‖αj‖
‖βj‖

)
, ∀ j = 0, 1, . . . (4.38)

Here, we have used (4.34) and (4.35).
Since PV and PV ⊥ stand for the orthogonal projections of Rn to V and V ⊥, respectively, it follows from (4.37),

the definition of (y1(·; 0, x), y2(·; 0, x)) and Lemma 2.4 that

αj = yε
1(jk̄nT ) = PV

(
yε(jk̄nT )

)
, βj = yε

2(jk̄nT ) = PV ⊥
(
yε(jk̄nT )

)
, ∀ j = 0, 1, . . . (4.39)

Let M ε
2 = 1 +

∥∥Φε
(
k̄nT

)∥∥. Then, by (4.38), one can easily check that

(
‖αj‖
‖βj‖

)
≤

⎛⎝ e−jρ1k̄nT M ε
2

j−1∑
l=0

e−(lρ1+(j−1−l)ρ2)k̄nT

0 e−jρ2 k̄nT

⎞⎠(‖α0‖
‖β0‖

)
, ∀ j = 1, 2, . . . (4.40)
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Because ρ1 ≥ ρ2 + 1 (see (4.35)), it holds that for each j = 1, 2, . . . ,

j−1∑
l=0

e−(lρ1+(j−1−l)ρ2)k̄nT = e−(j−1)ρ2k̄nT
j−1∑
l=0

e−l(ρ1−ρ2)k̄nT

≤ e−(j−1)ρ2k̄nT
j−1∑
l=0

e−lk̄nT ≤ e−(j−1)ρ2k̄nT
∞∑
l=0

e−lk̄nT =
eρ2k̄nT

1 − e−k̄nT
e−jρ2k̄nT .

(4.41)

Let

M ε
3 = M ε

2

eρ2k̄nT

1 − e−k̄nT
·

It follows from (4.40) and (4.41) that

‖yε(jk̄nT )‖ ≤ ‖αj‖ + ‖βj‖ ≤ e−ρ1jk̄nT ‖α0‖ + (1 + M ε
3 )e−ρ2jk̄nT ‖β0‖, ∀ j = 1, 2, . . . (4.42)

By (4.42) and by the same argument in (4.32), there is a M > 0 such that

‖yε(t)‖ ≤ M
(
e−ρ1t‖α0‖ + e−ρ2t‖β0‖

)
. (4.43)

Because ρ1 ≥ 1
δ

(see (4.35)) and ρ2 ≥ ρ̄− δ (see (4.33)), the estimate (4.43), as well as (4.39) with j = 0, leads

to (1.16).
This completes the proof.

5. An example

Now we present an example to illustrate the results given by Theorems 1.1 and 1.2. Consider the controlled
system

d
dt

⎛⎝ y1

y2

y3

⎞⎠ =

⎛⎝0 0 0
1 0 0
0 0 −1

⎞⎠⎛⎝ y1

y2

y3

⎞⎠+

⎛⎝ 1
{t}
0

⎞⎠u(t), t ≥ 0, (5.1)

where {t} denotes the decimal part of t. Clearly, (5.1) is a 1-periodic controlled system. The corresponding
fundamental solution and the transformation over T = 1 are accordingly

Φ(t) =

⎛⎝1 0 0
t 1 0
0 0 e−t

⎞⎠, t ∈ [0, 1]; and P = Φ(1) =

⎛⎝1 0 0
1 1 0
0 0 e−1

⎞⎠. (5.2)

One can easily check that in this case,

V1 = Span{e1}; P−1V1 = Span{e1 − e2}; P−2V1 = Span{e1 − 2e2}.

These, along with (2.1), imply that

V = V1 + P−1V1 + P−2V1 = Span {e1, e2} .

Hence, V1 is a proper subspace of V in this case. By a direct calculation, we have that

R
3
1(P) = Span {e3} and R

3
2(P) = Span {e1, e2} .

Hence, R3
2(P) = V . Then, by Theorem 1.2, System (5.1) is 1-periodically stabilizable.
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Meanwhile, System (1.5) in the current case reads

d
dt

Sε
3(t) � d

dt

⎛⎝ s11 s12 s13

s12 s22 s23

s13 s23 s33

⎞⎠ (t) −

⎛⎝0 0 0
1 0 0
0 0 −1

⎞⎠⎛⎝ s11 s12 s13

s12 s22 s23

s13 s23 s33

⎞⎠ (t)

−

⎛⎝s11 s12 s13

s12 s22 s23

s13 s23 s33

⎞⎠ (t)

⎛⎝0 1 0
0 0 0
0 0 −1

⎞⎠+
1
ε

⎛⎝ 1 {t} 0
{t} {t}2 0
0 0 0

⎞⎠ (t) = 0, t ∈ [0, 3],

with the initial condition Sε
3(0) = I3. Its solution is

Sε
3(·) = Sε

3,1(·) + Sε
3,2(·) + Sε

3,3(·),

where

Sε
3,1(t) =

⎛⎜⎜⎝
(1 + 1

ε ) − 1
ε (t − 2) −1 + (1 + 1

ε )(t − 2) − 1
ε (t − 2)2 0

−1 + ε+1
ε (t − 2) − (t−2)2

ε 2 − 2(t − 2) + ε+1
ε (t − 2)2 − (t−2)3

ε 0
0 0 e3−t

⎞⎟⎟⎠χ[2,3],

Sε
3,2(t) =

⎛⎜⎜⎝
(1 + 2

ε ) − 1
ε (t − 1) −(2 + 1

ε ) + (1 + 2
ε )(t − 1) − 1

ε (t − 1)2 0

− 2ε+1
ε + ε+2

ε (t − 1) − (t−1)2

ε
5ε+1

ε − 4ε+2
ε (t − 1) + ε+2

ε (t − 1)2 − (t−1)3

ε 0
0 0 e3−t

⎞⎟⎟⎠χ[1,2)

and

Sε
3,3(t) =

⎛⎜⎝ (1 + 3
ε ) − 1

ε t −(3 + 3
ε ) + (1 + 3

ε )t − 1
ε t2 0

−(3 + 3
ε ) + (1 + 3

ε )t − 1
ε t2

(
10 + 5

ε

)
− (6 + 6

ε )t + (1 + 3
ε )t2 − 1

ε t3 0
0 0 e3−t

⎞⎟⎠χ[0,1).

From the above, one can directly check that

(Sε
3(0))−1 =

⎛⎜⎜⎜⎜⎜⎝
5ε + 10ε2

6 + 17ε + ε2

3ε + 3ε2

6 + 17ε + ε2
0

3ε + 3ε2

6 + 17ε + ε2

3ε + ε2

6 + 17ε + ε2
0

0 0 e−3

⎞⎟⎟⎟⎟⎟⎠ (5.3)

and the 3-periodic matrix-valued function given by (1.8) in the current case is

Kε
3(t) = −1

ε
(Kε

31(t), Kε
32(t), 0), t ∈ [0, 3); Kε

3(t) = Kε
3(t + 3), t ∈ R

+,

where
(Kε

31(t), Kε
32(t))

= −χ[2,3)(1, t − 2)

(
(1 + 1

ε ) − 1
ε (t − 2) −1 + (1 + 1

ε )(t − 2) − 1
ε (t − 2)2

−1 + ε+1
ε (t − 2) − (t−2)2

ε 2 − 2(t − 2) + ε+1
ε (t − 2)2 − (t−2)3

ε

)−1

−χ[1,2)(1, t − 1)

⎛⎝ (1 + 2
ε ) − 1

ε (t − 1) −(2 + 1
ε ) + (1 + 2

ε )(t − 1) − 1
ε (t − 1)2

− 2ε+1
ε + ε+2

ε (t − 1) − (t−1)2

ε
5ε+1

ε − 4ε+2
ε (t − 1) + ε+2

ε (t − 1)2 − (t−1)3

ε

⎞⎠−1

−χ[0,1)(1, t)

(
(1 + 3

ε ) − 1
ε t −(3 + 3

ε ) + (1 + 3
ε )t − 1

ε t2

−(3 + 3
ε ) + (1 + 3

ε )t − 1
ε t2 (10 + 5

ε ) − (6 + 6
ε )t + (1 + 3

ε )t2 − 1
ε t3

)−1

.



PERIODIC STABILIZATION FOR LINEAR TIME-PERIODIC ORDINARY DIFFERENTIAL EQUATIONS 299

By (5.3), we see that
Q̄ = diag{0, 0, e−3}. (5.4)

From (5.2) and (5.4), we see that σ
(
Q̄∼1Q̄P

)
= {0, e−1} ⊂ B. Thus, by making use of Theorem 1.1, we also

deduce that System (5.1) is 1-periodically stabilizable. By (5.3) and (5.4), one can directly check that

‖ (Sε
3(0))−1 − Q̄‖ =

8 + 11ε +
√

40 + 108ε + 117ε2

12 + 34ε + 2ε2
ε. (5.5)

Let ε0 = (9 +
√

321)/20. Then it follows from (5.5) that

‖ (Sε
3(0))−1 − Q̄‖ ≤ 8ε + 11ε2

6 + 17ε + ε2
< 1 for each ε ∈ (0, ε0). (5.6)

Now, by Theorem 1.1 and (5.6), each Kε
3(·), with ε ∈ (0, ε0), is a 3-periodic feedback stabilization law for

system (5.1).
To construct a 1-periodic feedback stabilization law for system (5.1), we can use the method in the Proof of

Theorem 1.1 (see Step 1 in Part 2 in the proof) to get

X =

⎛⎝1 1 0
0 −1 0
0 0 1

⎞⎠. (5.7)

Thus, the solution to equation (1.6) corresponding to the above-mentioned X is

Sε(t) =

⎛⎜⎜⎜⎜⎜⎝

(
2 +

1
ε

)
− 1

ε
t −1 +

(
2 +

1
ε

)
t − 1

ε
t2 0

−1 +
(

2 +
1
ε

)
t − 1

ε
t2 1 − 2t +

(
2 +

1
ε

)
t2 − 1

ε
t3 0

0 0 e−2t

⎞⎟⎟⎟⎟⎟⎠, t ∈ [0, 3].

Then, by a direct calculation, the matrix-valued function given by (1.9) in the current case is

Kε
1(t) =

−1
(1 − t) + ε

(
1 − t, 1, 0

)
, t ∈ [0, 1); Kε

1(t) = Kε
1(t + 1), t ∈ R

+. (5.8)

Let ε0 be given by (3.55) where X is given by (5.7). (We omit the detail computation for this ε0.) Then, from
the Proof of Theorem 1.1 (see Step 3 in Part 2 of the proof), as well as (3.55), each Kε

1(·) with ε ∈ (0, ε0) is a
1-periodic stabilization feedback law for system (5.1).

6. An application of Theorem 1.2

In this section, we will apply Theorem 1.2 to find a way to determine M
(
CBA(·)

)
given by (1.18) and to

design a B̂ ∈ CBA(·) with M
(
CBA(·)

)
columns, for a given T -periodic A(·) in L∞(R+; Rn). Here, CBA(·) is given

by (1.17).

6.1. The case where A(·) is time-varying

The following proposition is a consequence of Theorem 1.2.

Proposition 6.1. Let [A(·), B(·)] be a T -periodic pair with V and P given by (1.10) and (1.4), respectively.
Then, the following statements are equivalent:
(a) the pair

[
A(·), B(·)

]
is T -periodically stabilizable;
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(b) the property (1.14) stands;
(c) it holds that

V + R
n
1 (P) = R

n; (6.1)

(d) it holds that
V2(P) = R

n
2 (P). (6.2)

Here, V2(P), Rn
2 (P) and Rn

1 (P) are given by (1.12).

Proof. First, it follows from Theorem 1.2 that (a) ⇔ (b).
Next, we suppose that (6.1) stands. Since V = V1(P)

⊕
V2(P), we have

(V1(P) + R
n
1 (P)) + V2(P) = R

n. (6.3)

It follows from Lemma 2.9 that V1(P) + Rn
1 (P) = Rn

1 (P) and V2(P) ⊆ Rn
2 (P). Thus (6.2) holds. Since

V = V1(P)
⊕

V2(P), from (6.2), we get (1.14). Hence, (c) ⇒ (d) ⇒ (b).
Finally, it follows from (1.14) that

R
n ⊇ V + R

n
1 (P) ⊇ R

n
2 (P) + R

n
1 (P) = R

n,

which leads to (6.1), i.e., (b) ⇒ (c). This completes the proof. �

For each T -periodic A(·) ∈ L∞(R+; Rn) with P given by (1.4), one can structure an invertible matrix Q such
that

Q−1PQ =
(
P1

P2

)
, (6.4)

where P1 and P2 are real square matrices with σ(P1) in B and σ(P2) in Bc respectively. Write qj for the jth
column vector in Q. Then, by (2.32),

k3 � dim (Rn
1 (P)) = dim (P1) (6.5)

and
R

n
1 (P) = Span{q1, . . . , qk3}. (6.6)

The next Corollary 6.2 is a consequence of Proposition 6.1.

Corollary 6.2. Let [A(·), B(·)] be a T -periodic pair, with V , P, Q and k3 given by (1.10), (1.4), (6.4) and (6.5),
respectively. Then, [A(·), B(·)] is T -periodically stabilizable if and only if(

0(n−k3)×k3 , In−k3

)
Q−1V = R

n−k3 . (6.7)

Proof. By (2.32), we have dimV = k1. Thus, we can write

V = Span{η1, η2, . . . , ηk1} with the basis {η1, η2, . . . , ηk1}. (6.8)

Clearly, there are matrix C1 ∈ Rk3×k1 , C2 ∈ R(n−k3)×k1 such that

(q1, q2, . . . , qk3 , η1, η2, . . . , ηk1) = (q1, q2, . . . , qk3 , qk3+1, . . . , qn)
(

Ik3 C1

C2

)
. (6.9)

From (6.8) and (6.9),(
0(n−k3)×k3 , In−k3

)
Q−1V =

(
0(n−k3)×k3 , In−k3

)
Q−1Span {η1, η2, . . . , ηk1}

= R
((

0(n−k3)×k3 , In−k3

)
Q−1 (η1, η2, . . . , ηk1)

)
= R

((
0(n−k3)×k3 , In−k3

)(C1

C2

))
= R(C2).

(6.10)
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Since {q1, . . . , qn} is a basis of Rn, from Proposition 6.1, (6.6), (6.8), (6.9) and (6.10), we have

Rn
u(P) ⊆ V ⇔ V + (Rn)P = Rn

⇔ Span{q1, q2, . . . , qk3 , η1, η2, . . . , ηk1} = R
n

⇔ R
((

Ik3 C1

C2

))
= Rn ⇔ R(C2) = Rn−k3

⇔
(
0(n−k3)×k3 , In−k3

)
Q−1V = Rn−k3 .

(6.11)

From (6.11) and Proposition 6.1, it follows that [A(·), B(·)] is T-periodically stabilizable if and only if (6.7)
holds. This completes the proof. �

Proposition 6.3. For each T -periodic A(·) in L∞(R+; Rn), the n × n identity matrix In belongs to CBA(·).
Consequently, CBA(·) �= ∅ and M

(
CBA(·)

)
≤ n.

Proof. By Theorem 1.2, it suffices to show that [A(·), In] is null controllable over [0, T ]. It is well-known that
the later is equivalent to the non-singularity of the Gramian

G �
∫ T

0

Φ−1(t)Φ−∗(t)dt,

which is clearly invertible in this case. This completes the proof. �

In what follows, we arbitrarily fix a T -periodic A(·) ∈ L∞(R+; Rn) with P , Q and k3 given by (1.4), (6.4)
and (6.5), respectively. Let

Φ([0, nT ]) � Span{Φ−1(s) | s ∈ [0, nT ]} and k̄ � dim(Φ([0, nT ])). (6.12)

Here, Φ(·) is the fundamental solution associated with A(·). The following proposition provides a way to deter-
mine k̄.

Proposition 6.4. It holds that

dim(Φ([0, nT ])) � k̄ = rank

(∫ nT

0

vec(Φ−1(t))
(
vec(Φ−1(t))

)∗dt

)
, (6.13)

where vec(·) : Rn×n �→ Rn2×1 is defined by

vec(D) = (d11, . . . , dn1, d12, . . . , dn2, . . . , d1n, . . . , dnn)∗ for each D = (dij)n×n.

Proof. Let {Φ1, . . . , Φk̄} satisfy that Span {Φ1, . . . , Φk̄} = Span{Φ−1(s) | s ∈ [0, nT ]}. By the continuity of
Φ−1(·), there is a R

k̄-valued continuous functions c(·) = (c1(·), c2(·), . . . , ck̄(·))∗ such that

vec(Φ−1(s)) =
k̄∑

j=1

cj(s)vec(Φj) =
(
vec(Φ1), . . . , vec(Φk̄)

)
c(s). (6.14)

By (6.14), one can easily check that∫ nT

0

vec(Φ−1(s))
(
vec(Φ−1(s))

)∗ds =
(
vec(Φ1), . . . , vec(Φk̄)

) ∫ nT

0

c(s)c(s)∗ds
(
vec(Φ1), . . . , vec(Φk̄)

)∗
.

This implies

rank

(∫ nT

0

vec(Φ−1(s))
(
vec(Φ−1(s))

)∗ds

)
= rank

(∫ nT

0

c(s)c(s)∗ds

)
≤ k̄.
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The rest is to show the non-singularity of the k̄× k̄ matrix

(∫ nT

0

c(s)c(s)∗ds

)
. In fact, when ξ ∈ Rk̄ is such

that ξ∗
(∫ nT

0

c(s)c∗(s)ds

)
ξ = 0, we have

c(s)∗ξ ≡ 0 for all s ∈ [0, nT ]. (6.15)

On the other hand, because of (6.12), there are s1, . . . , sk̄ ∈ [0, nT ] such that(
vec(Φ−1(s1)), . . . , vec(Φ−1(sk̄))

)
=
(
vec(Φ1), . . . , vec(Φk̄)

)
C, (6.16)

where C is an invertible k̄ × k̄ real matrix, and such that

vec(Φ−1(s)) =
(
vec(Φ−1(s1)), . . . , vec(Φ−1(sk̄))

)
c̃(s) for each s ∈ [0, nT ], (6.17)

where c̃(s) = (c̃1(s), . . . , c̃k̄(s))∗, with c̃i(·) a function from [0, nT ] to R. It follows from (6.14), (6.16) and (6.17)
that

c(s) = Cc̃(s) for each s ∈ [0, nT ]. (6.18)

From (6.17), we also have
c̃(sj) = ej for all j = 1, . . . , k̄, (6.19)

where {e1, . . . , ek̄} is the standard basis of Rk̄. finally, it follows from (6.19), (6.18) and (6.15) that

C∗ξ = Ik̄C∗ξ =

⎛⎝ c̃(s1)∗
. . .

c̃(sk̄)∗

⎞⎠C∗ξ =

⎛⎝ c̃(s1)∗C∗
. . .

c̃(sk̄)∗C∗

⎞⎠ ξ =

⎛⎝ c(s1)∗
. . .

c(sk̄)∗

⎞⎠ ξ = 0.

which together with the non-singularity of C, implies that ξ = 0. This completes the proof. �

Definition 6.5. A family of matrices {Φi}k̂
i=1 in Rn×n, with k̂ ≥ k̄, is called a family generating Φ([0, nT ]) if

Span
{
Φ1, . . . , Φk̂

}
= Span{Φ−1(s) | s ∈ [0, nT ]}. (6.20)

In general, a family generating Φ([0, nT ]) is not necessarily linearly independent. When k̂ = k̄, it is a linearly
independent family.

Definition 6.6. Let {Φi}k̂
i=1 be a family generating Φ([0, nT ]). A family of matrices

{
Āi

}k̂

i=1
is called the

family affiliated to {Φi}k̂
i=1 if

Āi =
[(

0(n−k3)×k3 , In−k3

)
Q−1Φi

]
∈ R

(n−k3)×n for each i = 1, . . . , k̂, (6.21)

where Q is given by (6.4).

Lemma 6.7. Let B ∈ R
n×m. Let {Φi}k̂

i=1 be a family generating Φ([0, nT ]). Then

V[A(·),B] = Span
{
ΦiBv

∣∣ 1 ≤ i ≤ k̂, v ∈ R
m
}

. (6.22)
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Proof. By (6.20), it suffices to show

V[A(·),B] = Span
{
Φ−1(s)Bv

∣∣ s ∈ [0, nT ], v ∈ R
m
}

. (6.23)

From (2.1) and (2.3) in Lemma 2.1,

V[A(·),B] =

{∫ nT

0

Φ−1(t)Bu(t)dt
∣∣ u(·) ∈ L2(0, nT ; Rm)

}
. (6.24)

For each s ∈ [0, nT ) and v ∈ Rm, we take

xε Δ=
1
ε

∫ nT

0

Φ−1(t)Bχ[s,s+ε](t)vdt,

where ε ∈ (0, nT − s). By (6.24), xε ∈ V[A(·),B]. Sending ε → 0, we get

Φ−1(s)Bv = lim
ε→0

xε ∈ V[A(·),B],

since V[A(·),B] is closed. Similarly, we can prove that

Φ−1(nT )Bv ∈ V[A(·),B] for each v ∈ R
m.

Hence, the space on the right hand side of (6.23) is a subspace of V[A(·),B].
Conversely, for each u(·) ∈ L2(0, nT ; Rm), there is a sequence of step functions on [0, nT ], denoted by {uk(·)},

such that uk(·) converges to u(·) in L2(0, nT ; Rm). One can easily check that each
∫ nT

0

Φ−1(t)Buk(t)dt belongs

to the space on the right hand side of (6.23). Thus,∫ nT

0

Φ−1(t)Bu(t)dt = lim
k→∞

∫ nT

0

Φ−1(t)Buk(t)dt

is in the space on the right side of (6.23), which, along with (6.24), indicates that V[A(·),B] is a subset of the
space on the right side of (6.23). This completes the proof. �

Proposition 6.8. Let {Φi}k̂
i=1 be a family generating Φ([0, nT ]), with its affiliated family

{
Āi

}k̂

i=1
(see (6.21)).

Then, it holds that

B ∈ CBA(·) ⇔
k̂∑

i=1

ĀiR(B) = R
n−k3 . (6.25)

Proof. From (1.17) and Corollary 6.2, we see that B ∈ CBA(·) ⇔ (6.7). By Lemma 6.7, (6.7) is equivalent to(
0(n−k3)×k3 , In−k3

)
Q−1Span{ΦiBv | 1 ≤ i ≤ k̂, v ∈ R

m} = R
n−k3 . (6.26)

By (6.21), the left side of (6.26) is the same as the space Span{AiBv | 1 ≤ i ≤ k̂, v ∈ Rm}. Meanwhile, it is
clear that

k̂∑
i=1

ĀiR(B) = Span{ĀiBv | 1 ≤ i ≤ k̂, v ∈ R
n}.

Hence, it holds that

k̂∑
i=1

ĀiR(B) =
(
0(n−k3)×k3 , In−k3

)
Q−1Span{ΦiBv | 1 ≤ i ≤ k̂, v ∈ R

m}.

Thus, (6.26) is equivalent to
k̂∑

i=1

ĀiR(B) = Rn−k3 . This completes the proof. �

Next, we introduce the concept of symbol matrices.
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Definition 6.9. Let α be a l-dimensional vector variable, i.e., α = (x1, . . . , xl)∗, where x1, . . . , xl are variables
in R. A symbol matrix with respect to α is a matrix whose elements are linear functions of α.

By the definition, when α is a l-dimensional vector variable, a n′ ×m′ symbol matrix w.r.t. α can be expressed
as:

A(α) = (A(α)ij)
i=n′,j=m′

i=1,j=1 , with A(α)ij =< −→aij , α >Rl for some −→aij ∈ R
l.

Definition 6.10. Let α be a l-dimensional vector variable and A(α) be a n′ × m′ symbol matrix w.r.t. α. A
non-negative integer j is called the rank of A(α), if the following conditions hold
(i) any (j + 1)-order sub-determinant of A(α) is identically zero;
(ii) there is an ᾱ ∈ Rl such that some j-order sub-determinant of the matrix A(ᾱ) is not zero.
The rank of A(α) is denoted by Rank(A(α)).

When α = (x1, . . . , xn)∗ is a n-dimensional vector variable, and D = (dlk) ∈ Rm′×n with m′ ∈ N, we define

Dα =

(
n∑

k=1

d1,kxk, . . . ,
n∑

k=1

dm′
1,kxk

)∗
. (6.27)

In what follows, we give n-dimensional vector variables α1, α2, . . . , αn, with αi = (xi
1, . . . , x

i
n)∗ for i = 1, . . . , n.

We define
(α1, α2, . . . , αj) =

(
x1

1, . . . , x
1
n, x2

1, . . . , x
2
n . . . , xj

1, . . . , x
j
n

)∗
for each 1 ≤ j ≤ n. (6.28)

Clearly, it is a jn-dimensional vector variable.

Definition 6.11. Let {Φi}k̂
i=1 be a family generating Φ([0, nT ]) with the affiliated family

{
Āi

}k̂

i=1
.

(i) A family {Aj}n
j=1 of symbol matrices is called the symbol family affiliated to {Φi}k̂

i=1 if

Aj � Aj ((α1, α2, . . . , αj)) = (Ā1α1, . . . , Āk̂α1, . . . , Ā1αj , . . . , Āk̂αj), 1 ≤ j ≤ n, (6.29)

where (α1, α2, . . . , αj) is given by (6.28).

(ii) When {Aj}n
j=1 is the symbol family affiliated to {Φi}k̂

i=1, Aj is called the jth symbol matrix affiliated to

{Φi}k̂
i=1.

Clearly, each Aj is a (n − k3) × (n × k̂) symbol matrix w.r.t. the vector variable (α1, α2, . . . , αj).

Definition 6.12. Let {Φi}k̂
i=1 be a family generating Φ([0, nT ]), with the affiliated symbol family {Aj}n

j=1.

The symbol subfamily affiliated to {Φi}k̂
i=1 is defined by

G � {Aj | Rank (Aj) = n − k3, 1 ≤ j ≤ n} . (6.30)

Write
D (G) = min {1 ≤ j ≤ n | Aj ∈ G} . (6.31)

Remark 6.13. We must point out that G �= ∅ and hence, D(G) is well defined. In fact, let {Φi}k̂
i=1 be a family

generating Φ([0, nT ]) (see Def. 6.5). Let
{
Āi

}k̂

i=1
and An be accordingly the affiliated family and the nth symbol

matrix affiliated to {Φi}k̂
i=1 (see Defs. 6.6 and 6.11, respectively). We claim that An ∈ G. By Proposition 6.3,
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we have that In ∈ CBA(·). Then, by (6.25) with B = In, we see that
k̂∑

i=1

R(Āi) = R
n−k3 . Meanwhile, from (6.29)

where j = n and each αi, i = 1, . . . , n, takes the value ei, it follows that

R(An(e1, e2, . . . , en)) =
k̂∑

i=1

R(Āi).

Hence, Rank (An(e1, e2, . . . , en)) = n − k3. Since An(α1, α2, . . . , αn) is a (n − k3) × (n × k̂) symbol matrix, we
see from Definition 6.10 that Rank (An) = n − k3. Then, by (6.30), An ∈ G.

The main result of this section is the following theorem.

Theorem 6.14. Let {Φi}k̂
i=1 be a family generating Φ([0, nT ]), with

{
Āi

}k̂

i=1
, {Aj}n

j=1 and G defined
by (6.21), (6.29) and (6.30) respectively. Then, M

(
CBA(·)

)
= D(G). Moreover, when j̄ = D(G), any column

vectors β1, . . . , βj̄ ∈ R
n, with

Rank(Ā1β1, . . . , Āk̂β1, . . . , Ā1βj̄ , . . . , Āk̂βj̄) = n − k3, (6.32)

verifies
B �

(
β1, . . . , βj̄

)
∈ CBA(·). (6.33)

Proof. Let j̄ = D(G). By Definition 6.10, there are vectors β1, . . . , βj̄ in Rn such that

Rank(Aj̄) = Rank
((

Ā1β1, . . . , Āk̂β1, Ā1β2, . . . , Āk̂β2, . . . , Ā1βj̄ , . . . , Āk̂βj̄

))
= n − k3.

Write B =
(
β1, . . . , βj̄

)
. Then,

R
n−k3 = R(Aj̄) =

k̂∑
i=1

ĀiR(B).

By Proposition 6.8, this yields that B ∈ CBA(·). Hence,

D(G) = j̄ ≥ M
(
CBA(·)

)
.

Conversely, write j0 � M
(
CBA(·)

)
. Let B̂ ∈ CBA(·) with j0 columns. Write B̂ = (b1, . . . , bj0), where bi is the

ith column of B̂. Then, by making use of Proposition 6.8 again, we find

Span
{
Ā1b1, . . . , Āk̂b1, A1b2, . . . , Āk̂b2, . . . , Ā1bj0 , . . . , Āk̂bj0

}
= R

n−k3 .

This, along with Definition 6.10 and (6.29), yields

RankAj0((α1, . . . , αj0)) = n − k3.

From this, (6.30) and (6.31), we see that

M
(
CBA(·)

)
� j0 ≥ D(GA(·)).

This completes the proof. �
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6.2. The special case where A(·) is time-invariant

Throughout this subsection, we arbitrarily fix a matrix A ∈ Rn×n. We will apply Theorem 6.14 to this special
case to obtain more precise information on the number M (CBA). Write

σ(A) = {λ1, . . . , λr, μ1, μ̄1, . . . , μs, μ̄s}.

Here, λ1, . . . , λr are distinct real eigenvalues of A and μ1, μ̄1, . . . , μs, μ̄s are distinct non-real eigenvalues of
A. Let mi, i = 1, . . . , r, and m̂j , j = 1, . . . , s be accordingly the geometric multiplicities of λi and μj , i.e.,
mi = dim Ker(A−λiI) and m̂j = dim Ker(Ac −μj) with Ac the complexification of A. Then, mi is the number
of the Jordan blocks associated to λi, and m̂j is the number of the real Jordan blocks associated to (μj , μ̄j).
The main result in this subsection is as follows:

Theorem 6.15. Let A ∈ Rn×n. Then

M (CBA) = max
λ∈σ(A)\C−

m(λ), (6.34)

where m(λ) is the geometric multiplicity of the eigenvalue λ.

Before proving this theorem, we introduce some preliminaries. First of all, by the classical matrix theory (see,
for instance, Thm. 1 on p. 67 in [10]), there is a non-singular matrix P ∈ Rn×n such that

P−1AP
Δ= Λ

= diag
{
Jλ1

1 , . . . , Jλ1
m1

, . . . , Jλr
1 , . . . , Jλr

mr
, Jμ1

1 , . . . , Jμ1
m̂1

, . . . , Jμs

1 , . . . , Jμs

m̂s

}
,

(6.35)

where Jλi

l =

⎛⎜⎜⎜⎜⎝
λi 1

. . . . . .
. . . 1

λi

⎞⎟⎟⎟⎟⎠, Jμi

l =

⎛⎜⎜⎜⎜⎝
Ci I2

. . . . . .
. . . I2

Ci

⎞⎟⎟⎟⎟⎠. Here and in what follows, Ci =
(

Re(μi) Im(μi)
−Im(μi) Re(μi)

)
,

i = 1, . . . , m̄. Write

ni,l � dimJλi

l , 1 ≤ i ≤ r, 1 ≤ l ≤ mi; 2n̂i,l = dimJμi

l , 1 ≤ i ≤ s, 1 ≤ l ≤ m̂i. (6.36)

Let
ê(k) � (0, . . . , 0, 1)∗ ∈ R

k for each k ∈ N. (6.37)

Lemma 6.16. Let Ĵ =

⎛⎜⎜⎜⎜⎝
C I2

. . . . . .
. . . I2

C

⎞⎟⎟⎟⎟⎠ be a Jordan block with 2k order, where C =
(

a b
−b a

)
, with a, b ∈ R,

b �= 0. Let ê(2k) be defined by (6.37). Then

Span
{
ê(2k), Ĵ ê(2k), . . . , Ĵ2k−1ê(2k)

}
= R

2k. (6.38)

Proof. Write {e1, . . . , e2k} for the standard basis of R
2k. Define a 2k × 2k orthogonal matrix E by

E∗ = (e1 e3 . . . e2k−1 e2 e4 . . . e2k).
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Then, one can directly check what follows:

J̃
Δ= E∗ĴE =

(
Ak bIk

−bIk Ak

)
, with Ak =

⎛⎜⎜⎝
a 1

. . . . . .
a 1

a

⎞⎟⎟⎠ a k × k matrix,

and
ê(2k) = Eê(2k).

Let Î2k =

(
1
2Ik

1
2Ik

i
2Ik − i

2Ik

)
. Then,

J̃ = Î2k

(
Jk

J̄k

)(
Î2k

)−1

, with Jk =

⎛⎜⎜⎜⎜⎝
a + ib 1

. . . . . .
. . . 1

a + ib

⎞⎟⎟⎟⎟⎠ a k × k matrix.

Thus, one can directly check that∣∣∣ê(2k), Ĵ ê(2k), . . . , Ĵ2k−1ê(2k)
∣∣∣ = |E|

∣∣∣Î2k

∣∣∣ ∣∣∣∣( ê(k)
ê(k)

)
,

(
Jkê(k)
J̄kê(k)

)
, . . . ,

(
J2k−1

k ê(k)
J̄2k−1

k ê(k)

)∣∣∣∣ ,
where |S| denotes to the determinant of a square matrix S. From this, (6.38) will follow from non-singularity
of the matrix:

H =
((

ê(k)
ê(k)

)
,

(
Jkê(k)
J̄kê(k)

)
, . . . ,

(
J2k−1

k ê(k)
J̄2k−1

k ê(k)

))
.

To prove that H is invertible, we let (a0, a1, . . . , a2k−1)∗ ∈ C2k verify

H(a0, a1, . . . , a2k−1)∗ = 02k×1. (6.39)

Define a polynomial
f(λ) = a2k−1λ

2k−1 + a2k−2λ
2k−2 + . . . + a1λ + a0.

From (6.39),
f(Jk)ê(k) = f(J̄k)ê(k) = 0. (6.40)

Hence, there are polynomials g1, g2, , h1, h2 (with complex coefficients) such that

f(λ) = g1(λ)(λ − a − ib)k + h1(λ), f(λ) = g2(λ)(λ − a + ib)k + h2(λ),

where ∂(h1) < k, ∂(h2) < k (Here, ∂(hi) denotes the degree of hi). Because

(Jk − (a + ib)Ik)k = 0 =
(
J̄k − (a − ib)Ik

)k
,

it follows from (6.40) that
h1(Jk)ê(k) = 0 and h2(J̄k)ê(k) = 0.

This, along with the invertibility of
(
ê(k), Jkê(k), . . . , Jk−1

k ê(k)
)

and
(
ê(k), J̄kê(k), . . . , J̄k−1

k ê(k)
)
, implies that

h1(λ) ≡ 0 and h2(λ) ≡ 0.

Thus, f is a multiple of (λ − a − ib)k(λ − a − ib)k. This, along with ∂(f) < 2k, indicates f(λ) ≡ 0. Therefore,
(a0, a1, . . . , a2k−1)∗ = 0 and matrix H is non-singular. �
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Proposition 6.17. Let A1 ∈ Rp×p, A2 ∈ Rq×q, B1 ∈ Rp×r, B2 ∈ Rq×r. Suppose that controlled systems

ẋ(t) = A1x(t) + B1u(t),

and
ẏ(t) = A2y(t) + B2u(t),

are controllable respectively. If

σ(A1)
⋂

σ(A2) = ∅, (6.41)

then the system
d
dt

(
x
y

)
(t) =

(
A1

A2

)(
x
y

)
(t) +

(
B1

B2

)
u(t), (6.42)

is also controllable.

Proof. Let (x0, y0) ∈ Rp × Rq verify

(B∗
1 , B∗

2)
(

eA∗
1·

eA∗
2 ·

)(
x0

y0

)
= 0. (6.43)

We aim to show that (x0, y0) = 0. When this is done, the controllability of (6.42) follows from the classical
O.D.E control theory (see, for instance, Thm. 1.7 on p. 112 in [16]). Clearly, (6.43) is equivalent to

B∗
1eA∗

1tx0 + B∗
2eA∗

2ty0 = 0 for all t ≥ 0. (6.44)

By differentiating (6.44) times, we obtain

B∗
1eA∗

1tAk
1x0 + B∗

2eA∗
2tAk

2y0 = 0 k = 1, 2, . . . (6.45)

Let f1(·), f2(·) be accordingly the characteristic polynomials of A1 and A2. Because of (6.41), f1(·), f2(·) are
coprime. Thus there are polynomials g1(·) and g2(·) such that

g1(·)f1(·) + g2(·)f2(·) ≡ 1. (6.46)

It follows from (6.45) that

B∗
1eA∗

1t(g1 × f1)(A1)x0 + B∗
2eA∗

2t(g1 × f1)(A2)y0 = 0. (6.47)

On the other hand, by the Hamilton−Cayley Theorem,

f1(A1) = 0, f2(A2) = 0. (6.48)

Hence, from (6.46), (6.48), (6.47) and (6.48)

B∗
2eA∗

2ty0 = B∗
2eA∗

2tIy0 = B∗
2eA∗

2t(g1 × f1 + g2 × f2)(A2)y0

= B∗
2eA∗

2t(g1 × f1)(A2)y0 = −B∗
1eA∗

1t(g1 × f1)(A1)x0 = 0.

Since [A2, B2] is controllable, the above implies y0 = 0. Likewise, x0 = 0. This completes the proof. �
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Since the the Kalman rank condition for [A, B] is equivalent to the controllability of [A, B], we have following
consequence of Proposition 6.17:

Corollary 6.18. When

Rank(B1, A1B1, . . . , A
p−1
1 B1) = p, Rank(B2, A2B2, . . . , A

q−1
2 B2) = q,

and (6.41) stands,

Rank

((
B1

B2

)
,

(
A1

A2

)(
B1

B2

)
, . . . ,

(
A1

A2

)p+q−1 (
B1

B2

))
= p + q. (6.49)

Proof of Theorem 6.15. First we prove (6.34) for the case where σ(A)
⋂

C− = ∅. In this case, k3 = 0 and Q = I,
where k3 and Q are given by (6.5) and (6.4) respectively. Moreover, k̄ (defined by (6.12)) is the degree of the
minimal polynomial for matrix A. (This will not be used in our proof.) By the Hamilton−Cayley Theorem,

Span
{
e−At, t ∈ [0, nT ]

}
= Span

{
I, A, A2, . . . , An−1

}
.

Hence, {I, A, . . . , An−1} is a family generating Φ([0, nT ]) with Φ(t) = e−tA (see Def. 6.5). By Definitions 6.6, 6.11,
the family and the symbol family affiliated to

{
I, A, A2, . . . , An−1

}
are accordingly {Ai−1}n

i=1 and {Aj}n
j=1 with

Aj � Aj((α1, . . . , aj)) = (α1, . . . , A
n−1α1, . . . , αj , . . . , A

n−1αj), 1 ≤ j ≤ n. (6.50)

Let
Âj � Âj((α1, . . . , αj)) � (α1, . . . , Λ

n−1α1, αj , . . . , Λ
n−1αj), 1 ≤ j ≤ n, (6.51)

where Λ is given by (6.35). Clearly, Âj is a n × nj symbol matrix w.r.t. (α1, . . . , αj), and

Rank
(
Aj((a1, . . . , aj))

)
= Rank

(
Âj(α1, . . . , aj))

)
. (6.52)

Write
m̄ = max{m1, . . . , mr, m̂1, . . . , m̂s}. (6.53)

By Theorem 6.14 and Definition 6.12 (where k3 = 0), the statement (6.34) is equivalent to the following:

Rank
(
Âj((α1, . . . , αj))

)
< n, when j < m̄, (6.54)

and
Rank

(
Âm̄((α1, . . . , αm̄))

)
= n. (6.55)

Step 1. The proof of (6.54)
Suppose that j < m̄. By Definition 6.10 and (6.52), to prove (6.54), it suffices to show that each n-order

sub-determinant of Âj((α1, . . . , aj)) is 0. Seeking a contradiction, we suppose that it did not stand. Then,
there would be vectors ᾱ1, ᾱ2, . . . , ᾱj ∈ Rn such that one of n-order sub-determinant of Âj

(
(α̂1, α̂2, . . . , α̂j)

)
is not zero. Since the matrix Âj

(
(ᾱ1, ᾱ2, . . . , ᾱj)

)
has exactly n rows, any group of distinct row vectors in

Âj

(
(ᾱ1, ᾱ2, . . . , ᾱj)

)
is linearly independent.

Without loss of generality, we can assume that either m̄ = m1 or m̄ = m̂1. We will deduce a contradiction
for each case.
The first case where m̄ = m1: write

nl �
l∑

i=1

n1,i, l = 1, 2, . . . , m̄, (6.56)
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where n1,i is defined by (6.36). Let

α̂i � (en1 , . . . , enm̄)∗ᾱi ∈ R
m̄, i = 1, . . . , j, (6.57)

where and throughout the proof, {e1, . . . , en} stands for the standard basis of Rn with each ei a column vector.
Notice that if we write ᾱi = (xi

1, x
i
2, . . . , x

i
n)∗, with xi

l ∈ R, then α̂i = (xi
n1

, xi
n2

, . . . , xi
nm̄

)∗. From (6.35)
and (6.57), one has that when 1 ≤ i ≤ j and k ∈ N,

(en1 , en2 , . . . , enm̄)∗ Λkᾱi =

⎛⎜⎝ e∗n1

e∗n2

. . .
e∗nm̄

⎞⎟⎠Λkᾱi = λk
1

⎛⎜⎝ e∗n1

e∗n2

. . .
e∗nm̄

⎞⎟⎠ ᾱi = λk
1α̂i.

This, along with (6.51), indicates

(en1 , en2 , . . . , enm̄)∗ Âj(ᾱ1, ᾱ2, . . . , ᾱj)
= (en1 , en2 , . . . , enm̄)∗ (ᾱ1, . . . , Λ

n−1ᾱ1, ᾱ2, . . . , Λ
n−1ᾱ2, . . . , ᾱj , . . . , Λ

n−1ᾱj)
= (α̂1, λ1α̂1, . . . , λ

n−1
1 α̂1, α̂2, λ1α̂2, . . . , λ

n−1
1 α̂2, . . . , α̂j , λ1α̂j , . . . , λ

n−1
1 α̂j).

(6.58)

Clearly, any maximal independent group of column vectors in the matrix on the right side of (6.58) has at most
j vectors. Thus, the rank of the matrix on the right side of (6.58) is less than or equals to j(< m̄).

On the other hand, the matrix on the left side of (6.58) consists of m̄ row vectors which are exactly n1th,
n2th, . . . and nm̄th rows in Âj(ᾱ1, ᾱ2, . . . , ᾱj). Since the rank of the matrix on the right side of (6.58) is less
than m̄, these row vectors are linearly dependent, which contradicts with the fact that any group of distinct
row vectors in Âj

(
(ᾱ1, ᾱ2, . . . , ᾱj)

)
is linearly independent.

The second case where m̄ = m̂1. Let

ñ = dim
(
diag

{
Jλ1

1 , . . . , Jλ1
m1

, . . . , Jλr
1 , . . . , Jλr

mr

})
(6.59)

and

n̂l = ñ +
l∑

i=1

2n̂1,i, l = 1, 2, . . . , m̄, (6.60)

where n̂1,i is defined by (6.36). By (6.35), one can easily check that(
e∗n̂l−1

e∗n̂l

)
Λk = Ck

1

(
e∗n̂l−1

e∗n̂l

)
, l = 1, . . . , m̄, k ∈ N.

For each ᾱi, with i ∈ {1, . . . , j}, we define a vector

α̃i � (en̂1−1 en̂1 en̂2−1 en̂2 . . . en̂m̄−1 en̂m̄)∗ᾱi ∈ R
2m̄. (6.61)

Notice that, if we denote ᾱi = (xi
1, . . . , x

i
n)∗, with each xi

k ∈ R, then

α̃i = (xi
n̂1−1, x

i
n̂1

, . . . , xi
n̂m̄−1, x

i
n̂m̄

) � (α̃∗
i1, α̃

∗
i2, . . . , α̃

∗
im̄), i = 1, . . . , j, (6.62)

where α̃∗
ik = (xi

n̂k−1, x
i
n̂k

)∗, k = 1, . . . , m̄. By (6.35), (6.51), (6.61) and (6.62), one can directly verify

(en̂1−1 en̂1 en̂2−1 en̂2 , . . . , en̂m̄−1 en̂m̄)∗ Âj(ᾱ1, ᾱ2, . . . , ᾱj)

=

⎛⎜⎜⎝
α̃11 C1α̃11 . . . Cn−1

1 α̃11 . . . α̃j1 C1α̃j1 . . . Cn−1
1 α̃j1

α̃12 C1α̃12 . . . Cn−1
1 α̃12 . . . α̃j2 C1α̃j2 . . . Cn−1

1 α̃j2

. . . . . . . . . . . . . . . . . . . . . . . . . . .
α̃1m̄ C1α̃1m̄ . . . Cn−1

1 α̃1m̄ . . . α̃jm̄ C1α̃jm̄ . . . Cn−1
1 α̃jm̄

⎞⎟⎟⎠, (6.63)
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Because C1 is a 2×2 matrix, by the Hamilton Cayley Theorem, each Ck
1 , with k ∈ N, is a linear combination

of I2 and C1. Thus, any maximal independent group of column vectors in the matrix on the right side of (6.63)
has at most 2j vectors. Therefore, the rank of the matrix on the right side of (6.63) is less than or equals to
2j(< 2m̄). On the other hand, the matrix on the left side of (6.63) consists of 2m̄ row vectors which are exactly
(n̂1 − 1)th, n̂1th, . . . , (n̂m̄ − 1)th and n̂m̄th rows of Âj(ᾱ1, ᾱ2, . . . , ᾱj). Since the rank of the matrix on the right
side of (6.63) is less than 2m̄), these 2m̄ row vectors are linearly dependent, which contradicts to the fact that
any group of distinct row vectors in Âj

(
(ᾱ1, ᾱ2, . . . , ᾱj)

)
is linearly independent.

In summary, we conclude that (6.54) stands.

Step 2. The proof of (6.55)

By Definition 6.10, it suffices to structure vectors ξ1, . . . , ξm̄ in Rn such that

Rank
((

Âm̄((ξ1, ξ2, . . . , ξm̄))
))

= n. (6.64)

For this purpose, we first let, for each k ∈ N, ê(k) be given by (6.37). Then, we construct, for each k ∈ {1, . . . , m̄},
a vector ξk in Rn by setting

ξ∗k =
(
(fk

1,1)
∗ . . . (fk

1,m1
)∗ . . . (fk

r,1)
∗ . . . (f∗

r,mr
)∗ (gk

1,1)
∗ . . . (gk

1,m̂1
)∗ . . . (gk

s,1)
k . . . (gk

s,m̂s
)∗
)
, (6.65)

where fk
i,l ∈ Rni,l , with 1 ≤ i ≤ r and 1 ≤ l ≤ mi, is defined in the following manner:

when l = k, fk
i,l = ê(nni,l

); when l �= k, fk
i,l = 0ni,l×1,

and gk
i,lR

2n̂i,l with 1 ≤ i ≤ s and 1 ≤ l ≤ m̂i, is defined in the following manner:

when l = k, gk
i,l = ê(2n̂ni,l

); when l �= k, gk
i,l = 02ni,l×1.

Two observations (follow accordingly from (6.35) and Lemma 6.16) are in order:

Span
{
ê(ni,l), Jλi

l ê(ni,l), . . . , (Jλi

l )ni,l−1ê(ni,l)
}

= R
ni,l , when 1 ≤ i ≤ r, 1 ≤ l ≤ mi; (6.66)

Span
{
ê(2n̂i,l), J

μi

l ê(2n̂i,l), . . . , (J
μi

l )2n̂i,l−1ê(2n̂i,l)
}

= R
2n̂i,l , when 1 ≤ s, 1 ≤ l ≤ m̂i. (6.67)

Write Nk, with 1 ≤ k ≤ m̄, for the set of all such k′ ∈ {1, 2, . . . , n} that the k′th row of Λ contains one
of rows in one of blocks Jλ1

k , . . . , Jλr

k , Ĵμ1
k , . . . , Ĵμs

k (where Jλi

k = ∅ or Ĵ
μj

k = ∅ if mi < k or m̂j < k).
From (6.35), (6.65), (6.66), (6.67) and Corollary 6.18, we obtain

Span
{
ξk, Λξk, . . . , Λn−1ξk

}
= Span{el, l ∈ Nk}. (6.68)

From the definition of Nk, One has

m̄⋃
k=1

Nk = {1, 2, . . . , n} and Ni

⋂
Nj = ∅, when i �= j. (6.69)

Finally, by the definition of Âm̄((α1, α2, . . . , αm̄)) (see (6.51)), (6.68) and (6.69), we obtain (6.64). Thus we
prove the case when σ(A) ⊂ C−.

The remaining is to prove the case σ(A)
⋂

C− �= ∅. In this case, we can apply Lemma 2.7 to decouple the
system x′ = Ax into two subsystems: k3-order x′

1 = A1x1 and (n− k3)-order x′
2 = A2x2, with σ(A1) ⊂ C

− and
σ(A2) ∩ C− = ∅. If (n − k3) × k-order matrix B2 ∈ CBA2 , then matrix(

0k3×k

B2

)
∈ CBA,
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which leads to
M (CBA) ≤ M (CBA2). (6.70)

On the other hand, notice P =
(

eA1T

eA2T

)
. Select Q =

(
Ik3

In−k3

)
in equation (6.4). Let

Φi =
(

Ai−1
1

Ai−1
2

)
, i ∈ {1, 2, . . . , n},

a family generating Φ([0, nT ]) in (6.20). Thus the family affiliated to {Φi}n
i=1 is

Āi =
(
0(n−k3)×k3 , Ai−1

2

)
, i ∈ {1, 2, . . . , n}.

For any B ∈ CBA, assume k the column number of B. Let

B2 =
(
0(n−k3)×k3 , In−k3

)
B ∈ R

(n−k3)×k.

By Proposition 6.8, one can directly check that

B ∈ CBA ⇔
n∑

i=1

ĀiR(B) = R
n−k3

⇔
n∑

i=1

Ai−1
2

(
0(n−k3)×k3 , In−k3

)
R(B) = Rn−k3

⇔
n∑

i=1

Ai−1
2 R(B2) = Rn−k3

⇔ B2 ∈ CBA2 ,

which leads to M (CBA2) ≤ M (CBA). That together with (6.70) implies that

M (CBA) = M (CBA2).

Based the result of the first case, we derived the desired result (6.34).

Remark 6.19. In the proof above, we also provide a way to structure a matrix B with the column number
M (CBA). More precisely, B = P (ξ1, ξ2, . . . , ξm̄), where P is given by (6.35) and ξk, with 1 ≤ k ≤ m̄, is given
by (6.65).

6.3. The case when both A(·) and B(·) are time-varying

Let A(·) ∈ L∞(R+; Rn) be T -periodic. Define

CB1
A(·) =

{
B(·) ∈ L∞(R+; Rn×m)

∣∣ m ∈ N, [A(·), B(·)] is T-periodically stabilizable
}

. (6.71)

For each B(·) ∈ CB1
A(·), denote by N(B(·)) the number of columns of B(·). Set

N
(
CB1

A(·)
)

� min
{
N(B(·))

∣∣ B(·) ∈ CB1
A(·)
}

. (6.72)

The purpose of this subsection is to show, with the aid of Theorem 1.2, the following theorem.

Theorem 6.20. It holds that M
(
CBA(·)

)
= 1. Namely, there is a T -periodic function B(·) in L∞(R+; Rn×1)

such that [A(·), B(·)] is periodically stabilizable.

To prove the above theorem, we need following result on the Floquet’s theory (see [8, 18]).



PERIODIC STABILIZATION FOR LINEAR TIME-PERIODIC ORDINARY DIFFERENTIAL EQUATIONS 313

Lemma 6.21. Let A(·) be a T−periodic A(·) n × n real matrix-valued function. Then, there is a T -periodic
transform T (·) ∈ C1(R; Rn×n), with non-singular T (t) for each t, such that the time-varying system ẋ(t) =
A(t)x(t) can be transform into an autonomous system with respect to z by the transformation x = T (t)z.

The above transformation T (·) is called the Lyapunov transform (associated with A(·)).

Proof of Theorem 6.20. Let T (·) be the Lyapunov transform given by Lemma 6.21. Then,

T −1(t)
(
A(t)T (t) − Ṫ (t)

)
≡ Â, t ≥ 0 (6.73)

for some Â ∈ Rn×n. Let {e1, . . . , en} be the standard basis of Rn. Write

bk = e(kT/n)Âek+1, k = 0, . . . , n − 1. (6.74)

Define B̂(·) by

B̂(t) =
n−1∑
k=0

χ[kT/n,(k+1)T/n)bk for t ∈ [0, T ); B̂(t) = B̂(t − T ) for t ≥ T. (6.75)

Write B(·) = T (·)B̂(·). Clearly, B(·) is a T -periodic function in L∞(R+; Rn×1). According to Lemma 6.21 and
equation (6.73), the following two controlled systems are equivalent:

ẋ(t) = A(t)x(t) + B(t)u(t), t ≥ 0. (6.76)

and
ż(t) = Âz(t) + B̂(t)u(t), t ≥ 0. (6.77)

For each t0 ≥ 0, z0 ∈ R
n and each control u, we denote by z(·; t0, z0, u) the solution of (6.77) with the initial

condition z(t0) = z0.
We claim that [A(·), B(·)] is periodically stabilizable. By Theorem 1.2 and the equivalence of systems (6.76)

and (6.77), it suffices to show the null controllability of system (6.77) over [0, T ]. For this purpose, we write
zk(·; zk, u) for the solution to the system:

ż(t) = Âz(t) + bku(t), t ∈ [kT/n, (k + 1)T/n], z(kT/n) = zk. (6.78)

By Lemma 3.3.2 in [20] (see p. 91 in [20]), Span{bk, Âbk, . . . , Ân−1bk} is a controllable subspace of (6.78). In
particular, for each k ∈ {0, 1, 2, . . . , n − 1}, there is a control uk ∈ L2(R+; R1) such that

zk((k + 1)T/n; bk, uk) = 0. (6.79)

From definitions of z(·; t0, z0, u) and zk(·; zk, u), (6.77), (6.78), (6.74), (6.75) and (6.79), it follows that

z(T ; 0, ek+1, χ[kT/n,(k+1)T/n)uk)
= z(T ; kT/n, bk, χ[kT/n,(k+1)T/n)uk))
= z(T ; (k + 1)T/n, 0, χ[kT/n,(k+1)T/n)uk)) = 0,

for all k ∈ {0, 1, 2, . . . , n − 1}. This leads to the null controllability of system (6.77) and completes the proof.

Remark 6.22. In the Proof of Theorem 6.20, we provide a way to construct a B(·) ∈ CBA(·), with m = 1,
through utilizing the Lyapunov transform.
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(1883) 47–88.

[9] D. Henry, Geometric theory of semilinear parabolic equations, vol. 840 of Lect. Notes Math. Springer-Verlag, Berlin, New York
(1981).

[10] M.W. Hirsch and S. Smale, Differential equations, dynamical systems, and linear algebra, vol. 60 of Pure and Applied Mathe-
matics. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York, London (1974).

[11] M. Ikeda, H. Maeda and S. Kodama, Stabilization of linear systems. SIAM J. Control 10 (1972) 716–729.

[12] M. Ikeda, H. Maeda and S. Kodama, Estimation and feedback in linear time-varying systems: a deterministic theory. SIAM
J. Control 13 (1975) 304–326.

[13] H. Kano and T. Nishimura, Periodic solution of matrix Riccati equations with detectability and stabilizability. Internat.
J. Control 29 (1979) 471–487.

[14] H. Kano and T. Nishimura, Controllability, stabilizability, and matrix Riccati equations for periodic systems. IEEE Trans.
Automat. Control 30 (1985) 1129–1131.

[15] G.A. Leonov, The Brockett stabilization problem (in Russian). Avtomat. i Telemekh (2001) 190–193; translation in Autom.
Remote Control 62 (2001) 847–849.

[16] X. Li, J. Yong and Y. Zhou, Control Theory (in Chinese). Higher Education Press of P.R. China, Beijing (2009).

[17] A.M. Lyapunov, The general problem of the stability of motion, Translated from Edouard Davaux’s French translation (1907)
of the 1892 Russian original and edited by A.T. Fuller. With an introduction and preface by Fuller, a biography of Lyapunov
by V.I. Smirnov, and a bibliography of Lyapunov’s works compiled by J.F. Barrett. Lyapunov centenary issue. Reprint of
Internat. J. Control 55 (1992) 521–790.

[18] I.G. Malkin, The stability theory of motion (in Russian). Nauk Press, Moscow (1966).

[19] R. Penrose, A Generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51 (1955) 406–413.

[20] E.D. Sontag, Mathematical control theory: Deterministic finite-dimensional systems, 2nd edition, vol. 6 of Texts in Applied
Mathematics. Springer-Verlag, New York (1998).

[21] W.H. Steeb and Y. Hardy, Matrix calculus and Kronecker product, A practical approach to linear and multilinear algebra,
Second edition. World Scientific Publishing Co. Pte. Ltd., Hackensack (2011).

[22] W. Walter, Ordinary differential equations, Translated from the sixth German (1996) edition by Russell Thompson, vol. 182
of Graduate Texts in Mathematics Readings in Mathematics. Springer-Verlag, New York (1998).

[23] K. Yosida, Functional analysis, 6th edition, vol. 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Prin-
ciples of Mathematical Sciences]. Springer-Verlag, Berlin, New York (1980).


	Introduction
	Preliminary lemmas
	The Proof of Theorem 1.1
	The Proof of Theorems 1.2 and 1.3
	An example
	An application of Theorem 1.2
	The case where A() is time-varying 
	The special case where A() is time-invariant
	The case when both A() and B() are time-varying

	References

